CN208421291U - Optical filter and infrared image sensing system comprising the optical filter - Google Patents

Optical filter and infrared image sensing system comprising the optical filter Download PDF

Info

Publication number
CN208421291U
CN208421291U CN201821255180.8U CN201821255180U CN208421291U CN 208421291 U CN208421291 U CN 208421291U CN 201821255180 U CN201821255180 U CN 201821255180U CN 208421291 U CN208421291 U CN 208421291U
Authority
CN
China
Prior art keywords
refractive index
index material
layer
material layer
optical filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201821255180.8U
Other languages
Chinese (zh)
Inventor
陈策
丁维红
肖念恭
陈吉利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinyang Sunny Optics Co Ltd
Original Assignee
Xinyang Sunny Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinyang Sunny Optics Co Ltd filed Critical Xinyang Sunny Optics Co Ltd
Priority to CN201821255180.8U priority Critical patent/CN208421291U/en
Application granted granted Critical
Publication of CN208421291U publication Critical patent/CN208421291U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Filters (AREA)

Abstract

A kind of infrared image sensing system the utility model relates to optical filter and comprising the optical filter, the optical filter includes glass substrate and the IR film layer and AR film layer that are coated on respect to two surfaces of the glass substrate, and the IR film layer includes first refractive index material layer, the second refractive index material and third reflect rate material layer;The refractive index of the third reflect rate material layer is greater than the first refractive index material layer refractive index, and the refractive index of second refractive index material is greater than the refractive index of the third reflect rate material layer.The optical filter of the utility model is good to the antireflective effect of near infrared light, to guarantee higher to the precision of recognition of face, gesture identification.Furthermore the adhesive force of optical filter film layer can be effectively improved while the thicknesses of layers of the utility model optical filter becomes thinner.

Description

Optical filter and infrared image sensing system comprising the optical filter
Technical field
The utility model belongs to optical sensing technology field more particularly to a kind of optical filter and outer red comprising the optical filter Image sensing.
Background technique
With the development of science and technology, in smart phone, mobile lidar, safe burglar-proof gate inhibition, smart home, virtual reality/increasing Face equipment, gesture identification etc. are gradually embedded in the terminals such as strong reality/mixed reality, 3D somatic sensation television game, 3D camera shooting and display Function.
It needs to use near-infrared narrow band filter in recognition of face, gesture identification, can play close red in anti-reflection passband UV light ends the effect of visible light in environment.Usual near-infrared narrow band filter includes two membrane systems, respectively IR band logical film System and long wave lead to AR membrane system.However optical filter in the prior art is to the antireflective effect of near infrared light and cut-off visible light Effect is poor, exists simultaneously the problem that membrane system thicknesses of layers is thicker and film adhesion is poor, so as to cause by filter set After being attached to the devices such as recognition of face, gesture identification, imaging effect is poor, accuracy of identification is not high.
Utility model content
A kind of infrared image sensing system the purpose of this utility model is to provide optical filter and comprising the optical filter, solution Certainly existing optical filter near infrared light antireflective effect is poor, film adhesion difference problem.
To achieve the above object, the utility model provides a kind of optical filter, including glass substrate and is coated on the glass IR film layer and AR film layer on respect to two surfaces of substrate,
The IR film layer includes first refractive index material layer, the second refractive index material and third reflect rate material layer;
The refractive index of the third reflect rate material layer is greater than the first refractive index material layer refractive index, second folding The refractive index for penetrating rate material layer is greater than the refractive index of the third reflect rate material layer.
One aspect according to the present utility model, the AR film layer include first refractive index material layer and the second refractive index material The bed of material or including first refractive index material layer, the second refractive index material and third reflect rate material layer.
One aspect according to the present utility model, along the direction far from the glass substrate, the outermost layer of the IR film layer Outermost layer with the AR film layer is first refractive index material layer.
One aspect according to the present utility model, along the direction far from the glass substrate, the structure of the IR film layer according to Secondary is M, (LH) * n, L, and wherein M indicates that third reflect rate material layer, L indicate that first refractive index material layer, H indicate the second refraction Rate material layer, (LH) * n indicates first refractive index material layer and the second refractive index material is arranged alternately n times, and n is more than or equal to 1 Integer.
One aspect according to the present utility model, along the direction far from the glass substrate, the structure of the IR film layer It is followed successively by (LH) * s, L, M, (LH) * p, L, wherein M indicates that third reflect rate material layer, L indicate first refractive index material layer, H table Show the second refractive index material, (LH) * s indicates that first refractive index material layer and the second refractive index material are arranged alternately s times, s For the integer more than or equal to 0, (LH) * p indicates that first refractive index material layer and the second refractive index material are arranged alternately p times, and p is Integer more than or equal to 1.
One aspect according to the present utility model, along the direction far from the glass substrate, the structure of the AR film layer It is followed successively by (LH) * q, L, wherein L indicates that first refractive index material layer, H indicate that the second refractive index material, (LH) * q indicate the One refractive index material and the second refractive index material are arranged alternately q times, and q is the integer more than or equal to 1.
One aspect according to the present utility model, along the direction far from the glass substrate, the structure of the AR film layer It is followed successively by M, (LH) * k, L, wherein M indicates that third reflect rate material layer, L indicate that first refractive index material layer, H indicate the second folding Penetrate rate material layer, (LH) * k indicates that first refractive index material layer and the second refractive index material are arranged alternately k time, k for greater than etc. In 1 integer.
One aspect according to the present utility model, along the direction far from the glass substrate, the structure of the AR film layer It is followed successively by (LH) * i, L, M, (LH) * f, L, wherein M indicates that third reflect rate material layer, L indicate first refractive index material layer, H table Show the second refractive index material, (LH) * i indicates that first refractive index material layer and the second refractive index material are arranged alternately i times, i For the integer more than or equal to 0, (LH) * f indicates that first refractive index material layer and the second refractive index material are arranged alternately f times, and f is Integer more than or equal to 1.
One aspect according to the present utility model, the second refractive index material physical thickness and the first refractive index Material layer physical thickness meets relational expression: 0.05≤DL/DH≤ 20, the third reflect rate material layer physical thickness and described the Two refractive index material physical thickness meet relational expression: 0.02≤DM/DH≤50。
One aspect according to the present utility model, the second refractive index material of the IR film layer are layer of hydrogenated, Refractive index in 800-1200nm wave-length coverage is greater than 3.5, and extinction coefficient is less than 0.002;
Second refractive index material refractive index at 850nm is greater than 3.6, and refractive index is greater than 3.55 at 940nm.
One aspect according to the present utility model, the layer of hydrogenated are that sputtering reaction is coated with material layer, sputter temperature model It encloses for 80-300 degrees Celsius, hydrogen flowing quantity 10-50sccm, sputter rate 0.1nm/s-1nm/s.
One aspect according to the present utility model, in 800-1200nm wave-length coverage, the middle refractive index material Refractive index is less than 4, and the refractive index of the low refractive index material layer is less than 3.
One aspect according to the present utility model, the IR film layer have a passband in 800-1200nm wave-length coverage Wave band, two cut-off wave bands and two transition wave bands, described two transition wave bands are located at the two sides of the passband wave band, institute State the outside that two cut-off wave bands distinguish two transition wave bands;
The passband waveband width is less than 400nm, and transmitance is greater than 90%;
The transmitance of the transition wave band is 0.1%-90%;
The transmitance of the cut-off wave band is less than 0.1%.
One aspect according to the present utility model, the AR film layer have a passband in 350-1200nm wave-length coverage Wave band, a cut-off wave band and a transition wave band, along the direction from 350nm to 1200nm, the cut-off wave band, the mistake Cross wave band and passband subband order arrangement;
The transmitance of the passband wave band is greater than 90%;
The transmitance of the transition wave band is 0.1%-90%;
The transmitance of the cut-off wave band is less than 0.1%..
One aspect according to the present utility model, the full width at half maximum value of the optical filter are less than 120nm, the IR film layer and The overall thickness of the AR film layer is less than 9.8 microns.
One aspect according to the present utility model, when incident angle changes from 0 ° to 30 °, in the optical filter passband Heart wavelength shift is less than 20nm.
To achieve the above object, the utility model provides a kind of outer infrared image sensing system comprising above-mentioned optical filter, Including light source unit and receiving unit,
The light source unit includes IR transmitting light source and the first lens assembly;
The receiving unit includes the second lens assembly, optical filter and infrared image sensor.
IR film layer and AR film layer is arranged in a scheme according to the present utility model in the manner described above, close being effectively ensured While infrared light high transmittance, optical filter passband center wavelengths can be controlled with the drift value of angle in 20nm or less. Further, since being provided with third reflect rate material layer M in IR film layer and AR film layer, and arrange according to above-mentioned arrangement form, so that Total thicknesses of layers of the utility model optical filter effectively reduces, while can improve the adhesive force of film layer.
A scheme according to the present utility model, the utility model provide a kind of comprising the infrared of the utility model optical filter Image sensing, due to be equipped with the utility model optical filter, when shooting can with anti-reflection near infrared light, end its all band Light, so as to improve the precision of final recognition of face, gesture identification.
Detailed description of the invention
Fig. 1 is the configuration diagram for schematically illustrating the IR film layer according to a kind of embodiment of the utility model;
Fig. 2 is the configuration diagram for schematically showing the AR film layer according to a kind of embodiment of utility model;
Fig. 3 is the wavelength of light transmittance curve figure for schematically showing IR film layer in embodiment 1;
Fig. 4 is the wavelength of light transmittance curve figure for schematically showing AR film layer in embodiment 1;
Fig. 5 is the wavelength of light transmittance curve figure for schematically showing IR film layer in embodiment 2;
Fig. 6 is the wavelength of light transmittance curve figure for schematically showing AR film layer in embodiment 2;
Fig. 7 is the wavelength of light transmittance curve figure for schematically showing IR film layer in embodiment 3;
Fig. 8 is the wavelength of light transmittance curve figure for schematically showing AR film layer in embodiment 3;
Fig. 9 is the configuration diagram for schematically showing the infrared image sensing system comprising the utility model optical filter.
Meaning representated by each label is as follows in attached drawing:
1, glass substrate.2, IR film layer.3, AR film layer.L, low refractive index material layer.M, middle refractive index material.H high folding Penetrate rate material layer.4, light source unit.41, IR light source.42, the first lens assembly.5, receiving unit.51, the second barrel assembly. 52, optical filter.53, infrared image sensor.6, face/hand.
Specific embodiment
It, below will be to implementation in order to illustrate more clearly of the utility model embodiment or technical solution in the prior art Attached drawing needed in mode is briefly described.It should be evident that the accompanying drawings in the following description is only that this is practical new Some embodiments of type for those of ordinary skills without creative efforts, can be with It obtains other drawings based on these drawings.
When being described for the embodiments of the present invention, term " longitudinal direction ", " transverse direction ", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", "bottom" "inner", orientation or positional relationship is expressed by "outside" Based on orientation or positional relationship shown in relevant drawings, it is merely for convenience of describing the present invention and simplifying the description, without It is that the device of indication or suggestion meaning or element must have a particular orientation, be constructed and operated in a specific orientation, therefore on Stating term should not be understood as limiting the present invention.
The utility model is described in detail with reference to the accompanying drawings and detailed description, embodiment cannot herein one One repeats, but therefore the embodiments of the present invention is not defined in following implementation.
Fig. 1 is the configuration diagram for schematically illustrating the IR film layer according to a kind of embodiment of the utility model.Fig. 2 is schematic Indicate the configuration diagram of the AR film layer according to a kind of embodiment of utility model.Referring to figs. 1 and 2, the utility model Optical filter includes glass substrate 1, IR film layer 2 and AR film layer 3.The glass substrate 1 of the utility model can using D263T or AF32, IR film layer 2 is infrared cutoff film layer, and AR film layer 3 is antireflective film, i.e. anti-reflection film, can be risen to the wavelength in particular range To antireflective effect.IR film layer 2 and AR film layer 3 are coated on respectively on two opposite surfaces of glass substrate 1, in present embodiment In, IR film layer 2 is coated on the upper surface of glass substrate 1, and AR film layer 3 is coated on the lower surface of glass substrate 1.
As shown in Figure 1, in the present embodiment, the optical filter IR film layer 2 of the utility model includes first refractive index material Layer L, third reflect rate material layer M and the second refractive index material H.In the present embodiment, IR film layer 2 includes four layer materials altogether Layer, along the direction far from glass substrate 1, respectively third reflect rate material layer M, first refractive index material layer L, the second refraction Rate material layer H and first refractive index material layer L.This structure can be expressed as M, (LH), L, i.e., in the present embodiment, IR film layer 2 include three-decker, is the third reflect rate material layer M for being coated on 1 upper surface of glass substrate, outermost first refractive respectively Rate material layer L and the intermediate materials between third reflect rate material layer M and outermost first refractive index material layer L Layer, in the present embodiment, intermediate layer of material successively includes first refractive index material layer L and the second refractive index material H.This reality It may include multiple first refractive index material layer L and the second refractive index material H with the intermediate layer of material of novel IR film layer 2 It is arranged alternately, i.e. the structure of the IR film layer 2 of the utility model can be expressed as M, (LH) * n, L, i.e., along far from glass substrate 1 Direction, IR film layer 2 successively include third reflect rate material layer M, intermediate layer of material and first refractive index material layer L, intermediate wood The bed of material is that first refractive index material layer L and the second refractive index material H is arranged alternately n times composition, and n is the integer more than or equal to 1.
In addition, the IR film layer 2 of the utility model can also have other realities other than the structure type of above embodiment Apply mode, in second of embodiment according to the utility model IR film layer 2,2 structure of IR film layer be (LH) * s, L, M, (LH) * p, L, i.e., along the direction far from glass substrate 1, IR film layer 2 includes altogether five-layer structure, and first layer structure is by first refractive Rate material layer L and the second refractive index material H is arranged alternately s composition, and s is the integer more than or equal to 0.Second layer structure is the One refractive index material L, third layer are third reflect rate material layer M, and four-layer structure is by first refractive index material layer L and second Refractive index material H is arranged alternately p composition, and p is the integer more than or equal to 1, and layer 5 structure, that is, outermost layer is first refractive Rate material layer L.
The IR film layer 2 of the utility model includes third reflect rate material layer M, first refractive index material layer L and the second refraction Rate material layer H, and being configured according to above embodiment it is saturating can to improve near infrared light by being effectively improved the adhesive force of film layer Cross rate curve characteristic.
As shown in Fig. 2, the AR film layer 3 of the utility model is coated on the lower surface of glass substrate 1, in the present embodiment, AR film layer 3 include low refractive index material layer L and high refractive index material layer H, specifically, along far from glass substrate 1 direction, AR film layer 3 successively includes first refractive index material layer L, the second refractive index material H and first refractive index material layer L.In this reality It applies in mode, 3 structure of AR film layer can be expressed as (LH), L, i.e., along the direction far from glass substrate 1, AR film layer 3 includes altogether Double-layer structure is followed successively by first structure layer made of being alternately coated with as first refractive index material layer L and the second refractive index material H With outermost first refractive index material layer L.In addition, first refractive index in first structure layer in the utility model AR film layer 3 Material layer L and the second refractive index material H is alternately or multiple, i.e., 3 structure of AR film layer can be expressed as (LH) * q, L, (LH) * q indicates that first refractive index material layer L and the second refractive index material H is arranged alternately q times, and q is desirable whole more than or equal to 1 Number.
According to second of embodiment of the utility model AR film layer 3, the structure of AR film layer 3 is M, (LH) * k, L, i.e. edge Far from glass substrate 1 direction, AR film layer 3 successively include third reflect rate material layer M, intermediate layer of material and first refractive index Material layer L, intermediate layer of material are that first refractive index material layer L and the second refractive index material H is arranged alternately k composition, and k is big In the integer for being equal to 1.
In addition, the AR film layer 3 of the utility model includes first refractive index material, the second refraction materials and third reflect rate When material layer, the structure of AR film layer 3 can also be (LH) * i, L, M, (LH) * f, L, i.e., along the direction far from glass substrate 1, AR film layer 3 includes five-layer structure altogether, and first layer structure is alternately set by first refractive index material layer L and the second refractive index material H I composition is set, i is the integer more than or equal to 0.Second layer structure is first refractive index material layer L, and third layer is third reflect rate Material layer M, four-layer structure are arranged alternately f times and are constituted by first refractive index material layer L and the second refractive index material H, and f is big In the integer for being equal to 1, layer 5 structure, that is, outermost layer is first refractive index material layer L.
Included IR film layer 2 and AR film layer 3 can be in above embodiment on the optical filter of the utility model It is any, that is to say, that the IR film layer 2 of the utility model is there are two types of embodiment, and there are three types of embodiments for AR film layer 3, is making When making the optical filter of the utility model, the embodiment of IR film layer 2 and AR film layer 3 can be freely combined.It should be noted that nothing By which kind of embodiment of use, the outermost layer of 2 outermost layer of IR film layer and AR film layer 3 is low refractive index material layer.
The optical filter of the utility model, high refractive index material layer H involved in IR film layer 2 are layer of hydrogenated, silane Layer is coated with by the way of sputtering reaction when being coated with, and temperature is controlled when being coated within the scope of 80 DEG C -300 DEG C, controls hydrogen stream Amount is 10-50sccm, and control sputtering rate is 0.1nm/s-1nm/s, so that the second refractive index material of the utility model H Refractive index within the scope of 800-1200nm is greater than 3, and extinction coefficient is less than 0.002, and refractive index is greater than 3.6 at 850nm, Refractive index at 960nm is greater than 3.55, and then is conducive to adjust the offset of the utility model optical filter passband center wavelengths.This Second refractive index material H involved in utility model AR film layer 3 can select hydrogenation silicon material layer, other materials also can be used Material guarantees that the refractive index of the second refractive index material is greater than third reflect rate material layer and first refractive index material to realize Refractive index.
Material used in third reflect rate material layer M involved in IR film layer 2 and AR film layer 3 can be selected from Sb2S3、 Nb2O5、Ta2O5、TiO2、Al2O3、ZrO2、Pr6O11、La2O3、Si2N、SiN、Si2N3、Si3N4One of or a variety of, IR film layer 2 SiO can be selected from material used in first refractive index material layer L involved in AR film layer 32、Nb2O5、Ta2O5、TiO2、 Al2O3、ZrO2、Pr6O11、La2O3、Si2N、SiN、Si2N3、Si3N4One of or it is a variety of.In 800-1200nm wave-length coverage Interior, the ranges of indices of refraction of third reflect rate material layer M is less than 4, and the refractive index of first refractive index material layer L is less than 3.It needs to guarantee The refractive index of third reflect rate material layer M is greater than the refractive index of first refractive index material layer L, i.e., as first refractive index material layer L After selecting one of above-mentioned material, the material selection of third reflect rate material layer M should meet the selection of third reflect rate material layer Material refractive index be greater than first refractive index material layer L select material refractive index.Third reflect rate material layer M and first Refractive index material L can be coated with when being coated with using sputtering consersion unit, also be can use vacuum evaporation apparatus and be coated with.
It is described in detail below by way of optical filter of the specific embodiment to the utility model.
Embodiment 1:
In the present embodiment, along the direction far from glass substrate 1, the structure of the IR film layer 2 of optical filter is M, (LH) * N, L, wherein the optical thickness of the second refractive index material H, third reflect rate material layer M and first refractive index material layer L are distinguished For a quarter of reference wavelength, the physical thickness of the second refractive index material H and the physical thickness of first refractive index material layer L Between meet relational expression: 0.05≤DL/DH≤ 20, H layers of object of third reflect rate material layer M physical thickness and the second refraction materials Reason thickness meets relational expression: 0.02≤DM/DH≤50.The overall thickness of n=11, IR film layer 2 is 3.41 μm.Along far from glass base The direction of plate 1, the structure of AR film layer 3 are (LH) * q, L, q=12.The physical thickness and low-refraction of second refractive index material H Meet relational expression: 0.05≤D between the physical thickness of material layer LL/DH≤ 20, third reflect rate material layer M physical thickness and Two H layers of refraction materials physical thickness meet relational expression: 0.02≤DM/DH≤50。
That is, in the present embodiment, IR film layer 2 includes 24 layer of material altogether, AR film layer 3 includes 25 layer materials altogether Layer.In the present embodiment, it selects hydrogenation silicon material layer as the second refractive index material H, aluminium oxide is selected to roll over as third Rate material layer M is penetrated, selects silica as first refractive index material layer L.Utilize formulaSubstitute into equation Parameters of film is obtained to be as follows:
Wherein, OTiIndicate the optical thickness of the i-th tunic layer, OT0Indicate the optical thickness of a quarter design wavelength size, Pi indicates that pi, f indicate modulation factor, and size is between 0 to 1.
Table 1 shows the parameter of each material layer of IR film layer 2:
Table 1
Table 2 shows the parameter of each material layer of AR film layer 3:
Table 2
As shown in figure 3, the optical filter of the utility model is arranged referring to each conditional parameter in embodiment 1, in 800-1200nm In wave-length coverage, the IR film layer 2 of the utility model has a passband wave band, two cut-off wave bands and two transition wave bands, i.e., Along from the direction of 800nm-1200nm, IR film layer 2 successively have cut-off wave band, transition wave band, passband wave band, transition wave band and End wave band.Passband wave band refer to light can by wave band, cut-off wave band refer to the intransitable wave band of light, little bellow Section is located between cut-off wave band and passband wave band.As shown, the width of passband wave band is less than 400nm, transmitance is greater than 90%, The transmitance of transition wave band is 0.1%-90%, ends the transmitance of wave band less than 0.1%.
As shown in figure 4, the AR film layer 3 of the utility model optical filter is arranged referring to conditional parameter each in embodiment, in 350- 1200nm wave-length coverage, AR film layer 3 have a passband wave band, a cut-off wave band and a transition wave band, i.e., along from The direction of 350nm to 1200nm, AR film layer 3 successively have cut-off wave band, transition wave band, passband wave band.As shown in figure 4, passband The light penetration of wave band is greater than 90%, and the transmitance of transition wave band is 0.1%-90%, and the transmitance for ending wave band is less than 0.1%.
According to the optical filter of each parameter setting the utility model of embodiment 1, it can guarantee the utility model optical filter Full width at half maximum value is less than 120nm, the overall thickness of IR film layer 2 and AR film layer less than 9.8 microns, incident angle from 0 ° change to At 30 °, the center wavelength shift amount of optical filter passband is less than 20nm.
Embodiment 2:
In the present embodiment, along the direction far from glass substrate 1, the structure of the IR film layer 2 of optical filter be (LH) * s, L, M, (LH) * p, L, wherein the optics of the second refractive index material H, third reflect rate material layer M and first refractive index material layer L Thickness is respectively a quarter of reference wavelength, and the physical thickness of the second refractive index material H is with first refractive index material layer L's Meet relational expression: 0.05≤D between physical thicknessL/DH≤ 20, third reflect rate material layer M physical thickness and the second refractive index material Bed of material H physical thickness meets relational expression: 0.02≤DM/DH≤50.The overall thickness of s=5, p=6, IR film layer 2 is 3.2 μm.Along Direction far from glass substrate 1, the structure of AR film layer 3 are (LH) * q, L, q=12.The physical thickness of second refractive index material H Meet relational expression: 0.05≤D between the physical thickness of first refractive index material layer LL/DH≤ 20, third reflect rate material layer M Physical thickness and the second refractive index material H physical thickness meet relational expression: 0.02≤DM/DH≤50。
That is, in the present embodiment, IR film layer 2 includes 25 layer of material altogether, AR film layer 3 includes 25 layer materials altogether Layer.In the present embodiment, select hydrogenation silicon materials as the second refractive index material H in IR film layer 2, selection oxidation Aluminium is as third reflect rate material layer M, selection silica as first refractive index material layer L.In AR film layer 3, choosing Use Nb2O5As the second refractive index material, select silica as first refractive index material layer L.Utilize formula Substitute into equation i=1kcos δ iisin δ i η ii η Isin δ icos δ i obtains parameters of film and is as follows:
Table 3 shows the parameter of each material layer of IR film layer 2:
1 2 3 4 5
Material SiO2 Si:H SiO2 Si:H SiO2
Thickness (nm) 216.82 241.04 157.35 258.55 110.97
6 7 8 9 10
Material Si:H SiO2 Si:H SiO2 Si:H
Thickness (nm) 72.68 110.1 281.69 31.92 105.95
11 12 13 14 15
Material SiO2 AL2O3 SiO2 Si:H SiO2
Thickness (nm) 115.24 269.55 20 229.1 85.05
16 17 18 19 20
Material Si:H SiO2 Si:H SiO2 Si:H
Thickness (nm) 244.25 20 163.62 80.54 70.93
21 22 23 24 25
Material SiO2 Si:H SiO2 Si:H SiO2
Thickness (nm) 141.73 265.31 72.69 235.3 92.66
Table 3
Table 4 indicates the parameter of each material layer of AR film layer 3:
Table 4
As shown in figure 5, the optical filter of the utility model is arranged referring to each conditional parameter in embodiment 2, in 800-1200nm In wave-length coverage, the IR film layer 2 of the utility model has a passband wave band, two cut-off wave bands and two transition wave bands, i.e., Along from the direction of 800nm-1200nm, IR film layer 2 successively have cut-off wave band, transition wave band, passband wave band, transition wave band and End wave band.Passband wave band refer to light can by wave band, cut-off wave band refer to the intransitable wave band of light, little bellow Section is located between cut-off wave band and passband wave band.As shown, the width of passband wave band is less than 400nm, transmitance is greater than 90%, The transmitance of transition wave band is 0.1%-90%, ends the transmitance of wave band less than 0.1%.
As shown in fig. 6, the AR film layer 3 of the utility model optical filter is arranged referring to each conditional parameter in embodiment 2, in 350- 1200nm wave-length coverage, AR film layer 3 have a passband wave band, a cut-off wave band and a transition wave band, i.e., along from The direction of 350nm to 1200nm, AR film layer 3 successively have cut-off wave band, transition wave band, passband wave band.As shown in fig. 6, passband The light penetration of wave band is greater than 90%, and the transmitance of transition wave band is 0.1%-90%, and the transmitance for ending wave band is less than 0.1%.
According to the optical filter of each parameter setting the utility model of embodiment 2, it can equally guarantee that the utility model filters The full width at half maximum value of piece is less than 120nm, and the overall thickness of IR film layer 2 and AR film layer changes in incident angle from 0 ° less than 9.8 microns When to 30 °, the center wavelength shift amount of optical filter passband is less than 20nm.
Embodiment 3:
In the present embodiment, along the direction far from glass substrate 1, the structure of the IR film layer 2 of optical filter is M, (LH) * N, L, wherein the optical thickness of the second refractive index material H, third reflect rate material layer M and first refractive index material layer L are distinguished For a quarter of reference wavelength, the physical thickness of the second refractive index material H and the physical thickness of first refractive index material layer L Between meet relational expression: 0.05≤DL/DH≤ 20, H layers of object of third reflect rate material layer M physical thickness and the second refraction materials Reason thickness meets relational expression: 0.02≤DM/DH≤50.The overall thickness of n=11, IR film layer 2 is 4.64 μm.Along far from glass base The direction of plate 1, the structure of AR film layer 3 are (LH) * q, L, q=12.The physical thickness and first refractive of second refractive index material H Meet relational expression: 0.05≤D between the physical thickness of rate material layer LL/DH≤20.Third reflect rate material layer M physical thickness with Second refractive index material H physical thickness meets relational expression: 0.02≤DM/DH≤50。
That is, in the present embodiment, IR film layer 2 includes 24 layer of material altogether, AR film layer 3 includes 25 layer materials altogether Layer.In the present embodiment, it in IR film layer 2, selects silane as the second refractive index material H, select Nb2O5As third reflect Rate material layer M, select silica as first refractive index material layer L.In AR film layer 3, select silane as the second refractive index Material layer H selects silica as first refractive index material layer L.Utilize formula Equation i=1kcos δ iisin δ i η ii η isin δ icos δ i acquisition parameters of film is substituted into be as follows:
Table 5 shows the parameter of each material layer of IR film layer 2:
Table 5
Table 6 shows the parameter of each material layer of AR film layer 3:
1 2 3 4 5
Material SiO2 Si:H SiO2 Si:H SiO2
Thickness (nm) 118.99 144.41 121.91 40.98 99.76
6 7 8 9 10
Material Si:H SiO2 Si:H SiO2 Si:H
Thickness (nm) 38.13 108.77 46.76 96.72 40
11 12 13 14 15
Material SiO2 Si:H SiO2 Si:H SiO2
Thickness (nm) 21 105 114.2 162.36 134.9
16 17 18 19 20
Material Si:H SiO2 Si:H SiO2 Si:H
Thickness (nm) 20 20 20 86.73 41.24
21 22 23 24 25
Material SiO2 Si:H SiO2 Si:H SiO2
Thickness (nm) 117.94 60.05 45.65 53.89 139.6
Table 6
As shown in fig. 7, the optical filter of the utility model is arranged referring to each conditional parameter in embodiment 3, in 800-1200nm In wave-length coverage, the IR film layer 2 of the utility model has a passband wave band, two cut-off wave bands and two transition wave bands, i.e., Along from the direction of 800nm-1200nm, IR film layer 2 successively have cut-off wave band, transition wave band, passband wave band, transition wave band and End wave band.Passband wave band refer to light can by wave band, cut-off wave band refer to the intransitable wave band of light, little bellow Section is located between cut-off wave band and passband wave band.As shown, the width of passband wave band is less than 400nm, transmitance is greater than 90%, The transmitance of transition wave band is 0.1%-90%, ends the transmitance of wave band less than 0.1%.
As shown in figure 8, the AR film layer 3 of the utility model optical filter is arranged referring to each conditional parameter in embodiment 3, in 350- 1200nm wave-length coverage, AR film layer 3 have a passband wave band, a cut-off wave band and a transition wave band, i.e., along from The direction of 350nm to 1200nm, AR film layer 3 successively have cut-off wave band, transition wave band, passband wave band.As shown in figure 8, passband The light penetration of wave band is greater than 90%, and the transmitance of transition wave band is 0.1%-90%, and the transmitance for ending wave band is less than 0.1%.
According to the optical filter of each parameter setting the utility model of embodiment 3, it can equally guarantee that the utility model filters The full width at half maximum value of piece is less than 120nm, and the overall thickness of IR film layer 2 and AR film layer changes in incident angle from 0 ° less than 9.8 microns When to 30 °, the center wavelength shift amount of optical filter passband is less than 20nm.
IR film layer 2 and AR film layer 3 are arranged in the manner described above, near-infrared is being effectively ensured for the optical filter of the utility model While light high transmittance, optical filter passband center wavelengths can be controlled with the drift value of angle in 20nm or less.In addition, by It is provided with third reflect rate material layer M in IR film layer 2 and AR film layer 3, and arranges according to above-mentioned arrangement form, so that this is practical Total thicknesses of layers of novel filter effectively reduces, while can improve the adhesive force of film layer.
The utility model also provides a kind of infrared image sensing system comprising the utility model optical filter.Fig. 9 is signal Property indicate comprising the utility model optical filter infra-red sensing system configuration diagram.As shown in figure 9, the utility model is infrared Image sensing includes light source unit 4 and receiving unit 5.In the present embodiment, light source unit 4 includes that IR emits light source 41 With the first lens assembly 42.Receiving unit 5 includes the optical filter and infrared image sensing of the second lens assembly 51, the utility model Device 53.In the present embodiment, IR light source 41 can be VCSEL (vertical cavity surface emitting laser), LD or LED, the first camera lens Component 42 includes near infrared light collimation camera lens and diffractive-optical element.Second lens assembly 51 can use ordinary optical camera lens. The workflow of the infrared image sensing system of the utility model is as follows:
IR light source 41 is opened, to 6 throw light of face/hand, the second lens assembly 51 after the first lens assembly 42 collimation Image is shot, is calculated by infrared image sensor 53 by algorithm and generates 3D rendering, carries out recognition of face or gesture identification.Due to The presence of the utility model optical filter 52, when shooting can with anti-reflection near infrared light, end the light of its all band, so as to mention High final recognition of face, gesture identification precision.
The foregoing is merely a schemes of the utility model, are not intended to limit the utility model, for ability For the technical staff in domain, various modifications and changes may be made to the present invention.It is all the spirit and principles of the utility model it Interior, any modification, equivalent replacement, improvement and so on should be included within the scope of protection of this utility model.

Claims (17)

1. a kind of optical filter, including glass substrate (1) and the IR film layer (2) being coated on opposite two surfaces of the glass substrate With AR film layer (3), which is characterized in that
The IR film layer (2) includes first refractive index material layer, the second refractive index material and third reflect rate material layer, described The refractive index of third reflect rate material layer is greater than the first refractive index material layer refractive index, second refractive index material Refractive index is greater than the refractive index of the third reflect rate material layer.
2. optical filter according to claim 1, which is characterized in that the AR film layer (3) includes first refractive index material layer With the second refractive index material or including first refractive index material layer, the second refractive index material and third reflect rate material Layer.
3. optical filter according to claim 1, which is characterized in that along the direction far from the glass substrate (1), the IR The outermost layer of film layer (2) and the outermost layer of the AR film layer (3) are first refractive index material layer.
4. optical filter according to claim 3, which is characterized in that described along the direction far from the glass substrate (1) The structure of IR film layer (2) is followed successively by M, (LH) * n, L, and wherein M indicates that third reflect rate material layer, L indicate first refractive index material Layer, H indicate that the second refractive index material, (LH) * n indicate that first refractive index material layer and the second refractive index material are arranged alternately N times, n are the integer more than or equal to 1.
5. optical filter according to claim 3, which is characterized in that described along the direction far from the glass substrate (1) The structure of IR film layer (2) is followed successively by (LH) * s, L, M, (LH) * p, L, and wherein M indicates that third reflect rate material layer, L indicate first Refractive index material, H indicate that the second refractive index material, (LH) * s indicate first refractive index material layer and the second refraction materials Layer is arranged alternately s times, and s is the integer more than or equal to 0, and (LH) * p indicates first refractive index material layer and the second refractive index material It is arranged alternately p times, p is the integer more than or equal to 1.
6. optical filter according to claim 2, which is characterized in that described along the direction far from the glass substrate (1) The structure of AR film layer (3) is followed successively by (LH) * q, L, wherein L indicates that first refractive index material layer, H indicate the second refraction materials Layer, (LH) * q indicate that first refractive index material layer and the second refractive index material are arranged alternately q times, and q is whole more than or equal to 1 Number.
7. optical filter according to claim 2, which is characterized in that described along the direction far from the glass substrate (1) The structure of AR film layer (3) is followed successively by M, (LH) * k, L, and wherein M indicates that third reflect rate material layer, L indicate low-index material Layer, H indicate that the second refractive index material, (LH) * k indicate that first refractive index material layer and the second refractive index material are arranged alternately K times, k is the integer more than or equal to 1.
8. optical filter according to claim 2, which is characterized in that described along the direction far from the glass substrate (1) The structure of AR film layer (3) is followed successively by (LH) * i, L, M, (LH) * f, L, and wherein M indicates that third reflect rate material layer, L indicate first Refractive index material, H indicate that the second refractive index material, (LH) * i indicate first refractive index material layer and the second refraction materials Layer is arranged alternately i times, and i is the integer more than or equal to 0, and (LH) * f indicates first refractive index material layer and the second refractive index material It is arranged alternately f times, f is the integer more than or equal to 1.
9. according to the described in any item optical filters of claim 3-8, which is characterized in that the second refractive index material physics is thick Degree meets relational expression: 0.05≤D with the first refractive index material layer physical thicknessL/DH≤20;The third reflect rate material Layer physical thickness and the second refractive index material physical thickness meet relational expression: 0.02≤DM/DH≤50。
10. optical filter according to claim 1, which is characterized in that (2) second refractive index material of IR film layer is hydrogen SiClx layer, the refractive index in 800-1200nm wave-length coverage are greater than 3, and extinction coefficient is less than 0.002;
Second refractive index material refractive index at 850nm is greater than 3.6, and refractive index is greater than 3.55 at 940nm.
11. optical filter according to claim 10, which is characterized in that the layer of hydrogenated is sputtering reaction plating prepared material Layer, sputter temperature range is 80-300 degrees Celsius, hydrogen flowing quantity 10-50sccm, sputter rate 0.1nm/s-1nm/s.
12. optical filter according to claim 1, which is characterized in that in 800-1200nm wave-length coverage, the third folding The refractive index of rate material layer is penetrated less than 4, the refractive index of the first refractive index material layer is less than 3.
13. optical filter according to claim 1, which is characterized in that the IR film layer (2) is in 800-1200nm wave-length coverage The passband is located at a passband wave band, two cut-off wave bands and two transition wave bands, described two transition wave bands The two sides of wave band, described two cut-off wave bands are located at the outside of two transition wave bands;
The passband waveband width is less than 400nm, and transmitance is greater than 90%;
The transmitance of the transition wave band is 0.1%-90%;
The transmitance of the cut-off wave band is less than 0.1%.
14. optical filter according to claim 1, which is characterized in that the AR film layer (3) is in 350-1200nm wave-length coverage Inside there is a passband wave band, a cut-off wave band and a transition wave band, it is described along the direction from 350nm to 1200nm End wave band, the transition wave band and passband subband order arrangement;
The transmitance of the passband wave band is greater than 90%;
The transmitance of the transition wave band is 0.1%-90%;
The transmitance of the cut-off wave band is less than 0.1%.
15. optical filter according to claim 1, which is characterized in that the full width at half maximum value of the optical filter is less than 120nm, The overall thickness of the IR film layer (2) and the AR film layer (3) is less than 9.8 microns.
16. optical filter according to claim 1, which is characterized in that when incident angle changes from 0 ° to 30 °, the filter The center wavelength shift amount of mating plate passband is less than 20nm.
17. a kind of infrared image sensing system comprising the optical filter as described in claim any one of 1-16, which is characterized in that packet Light source unit (4) and receiving unit (5) are included,
The light source unit (4) includes IR transmitting light source (41) and the first lens assembly (42);
The receiving unit (5) includes the second lens assembly (51), optical filter (52) and infrared image sensor (53).
CN201821255180.8U 2018-08-06 2018-08-06 Optical filter and infrared image sensing system comprising the optical filter Active CN208421291U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821255180.8U CN208421291U (en) 2018-08-06 2018-08-06 Optical filter and infrared image sensing system comprising the optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821255180.8U CN208421291U (en) 2018-08-06 2018-08-06 Optical filter and infrared image sensing system comprising the optical filter

Publications (1)

Publication Number Publication Date
CN208421291U true CN208421291U (en) 2019-01-22

Family

ID=65121551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821255180.8U Active CN208421291U (en) 2018-08-06 2018-08-06 Optical filter and infrared image sensing system comprising the optical filter

Country Status (1)

Country Link
CN (1) CN208421291U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108897085A (en) * 2018-08-06 2018-11-27 信阳舜宇光学有限公司 Optical filter and infrared image sensing system comprising the optical filter
CN110177191A (en) * 2019-05-10 2019-08-27 惠州市航泰光电有限公司 A kind of cover board and its production method for 3D camera face recognition module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108897085A (en) * 2018-08-06 2018-11-27 信阳舜宇光学有限公司 Optical filter and infrared image sensing system comprising the optical filter
EP3671294A4 (en) * 2018-08-06 2021-10-06 Xinyang Sunny Optics Co., Ltd. Optical filter and infrared image sensing system comprising same
US11828961B2 (en) 2018-08-06 2023-11-28 Xinyang Sunny Optics Co., Ltd. Optical filter and infrared image sensing system including the same
CN110177191A (en) * 2019-05-10 2019-08-27 惠州市航泰光电有限公司 A kind of cover board and its production method for 3D camera face recognition module
CN110177191B (en) * 2019-05-10 2024-02-06 惠州市航泰光电有限公司 Cover plate for 3D camera face recognition module and production method thereof

Similar Documents

Publication Publication Date Title
CN108897085A (en) Optical filter and infrared image sensing system comprising the optical filter
CN108761614A (en) Optical filter and infrared image sensing system comprising the optical filter
CN208596240U (en) A kind of near-infrared narrow band filter and infrared imaging system
CN108873135A (en) A kind of near-infrared narrow band filter and infrared imaging system
ES2714508T3 (en) Ophthalmic lens comprising a polymeric material base with a coating with an anti-reflective, antireflective and IR filter multilayer interferential structure
JP5741283B2 (en) Infrared light transmission filter and imaging apparatus using the same
US9310525B2 (en) Antireflection film and optical device
Lee et al. Omnidirectional Flexible Transmissive Structural Colors with High‐Color‐Purity and High‐Efficiency Exploiting Multicavity Resonances
CN106415330B (en) Optical goods, eyeglass and glasses
CN101393276B (en) Wide-band antireflective film and optical element with the wide-band antireflective film
CN208421291U (en) Optical filter and infrared image sensing system comprising the optical filter
CN104871047A (en) Near-infrared cut-off filter
CN202710767U (en) Ultra-wideband antireflection-film lens
CN105122095A (en) Infrared shielding filter, solid-state imaging element, and imaging/display device
KR20190039621A (en) Eyeglass lens and eyeglasses
CN101750641A (en) Broadband AR (anti-reflection)-film and optical element with broadband AR-film
CN105629509B (en) A kind of clean type anti-blue light spectacle lens
CN109061785A (en) AR film layer and optical filter for near-infrared narrow band filter
JP2007171735A (en) Wide band anti-reflection film
CN208421292U (en) Optical filter and infrared image sensing system comprising the optical filter
CN208421290U (en) AR film layer and optical filter for near-infrared narrow band filter
JP2009083183A (en) Optical membrane laminate
CN105572770A (en) Antireflection film used in blue-light-proof spectacle lens
CN204028389U (en) A kind of automatically cleaning ultra-wideband antireflective film glass
CN110161595A (en) It is coated with the optical mirror slip and optical lens of anti-reflection membrane system

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant