CN113611731A - 一种GaN基增强型垂直HEMT器件及其制备方法 - Google Patents

一种GaN基增强型垂直HEMT器件及其制备方法 Download PDF

Info

Publication number
CN113611731A
CN113611731A CN202110673301.0A CN202110673301A CN113611731A CN 113611731 A CN113611731 A CN 113611731A CN 202110673301 A CN202110673301 A CN 202110673301A CN 113611731 A CN113611731 A CN 113611731A
Authority
CN
China
Prior art keywords
gan
barrier layer
layer
channel
trench gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110673301.0A
Other languages
English (en)
Inventor
李祥东
韩占飞
刘苏杭
张进成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Guangzhou Institute of Technology of Xidian University
Original Assignee
Guangzhou Institute of Technology of Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Technology of Xidian University filed Critical Guangzhou Institute of Technology of Xidian University
Priority to CN202110673301.0A priority Critical patent/CN113611731A/zh
Publication of CN113611731A publication Critical patent/CN113611731A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供了一种GaN基增强型垂直HEMT器件及其制备方法,GaN基增强型垂直HEMT器件的结构从下至上依次包括漏极、衬底、漂移区、垂直沟道阻挡层、沟道层、势垒层、钝化层、沟槽栅和源极。GaN沟道层和其上侧的AlGaN势垒层以及其下方的AlxGa1‑xN垂直沟道阻挡层形成双异质结结构,该结构通过GaN/AlGaN异质结构在垂直沟道方向形成势垒层,从而在关态条件下阻断载流子在垂直方向的输运,进而关断沟道,实现增强型特性。该结构可有效避免传统的Mg掺杂的p‑GaN阻挡层带来的负面影响,设计的器件具有低导通电阻、高漏极电流密度和高阈值电压的显著特性。

Description

一种GaN基增强型垂直HEMT器件及其制备方法
技术领域
本发明属于半导体器件技术领域,具体涉及一种GaN基增强型垂直HEMT器件及其制备方法。
背景技术
宽禁带半导体材料凭借其大禁带宽度和高键合能等优势在高频大功率领域和光电领域发挥着越来越重要的作用。横向结构的GaN高电子迁移率晶体管(HEMT)是其在功率器件应用领域的主要结构,其核心是AlGaN/GaN异质结。基于GaN的垂直功率场效应管和传统的GaN横向器件相比,具有面积效率高、热阻更低、更易封装、电场集边效应小、导通电阻更低等优势。
为了减轻电流崩塌效应并提高器件的可靠性,基于GaN的垂直HEMT的高场区一般埋置于器件体内以避免栅极边缘的表面电弧。电流孔径垂直电子晶体管(CAVET)和沟槽栅金属氧化物半导体场效应晶体管(MOSFET)是两种常见的GaN基垂直场效应晶体管。而这两种传统的GaN垂直场效应晶体管均需采用Mg掺杂的p-GaN作为其沟道阻挡层或势垒层。在制作p-GaN层通常可采用两种方法,第一种是刻蚀之后再生长,第二种是Mg离子注入。这两种方法的刻蚀损伤较大,工艺极为复杂,Mg激活率较低,且引入的缺陷态较高,因而难以制作高性能、高可靠的GaN垂直器件。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种GaN基增强型垂直HEMT器件及其制备方法。本发明要解决的技术问题通过以下技术方案实现:
第一方面,本发明提供的一种GaN基增强型垂直HEMT器件包括:漏极1、衬底2、漂移区3、垂直沟道阻挡层4、沟道层5、槽栅6、势垒层7,钝化层8以及源极9,槽栅6内包括槽栅金属61以及槽栅介质62,槽栅介质62包围槽栅金属,槽栅介质62与钝化层8相连,漏极1、衬底2、漂移区3、垂直沟道阻挡层4自下而上依次相触,槽栅6为沟槽栅,从势垒层7的中心位置开始,开槽范围自上而下从势垒层7、穿过沟道层直至垂直沟道阻挡层4底端,钝化层8位于势垒层7之上,与势垒层7的上表面相触,钝化层8与势垒层7边沿重合,源极9截面呈倒C型,源极9位于钝化层8之上,钝化层8以及势垒层7的边沿分别与源极9边沿对应相触,沟道层5和其上侧的势垒层7以及其下方的垂直沟道阻挡层4形成双异质结结构,源极9穿过势垒层7和沟道层5形成欧姆接触。
可选的,槽栅介质62与钝化层8的材质相同,槽栅介质62为厚度100nm的SiN或SiO2
可选的,势垒层7为厚度30nm的AlxGa1-xN;其中,x=0.1~0.5。
其中,沟道层为厚度50~500nm的GaN。
其中,漂移区3为厚度500~5000nm的n-GaN。
其中,衬底2的材质为n+-GaN。
其中,的垂直沟道阻挡层4为厚度为50~300nm的AlxGa1-xN,其中x的含量为2%~30%。
第二方面,本发明提供的一种GaN基增强型垂直HEMT器件的制备方法包括:
步骤1:在n+-GaN衬底上外延生长n-GaN漂移区;
步骤2:在n-GaN漂移区上外延生长AlxGa1-xN垂直沟道阻挡层;
步骤3:在垂直沟道阻挡层表面外延生长本征GaN沟道层;
步骤4:在本征GaN沟道层的表面外延生长AlGaN势垒层;
步骤5:在AlGaN势垒层表面上刻蚀沟槽,开槽范围自上而下从势垒层、穿过沟道层直至垂直沟道阻挡层底端;
步骤6:在AlGaN势垒层和沟槽表面沉积SiN或SiO2,作为与钝化层相连的槽栅介质;
步骤7:在沟槽内沉积金属形成栅电极;
步骤8:在沟槽表面外延生长SiN或SiO2钝化层;
步骤9:在钝化层表面的预定的欧姆区域进行介质开孔刻蚀和AlGaN刻蚀直至GaN沟道层,在GaN沟道层形成一个刻蚀的浅槽;
步骤10:在欧姆区域进行源极金属沉积和退火,以使GaN沟道层与沉积的金属形成欧姆接触;
步骤11:在n+-GaN衬底背面刻蚀形成漏区,在该漏区区域沉积欧姆接触的金属并退火形成漏极。
本发明提供了一种GaN基增强型垂直HEMT器件及制备方法,其结构从下至上依次包括漏极、衬底、漂移区、垂直沟道阻挡层、沟道层、势垒层、钝化层、槽栅和源极。器件GaN沟道层和其上侧的AlGaN势垒层以及其下方的AlxGa1-xN垂直沟道阻挡层形成双异质结结构,该结构通过垂直GaN/AlGaN异质结构在垂直沟道方向形成势垒层,从而在关态条件下阻断载流子在垂直方向的输运,进而关断沟道,实现增强型特性。该结构可有效避免传统的Mg掺杂的p-GaN阻挡层带来的负面影响,设计的器件具有低通阻(Ron)、高漏极电流密度和高阈值电压(Vth>3V)的显著特性。
本发明提出一种GaN基增强型垂直HEMT器件的制备方法,通过在漂移区上方依次生长AlxGa1-xN垂直沟道阻挡层、GaN沟道层、AlGaN势垒层,三者形成双异质结结构。与传统的p-GaN增强型HEMT器件相比,本发明利用采用AlxGa1-xN取代了传统的不稳定的Mg掺杂p-GaN作为垂直沟道阻挡层,避免了Mg掺杂p-GaN阻挡层所带来的一系列问题,同时有效提高了漏极电流密度和正向阈值电压。并且源极通过开槽穿过势垒层与沟道层形成欧姆接触,可以充分利用二维电子气高迁移率的优势,降低源极导通电阻。同时本发明工艺过程比较简单,和目前传统的GaN HEMT工艺兼容。
以下将结合附图及实施例对本发明做进一步详细说明。
附图说明
图1是本发明实施例提供的一种GaN基增强型垂直HEMT器件的结构示意图;
图2是本发明提供的GaN基增强型垂直HEMT器件的转移特性曲线图;
图3是本发明提供的GaN基增强型垂直HEMT器件的输出特性曲线图;
图4是本发明实施例提供的一种GaN基增强型垂直HEMT器件的制备方法的流程图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
如图1所示,本发明提供的一种GaN基增强型垂直HEMT器件包括:漏极1、衬底2、漂移区3、垂直沟道阻挡层4、沟道层5、槽栅6、势垒层7、钝化层8以及源极9,槽栅6内包括槽栅金属61以及槽栅介质62,槽栅介质62包围槽栅金属,槽栅介质62与钝化层8相连,漏极1、衬底2、漂移区3、垂直沟道阻挡层4自下而上依次相触,槽栅6为沟槽栅,从势垒层7的中心位置开始,开槽范围自上而下从势垒层7、穿过沟道层直至垂直沟道阻挡层4底端,4,钝化层8位于势垒层7之上,与势垒层7的上表面相触,钝化层8与势垒层7左右边沿重合,源极9截面呈倒C型,源极9位于钝化层8之上,钝化层8以及势垒层7的边沿分别与源极9边沿对应相触,沟道层和其上侧的势垒层7以及其下方的垂直沟道阻挡层4形成双异质结结构,源极9穿过势垒层7和沟道层5形成欧姆接触。
作为本发明一种可选的实施方式,槽栅介质62与钝化层8的材质相同,槽栅介质62为厚度100nm的SiN或SiO2
作为本发明一种可选的实施方式,势垒层7为厚度30nm的AlxGa1-xN;其中,x=0.1~0.5。
作为本发明一种可选的实施方式,沟道层为厚度50~500nm的GaN。
作为本发明一种可选的实施方式,漂移区3为厚度500~5000nm的n-GaN。
作为本发明一种可选的实施方式,衬底2的材质为n+-GaN。
作为本发明一种可选的实施方式,的源极9的长度、源极9与槽栅6之间的距离、沟槽栅宽度分别设置为0.5、1.1和0.8μm。
作为本发明一种可选的实施方式,的垂直沟道阻挡层4为厚度为50~300nm的AlxGa1-xN,其中x的含量为2%~30%。
参考图2以及图3,图2是本发明提供的GaN基增强型垂直HEMT器件的转移特性曲线图,横轴为VDS,纵轴为z转移特性,该曲线条件为VDS=10V,Vth=5.4V。图3是本发明提供的GaN基增强型垂直HEMT器件的输出特性曲线图,VGS=0~9V。
本发明提供了一种GaN基增强型垂直HEMT器件,其结构从下至上依次包括漏极、衬底、漂移区、垂直沟道阻挡层、沟道层、势垒层、钝化层、槽栅和源极。所述器件GaN沟道层和其上侧的AlGaN势垒层以及其下方的AlxGa1-xN垂直沟道阻挡层形成双异质结结构,该结构通过垂直GaN/AlGaN异质结构在垂直沟道方向形成势垒层,从而在关态条件下阻断载流子在垂直方向的输运,进而关断沟道,实现增强型特性。该结构可有效避免传统的Mg掺杂的p-GaN阻挡层带来的负面影响,设计的器件具有低通阻(Ron)、高漏极电流密度和高阈值电压(Vth>3V)的显著特性。
如图4所示,本发明提供的一种双异质结基沟槽栅增强型垂直HEMT器件的制备方法包括:
步骤1:在n+-GaN衬底上外延生长n-GaN漂移区;
步骤2:在n-GaN漂移区上外延生长AlxGa1-xN垂直沟道阻挡层;
步骤3:在垂直沟道阻挡层表面外延生长本征GaN沟道层;
步骤4:在本征GaN沟道层的表面外延生长AlGaN势垒层;
步骤5:在AlGaN势垒层(表面上刻蚀沟槽,开槽范围自上而下从势垒层、穿过沟道层直至垂直沟道阻挡层底端;
步骤6:在所述AlGaN势垒层和沟槽表面沉积SiN或SiO2,作为与钝化层相连槽栅介质;
步骤7:在所述沟槽内沉积金属形成栅电极;
步骤8:在所述沟槽表面外延生长SiN或SiO2钝化层;
步骤9:在所述钝化层表面的预定的欧姆区域进行介质开孔刻蚀和AlGaN刻蚀直至GaN沟道层,在GaN沟道层形成一个刻蚀的浅槽;
步骤10:在欧姆区域进行源极金属沉积和退火,以使GaN沟道层与沉积的金属形成欧姆接触;
步骤11:在所述n+-GaN衬底背面刻蚀形成漏区,在该漏区区域沉积欧姆接触的金属并退火形成漏极。
本发明提出的制备方法通过在漂移区上方依次生长AlxGa1-xN垂直沟道阻挡层、GaN沟道层、AlGaN势垒层,三者形成双异质结结构。与传统的p-GaN增强型HEMT器件相比,本发明利用采用AlxGa1-xN取代了传统的不稳定的Mg掺杂p-GaN作为垂直沟道阻挡层,避免了Mg掺杂p-GaN阻挡层所带来的一系列问题,同时有效提高了漏极电流密度和正向阈值电压。并且源极通过开槽穿过势垒层与沟道层形成欧姆接触,可以充分利用二维电子气高迁移率的优势,降低源极导通电阻。同时本发明工艺过程比较简单,和目前传统的GaN HEMT工艺兼容。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (8)

1.一种GaN基增强型垂直HEMT器件,其特征在于,包括:漏极(1)、衬底(2)、漂移区(3)、垂直沟道阻挡层(4)、沟道层(5)、槽栅(6)、势垒层(7),钝化层(8)以及源极(9),所述槽栅(6)内包括槽栅金属(61)以及槽栅介质(62),所述槽栅介质(62)包围所述槽栅金属,所述槽栅介质(62)与所述钝化层(8)相连,所述漏极(1)、衬底(2)、漂移区(3)、垂直沟道阻挡层(4)自下而上依次相触,所述槽栅(6)为沟槽栅,从势垒层(7)的中心位置开始,开槽范围自上而下从势垒层(7)、穿过沟道层直至垂直沟道阻挡层(4)底端,所述钝化层(8)位于所述势垒层(7)之上,与所述势垒层(7)的上表面相触,所述钝化层(8)与所述势垒层(7)边沿重合,所述源极(9)截面呈倒C型,所述源极(9)位于所述钝化层(8)之上,所述钝化层(8)以及所述势垒层(7)的边沿分别与源极(9)边沿对应相触,所述沟道层(5)和其上侧的势垒层(7)以及其下方的垂直沟道阻挡层(4)形成双异质结结构,所述源极(9)穿过势垒层(7)和沟道层(5)形成欧姆接触。
2.根据权利要求1所述的器件,其特征在于,所述槽栅介质(62)与所述钝化层(8)的材质相同,槽栅介质(62)为厚度100nm的SiN或SiO2
3.根据权利要求1所述的器件,其特征在于,势垒层(7)为厚度30nm的AlxGa1-xN;其中,x=0.1~0.5。
4.根据权利要求1所述的器件,其特征在于,沟道层为厚度50~500nm的GaN。
5.根据权利要求1所述的器件,其特征在于,所述漂移区(3)为厚度500~5000nm的n-GaN。
6.根据权利要求1所述的器件,其特征在于,所述衬底(2)的材质为n+-GaN。
7.根据权利要求1所述的器件,其特征在于,所述的垂直沟道阻挡层(4)为厚度为50~300nm的AlxGa1-xN,其中x的含量为2%~30%。
8.一种GaN基增强型垂直HEMT器件的制备方法,其特征在于,所述制备方法包括:
步骤1:在n+-GaN衬底上外延生长n-GaN漂移区;
步骤2:在n-GaN漂移区上外延生长AlxGa1-xN垂直沟道阻挡层;
步骤3:在垂直沟道阻挡层表面外延生长本征GaN沟道层;
步骤4:在本征GaN沟道层的表面外延生长AlGaN势垒层;
步骤5:在AlGaN势垒层表面上刻蚀沟槽,开槽范围自上而下从势垒层、穿过沟道层直至垂直沟道阻挡层底端;
步骤6:在所述AlGaN势垒层和沟槽表面沉积SiN或SiO2,作为与钝化层相连的槽栅介质;
步骤7:在所述沟槽内沉积金属形成栅电极;
步骤8:在所述沟槽表面外延生长SiN或SiO2钝化层;
步骤9:在所述钝化层表面的预定的欧姆区域进行介质开孔刻蚀和AlGaN刻蚀直至GaN沟道层,在GaN沟道层形成一个刻蚀的浅槽;
步骤10:在欧姆区域进行源极金属沉积和退火,以使GaN沟道层与沉积的金属形成欧姆接触;
步骤11:在所述n+-GaN衬底背面刻蚀形成漏区,在该漏区区域沉积欧姆接触的金属并退火形成漏极。
CN202110673301.0A 2021-06-17 2021-06-17 一种GaN基增强型垂直HEMT器件及其制备方法 Pending CN113611731A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110673301.0A CN113611731A (zh) 2021-06-17 2021-06-17 一种GaN基增强型垂直HEMT器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110673301.0A CN113611731A (zh) 2021-06-17 2021-06-17 一种GaN基增强型垂直HEMT器件及其制备方法

Publications (1)

Publication Number Publication Date
CN113611731A true CN113611731A (zh) 2021-11-05

Family

ID=78303557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110673301.0A Pending CN113611731A (zh) 2021-06-17 2021-06-17 一种GaN基增强型垂直HEMT器件及其制备方法

Country Status (1)

Country Link
CN (1) CN113611731A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114068677A (zh) * 2021-11-19 2022-02-18 西南交通大学 一种AlGaN沟槽的增强型高压GaN基垂直HFET装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235543A (ja) * 2007-03-20 2008-10-02 Toyota Central R&D Labs Inc 半導体装置とその製造方法
US20090267078A1 (en) * 2008-04-23 2009-10-29 Transphorm Inc. Enhancement Mode III-N HEMTs
JP2011204892A (ja) * 2010-03-25 2011-10-13 Fujitsu Ltd 半導体装置及びその製造方法
CN102332469A (zh) * 2011-09-22 2012-01-25 中山大学 纵向导通的GaN常关型MISFET器件及其制作方法
CN103035706A (zh) * 2013-01-04 2013-04-10 电子科技大学 一种带有极化掺杂电流阻挡层的垂直氮化镓基异质结场效应晶体管
CN106537599A (zh) * 2014-08-28 2017-03-22 美国休斯研究所 在基极层具有增强的掺杂的三价氮化物晶体管
CN108417629A (zh) * 2018-05-10 2018-08-17 广东省半导体产业技术研究院 一种具有高势垒插入层的晶体管器件
CN109004017A (zh) * 2018-07-18 2018-12-14 大连理工大学 具有极化结纵向泄漏电流阻挡层结构的hemt器件及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235543A (ja) * 2007-03-20 2008-10-02 Toyota Central R&D Labs Inc 半導体装置とその製造方法
US20090267078A1 (en) * 2008-04-23 2009-10-29 Transphorm Inc. Enhancement Mode III-N HEMTs
JP2011204892A (ja) * 2010-03-25 2011-10-13 Fujitsu Ltd 半導体装置及びその製造方法
CN102332469A (zh) * 2011-09-22 2012-01-25 中山大学 纵向导通的GaN常关型MISFET器件及其制作方法
CN103035706A (zh) * 2013-01-04 2013-04-10 电子科技大学 一种带有极化掺杂电流阻挡层的垂直氮化镓基异质结场效应晶体管
CN106537599A (zh) * 2014-08-28 2017-03-22 美国休斯研究所 在基极层具有增强的掺杂的三价氮化物晶体管
CN108417629A (zh) * 2018-05-10 2018-08-17 广东省半导体产业技术研究院 一种具有高势垒插入层的晶体管器件
CN109004017A (zh) * 2018-07-18 2018-12-14 大连理工大学 具有极化结纵向泄漏电流阻挡层结构的hemt器件及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114068677A (zh) * 2021-11-19 2022-02-18 西南交通大学 一种AlGaN沟槽的增强型高压GaN基垂直HFET装置
CN114068677B (zh) * 2021-11-19 2023-03-28 西南交通大学 一种AlGaN沟槽的增强型高压GaN基垂直HFET装置

Similar Documents

Publication Publication Date Title
JP6999197B2 (ja) 複合バリア層構造に基づくiii族窒化物エンハンスメント型hemt及びその製造方法
CN110190116B (zh) 一种高阈值电压常关型高电子迁移率晶体管及其制备方法
US9461122B2 (en) Semiconductor device and manufacturing method for the same
EP2747145B1 (en) Field-effect transistor
CN107452791B (zh) 双沟道hemt器件及其制造方法
CN109952655B (zh) 半导体器件和设计半导体器件的方法
WO2011043110A1 (ja) 半導体装置およびその製造方法
KR101922120B1 (ko) 고전자이동도 트랜지스터 및 그 제조방법
US20070164314A1 (en) Nitrogen polar III-nitride heterojunction JFET
TW201436008A (zh) 異質接面電晶體及其製造方法
WO2018032601A1 (zh) GaN基增强型HEMT器件的制备方法
US20200119177A1 (en) Enhancement-mode Device and Method for Manufacturing the Same
CN105206664A (zh) 基于硅衬底的hemt器件及其制造方法
WO2022028225A1 (zh) 一种有栅源桥P-GaN增强型HEMT器件及其制备方法
CN113611731A (zh) 一种GaN基增强型垂直HEMT器件及其制备方法
CN210897283U (zh) 一种半导体器件
CN109742144B (zh) 一种槽栅增强型mishemt器件及其制作方法
CN205564759U (zh) 一种新型增强型iii-v异质结场效应晶体管
CN205177852U (zh) 基于硅衬底的hemt器件
CN213635994U (zh) 增强型半导体结构
CN113745333A (zh) 一种含δ掺杂势垒层的常关型氧化镓基MIS-HEMT器件及其制备方法
CN112420828A (zh) 一种常闭型高电子迁移率晶体管及其制造方法
CN112420829A (zh) 一种常闭型硅衬底高电子迁移率晶体管及其制造方法
US20230411507A1 (en) Normally-off p-gan gate double channel hemt and the manufacturing method thereof
WO2024103199A1 (en) Nitride-based semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220926

Address after: 710071 Xi'an Electronic and Science University, 2 Taibai South Road, Shaanxi, Xi'an

Applicant after: XIDIAN University

Applicant after: Guangzhou Research Institute of Xi'an University of Electronic Science and technology

Address before: 510555 building B5, B6, B7, Haisi center, Zhongxin knowledge city, Huangpu District, Guangzhou City, Guangdong Province

Applicant before: Guangzhou Research Institute of Xi'an University of Electronic Science and technology

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211105