CN201514403U - 氦光离子化气相色谱检测器 - Google Patents

氦光离子化气相色谱检测器 Download PDF

Info

Publication number
CN201514403U
CN201514403U CN2009201768130U CN200920176813U CN201514403U CN 201514403 U CN201514403 U CN 201514403U CN 2009201768130 U CN2009201768130 U CN 2009201768130U CN 200920176813 U CN200920176813 U CN 200920176813U CN 201514403 U CN201514403 U CN 201514403U
Authority
CN
China
Prior art keywords
chamber
carrier gas
discharge
gas inlet
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009201768130U
Other languages
English (en)
Inventor
何道善
何浪涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2009201768130U priority Critical patent/CN201514403U/zh
Application granted granted Critical
Publication of CN201514403U publication Critical patent/CN201514403U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本实用新型公开了一种氦光离子化气相色谱检测器,包括位于池体内的放电气入口、载气出口、载气入口和绝缘体,还包括设置于池体内的离子肼、设置于绝缘体内的放电室、离子化室,离子肼连通放电室和离子化室,放电气入口与放电室连通,载气出口和载气入口分别与离子化室相通。本实用新型采用直流高压尖端放电技术获取紫外光电离源。紫外光穿过离子阱窗口照射离子化室使待测物质电离,在极化极电场作用下,收集极收集微弱的电流经微电流放大器放大后输出色谱信号。该检测器不使用放射源,检测限达ppb级,线性范围105,电离能19.8ev,能使除氖以外的所有有机和无机气体电离,是高纯气体色谱分析理想的检测器。

Description

氦光离子化气相色谱检测器
技术领域
本实用新型涉及一种气相色谱检测器,具体的说是涉及氦光离子化气相色谱检测器。
背景技术
高纯气体是国民经济建设中的基础原材料之一。现代工业和现代科学技术对高纯气体提出了越来越高的要求,气体纯度越高,其中的杂质含量越低。高纯气体中痕量杂质的测定是一个很具挑战性的课题。采用色谱法测定高纯气体中的痕量杂质目前被认为是一个比较好的方法,显然,要应对高纯气体痕量杂质的测定,色谱检测器作为色谱技术的核心,必须具有通用性、高的电离能和高的灵敏度。
在色谱分析中被广泛应用的热导池检测器(TCD)为通用型检测器,但其检测灵敏度较低,不能满足高纯气体分析要求。氢火焰离子化检测器(FID)具有较高的灵敏度,但只能测定有机气体,对无机气体没有响应,不通用。电子迁移检测器(EMD)用于氩中杂质的测定比较理想。火焰光度(FPD)是硫、磷等特定物质理想的检测器。电子捕获(ECD)检测器仅对负电性物质灵敏度较高。在高纯气体分析中,比较看好的是基于亚稳态氦原理的氦离子化检测器,它有三种不同的技术路线:一是放射性氦离子化检测器(HID),由β-射线的照射将氦从基态激发到亚稳态,不便之处是要使用放射源;二是氦放电离子化检测器(HDID),由放电将基态氦激发至稳态氦,待测组分直接通过放电间隙,在某些应用中可能导致放电电极污染或放电熄灭,线性范围较窄(103);三是氦光离子化检测器(HPID),采用亚稳态氦返回基态时发出的紫外光作为电离源,电离能高、灵敏度高,通常被视为放射性氦离子化检测器的替代品。
光离子化检测器由紫外光源和离子化室两部分组成。紫外光源实质上就是一个气体放电室或放电管,在气体中放电产生紫外光。各类型光离子化检测器的差别主要显现在紫外光源上,有光窗式结构和无光窗式结构两种类型。现有技术大多采用光窗式结构,紫外光源为一密封紫外灯,采用在负压气体中激发放电,放电产生的紫外光穿过氟化玻璃窗口照射离子化室使待测物质电离,对有机物有较高的响应,为选择性检测器。所谓无光窗式结构,通常采用常压氦中放电,放电室与离子化室相通,紫外光直接照射离子化室致使待测物质电离,电离能较高。激发气体放电有多条技术路线,例如高频或超高频无极放电、脉冲或双脉冲放电、微波等离子放电等等。微波等离子体离子化检测器,采用微波等离子体矩作电离源,由微波谐振腔和离子收集室组成,结构比较复杂。脉冲放电氦离子化检测器,采用脉冲或双脉冲放电获得紫外光,除了检测器结构比较复杂外,需要控制脉冲电源宽度、周期和幅度等,操作控制参数及影响因素较多。
实用新型内容
本实用新型的目的是提供一种结构简单适用、线性范围更宽、易于操控的高电离能、高灵敏度的通用型光离子化检测器。
对于氦放电离子化气相色谱检测器,本实用新型所采用的技术方案是:
氦光离子化气相色谱检测器,包括位于池体内的放电气入口、载气出口、载气入口和绝缘体,还包括设置于池体内的离子肼、设置于绝缘体内的放电室、离子化室,离子肼连通放电室和离子化室,放电气入口与放电室连通,载气出口和载气入口分别与离子化室相通。
所述放电室内相对放置一对放电电极。
优选的,所述放电电极的放电端头为尖端结构。采用尖端放电技术,用直流高压在常压氦气流中激发电晕放电获得紫外光源。
所述离子化室内设有相对放置的极化极和收集极。
极化极和收集极均为中空结构,并与载气出口和载气入口相通,载气入口位于极化极外侧,载气出口位于收集极外侧。极化极和收集极采用小孔径中空结构,同时兼作载气通道。
所述载气出口、载气入口、极化极和收集极的中轴线处于一条直线上。极化极与直流高压负端连接,收集极与微电流放大器输入端连接,电离产生的离子流在极化极电场作用下流向收集极,收集极收集的微弱电流经微电流放大器放大后输出色谱信号。
所述离子肼为接地的金属小孔窗口。
优选的,离子肼的孔径小于极化极和收集极之间的距离。将离子阱接地,阻止放电室的带电粒子进入离子化室,可有效降低检测器基流。离子阱将放电室和离子化室之间连通,同时兼作放电气和紫外光通道,放电气穿过离子阱小孔窗口与离子化室中的载气汇合;紫外光穿过离子肼窗口照射离子化室使待测组分电离。
所述放电气入口、放电室和离子肼的中轴线处于一条直线上,并与载气入口、极化极、收集极和载气出口形成的通路相垂直。
载气入口与色谱柱出口连接。待测组分经色谱柱分离后随载气进入离子化室并被电离。放电气经放电气入口进入放电室,穿过放电电极、离子肼窗口进入离子化室,与载气汇合后从载气出口放空。
本实用新型的有益效果是:
(1)采用直流高压电源,在常压氦气流中激发电晕放电,放电室结构简单,电源功率小,所需设备简单,仅由限流电阻控制放电状态,操作参数少;
(2)紫外光源稳定,噪音小;
(3)紫外光电离能高达19.8ev,几乎可以使除氖以外的所有物质电离,检测器通用性好;
(4)创新的离子阱电极设计,将离子阱接地,阻止放电室的带电粒子进入离子化室,有效降低了检测器基流;
(5)检测器为非破坏性的,不使用放射源,不产生辐射危害;
(6)确保电离室紫外光照射强度,检测灵敏度高,检测限达ppb级(n×10-8);
(7)线性范围大于105,可同时满足纯气体、高纯气体和超高纯气体分析要求。
附图说明
图1是本实用新型结构示意图。
图中标记及相应的零部件名称:1-池体;2-绝缘体;3-载气出口;4-载气入口;5-放电电极;6-极化极;7-收集极;8-离子化室;9-离子肼;10-放电室;11-放电气入口。
具体实施方式
如图1所示,本实用新型包括位于池体1内的放电气入口11、载气出口3、载气入口4和绝缘体2,池体1为金属池体,绝缘体2为聚四氟乙烯绝缘体。池体1内设置离子肼9,绝缘体2内设置放电室10、离子化室8,离子肼9连通放电室10和离子化室8,放电气入口11与放电室10连通,载气出口3和载气入口4分别与离子化室8相通。放电室10内相对放置一对放电电极5,放电电极5的放电端头为尖端结构。离子化室8内设有相对放置的极化极6和收集极7,极化极6和收集极7均为中空结构,并与载气出口3和载气入口4相通,载气入口4位于极化极6外侧,载气出口3位于收集极7外侧。载气出口3、载气入口4、极化极6、离子化室8和收集极7的中轴线处于一条直线上。离子肼9为接地的金属小孔窗口,其孔径小于极化极6和收集极7之间的距离。放电气入口11、放电室10和离子肼9的中轴线处于一条直线上,并与载气入口4、极化极6、收集极7、离子化室8和载气出口3形成的通路相垂直。
放电气经放电气入口11进入放电室10,穿过放电电极5的放电间隙,经离子肼9进入离子化室8,与从载气入口4经极化极6进入离子化室8的载气汇合,然后经载气出口3放空。向放电电极5施加直流高压,在常压氦气流中激发电晕放电获得紫外光,高压电源与微安表、限流高阻、检测器组成回路,由限流高阻或电源电压调节放电电流并控制放电在电晕放电状态,获取稳定的紫外光电离源。紫外光穿过离子肼9小孔窗口照射离子化室8,致使随氦载气进入离子化室8的待测组分电离。极化极6与负高压连接,收集极7与微电流放大器输入端连接,带电粒子在极化极6电场作用下流向收集极7,收集极7收集的微弱电流经微电流放大器放大,输出色谱讯号,与待测组分含量在一定范围内有确定的函数关系。
本实用新型对载气氦气纯度要求很高,对色谱系统的气密性要求也很高。通常要求使用氦气纯化器,且经纯化后的氦气在色谱系统中待测组分的含量应比待测试样低一个数量级。
以上所述,仅是本实用新型的较佳实施例,并非对本实用新型做任何形式上的限制,凡是依据本实用新型的技术实质上对以上实施例所作的任何简单修改、等同变化,均落入本实用新型的保护范围之内。

Claims (9)

1.氦光离子化气相色谱检测器,包括位于池体(1)内的放电气入口(11)、载气出口(3)、载气入口(4)和绝缘体(2),其特征在于,还包括设置于池体(1)内的离子肼(9)和设置于绝缘体(2)内的放电室(10)、离子化室(8),离子肼(9)连通放电室(10)和离子化室(8),放电气入口(11)与放电室(10)连通,载气出口(3)和载气入口(4)分别与离子化室(8)相通。
2.根据权利要求1所述的氦光离子化气相色谱检测器,其特征在于,所述放电室(10)内相对放置一对放电电极(5)。
3.根据权利要求2所述的氦光离子化气相色谱检测器,其特征在于,所述放电电极(5)的放电端头为尖端结构。
4.根据权利要求1所述的氦光离子化气相色谱检测器,其特征在于,所述离子化室(8)内设有相对放置的极化极(6)和收集极(7)。
5.根据权利要求4所述的氦光离子化气相色谱检测器,其特征在于,所述极化极(6)和收集极(7)均为中空结构,并与载气出口(3)和载气入口(4)相通,载气入口(4)位于极化极(6)外侧,载气出口(3)位于收集极(7)外侧。
6.根据权利要求4或5所述的氦光离子化气相色谱检测器,其特征在于,所述载气出口(3)、载气入口(4)、离子化室(8)、极化极(6)和收集极(7)的中轴线处于一条直线上。
7.根据权利要求1所述的氦光离子化气相色谱检测器,其特征在于,所述离子肼(9)为接地的金属小孔窗口。
8.根据权利要求1或7所述的氦光离子化气相色谱检测器,其特征在于,离子肼(9)的孔径小于极化极(6)和收集极(7)之间的距离。
9.根据权利要求1所述的氦光离子化气相色谱检测器,其特征在于,所述放电气入口(11)、放电室(10)和离子肼(9)的中轴线处于一条直线上,并与载气入口(4)、极化极(6)、离子化室(8)、收集极(7)和载气出口(3)形成的通路相垂直。
CN2009201768130U 2009-09-16 2009-09-16 氦光离子化气相色谱检测器 Expired - Fee Related CN201514403U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009201768130U CN201514403U (zh) 2009-09-16 2009-09-16 氦光离子化气相色谱检测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009201768130U CN201514403U (zh) 2009-09-16 2009-09-16 氦光离子化气相色谱检测器

Publications (1)

Publication Number Publication Date
CN201514403U true CN201514403U (zh) 2010-06-23

Family

ID=42485816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009201768130U Expired - Fee Related CN201514403U (zh) 2009-09-16 2009-09-16 氦光离子化气相色谱检测器

Country Status (1)

Country Link
CN (1) CN201514403U (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346060A (zh) * 2013-05-24 2013-10-09 中国科学院上海有机化学研究所 一种真空紫外光电离源及其应用
CN104931630A (zh) * 2014-03-20 2015-09-23 上海仪盟电子科技有限公司 一种氦离子化检测器
CN105140095A (zh) * 2015-07-30 2015-12-09 安徽中杰信息科技有限公司 用于光离子化检测挥发性气体的一维结构扩散型电离室
CN106324076A (zh) * 2016-08-22 2017-01-11 中国科学院电子学研究所 一种三电极结构的氦离子化检测器
WO2018112732A1 (en) * 2016-12-20 2018-06-28 Honeywell International Inc. Collection surface for electrodes in photoionization detector
WO2018112733A1 (en) * 2016-12-20 2018-06-28 Honeywell International Inc. Shielding for electrodes in photoionization detector
CN110398075A (zh) * 2019-08-15 2019-11-01 中国科学院电工研究所 槽式太阳能集热管真空性能测量装置
CN114324707A (zh) * 2021-11-30 2022-04-12 北京航天计量测试技术研究所 一种放电离子化检测器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346060A (zh) * 2013-05-24 2013-10-09 中国科学院上海有机化学研究所 一种真空紫外光电离源及其应用
CN104931630A (zh) * 2014-03-20 2015-09-23 上海仪盟电子科技有限公司 一种氦离子化检测器
CN105140095A (zh) * 2015-07-30 2015-12-09 安徽中杰信息科技有限公司 用于光离子化检测挥发性气体的一维结构扩散型电离室
CN106324076A (zh) * 2016-08-22 2017-01-11 中国科学院电子学研究所 一种三电极结构的氦离子化检测器
WO2018112732A1 (en) * 2016-12-20 2018-06-28 Honeywell International Inc. Collection surface for electrodes in photoionization detector
WO2018112733A1 (en) * 2016-12-20 2018-06-28 Honeywell International Inc. Shielding for electrodes in photoionization detector
CN109997037A (zh) * 2016-12-20 2019-07-09 霍尼韦尔国际公司 用于光致电离检测器中电极的屏蔽
US10942061B2 (en) 2016-12-20 2021-03-09 Honeywell International Inc. Shielding for electrodes in photoionization detector
US10996197B2 (en) 2016-12-20 2021-05-04 Honeywell International Inc. Collection surface for electrodes in photoionization detector
CN110398075A (zh) * 2019-08-15 2019-11-01 中国科学院电工研究所 槽式太阳能集热管真空性能测量装置
CN114324707A (zh) * 2021-11-30 2022-04-12 北京航天计量测试技术研究所 一种放电离子化检测器

Similar Documents

Publication Publication Date Title
CN201514403U (zh) 氦光离子化气相色谱检测器
JP5445353B2 (ja) 放電イオン化電流検出器
CN100414291C (zh) 一种便携式光离子化检测器的电离室
Deal et al. Radiological Detector for Gas Chromatography
CN103776818B (zh) 基于辉光放电的等离子体发生装置及构成的光谱检测系统
CN203658269U (zh) 基于辉光放电的等离子体激发光谱检测系统
US3176135A (en) Apparatus for detecting and analysing low gaseous concentrations
WO2001044800A2 (en) Glow discharge detector
JPH055724A (ja) 高分子センサ
CN105719937B (zh) 一种用于离子迁移谱高效射频vuv光电离源
CN103811265A (zh) 一种掺杂剂辅助电离源及其在离子迁移谱中的应用
US6842008B2 (en) Gas detector with modular detection and discharge source calibration
CN111983008B (zh) 一种小型光离子化检测仪及其检测方法
CN201477089U (zh) 氦放电离子化气相色谱检测器及其电控、测量电路
CN100414290C (zh) 一种基于光离子化检测器技术的安全门检测装置
He et al. Sensitive determination of chromium by inductively coupled plasma mass spectrometry using chelate-enhanced nebulized film dielectric barrier discharge vapor generation
Shou et al. Chemical detection of SF6 decomposition products generated by AC and DC corona discharges using a carbon nanotube gas sensor
CN206515476U (zh) 一种中子管
JP5614379B2 (ja) 放電イオン化電流検出器及びガスクロマトグラフ装置
CN105655227B (zh) 一种介质阻挡放电高效电离源及其应用
CN201075097Y (zh) 氩气放电检测装置
US3379968A (en) Method and means for detection of gases and vapors
CN220289517U (zh) 氩气放电检测器
CN205484194U (zh) Dbd离子化检测器
CN101105484B (zh) 氩气放电检测装置及方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100623

Termination date: 20120916