CN1997632A - 格尔德霉素及其衍生物抑制癌侵入及识别新靶点 - Google Patents

格尔德霉素及其衍生物抑制癌侵入及识别新靶点 Download PDF

Info

Publication number
CN1997632A
CN1997632A CNA2005800170020A CN200580017002A CN1997632A CN 1997632 A CN1997632 A CN 1997632A CN A2005800170020 A CNA2005800170020 A CN A2005800170020A CN 200580017002 A CN200580017002 A CN 200580017002A CN 1997632 A CN1997632 A CN 1997632A
Authority
CN
China
Prior art keywords
cell
compound
hgf
people
met
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800170020A
Other languages
English (en)
Inventor
谢谦
大卫·文克特
沈玉钗
乔治·F.·范德沃德
里克·海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANDEL RES INST VAN
Michigan State University MSU
Original Assignee
ANDEL RES INST VAN
Michigan State University MSU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANDEL RES INST VAN, Michigan State University MSU filed Critical ANDEL RES INST VAN
Publication of CN1997632A publication Critical patent/CN1997632A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D225/00Heterocyclic compounds containing rings of more than seven members having one nitrogen atom as the only ring hetero atom
    • C07D225/04Heterocyclic compounds containing rings of more than seven members having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D225/06Heterocyclic compounds containing rings of more than seven members having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Oncology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

在飞摩尔浓度下阻碍uPA纤溶酶网络和抑制成胶质细胞瘤细胞和其它肿瘤的生长和侵入的格尔德霉素衍生物是潜在高活性抗癌药物。公开了GA和不同的17-氨基-17-去甲氧基格尔德霉素衍生物在fM水平阻碍HGF/SF-介导的Met酪氨酸激酶受体依赖的uPA激活。其它袢霉素I和II)、GA衍生物和根赤壳菌素需要更高的对数级浓度(>=nM),以达到这种抑制作用。受验化合物的抑制活性不同于已知的该类药物与hsp90结合的已知能力,这表明在肿瘤发展中HGF/SF介导事件的新靶点的存在。公开了使用这些化合物抑制癌细胞活性和治疗肿瘤的方法。这种使用低剂量的这些高活性化合物的治疗提供了治疗不同表达Met蛋白的肿瘤的方法,特别是对于侵入性脑癌,并且可以单独使用或者与传统外科疗法、化学疗法或放射疗法组合使用。

Description

格尔德霉素及其衍生物抑制癌侵入及识别新靶点
技术领域
本发明属于癌症药理学领域,涉及格尔德霉素(1)的化学衍生物,其中部分衍生物是新化合物,其以飞摩尔(femtomolar)的浓度抑制癌细胞活动,以及这些化合物用于抑制HGF-依赖、Met介导的(Met-mediated)肿瘤细胞的激活、生长、侵入和转移的用途。作用在新的但未识别的靶点上的这些化合物是非常有效的抗癌剂。
背景技术
格尔德霉素(GA)是一种袢霉素天然产品药物(Sasaki K等人,1970;DeBoer C等人,1970)。格尔德霉素类(GAs)在这里是指一类GA衍生物,其中部分衍生物表现出在人类乳腺癌、黑素瘤和卵巢癌的鼠异种移植模型中的抗癌活性(Schulte TW等人,1998;Webb CP等人,2000)。而且,GA类的药物减少几种酪氨酸激酶和丝氨酸激酶致癌基因产物的表达,包括Her2、Met、Raf、cdk4和Akt(Blagosklonny,2002;Ochel等人,2001;前述的Schulte等人);Solit等人,2002;前述的Webb等人。已经发现这些药品在纳摩尔(nanomolar)范围内的浓度发挥作用(因此这里用nM GA抑制剂或″nM-GAi″表示),其通过抑制分子伴侣HSP90,由此阻止客体肿瘤蛋白(client oncoprotein)的正确折叠,使其不稳定(Bonvini等人,2001;Ochel等人,2001)。前述Webb等人的工作中所列的由National CancerInstitute Anticancer Drug Screen NCI-Ads提供的一些化合物药物被发现是不纯的(通过薄层色谱测试),所以以前的结果或解释或许是不正确的。
最近的工作已经表明,Met信号传导途径是癌症治疗的一种潜在治疗靶点。作用于Met(Met-directed)的RNA酶和反义(anti-sense)策略减少了Met和HGF/SF表达、肿瘤生长和转移肿瘤的潜在性(Abounader,R等人,1999;Jiang,WG等人,2001;Abounader,R等人,2002;Stabile,LP等人,2004)。NK4是HGF/SF的片段,其N末端具有4个kringle结构域,它是结合Met受体的HGF/SF的竞争性拮抗剂(Date,K等人,1997),并且已经证明了能够抑制肿瘤侵入和转移以及肿瘤血管生成(Matsumoto,K等人,2003)。HGF/SF的单克隆抗体通过中和其活性,能够抑制无胸腺鼠的人类异种移植瘤的生长(Cao,B等人,2001)。含吲哚的受体酪氨酸激酶抑制剂K252a和PHA-665752能够抑制Met激酶活性和Met驱动的肿瘤生长及其转移潜力(Morotti,A等人,2002;Christensen,JG等人,2003)。
Webb等人(2000)筛选了可能抑制肿瘤细胞侵入的Met受体信号转导途径的抑制剂。HGF/SF诱导作为细胞侵入和转移介质的尿激酶血纤维蛋白溶酶原激活剂(uPA)及其受体(uPAR)的表达。Webb等人(2000)描述了一种基于细胞的分析,其采用诱导uPA和uPAR以及由血纤维蛋白溶酶原向纤维蛋白溶酶的随后转化,可以筛选在MDCK-2细胞中有抑制活性的化合物。发现格尔德霉素(1)及其一些衍生物在飞摩尔(fM)浓度表现出高抑制活性。本发明人(如下所揭示的)已经将此有效的抑制活性包括侵入复合体的其它活性,尤其通过人类肿瘤细胞的体外三维Matrigel胶培养侵入试验所(论证)。在低于纳摩尔(nM)浓度下观察到无损失的Met表达,这说明了观察到的抑制活性并不依赖于Met受体的下调。
众所周知,格尔德霉素及17-烷氨基-17-去甲氧基格尔德霉素衍生物具有与热休克蛋白90(hsp90)的N末端结构域的ATP结合位点相结合的能力(Stebbins,CE等人,1997;Grenert,JP等人,1997;Schulte,TW等人,1998;Roe,SM等人,1999;Jez,JM等人,2003)。Hsp90属于GHKL ATPase的结构蛋白族(Dutta,R等人,2000)。这种丰富的蛋白质协助调节各种关键蛋白质的活性、更新、运输(protein trafficking)。它促进细胞信号传导中蛋白质的折叠和调控,例如转录因子、甾类受体和蛋白质激酶(Fink,AL,1999;Richter,I等人,2001;Picard,D,2002;Pratt,WB等人,2003)。袢霉素天然产物例如GA和macbecin I(2)阻断了hsp90的功能(BlagosklonnyMV等人,1996;Bohen SP等人,1998),以及根赤壳菌素((Whitesell,L等人,1994;Sharma,SV等人,1998;Schulte,TW等人,1998)(参见对于化学结构的发明说明)。一种在现在临床试验中的药物,17-烯丙氨基-17-去甲氧基格尔德霉素(4)的抗肿瘤作用归功于对hsp90的阻断功能(Maloney A等人,2002;Neckers,L等人,2003)。
GA的临床应用的缺点是其溶解性和毒性的限制,但衍生物17-烯丙氨基-17-去甲氧基格尔德霉素(缩写为17-AAG)(4)(也称为NSC.330507)具有低毒性的肿瘤抑制活性(Kamal A等人,2003 Nature 425:407-410),并且正处于临床试验的I-II期评估中(Goetz MP等人,(2003)A7inals 07icoL 14:1169-1176;Maloney T等人,(2001)Expert Opin.Biol.TXler.2:3-24)。另一种GA衍生物正处于临床前的评估中,它具有更好的水溶性并且可以口服,这种衍生物就是17-(二甲基氨基乙基)氨基-17-去甲氧基格尔德霉素(2(缩写为17-DMAG),其在i.p.给药时基本达到100%,大约为口服给药17-AAG(4)的两倍(Egorin MJ等人,2002)。17-氨基-17-去甲氧基格尔德霉素(6),即17-AAG(4)代谢物,在降低p185erbB2的能力方面,具有同等的生物活性,并且作为在发展中的潜在治疗方法(Egorin MJ等人(1998))。GA和17-AAG可以使乳腺癌细胞对于紫杉醇和阿霉素介导的细胞凋亡变得敏感(Munster PN等人,(2001)Clin.CancerRes.1:2228-2236)。
美国专利4,262,989(Sasaki等人)公开了各种在C17和C19位置被取代的格尔德霉素衍生物。列出的在此两个位置的取代物包括胺,其可以用包括烷基(C2-12)的不同基团进行双取代,所述基团可进一步被羟基、氨基、甲氨基、吡咯烷基、吡啶基、甲氧基、哌啶基、吗啉基、卤素、环烷基和其它基团所取代。可以说这些化合物抑制了特定体外癌细胞的生长,该癌细胞实际上是由致癌病毒转化的鼠成纤维细胞克隆”。
Rosen等人,WO98/51702(1998,Nov19)公开了能与Hsp90-靶部分结合的GA衍生物,其结构包含了与蛋白质、受体或标记物特异性结合的靶部分,以及结合hsop90的部分,该部分能结合hsop90袋,该hsop90袋能结合袢霉素抗生素。此文献公开了用氮丙啶与GA发生反应产生在此公开的化合物15,其是合成过程中的中间体。用此化合物与碘化氰(ICN)反应生成17-(N-碘乙基-N-氰基-17-去甲氧基格尔德霉素。后者的类似物与HSP90结合,很容易在合成中通过使用放射性ICN示踪。公开了“相应的17-N-碘烷基-N-氰基)化合物可以使用氮杂环丁烷(3个碳原子)、吡咯烷(4个碳原子)等取代氮丙啶来制备。”
Gallaschun等人,WO95/01342(11995,Jan12)公开多种袢霉素衍生物作为致癌基因产物的抑制剂和作为抗肿瘤/抗癌剂,见15页19行到17页12行以及实施例2-99。
美国专利5,932,566(Schnur等人)公开了许多在包括C4、5、11、17、19,和22的环位置上取代生成的GA衍生物。据说此化合物可以抑制体内SKBr3乳腺癌细胞的生长,尽管没有提供在何种浓度水平下的抗肿瘤作用的结果。
PCT公开WO2004/087045(2004,Oct.14)揭示了GA类似物单独或与其它药物组合用来防止或减少再狭窄。在第4页,提到了下列化合物:17-烯丙氨基-17-去甲氧基格尔德霉素(所示的化合物4);17-[2-二甲氨基)乙氨基]-去甲氧基-11-O-甲基格尔德霉素和17-N-氮杂环丁基-17-去甲氧基格尔德霉素(所示的化合物14)。
Met受体酪氨酸激酶及其配体肝细胞生长因子/扩散因子(HGF/SF)与肿瘤的发生和转移有关。Met的异常表达与肿瘤转移高度相关,减少了癌症病人的总体存活率(Birchmeier等人,2003;Maulik等人,2002b),并且Met和HGF/SF都已被证明与多种人类和动物的癌症和肉瘤相关。见URL<vai.org/metandcancer/>的包含列表,其以参考文献方式整体并入本文。Met信号传导途径诱导了体外实验中的(细胞)增生和侵入,以及在动物模型中的肿瘤发生和转移。HGF/SF是促血管生成和存活的重要分子(前述的Birchmeier等人)。由HGF/SF导致的Met激活的一个结果是,诱导了尿激酶-型纤溶酶原激活剂(uPA)蛋白水解系统,其是肿瘤侵入和转移的重要因素。细胞Met的表达与HGF/SF接触,诱导了uPA和/或uPA受体(uPAR)的表达,导致了由纤溶酶原分裂得到的纤溶酶产物(Hattori等人,2004;Jeffers等人,1996;Tacchini等人,2003)。为寻找可能抑制肿瘤细胞侵入的药物,Webb等人(2000)开发了在犬肾MDCK上皮细胞中的细胞筛选,并且寻找抑制uPA活性的化合物。许多GA衍生物在飞摩尔(fM)浓度抑制uPA活性(fM-GAi),即大约在减少Met表达所要求的nM浓度以下6个数量级(Webb等人,2000)。这些研究表明,MDCK细胞拥有对于fM-GAi药物的新靶点,其亲合力高,而数量可能低。
在fM水平上的GA及其衍生物阻碍肿瘤细胞中Met转导途径的靶点,仍不清楚。上述破坏hsp90功能的这种袢霉素类药物,其已知作用浓度较高,在微摩尔级(uM)及以上水平。本发明人已经评估GA及其衍生物对于未知靶点的结构—活性关系,并且已经能够从hsp90中区别fM靶点。
在本领域中需要GA类的强有效化合物作为在极低浓度下有效的新抗癌疗法。本发明应合了这种需要。
本发明人所在实验室的前述工作表明,由NCI抗瘤药物筛选程序(NCIADS)提供的超过30个GA衍生的药物中只有4个能够在飞摩尔浓度下抑制MDCK细胞中由肝细胞生长因子/扩散因子(HGF/SF)诱导的尿激酶性纤溶酶原激活剂(uPA)-纤溶酶的活性(参考1:Webb CP等人,Cancer Res.60:342-3491)。这些药物在此称为″fM-GAi″药物,而在纳摩尔级表现出活性的GA族药物称为″nM-GAi″药物。
发明概述
本发明人已经发现,在飞摩尔(甚至更低)浓度下的特定GA衍生物(″fM-Gai″化合物)在MDCK细胞中抑制uPA蛋白水解系统的活性是HGF/SF依赖性的。这种敏感性也体现在人类肿瘤细胞中,其中uPA活性可以显著地由HGF/SF上调。
还发现,fM-GAi化合物,包括各种17-氨基-17-去甲氧基格尔德霉素衍生物,除了能够抑制HGF/SF介导的uPA诱导,还能抑制HGF/SF诱导下MDCK细胞的扩散和一些人类成胶质细胞瘤细胞系——DBTRG、SNB19和U373在体外实验中的侵入。但是,在此公开了HSP90不是fM-GAi的靶点。首先,不是所有的与HSP90结合的化合物表现出fM-Gai活性。与HSP90具有高亲合力的根赤壳菌素(RA)(Roe等人,1999;Schulte等人,1999)无法在nM以下浓度抑制HGF/SF诱导的uPA活性。GA、一种fM-Gai药物、包括macbecin I和II(MA)的其它袢霉素、某些GA衍生物和根赤壳菌素都能够在nM浓度下抑制uPA活性和Met表达。通过使用不同的细胞系和nM浓度的这些药物,本发明人表明了所有可用的HSP90结合位点都被占据。但是,在GA浓度为皮摩尔(pM)或更低、HSP90未被GA占据并且Met蛋白水平未受影响的情况下,uPA活性、细胞扩散和肿瘤细胞侵入仍然受到抑制。因此,fM-GAi药物是对HGF/SF的某些重要生物活性例如肿瘤的侵入性的有效抑制剂,但其作用并非通过HSP90介导。这表明,在HGF/SF-介导的uPA激活的过程中,有一个新的靶点。
因此,这些fM-GAi化合物是用于肿瘤细胞侵入的潜在药物,并且可以与外科、传统化学疗法或放射疗法组合以防止癌细胞侵入。
当与如放射性核素的可检测的标记物结合时,它们也具有作为诊断/预测指示剂的效用。
特别地,本发明涉及式I或式II的化合物或者其在药学上可接受的盐类,其具有在10-11M以下的浓度在癌细胞中抑制由HGF/SF导致的Met激活的性质,其中:
R1是低级烷基、低级烯基、低级炔基、任选被取代的低级烷基、烯基或炔基;低级烷氧基、烯氧基和炔氧基;直链或支链的烷基胺、烯基胺和炔基胺;任选被取代的3-6元环杂环基;(并且R1优选是3-6元杂环,其中N是杂环原子)。
R2是H、低级烷基、低级烯基、低级炔基、任选被取代的低级烷基、烯基或炔基;低级烷氧基、烯氧基和炔氧基;直链和支链的烷基胺、烯基胺和炔基胺;任选被取代的3-6元环杂环基;
R3是H、低级烷基、低级烯基、低级炔基、任选被取代的低级烷基、烯基或炔基;低级烷氧基、烯氧基和炔氧基;直链或支链的烷基胺、烯基胺、炔基胺;或其中N是任选被取代的杂环烷基、杂环烯基或杂芳环中的一个环原子。
R4是H、低级烷基、低级烯基、低级炔基、任选被取代的低级烷基、烯基或炔基,且其中在C2=C3、C4=C5和C8=C9位的环双键任选被氢化成单键。
在10-11M以下或10-12M以下或10-13M以下或10-14M以下或10-15M以下或10-16M以下或10-17M以下或10-18M以下或10-19M以下浓度,此化合物优选抑制癌细胞中由HGF/SF导致的Met的激活。
在优选实施例中、R1是所示的取代基并且R2、R3和R4中的每一个都是H。
该化合物优选选自:
(a)17-(2-氟乙基)氨基-17-去甲氧基格尔德霉素;
(b)17-烯丙氨基-17-去甲氧基格尔德霉素;
(c)17-N-氮丙啶基-17-去甲氧基格尔德霉素;
(d)17-氨基-17-去甲氧基格尔德霉素;
(e)17-N-氮杂环丁烷基-17-去甲氧基格尔德霉素;
(f)17-(2-二甲氨基乙基)氨基-17-去甲氧基格尔德霉素;
(g)17-(2-氯乙基)氨基-17-去甲氧基格尔德霉素;以及
(h)二氢格尔德霉素。
同时提供了包含上述化合物的药物化合物和药学上可接受的载体或赋形剂。
本发明涉及一种能够抑制由HGF/SF诱导的、Met受体介导的具有Met(Met-bearing)的肿瘤或癌细胞的生物活性的方法,其包括给所述细胞提供有效量的上述9的化合物、该化合物具有用于抑制所述生物活性的少于约10-11M或少于约10-12M或少于约10-13M或少于约10-14M或少于约10-15M或少于约10-16M或少于约10-17M或少于约10-18M的IC50。该生物活性可以是细胞内uPA活性的诱导、在生物体外或生物体内的生长、或细胞的扩散、所述细胞在生物体外或在活体内的侵入。
还包括抑制由HGF/SF诱导的Met肿瘤或癌细胞在受试者体内转移的方法,其包括给所述受试者提供在此公开的有效量的化合物,该化合物具有少于约10-11M或更少的IC50,如上所示在生物体外检测时可抑制肿瘤细胞的侵入。优选地,这种抑制作用能够带来可检测到的由上述细胞导致的肿瘤的消退,或是可检测到的上述受试者体内肿瘤生长的减弱。
一种用于防止在易感对象、优选是人体中Met阳性肿瘤的生长或转移的方法,包括给所述对象提供上述有效量的化合物,其是:
(a)处于发生所述肿瘤的危险中,或者
(b)已经治疗的对象,处于所述肿瘤的复发危险中的情况。
用放射性卤素标记的上述化合物优选与R1基键合,所述放射性卤素优选地选自18F、76Br、76Br、123I、124I、125I和131I。
附图说明
图1和2,典型GA衍生物化合物的活性。将初始MDCK细胞在没有或者有不同浓度实验化合物的参与下暴露于HGF/SF,并且在24小时后暴露于对纤溶酶敏感的发色团,然后在405nm读取吸光度。所示值表示在每个实验化合物的每个浓度下的三份实验的平均值±1S.D.。
图3-6,GA及相关化合物对人类肿瘤细胞系中的uPA抑制作用。在没有或者加入不同浓度的所示GA及相关化合物的条件下,用60单位/ml HGF/SF培养细胞。如前所述,主要在MDCK细胞上进行uPA活性分析(Webb等人,2000)。实施例,按照如下使用细胞:图3-MDCK;图4-DBTRG;图5-U373;图6-SNB19。实验化合物包括RA和MA,并且在所示浓度使用。GA衍生物缩写如下:GA=格尔德霉素;17-AAG=17-烯丙氨基-17-去甲氧基格尔德霉素以及17-ADG=17-氨基-17-去甲氧基格尔德霉素。
图7-9,GA及相关化合物对于人类肿瘤细胞系增殖的作用。将由药物处理的细胞产生的标准化细胞生长结果标准化为由在没有药物参与下用HGF/SF刺激的细胞得到的平均值,并且表示为对照的百分比。所示值表示在每个实验化合物的每个浓度下的三份实验(在实施例中描述的MTS实验)的平均值±1s.d.。按照如下使用细胞:图7-BTRG;图8-U373;图9-SNB19。实验化合物及缩写如上述图3-6所述。
图10,GA对于细胞扩散的作用。将MDCK细胞以1500个/孔的密度接种于96孔培养板中,种3组,并且在24小时后单独或在GA参与下加入HGF/SF(100ng/ml):在再过24小时后,细胞被固定并且用Diff-Quik装置着色。处理后的MDCK细胞制备的典型显微图在如下板中表示:MDCK细胞(a-j);HGF/SF处理的细胞(b-j);在(c)中加上10-7M的GA;在(d)中加入10-9M的GA;在(e)中加入10-13M的GA;在(f)中加入10-15M的GA;在(g)中加入10-7M的17-AAG;在(h)中加入10-9M的17-AAG;在(i)中加入10-13M的17-AAG;在(j)中10-15M的17-AAG。
图11-13,GA对于在生物体外细胞侵入的作用。用如实施例19所示的Matrigel侵入实验(Matrigel invasion assay)测量DBTRG细胞(图11),SNB19细胞(图12)和U373细胞(图13)。测量用药24小时后穿过Matrigel层的细胞数。每个柱状图代表细胞数量的三组平均值±1s.d.。
图14,MA和GA暴露于HSP90α和Met表达的作用。在所示浓度的mecbecine(MA)或GA存在下,用HGF/SF(100ng/ml)处理MDCK和DBTRG细胞。如实施例10所述分析细胞溶解产物。也用所述的GA亲合珠粒(beads)处理每个细胞溶解产物的等分样品,并且用SDS-PAGE分析这些珠粒的洗脱液,然后用HSP90α的抗体进行免疫印迹。对照组的培养没有用HGF/SF并且没有测验化合物。得到的荧光图的相关区域表示如下:条带1-6和7-10的样品分别来自MDCK和DBTRG的全细胞溶解产物。在pull-down实验中用GA凝胶珠(上面板)或在全部细胞溶解产物(下面板)用HSP90α抗体的Westernblotting方法以检测HSP90α。条带2-6和8-12的样品来自用HGF/SF处理的细胞。条带3、4和9、10的样品来自用所示MA处理的细胞。条带5、6和11、12的样品来自用所示GA处理的细胞。
图15,MDCK细胞在MA中的长期培养对于Met和HSP90α对nM-GAi和fM-GAi药物作用敏感性的影响。MDCK细胞在1、2或3×10-6M浓度的MA中培养2-3个月,以分别产生MDCKG1、MDCKG2和MDCKG3细胞。在盘中接种106原代细胞或长期暴露细胞(G1-G3),生长到80%覆盖率,然后进一步加入GA(+GA,10-6M)或MA(+MA,10-5M)培养24小时。收获、裂解细胞、并且通过Western blots(见实施例19)分析裂解产物中Met、HSP90α和β-肌动蛋白(作为加样对照)的相对浓度。荧光结果中相关的部分表示在图中。
图16,长期用MA培养的细胞中的HGF/SF-Met信号传导。将2.5×105原代MDCK细胞和加入MA培养的MDCKG3细胞接种在60×15mm盘中并且24小时后加入HGF/SF(100ng/ml)。在所示时间,收获、裂解细胞,用合适的抗体通过Western blots分析产物中全部和磷酸化Met、全部和磷酸化Erk1、Erk2和β-肌动蛋白(加样对照)的相对浓度(见实施例19)。在荧光图谱中的相关区域表示出了Met、p-Met、Erk1、Erk2和p-Erk1、p-Erk2的结果。
图17,MA和GA对于HGF/SF刺激下扩散的MDCK和MDCKG3细胞的影响。在96孔培养板中接种1500个原代MDCK细胞(板a-c)或在3×10-6MMA中培养的MDCKG3细胞(板d-i)。在24小时后,单独加入HGF/SF(HGF/SF,100ng/ml),以及分别加入MA(3×10-6M)或GA(10-17-10-15M)。24小时后,用显微镜评估扩散结果。典型的100倍放大图象如下:(a)MDCK细胞对照组;(b)MDCK细胞+HGF/SF;(c)MDCK细胞+HGF/SF+MA(3×10-6M);(d)MDCKG3细胞对照组;(e)MDCKG3细胞+HGF/SF;(f)MDCKG3细胞+HGF/SF+GA(10-7M);(g)MDCKG3细胞+HGF/SF+GA(10-9M);(h)MDCKG3细胞+HGF/SF+GA(10-13M);(i)MDCKG3细胞+HGF/SF+GA(10-15M).
图18,在MDCK和MDCK3细胞中MA和GA对HGF/SF激发的uPA诱导的影响。将1500细胞接种并用HGF/SF或用macbecin II(MA)或格尔德霉素(GA)处理。再次培养24小时后,用DMEM洗涤细胞两次,并且将200ul的含有纤溶酶敏感的发色团的反应缓冲液加入到每个培养板中。然后将板在37 ℃,5%CO2中培养4个小时,同时用自动分光光度阅读器以405nm的单波长读取产生的吸光度。
本发明的最佳实施方式
已知包括格尔德霉素和衍生物17-烯丙氨基-17-去甲氧基格尔德霉素的袢霉素以及根赤壳菌素能够与热休克蛋白质90紧密结合,即已知其对细胞的作用的假定机理。事实上,GA和17-烷氨基-17-去甲氧基格尔德霉素与hsp90蛋白N-末端的ATP结合位点结合。
本发明人已经发现,格尔德霉素(GA)和其部分衍生物在飞摩尔水平上抑制HGF/SF介导的Met酪氨酸激酶受体的活性,其可以通过依赖受体的uPA的激活来进行测量。鉴定是对于这种活性的结构要求,其得到结论,这种活性的靶点不是HSP90,而是未知蛋白质的复合体。
在下面,将合成(或从National Cancer Institute获得)、检验并讨论许多化合物。见实施例1-19。化合物 1- 3分别是GA,macbecin和根赤壳菌素。
格尔德霉素(1)
Figure A20058001700200162
Figure A20058001700200163
Macbecin I(2)                                   根赤壳菌素(3)
Figure A20058001700200171
式I                                       式II
  Cpd R1  R2     R3     R4
456789101112131415 -NHCH2CH=CH2-NHCH2CH2N(CH3)2-NH2-NHCH2CH2Cl-NHCH2CH2F-NHCH2CH2NHC(O)CH3-NH(CH2)6NHC(O)CH3-NH(CH2)6NH-生物素基-NH(CH2CH2O)2CH2CH2NHC(O)CH3-NHCH2CO2H-NCH2CH2CH2-(氮杂环丁烷基)-NCH2CH2-(氮丙啶基) HHHHHHHHHHHH HHHHHHHHHHHH HHHHHHHHHHHH
合成和研究了在式III和IV所示的具有所示取代基的另外两种结构(见实施例)。这些化合物中的一个,上面的 14也是式I或II的取代产物。
应注意,本发明的活性化合物,特别是那些具有fm-GAi活性的,可以具有氧化的(苯醌,式I)或还原的(氢醌,式II)结构。
Figure A20058001700200181
式III                                                     式IV
17-N-氮杂环丁烷基-17-去甲氧基格                           Geldanoxazinones
尔德霉素衍生物、)
Cpd  R1         R2                                      Cpd   X
                                                                            
14   -C(O)NH2   -H                                       16    Br
18   -C(O)NH2   -C(O)CH3                                 17    I
19   -H         -H
除非另外说明,在此所指的烷基、烷氧基和烯基可以包括直链、支链和环状部分及其组合,术语″卤素″包括氟、氯、溴和碘。很清楚地,仅包含1或2个原子的基团不能是支链或环状。而且,除非另外说明,“任选取代的”意思是包括从零到最大数量的取代基,例如对于甲基是3、对于苯基是5等。在此所用的术语“烷基”表示直链、支链或环状完全饱和烃残基。除非说明了碳原子数量,术语“烷基”指C1-6烷基(也叫″低级烷基″)。当“烷基”在一般意义上使用时,例如″丙基″、″丁基"、"戊基″和″己基″等,会认为每个术语可以包括其所有的同分异构形式(直链、支链或环状)。
优选的烷基是C1-6烷基,更优选的是C1-4烷基或C1-3烷基。直链和支链烷基的实例是甲基、乙基、正丙基、异丙基、正丁基、二级-丁基、三级-丁基、正戊基、异戊基、1,2-二甲基丙基、1,1-二甲基丙基。
环烷基的实例是环丙基、环丙甲基、环丙乙基、环丁基、环戊基、环己基等。
在此定义的烷基可以由一个或多个取代基任选取代。合适的取代基可以包括卤素;卤代烷基(例如三氟代甲基,三氯甲基);羟基;巯基;苯基;苯甲基;氨基;烷氨基;二烷氨基;芳基氨基;杂芳基氨基;烷氧基(例如甲氧基、乙氧基、丁氧基、丙氧基苯氧基;苄氧基等);硫代;烷硫基(例如甲硫基、乙硫基);酰基,例如,乙酰基;酰氧基,例如乙酸基;羧基(-CO2H);羧甲基;氨基甲酰(例如-CONH-烷基、-CON(烷基)2等);羧基芳基和羧基氨基芳基(例如CONH-芳基、-CON(芳基)2);氰基;或酮基(其中CH2基由C=O取代)。
在此所用的术语“烯基”表示由包含至少一个C=C双键的直链、支链或环状烃基形成的基团,包括前述的烯式单、二或多不饱和烷基或环烷基。因此,环烯基也是可以的。除非指明了碳原子数量,烯基优选为C2-8烯基。更优选为低级烯基(C2-6),优选C2-5,最优选C2-4或C2-3。烯基和环烯基的实例包括乙烯基、丙烯基、1-甲基乙烯基、丁烯基、异丁烯基、3-甲基-2-丁烯基、1-戊烯基、环戊烯基、1-甲基-环戊烯基、1-己烯基、3-己烯基、环己烯基、1-庚烯基、3-庚烯基、1-辛烯基、环辛烯基、1-壬烯基、2-壬烯基、3-壬烯基、1-癸烯基、3-癸烯基、1,3-丁二烯基、1,4-戊二烯基、1,3-环戊二烯基、1,3-己二烯基、1,4-己二烯基、1,3-环己二烯基、1,4-环己二烯基、1,3-环庚二烯基、1,3,5-环庚三烯基和1,3,5,7-环辛四烯基。优选的烯基是直链或支链。如同在此所述,烯基可以由适于上述取代烷基的任选取代基所任选取代。
在此所用的术语“炔基”表示由包含至少一个碳碳三键的直链、支链或环状烃基形成的基团,包括前述的烯式单、二或多不饱和烷基或环烷基。除非指明了碳原子数量,该术语是指C2-6炔基(低级炔基),优选C2-5,更优选C2-4或C2-3炔基。实施例包括乙炔基、1-丙炔基、2-丙炔基、丁炔基(包括异构体)和戊炔基(包括异构体)。优选的炔基是直链或支链炔基。如同在此所述,炔基可以由适于上述取代烷基的任选取代基所任选取代。
术语“烷氧基”分别指与氧连接的烷基。GA (1)具有取代17C位置的甲氧基(-OCH3)(即式I的R1是-CH3)。可以在此位置取代的其它基团包括C2-C6直链或支链的烷氧基,优选乙氧基和丙氧基。C2-C6直链或支链的烯氧基或C2-C6炔氧基也可以在此位置出现。
术语“芳基”表示单环、多环、共轭或稠合的芳香烃环体系基团。芳基的实施例是苯基、联苯基和萘基。芳基可以由一个或多个在此定义的取代基任选取代。因此,在此所使用的“芳基”也指取代的芳基。
本发明化合物包括对于在式I/II的R1表示OR时的R所表示的取代基:低级烷基、低级烯基、低级炔基、任选取代的低级烷基、烯基或炔基;低级烷氧基、烯氧基和炔氧基;直链和支链的烷基胺、烯基胺和炔基胺(其中的N可以是第三级或第四级)。
最优选的R1基团是3-6元环杂环基,优选具有单个N杂环原子的杂芳基。最优选的是3元(氮丙啶基)和4元(氮杂环丁烷基)杂芳基环。同样优选更大的环,包括吡啶基、吡咯基、哌啶基等。
更广泛地,术语“杂芳基”表示单环、多环、共轭或稠合的芳香杂环体系,其中环状烃基的一个或多个碳原子被杂原子取代得到杂环芳香基。在两个或多个碳原子被取代的情况下,取代的原子可以是两个或多个相同的杂原子,或是两种不同的杂原子。除了N以外,适合的杂原子还包括O、S和Se。杂环可含有单键或双键。本发明范畴内的那些实施例,就包括了那些含有其它杂原子和稠环等的结构,包括噻吩基、呋喃基、吲哚基、咪唑基、呃唑基、哒嗪基、吡唑基、吡嗪基、噻唑基、嘧啶基、喹啉基、异喹啉基、苯并呋喃基、苯并噻吩基、嘌呤基、喹唑啉基、吩嗪基、吖啶基、苯并恶唑基、苯并噻唑基及类似物。如此定义,一个杂芳基还可任选被一个或多个前述取代基进一步单取代或双取代,取代位置在环上可能的位置,所述取代基为例如低级烷基、烯基、烷氧基、烯基、烯氧基等等。
在一优选实施例中,式I/II中R1是取代的芳基,该芳基由一个或多个烷基、羧基、酰胺基或氨基,如-CH3、-CH2CH3、-(CH2)mCO2R1、-(CH2)mCH2OR2、-(CH2)mCONHR2、-(CH2)mNHR2、-(CH2)mCONR2R3或-(CH2)mCONR2R3,其中m=0-3,R1是H、烷基或芳基,并且其中R2或R3独立地是H、烷基、芳基或酰基。式I中其它优选的R1基团包括:苯基;2-甲基苯基;2,4-二甲基苯基;2,4,6-三甲基苯基;2-甲基,4-氯-苯基;芳氧基烷基(例如苯氧基甲基或苯氧基乙基);苯甲基;苯乙基;2,3或4-甲氧基苯基;2,3或4-甲基苯基;2,3或4-吡啶基;2,4或5-嘧啶基;2或3-硫代苯基;2,4或5-(1,3)-呃唑基;2,4或5-(1,3)-噻唑基;2或4-咪唑基;3或5-对称三唑基。
亚烃基链可以加长,例如,通过Arndt-Eistert合成,其中将氯化酰基通过插入CH2转换为羧酸。因此,羧酸基可以转换为氯化酰基衍生物,例如通过用SO2Cl2处理。氯化酰基衍生物可以与重氮甲烷反应生成重氮甲酮,然后可以将其用Ag2/H2O或苯甲酸银和三乙基胺处理。可以重复此方法以进一步增加亚烃基链的长度。或者,醛基(或酮基)可以通过Wittig-型反应(用例如Ph3(P)=CHCO2Me)生成α、β-不饱和酯。此双键的氢化作用产生增加了两个碳原子长度的亚烃基链。以类似的方式,可以用其它膦产生较长的(和任选取代的、支链的、或不饱和的)碳链。
本发明包括含有R2取代基的式I/II化合物,与含有R1的描述相同。两个袢霉素环C17和C19位置可以独立地被取代,而如果取代C17,优选R2为H。
与在式I/II的环位置22上的N结合的R3取代基优选为H(如同在此示例的GA和化合物)、或低级烷基、低级烯基、低级炔基、任选取代的低级烷基、烯基或炔基;低级烷氧基、烯氧基和炔氧基;直链和支链的烷基胺、烯基胺和炔基胺(其中N可以是第三级或第四级)。N可以是任选取代的杂环烷基、杂环烯基或杂芳基环的一部分。如果N是环的一部分,其优选为3-6元环,优选不含其它杂环原子。最优选的是氮丙啶基、氮杂环丁烷基、吡啶基、吡咯基、哌啶基等。
在式I/II的环位置C11结合的是O原子,其被R4基团取代。R4最优选为低级烷基,但也可以是低级烯基、低级炔基、任选取代的低级烷基、烯基或炔基,从而与C11结合的基团优选是烷氧基,但也可以是烯氧基和炔氧基。
除以上公开的式I/II的各种取代基外,在位置C2=C3、C4=C5和C8=C9之间的环双键可以被氢化为单键。
显然地,在环式I/II中某些位置的取代基的化学处理可能需要其它潜在反应基的保护。对于在适当条件下的应用的合适保护基,及其引入和去除的方法在本领域是公知的,并且在Greene TW等人,Protective Groups in OrganicSynthesis,3rd ed,John Wiley和Son,1999中说明,其内容在此作为参考全文引入。
本发明的化合物可以任选地结合到或在其被取代的环结构中包括可用于诊断或治疗的放射性核素(见下)。该化合物可以结合到特异性与蛋白质结合的靶点部分。
在本发明的一个实施例中,考虑到WO98/51702(上述),本发明的GA衍生物(无论是游离的或是可检测到的标记结合到靶点部分上)是在此所述的化合物,条件是该化合物不是GA(化合物 1)、化合物 15;或17-(N-碘乙基-N-氰基-17-去甲氧基格尔德霉素(具有或不具有放射性碘)。然而,本发明方法的实施例可以包括这种排除在外的化合物,基于这样的事实,在此参考文献中没有公开本发明的应用。
在本发明的另一个实施例中,考虑到WO95/01342(上述),无论游离的或结合到靶点部分或用可检测到的标记物标记到本发明化合物的GA衍生物是在此所述的化合物,条件是该化合物不是WO95/01342所公开的,特别地是列在第15页第19行到第17页第12行或实施例2-99的化合物。此参考文献的实施例21公开了化合物 8,但是没有说明其在fM或亚-fM浓度下具有抗肿瘤细胞的新性质。
在本发明的另一个实施例中,考虑到美国专利5,932,566(前述Schnur等人),无论游离的或可检测到的标记或结合到靶点部分的GA衍生物是在此所述的化合物,条件是该化合物不是:
17-氨基-4,5-二氢-17-去甲氧基格尔德霉素;
17-甲基氨基-4,5-二氢-17-去甲氧基格尔德霉素;
17-环丙基氨基-4,5-二氢-17-去甲氧基格尔德霉素;
17-(2′-羟乙氨基)-4,5-二氢-17-去甲氧基格尔德霉素;
17-(2-甲氧基乙基氨基)-4,5-二氢-17-去甲氧基格尔德霉素;
1 7-(2′-氟代乙氨基)-4,5-二氢-17-去甲氧基格尔德霉素;
17-s-(+)-2-羟丙氨基-4,5-二氢-17-去甲氧基格尔德霉素;
17-氮杂环丁烷-1-基-4,5-二氢-17-去甲氧基格尔德霉素;
17-(3-羟基氮杂环丁烷-1-基)-4,5-二氢-17-去甲氧基格尔德霉素;
17-氮杂环丁烷-1-基-4,5-二氢-11-α-氟代-17-去甲氧基格尔德霉素;
17-氮杂环丁烷-1-基-17-去甲氧基格尔德霉素;
17-(2′-氰基乙氨基)-17-去甲氧基格尔德霉素;
17-(2′-氟代乙氨基)-17-去甲氧基格尔德霉素;
17-氨基-22-(2′-甲氧基苯甲酰基)-17-去甲氧基格尔德霉素;
17-氨基-22-(3′-甲氧基苯甲酰基)-17-去甲氧基格尔德霉素;
17-氨基-22-(4′-氯苯甲酰基)-17-去甲氧基格尔德霉素;
1 7-氨基-22-(3′,4′-二氯苯甲酰基)-17-去甲氧基格尔德霉素;
17-氨基-22-(4′-氨基-3′-碘代苯甲酰基)-17-去甲氧基格尔德霉素;
17-氨基-22-(4′-叠氮基-3′-碘代苯甲酰基)-17-去甲氧基格尔德霉素;
17-氨基-11-α-氟代-17-去甲氧基格尔德霉素;
17-烯丙氨基-11-α-氟代-17-去甲氧基格尔德霉素;
17-炔丙基氨基-11-α-氟代-17-去甲氧基格尔德霉素;
17-(2′-氟代乙氨基)-11-α-氟代-17-去甲氧基格尔德霉素;
17-氮杂环丁烷-1-基-11-(4′-叠氮苯基)氨磺酰羰基-17-去甲氧基格尔德霉素;
17-(2′-氟代乙氨基)-11-酮基-17-去甲氧基格尔德霉素;
17-氮杂环丁烷-1-基-11-酮基-17-去甲氧基格尔德霉素;以及
17-(3′-羟基氮杂环丁烷-1-基)-11-酮基-17-去甲氧基格尔德霉素。
在本发明的另一个实施例中,考虑到WO2004/087045(前述),无论游离的或结合到靶部分或用可检测到的标记物标记的GA衍生物是在此所述的化合物,条件是该化合物不是17-烯丙氨基-17-去甲氧基格尔德霉素;17-2-二甲氨基)乙氨基]-去甲氧基-11-O-甲基格尔德霉素;或17-N-氮杂环丁烷基-17。但是,本方法的实施例可以包括这种排除在外的化合物,并基于这样的事实,在此参考文献中没有公开本发明的应用。
用于成像的放射性同位素示踪的GA衍生物
优选的化合物是可检测的或诊断标记的本发明GA衍生物化合物,其与可检测到的标记物共价结合,该标记物优选为可体外成像的。优选的可检测到的标记物是放射性核素,特别是可容易地连到GA衍生物的卤素原子。
通过使用HX酸取代卤族X(=F、Br、Cl、I)以打开包含N杂环基环,例如GA衍生物的氮丙啶环,特别是在此为化合物 15的17-(1-氮丙啶基)-17-去甲氧基格尔德霉素(″17-ARG″)的化学,对于制备此GA衍生物的氟代、氯代、溴代和碘代形式是相对易懂的。放射性核素原子是共价结合的。此卤化GA衍生物可以用作实验动物模型和人体的研究,诊断和预后的有效的体内成像剂。
在优选的实施例中,17-(2-卤代乙基)氨基-17-去甲氧基格尔德霉素依照实施例19所述, 15通过与放射性HX*酸((其中X*18F、76Br、76Br、123I、124I、125I和131I)反应 制得。
下面是部分这些核素的特性的总结(部分取自Vallabhajosula,S,Radiopharmaceuticals in Oncology,Chapter 3,Nuclear Oncology:Diagnosis和Therapy(IKhalkhali等人,eds)Lippincott,Williams & Wilkins,Philadelphia,2001,p.33)
用于诊断用途的卤素放射性核素
用于诊断的卤素放射性核素
核素  半衰期(h)  衰变模式 光子能量(keV)  丰度τ发射(%)
131I  193  β-,τ 364  81
123I  13  EC 15933(Te x-射线)  83
EC,电子捕捉
核素  半衰期(d)  衰变模式 能量(MeV)最大/平均 在组织中最大范围 τ光子(MeV)
131I  8.04  β-,τ 0.61/0.20 2.4mm  364Mev
125I  60.3  EC 0.4keV(Auger e-) 10.0μm  25-35keV
正电子-发射放射性核素(用于PET成像)
粒子能量 β+范围
核素 半衰期 衰变模式 最大β+能量 光子
18F 110分钟 96β+ 0.63 0.511 2.4
 76Br  16.2小时 57%β+(18mm正电子范围)43%EC0.68 Auger e-/衰变 3.98MeV
 77Br  2.4d 0.74%β+(0.2mm正电子范围)99.3%EC0.85Conversion e-/衰变 0.36MeV
 124I  4.2d 25%β+(10mm正电子范围)75%EC0.713Auger e-/衰变 2.14MeV  0.511
125I和131I是两种另外的放射性核素;二者具有潜在治疗以及诊断用途。125I通过电子捕捉衰变并且发射Auger电子以及β射线。131I是β发射器。125I对于小型动物成像是特别有效的,例如,对于通过闪烁扫描法或单光子发射计算X线断层摄影术(SPECT)的肿瘤成像。对于SPECT的总体说明,参见:Heller,S.L.等人,Sem.Nucl.Med.17:183-199(1987);Cerquiera,M.D.等人,Sem.Nucl.Med.17:200-213(1987);Ell,P.J.等人,Sem.Nucl.Med.17:214-219(1987))。
对于体内成像所用的放射性核素,123I不发射粒子,但是在140-200keV范围内产生许多光子,其可以用传统Υ照相机容易地检测。
这些类型标记充许在组织样品中检测或测定表达Met的细胞的含量,并且因此可以用作疾病中诊断和预报工具,其Met(或其配体HGF)的表达或增强表达可作为病理上的指标,或作为诊断标志和/或治疗靶点,特别是针对癌症。
因此,优选的诊断方法是PET成像,闪烁扫描分析和SPECT。这些可以以产生连续的整体身体图像,并允许通过定量的“兴趣区域”(ROI)分析确认区域活性的方式进行。
影像过程和分析的实施例,特别是对于动物模型,在Gross MD等人(1984)Invest Radiol 19:530-534;Hay RV等人(1997)Nucl Med Commun 18:367-378)中进行了说明。
药物成分及其剂型和用途
式I/II的化合物及其药学上可接受的盐是有用的高效抗肿瘤/抗癌剂,其作用机理可能在于抑制HGF/SF和其受体Met之间的细胞联系,或是二者的结合。它们也可能用于抑制其它可能导致细胞不受控制地过度增殖的生长因子/受体的相互作用,例如EGF受体,NGF受体,PDGF受体和胰岛素受体。
本发明的药物组合物包括在本领域中已知剂型的FM-GAi化合物。在本发明范围内的药物组合物包括含有有效量以达到特定药效的fM-GAi的所有组合物。当个体需要变化时,每种成分有效含量的最佳范围的确定是在本领域技术范围中。典型的剂量包括0.01pg-100μg/kg体重,更优选1pg-100μg/kg体重,最优选10pg-10μg/kg体重。
除了药理活性分子,药物组合物中还可以包含适当的药学上可接受的载体,包括有助于将活性化合物处理为药学上可用的制剂的赋形剂和辅料,这在本领域是众所周知的。用于注射或口服给药的合适液体制剂,可以包含从约0.01%到99%的活性化合物以及赋形剂。
本发明的药物制剂是以公知的方式制备的,例如通过传统的混合、研磨、溶解或冷冻干燥步骤。合适的赋形剂可包括填料、结合剂、分解剂、辅料和稳定剂,其全部都是在本领域中公知的。用于非肠道给药的合适的剂型包括蛋白质的水溶液,例如以水溶盐的形式。化合物优选在二甲基亚砜(DMSO)中溶解,与水溶性静脉注射(i.v.)溶剂混合,通过静脉给药(见Goetz JP等人,2005,J.Clin.Oncol.2005,23:1078-1087,对于17-烯丙氨基-17-去甲氧基格尔德霉素的给药的说明)。
另一种化合物,17-(2-二甲氨基乙基)氨基-17-去甲氧基格尔德霉素可以按上述DMSO剂型通过静脉注射给药,或以不同的剂型口服。对于本发明的化合物和方法,优选的溶剂是进一步稀释成标准静脉注射水溶液的DMSO。
另外,还可以通过活性化合物合适的油性混悬注射液的混悬剂形式给药。合适的亲油溶剂或溶媒包括脂肪油,例如,芝麻油或合成脂肪酸酯,例如油酸乙酯或三甘油酯。水性注射悬浮液可以包括增加混悬剂粘度的物质。
组合物可以是冻干颗粒物、无菌的或在无菌条件下生产的溶液、片剂、针剂等的形式。可含有溶媒,例如水(优选生理上可接受pH的缓冲到,例如磷酸盐缓冲盐水)或合适的有机溶剂,其它惰性的固体或液体物质,例如生理盐水或各种缓冲液。特定的溶媒不是关键的,因为本领域技术人员知道要使用哪种溶媒以达到前述的特定目的。
总之,药物组合物是通过混合、溶解、结合或以本发明的聚合物或轭合物与一种或多种非水溶性或水溶性的水性或非水性的溶媒联合的方式制备。溶媒、载体或赋形剂以及形成该组合物的条件不会对活性化合物的生物学或药理学活性产生不利的影响,这是必要的。
给药的受试者、治疗方式和途径
本发明的优选动物受试者是哺乳动物。本发明在人类受试者的治疗中是特别有效的。通过术语“治疗”意思是以含有fM-GAi化合物的药物组合物对受试者给药。治疗包括对具有Met-阳性肿瘤高危风险但尚未有临床症状的受试者的给药,以及诊断有这种肿瘤或癌症并且仍未治疗或者已经通过例如外科、传统化疗等其它方法治疗并且其肿瘤已经减小到不可检测的水平的受试者。本发明对于防止或抑制肿瘤原发生长、再发肿瘤生长、侵入和/或转移或转移性生长具有意义。
其中fM-GAi化合物与药学上可接受的赋形剂或载体联合的本发明的药物组合物可以通过任何方式给药以实现其预期目的。给药的剂量和用法可以由具有特定疾病治疗技能的临床人员容易地决定。优选的用量如下所述。
本发明的活性化合物可以结合传统药学上应用的无毒的载体、辅料和溶媒,按剂量单位的剂型,通过口服、局部外用、非肠道途径、喷雾吸入或直肠等方式给药。
总之,本方法包括通过非肠道途径给药,包括用任何已知和合适途径对于受试者的疾病和情况进行注射或输注。非肠道途径包括经皮下(s.c.)、静脉(i.v.)、肌内、腹膜内、鞘内、脑池内、经皮肤、局部、直肠或吸入等方式给药。也包括直接瘤内注射。或者通过口服途径给药,或同时通过口服途径给药。给药剂量取决于受试者的年龄、健康状况和体重,同时开展的治疗种类、治疗频率和期望的效果。本发明的活性化合物可以以包含传统药学上可接受的无毒的载体、辅料和溶媒,以剂量单位的剂型给药。
在一个治疗方法中,这些化合物和所述方法可与外科相结合应用。从而,可以将有效量的fM-GAi化合物直接应用到肿瘤(无论原发还是转移的)的外科手术切除部位。这可以通过在开放的外科手术部位注射或“局部”应用或缝合后进行注射。
在一个实施例中,确定量的该化合物,优选约1pg-100μg,加入到在室温下用肝素盐水溶液1∶1稀释的约700ml人类血浆中。也可以加入500μg/dl浓度(在700ml总容量中)的人类IgG。可将该溶液在室温下放置一小时。然后可以将溶液容器直接与静脉输液管连接,并且以约20ml/min的优选速度对受试者给药。
在另一个实施例中,药物组合物直接通过静脉滴注到受试者中。向250ml肝素盐水溶液中加入适当量,优选约1pg-100ug,并以约20ml/min的速度静脉滴注到患者体内。
该组合物可以一次性给药,但通常分6到12次给药(或更多,由本领域技术人员根据经验确定)。治疗可以在每天进行,但通常每两到三天进行一次或少到每周一次,由对受试者的有益的和毒副作用确定。如果通过口服途径,优选为片剂或胶囊形式的药物组合物可以每天给药一次或多次。
用于全身性用药的本发明的药物剂型可以被制成肠道的、非肠道的或局部的,并且全部三种类型的剂型可以同时使用来达到活性成分的全身给药。
对于肺部滴注用药,可使用气溶胶溶液。在可喷射的气溶胶中,活性蛋白质或小分子制剂可以与固体或液体隋性载体物质联合。它也可以装入挤压瓶或与加压挥发性的、普通气体推进剂混合。除本发明的蛋白质之外,气溶胶制剂还可包括溶剂、缓冲剂、表面活性剂和抗氧化剂。
在器官包膜(鞘)内出现的肿瘤经常导致在器官薄膜内产生并积聚大量液体。实施例包括(1)包被肺部的胸膜内产生的胸膜积液,(2)腹膜内积聚产生的腹水,以及(3)脑膜内转移癌导致的脑水肿。这种渗出液和积液通常在疾病晚期阶段发生。本发明设想了该药物组合物的给药,其直接给药到腔隙中,例如生长肿瘤的腹膜腔隙、心包膜和胸膜间腔隙。也就是,将药剂直接给到有癌细胞的液体空间中,或肿瘤相邻的胸膜、腹膜、心包膜和囊膜等膜空间中。这些部位显示有恶性腹水、胸膜和心包积液或脑膜癌扩散。优选在部分地或全部地排出液体(例如腹水、胸膜或心包膜积液)之后将此药物给药、但是也可以在未排出液体的包含渗出液、腹水和/或肿瘤灶的腔隙中直接给药。通常,fM-GAi组分的剂量从1fg到10ug,优选为1pg-1ug,并且3至10天给药一次。直到没有腹水或渗出为止。认为治疗反应是在最后胸膜内给药之后四周没有进一步积液。
对于局部应用,活性化合物可以包含在药膏或软膏等局部应用的赋形剂中,作为将活性成分直接给药到受感染区域的手段。也可以使用对接种疫苗研究者公知的皮上划痕法(Scarification)。活性物质的载体可以是可喷射或不可喷射型。不可喷射型可以是半固体或固体形式,其包含适用于局部用药的载体并且具有优选大于水的动态粘度。合适的剂型包括,但不限于,溶液、悬浮液、乳剂、霜剂、软膏、粉未、搽剂、敷剂等。如果需要,它们可以是无菌的或与例如防腐剂、稳定剂、保湿剂、缓冲剂或调节渗透压的盐等辅料混合。不可喷射的局部制剂的优选赋形剂的实例包括软膏基质、例如聚乙二醇-1000(PEG-1000);例如HEB乳膏等常规乳膏;凝胶;以及凡士林油等。
依照本发明的其它药学上可接受的载体是脂质体或者缓释或控释载体或者本领域公知的药物传递装置。
化学疗法和生物抗癌剂的联合应用
化学疗法剂可以通过传统方式并以本领域习惯的剂量与本化合物联合使用。在本发明中有用的抗癌化疗药物包括但不限于抗代谢物、蒽环类抗生素、长春花属生物碱、抗微管蛋白药物、抗生素和烷化剂。可单独或联合应用的典型特定药物包括顺铂(CDDP)、阿霉素、放线菌素D、丝裂霉素、洋红霉素、道诺霉素、阿霉素、三苯氧胺、紫杉酚、泰素帝(Taxotere)、长春新碱、长春碱、异长春花碱(vinorelbine)、依托泊苷(VP-16)、异搏定、足叶草毒素、5-氟代尿嘧啶(5FU)、胞嘧啶阿拉伯糖苷、环磷酰胺、噻替派、甲氨蝶呤、喜树碱、放射菌素-D、丝裂霉素C、氨基蝶呤、风车子素(combretastatin(s))和衍生物及其前体药物。
任何一个或多个这种药物,以致癌基因信号传导途径为靶点或诱导细胞凋亡或抑制血管生成的更新的药物,以及生物产品例如核酸分子、载体、反义构造物、siRNA构造物和核酸酶,在适当情况下,可以与本发明的化合物和方法联合使用。这种药物和疗法的实例包括:放射疗法剂,结合有植物、真菌或细菌源毒素或凝结剂的抗肿瘤药物的抗肿瘤抗体,篦麻毒素A链、去糖基化篦麻毒素A链、核糖体灭活蛋白、八叠球菌素、植物毒素(gelonin)、曲霉素、局限曲霉素、核糖核酸酶、表足叶草毒素、白喉毒素或假单胞菌外毒素。能够杀死或抑制肿瘤细胞生长或分化的其它细胞毒素剂、细胞抑制剂或抗细胞剂包括抗血管生成剂、细胞凋亡诱导剂、凝血剂、前体药物或肿瘤靶点型、酪氨酸激酶抑制剂、反义策略、RNA适体,siRNA和抗VEGF或VEGF受体的RNA酶。许多酪氨酸激酶抑制剂当与本化合物一起或之后给药时是有用的。举例来说,它们包括4-氨基吡咯[2,3-d]嘧啶(U.S.Pat.No.5,639,757)。可以通过VEGF-R2受体调节酪氨酸激酶信号传导的小有机分子的进一步实例是喹唑啉化合物和组合物(U.S.Pat.No.5,792,771)。可以与本发明联合使用的其它物质是例如血管抑制性4,9(11)-甾类和C21-氧合甾类的甾类(U.S.Pat.No.5,972,922)。
镇静剂和相关的化合物、前体、类似物、代谢物和水解产物(U.S.Pat.Nos.5,712,291和5,593,990)也可联合用于抑制血管生成。这些镇静剂和相关的化合物可以口服给药。导致肿瘤消退的其它抗血管生成剂包括细菌多糖CM101(现处于临床实验)和抗体LM609。CM101诱导肿瘤中新生血管炎症反应并且负调控VEGF及其受体的表达。在血小板α颗粒中发现的凝血酶敏感蛋白1(TSP-1)和血小板因子4(PF4)是与肝素相关的血管新生抑制剂。干扰素和基质金属蛋白酶抑制剂(MMPI′s)是另外两类可以应用的天然血管生成抑制剂。金属蛋白酶组织抑制剂(TIMPs)是一类天然存在的抑制血管生成的MMPI′s家族。其它研究好的抗血管生成剂是血管生成抑制素(angiostatin)、血管内皮抑制素(endostatin)、血管抑制素(vasculostatin)、血管发生抑制素(canstatin)和抗癌蛋白(maspin)。
化疗剂是在每个治疗周期内以全剂量或减量单一药物或多药物联合给药。以本文中的成分联合一种低剂量、单一组份的化疗药物是特别优选的。在这种组合中,化疗药物的选择取决于恶性肿瘤的潜在性质。对于肺癌,优选顺铂。对于乳腺癌,优选微管抑制剂例如泰素帝(Taxotere)。对于由胃肠癌引起的恶性腹水,优选5-FU。化疗药物的“低剂量”指比此药剂的批准剂量(由美国食品及药物管理局,FDA批准)低10-95%的单剂量。如果此方案包含联合化疗法,那么每种药物剂量以相同百分比减少。尽管高于或低于此水平的治疗效果是可见的,但是优选比FDA批准剂量的>50%的减量,其副作用是最小的。在不同部位的多个肿瘤可以通过fM-GAi化合物的全身或膜内或瘤内注射给药来治疗。
在以下著作中,已经提出了对所有主要人类肿瘤的最优化学疗法剂和联合疗法,Bethesda Handbook of Clinical Oncology,Abraham J等人,LippincottWilliam & Wilkins,Philadelphia,PA(2001);Manual of Clinical Oncology,FourthEdition,Casciato,DA等人,Lippincott William & Wilkins,Philadelphia,PA(2000)。二者在此作为参考全文引入。
fM-GAi化合物的体内实验
fM-GAi化合物的治疗功效可以在相应的啮齿类动物模型中检验,该模型具备人类肿瘤的代表性。该全部方法在Geran,R.I.等人,″Protocols forScreening Chemical Agents and Natural Products Against Animal Tumors andOther Biological Systems(3d Ed)″,Cane.Chemother.Reports,Part3,3:1-112;和Plowman,J等人,In:Teicher,B,ed.,Anticancer Drug Developnaent Guide :Preclinical Screening,Clinical Trials and Spproval.Part II:In Yivo Methods,Chapter 6,″NCI药物开发之人类肿瘤异体移植模型″,Humana Press Inc.,Totowa,NJ,1997中详细地说明。所有这些文献在此作为参考全文引入。
人类肿瘤异种移植瘤模型
由National Cancer Institute(NCI)实施的抗癌药物的临床前期研究和开发是由一系列检测程序、数据检查和确定步骤组成的(Grever,MR,Se7ninOncol.,19:622-638(1992))。检测程序设计为提供相对定量数据,依次从给定的化学或生物类别中选择最佳备选制剂。下面我们说明人类肿瘤异种移植瘤系统,着重说明黑素瘤,它是当前在临床前期药物开发中使用的。
从1975年以来,NCI探讨了在腹腔(i.p.)移植鼠P388白血病模型中包括化合物预先筛选的药物发现(参见上面),然后在一系列可移植的肿瘤中评估所选的化合物(Venditti,J.M.等人,In:Garrattini S等人,eds.,Adv.Pharmacoland Chemother 2:1-20(1984)),其包括人类实体瘤。免疫缺陷无胸腺(nu/nu)裸鼠及人类肿瘤鼠移植技术的发展,使以上研究成为可能(Rygaard,J.等人,ActaPatAlol.Microbiol.Scand.77:758-760(1969);Giovanella,G.C.等人,J.NatlCanc.Test.51:615-619(1973))。评估某些鼠和人类肿瘤细胞系(B16,A-375,LOX-IMVI黑素瘤和PC-3前列腺癌)的转移潜力及其用于实验药物评估的实用性的研究,支持了源于肿瘤移植瘤接种于解剖学上相近的宿主组织的体内研究模型的重要性;这种模型很好地适用于详细评估针能抑制特定肿瘤的某种化合物的抗癌活性。从大约1990年开始,NCI开始使用人类肿瘤细胞系进行大规模药物筛选((Boyd,MR,In:DeVita,VT等人,Cancer :Principles和Practice of Oncology,Updates,vol 3,Philadelphia,Lippinicott,1989,pp1-12;前述的Plowman)。源自七种癌症(脑、结肠、白血病、肺、黑素瘤、卵巢、和肾脏型)的细胞系来源广泛,经冷冻,制备为一系列适用于体外和体内研究特性的材料。此方法使筛选过程从“化合物导向的”转变到“疾病导向的”的药物开发方式(前述Boyd)。通过该过程筛选出的化合物,具有疾病特异性和有差别的细胞毒性,被认为是进一步临床前期评估的“先导药物”。为了满足这种需要,建立了一系列人类肿瘤异种移植瘤模型。
通过在腋窝附近皮下(s.c.)接种的30-40mg传代肿瘤组织块,获得鼠体内原发实体瘤模型。一般地异种移植瘤不会立即用于药物评估,而是直到体积倍增时间稳定,通常大约在第四或第五代时才可用。
异种移植瘤的体内生长特性决定了其是否适用于抗肿瘤药物的活性评估,特别是在异种移植瘤处于早期皮下(s.c.)移植模型。在此使用的早期阶段s.c.模型定义为在治疗开始前肿瘤处于63-200mg的阶段。用于肿瘤生长阶段的生长特征指标包括肿成活率、达到200mg的时间、倍增时间和对于自发性退化的易感性。
本领域公知的许多转基因鼠模型的任一种可以用于实验本化合物。本发明人之一和同事已经描述了特别有效的鼠人类HGF/SF转基因模型,其可以用于在体内实验抗人类移植瘤的本化合物。参见ZhangYW et al.(2005)Oncogene24:101-106;U.S.Pat.App Ser.No.60/587,044,其内容在此作为参考全文引入。下面描述了其它早已公知的模型。
晚期阶段的皮下异种移植瘤模型
这种皮下接种的移植瘤模型用于评估受试药剂的抗肿瘤活性,条件是能够确定临床中相关的活性参数,例如部分和完全消退以及缓解期时间等(MartinDS等人,Cancer Treat Rep68:37-38(1984);Martin DS等人,Cancer Res.46:2189-2192(1986);Stolfi,RL等人,J.Natl Canc Inst80:52-55(1988))。监测肿瘤的生长并且在肿瘤达到100-400mg的重量范围时开始受试药剂的治疗(治疗分期日(staging day),中位重量大约为200mg),尽管由异种移植瘤确定,肿瘤可以在更大的尺寸时开始治疗。大约每周2次测量肿瘤大小和体重。通过软件程序(由Information Technology Branch of DTP of the NCI员工开发的),储存数据,计算各种效果参数,并且以图和表形式描述数据。毒性和抗肿瘤活性的参数定义如下:
1.毒性:确定药物相关死亡率(DRD)和最大相关平均净体重损失百分比。受试动物的死亡是与治疗相关的是指,如果动物在最后一次治疗的15天(d)中死亡,并且其肿瘤重量少于对照组中鼠的致死量或者其死亡时净体重损失比对照鼠组死亡时的平均净体重变化平均值大20%。DRD也可由实验者设定。将在每个观察日中每组鼠的平均净体重与在分期日(staging day)的平均净体重进行对比。将发生的任何体重损失计算为分期日(staging day)体重的百分数。对照鼠组也同样进行这些计算,因为一些移植瘤的生长对体重有负面的影响。
2.最佳T/C百分比:每天计算治疗组(T)和对照组(C)肿瘤重量(A重量)的变化,用特定观察日的肿瘤重量中位数减去首次治疗日(治疗分期日)的肿瘤重量中位数来测量肿瘤变化。这些值用于T/C计算百分比如下:
%T/C=(ΔT/ΔC)×100其中ΔT>0或者
=(ΔT/TI)×100其中ΔT<0    (1)
TI是在治疗开始时的肿瘤重量中位数。在治疗的第一期结束时得到的最佳(最小)值用于定量抗肿瘤活性。
3.肿瘤生长延迟:这是由百分数来表示的,治疗组的肿瘤重量在达到预期的倍增值时所需要延迟的时间;(从其分期日(staging day)时的重量)用下列公式与对照组进行对比:
[(T-C)/C]×100    (2)
其中T和C是分别是治疗组和对照的肿瘤生长到特定大小(除了无肿瘤鼠和DRDs)所需的时间中位数(天数)。由于单独基于(T-C)的生长延迟与肿瘤生长速度差异高度相关变化,生长延迟是以对照组的百分比来表达并考虑肿瘤生长速度。
4.净细胞杀灭对数(Net log细胞杀灭):在治疗末期杀灭的细胞单位的log10对数,计算如下:
{[(T-C)-治疗持续时间]×0.301/中位倍增时间}    (3)
其中“倍增时间”是对于肿瘤大小从200增加到400mg所需要的时间。
0.301是log102的值,并且T和C是受治疗和对照组达到特定次数的倍增所需的时间(天数)中位数。如果治疗持续时间是0,那么可以从这些式中看出,对于净细胞杀灭对数和生长延迟百分比,细胞杀灭对数与生长延迟百分比成比例。细胞杀灭对数是0,表示在治疗末期细胞的数量与在治疗初期是相同的。细胞杀灭对数为+6表示细胞数量的99.9999%的减少。
5.肿瘤消退:作为临床相关的终点,肿瘤消退在动物实验中的重要性已经被很多研究者提出(前述Martin等人,1984,1986;前述Stolfi等人)。肿瘤部分消退定义为肿瘤重量减少到治疗初期肿瘤重量的50%或更少而且没有降低到63mg(5×5mm肿瘤)以下。肿瘤完全消退(CRs)和无肿瘤存活者都由以下情况定义,即肿瘤灶在实验期间降到可测极限(<63mg)以下。这两个参数的区分是依靠在最后观察日以前对肿瘤再生(在肿瘤消退动物中)或无再生(=无肿瘤)情况的观察结果。虽然人们能够测量更小的肿瘤,但测量小于4×4mm或5×5mm(相应重量分别为32和63mg)以下的s.c.肿瘤的精确性问题,仍受到质疑。同时,一旦相对大的肿瘤已经消退到63mg,剩余物的成分可以仅是纤维物质/疤痕组织。在治疗停止后对肿瘤再生的测量为肿瘤细胞是否在治疗中存活下来提供了一个更可靠的指示。
大多数s.c.接种的移植瘤可以作为晚期阶段的模型加以使用,虽然对于一些肿瘤,由于肿瘤坏死作用,使得研究时间受到限制。如前所述,此模型能够进行临床相关参数测量并且提供测试药剂对于肿瘤生长作用的有价值的数据。而且,通过分期日(staging day),研究者确信,血管生成已经在肿瘤区域中发生,并且分期(staging)能够使“移植失败者”从实验中剔除。然而,此模型在消耗时间和实验用鼠方面堪称成本高昂。对于生长更慢的肿瘤,在足够多鼠可以移植肿瘤以前,所需要的传代时间可能至少需约4周,并且在肿瘤可以分期之前可能还需要2-3周。为了肿瘤分期,一定要移植比实际药物实验所必需的更多的鼠(多出50-100%)。
早期治疗和早期阶段皮下异种移植瘤模型
这些模型与晚期阶段模型相似,但是,由于治疗始于肿瘤生长的更早期阶段,有效的肿瘤是那些具有>90%移植成活率(take-rate)(或<10%自发消退率)。此“早期治疗模型”定义为治疗开始于肿瘤可测量即<63mg以前的模型。“早期阶段”模型是当肿瘤大小在63-200mg时开始治疗的模型。使用63mg大小是由于大约30mg的原始移植瘤已经表现出一些生长。毒性参数与晚期阶段模型相同;抗肿瘤活性参数是相似的。%T/C值是直接由在每个观察日的肿瘤重量中位数计算的,而不是由肿瘤重量的变化(Δ)来测量的,并且生长延迟是基于对于肿瘤移植之后达到例如500或1000mg的特定大小所需要的天数。记录无肿瘤鼠,但是如果用溶媒治疗的对照组包含>10%的具有类似生长特征的鼠,可以将其称为″接种失败″或自发消退。″接种失败″是没有变为稳固并且继续生长的肿瘤。自发消退(移植失败)是在生长期后减小到其最大尺寸的≤50%的肿瘤。肿瘤消退不会正常记录,因为其不总是在早期阶段模型中抗肿瘤作用的良好指示。早期治疗模型的主要优点是使用所有移植鼠的能力,这是要求良好肿瘤移植成活率(take-rate)的原因。实际上,最适合此模型的肿瘤是更快生长的肿瘤。
挑战存活(Challenge Survival)模型
在另一种方法中,确定了人类肿瘤生长对宿主生命期的影响。在最后观察日之前所有垂死鼠或由于濒死状态或广泛腹水致死的鼠用于计算治疗(T)和对照(C)组的死亡日中位数。然后将这些值用于计算生命期(″ILS″)增加百分比,如下:
%ILS=[(T-C/C)]×100    (4)
如果可能,包括滴定组以确定肿瘤倍增时间,用于计算log10细胞杀灭值。在视觉观察和/或验尸结果的基础上,死亡(或牺牲)可以认为是药物相关的。否则,如果死亡日先于对照组(-2SD)死亡平均日或者如果动物在最后治疗的15天内无肿瘤证据死亡,受治疗动物死亡被认为是治疗相关的。
异种移植瘤模型对于标准药剂的响应
在获得对于晚期阶段s.c.异种移植瘤模型的药物敏感性特征过程中,以多种剂量水平下i.p.给药来评估测试药剂。活性评估是基于按照给定治疗方案以每种药物的最大耐受剂量(<LD20)下得到最佳效果,该方案的选择基于给定肿瘤的倍增时间,生长慢的肿瘤治疗间隔要长。
如同前述Plowman,J.等人所述,通过至少2种并且多达10种临床药物在黑素瘤组中产生了至少最小抗肿瘤效果(%T/C≤40)。响应次数表现出独立于倍增时间和组织学类型,并具有在对于肿瘤(同样在其它肿瘤类型的每一副表中见到)观察到的响应次数中的范围。当按照临床上更相关的终点即肿瘤部分或完全消退来考察响应时,这些肿瘤模型(包括所有肿瘤)对于标准药物治疗是非常难控制的;在所有48个肿瘤中的30个(62.5%)中,肿瘤没有响应任何实验药物。
对于化合物的体内初步评估的方法
体外初步筛选提供了选择用于后续的体内实验的最合适肿瘤系的基础,并且每一种化合物仅对体外实验中药剂敏感性最高的细胞系产生的异种移植瘤进行实验。体内实验的早期方法着重于对晚期肿瘤阶段的动物的治疗。
在对于在此指导剂量选择可用的具体信息的基础上,选择比典型实验药剂所用的低得多的剂量。单只鼠优选采用1pg/kg至1mg/kg剂量ip推注,并且观察其14天。可以有必要地进行连续3剂量研究,直到建立非致死剂量范围。然后优选地利用三个s.c.异种移植瘤模型评估受试药剂,这些移植瘤模型是体外实验中对该药剂最敏感的并且是适用于早期阶段模型的。化合物按照基于(有一些例外)肿瘤的质量倍增时间的计划通过ip给药,如果必要可为悬浮液。例如,对于1.3-2.5,2.6-5.9和6-10天的倍增时间,优选的计划是:每天5次治疗(qd×5),每4天3次治疗(q4d×3),每7天3次治疗(q7d×3)。对于大部分肿瘤,每次治疗之间的间隔接近于肿瘤的倍增时间,并且治疗期充许0.5-1.0log10单位的对照肿瘤生长。对于分期在100-200mg的肿瘤,在治疗末期的对照组的肿瘤大小应在500-2000mg的范围内,使得治疗后在由于肿瘤大小必须损失鼠之前有足够的时间来评估其效果。
详细药物研究
在初步评估中一旦认定化合物表现出体内的效果,就要设计更详细的研究计划并在人类肿瘤异种移植瘤模型中实施,以进一步探讨化合物的治疗潜力。通过变化肿瘤细胞和宿主用药的浓度和作用时间,有可能发明和推荐为最优化抗肿瘤活性而设计的治疗方法。
用氨基-20M-喜树碱得到的数据很好地说明了“浓度×时间”对于实验药剂的抗肿瘤作用的重要性(前述Plowman,J.等人,1997)。这些结果表明,长时间维持临界值以上的血浆药物浓度对于获得最佳治疗效果是必需的。
异种移植瘤转移模型
也使用例如由Crowley,C.W.等人,Proc.Natl.Acad.Sci.USA 90 5021-5025(1993)描述的实验转移模型,实验本发明的化合物对于晚期转移的抑制效果。晚期转移包括肿瘤细胞的附着和渗出、局部侵入、接种、增殖和血管生成。将转染了指示基因如优选的绿色荧光蛋白(GFP)基因,或编码氯霉素乙酰基-转移酶(CAT)、荧光素酶或LacZ基因的人类黑素瘤细胞,接种到裸鼠体内。这使得可以利用这些标记(GFP的荧光检测或酶的组织化学比色检测)来示踪这些细胞的活动。优选以iv(静脉内)方式注入细胞,并在约14天后确认转移,特别是在肺中以及在局部淋巴结节、股骨和脑中。这模拟了人类黑素瘤在自然条件下转移的器官倾向性。例如,将表达GFP的黑素瘤细胞(106细胞每鼠)i.v.注射到裸鼠的尾部静脉中。用实验成分以100μg/动物/天的剂量并且通过q.d.IP给药来治疗动物。用荧光显微镜检术或光学显微组织化学法或通过研磨组织和可测标记物的定量比色分析法,观察和定量单个转移细胞及其所在病灶。
对代表性的鼠进行的组织病理学和免疫细胞化学研究进一步证明在全部主要器官中出现的转移。癌细胞集落的数量和大小(最大直径)可以通过数字图象分析列出,例如由Fu,Y.S.等人,Anat.Quant.Cytol.Histol.11:187-195(1989)描述的。
对于集落的确定,将肺、肝、脾、主动脉旁淋巴节、肾、肾上腺和s.c.组织的外植体清洗,切成1-2mm3的小块,并且将这些组织块在Tekman组织捣具中研磨5分钟。将研磨物通过滤网过滤,在分离介质中(例如,加入10%FCS,200U/ml I型胶原酶和100ug/ml I型DNase的MEM)以37℃轻轻振荡培养8小时。然后,将得到细胞悬液清洗并且在常规介质(例如含有选定的抗生素(G-418或潮霉素)以及10%FCS的MEM)中再悬浮。培养(fed)外植体,并且在用乙醇固定以及用适当的配体例如肿瘤细胞标记的单克隆抗体染色之后确定肿瘤细胞的克隆生长的数量。在80cm2区域中计数集落的数量。如果需要,可以进行平行实验,其中克隆生长物不要固定和染色,而是以克隆环新鲜地回收并在一些分裂(divisions)之后聚集,以便用其它测量方法,如胶原酶的分泌(通过底物凝胶电泳)和Matrigel胶侵入法。
尽管有可能使用其他人描述的实验(Hendrix,M.J.C.等人,Cancer Lett.,38:137-147(1987);Albini,A.等人,Cancer Res.,47 3239-3245(1987);Melchior,A.,CancerRes.52:2353-2356(1992)),但在此描述了Matrigel胶侵入实验法。
所有的实验按组来实施,每组优选含有10只鼠。用标准统计实验来分析结果。
依照肿瘤的情况,在s.c.肋腹注射相等数量肿瘤细胞之后1周,i.v.注射0.2-10×105肿瘤细胞,然后再过5周时间产生一定比例的血原性的:自发肺转移瘤和便于评估的全面肺肿瘤灶。该模型可以从脾、肝、肾、肾上腺、主动脉旁淋巴节和s.c.部位获得特别多的肺外转移克隆,其中大部分可能是原发性肿瘤的自发转移的代表。
治疗步骤
实验成分的剂量按照上述使用相关癌症的肿瘤动物模型来确定。将含有本发明的药物组合物给药。治疗的组成是将.001、1、100和1000ng化合物溶于200ml生理盐水中在一小时内静脉注射到受试者体内。每周三次,共治疗12次。稳定或疾病消退的病人给予超过12次的治疗。基于需要,给予门诊病人或住院病人治疗。
病人评估
在治疗期内和其后30天中每周做一次肿瘤对于治疗的响应的评估。根据治疗的响应、副作用、病人健康情况,可以中止或延长基于上述标准程序的治疗。肿瘤响应标准是由International Union Against Cancer建立的,并且列出如下。
    响应   定义
    完全缓解(CR)   所有病症消失
    部分缓解(PR)   肿瘤的两条最大直径乘积减少≥50%,无新病变
    小于部分缓解(<PR)   肿瘤大小减少25%-50%,至少稳定一个月
    病情稳定   肿瘤大小减少<25%,无恶化或新病变
    恶化   任一测量的病变大小增加≥25%或出现新病变,无论其它测量部位中病症稳定或缓解
在病人群中治疗的效果是用传统统计方法评估的,举例来说,包括卡方检验或Fisher精确性检验。可以独立评估在测量中长期变化和短期变化。
结果
治疗155个病人。结果总结如下。在80%以上的病人中观察到阳性肿瘤反应(至少部分缓解)的情况如下:
响应      %
PR        66%
<PR      20%
PR+<PR   86%
毒性
副作用发生率是在治疗总数的10%和小于1%之间,其在临床上是不重要的。
对于依照本发明有用的GA衍生物化合物,其应该在这里描述的体外生物化学或分子实验中的至少一个中表现出在飞摩尔水平的活性,并且也具有有效的体内抗肿瘤活性。
现在已经总体上描述了本发明,通过参考下述实施例会更好地理解本发明,这些实施例是以例证的形式提供的,并且不是用于限制本发明,除非有说明。
实施例1-19
格尔德霉素及衍生物的合成和/或特性描述
一般方法。熔点未经修改。在Matton Galaxy Series FTIR 3000分光光度计上记录红外光谱。在Hitachi U-4001分光光度计上记录紫外可见光谱。在Varian Inova-600,UnityPlus-500,VRX-500或VRX-300分光计上记录1H和13CNMR光谱。在所有归属(assignments)中所用的编号方式是基于GA环系统(Sasaki,K等人,J.Ain.Clzem.Soc.92:7591(1970)),除非另外说明)。质谱是由MSU质谱分光仪(Mass Spectrometry Facility)完成的。GA和macbecinII是由National Cancer Institutes提供的。Macbecin I是通过公开的步骤由macbecin II合成的(Muroi,M等人,1980)。根赤壳菌素是在商业上可获得的(Sigma-Aldrich)。使用标准方法纯化无水溶剂。
实施例1
(+)-格尔德霉素(1)
IR(CH2Cl2)(cm-1)3535,3421,3364,3060,2989,2968,1733,1690,1650,1603,1500,1367,1284,1262,1193,1135,1098,1054;1H NMR(CDCl3,500MHz,用COSY进行归属)δ8.69(s,IH)(22-NH),7.27(s,1H)(19-H),6.92(bd,J=11.5Hz,1H)(3-H),6.55(ddd,J=11.5,11.0,1.0Hz,1H)(4-H),5.86(dd,J=11.0,10.0Hz,1H)(5-H),5.80(bd,J=9.5Hz,1H)(9-H),5.17(s,1H)(7-H),4.77(bs,2H)(7-O2CNH2),4.29(bd,J=10.0Hz,1H)(6-H),4.10(s,3H)(17-OCH3),3.51(ddd,J=9.0,6.5,2.0Hz,1H)(H-H),3.37(ddd,J=9.0,3.0,3.0Hz,1H)(12-H),3.34(s,3H)(6-或12-OCH3),3.27(s,3H)(6-或12-OCH3),3.03(bd,J=6.5Hz,IH)(11-OH),2.76(dqd,J=9.5,7.0,2.0Hz,1H)(10-H),2.50-2.39(m,2H)(15-H和H1),2.00(bs,3H)(2-CH3),1.81-1.70(m,2H)(13-H和H1),1.77(d,J=1.0Hz,3H)(8-CH3),1.68-1.60(m,1H)(14-H),0.97-0.93(m,6H)(10-和14-CH3);(Sasaki等人,1970,上述;Organic Synthesis,Cumulative Volume 4,433,″Ethyleneimine″)。13C NMR(CDCl3,125MHz,用DEPT进行质子化碳的归属)δ185.0(18-C),184.1(21-C),168.2(1-C),157.0(17-C),155.9(7-O2CNH2),138.1(20-C),136.4(5-C),134.8(2-C),133.3(8-C),133.1(9-C),127.6(16-C),127.2(3-C),126.3(4-C),111.7(19-C),81.7(7-C),81.3(12-C),81.0(6-C),72.7(H-C),61.7(17-OCH3),57.3(6-or12-OCH3),56.7(6-or12-OCH3),34.7(13-C),32.7(15-C),32.2(10-C),27.9(14-C),22.9(14-CH3),12.8(8-CH3),12.5(2-CH3),12.4(10-CH3).(对于GA的13C NMR,见:Johnson,RD等人,J.Am.Chem.Soc.96:3316(1974);Johnson,RD等人,J.Am.Chem.Soc.99:3541(1977))。.
实施例2
17-烯丙氨基-17-去甲氧基格尔德霉素(4)
(Schnur,RC等人,1995a,1995b)将(+)-格尔德霉素(5.1mg,9.0mol)与烯丙基胺(10.0μl,0.13mmol)在氯仿(1.5ml)中在室温下搅拌。基于通过薄层色谱法(18小时)显示的GA的完全转换,用盐水洗混合物,通过无水硫酸钠干燥,并且浓缩。通过在硅胶(正己烷/乙酸乙酯)上快速柱层析法分离得到紫色固体产物(5.3mg,99%)。IR(KBr)(cm-1)3464,3333,2958,2929,2825,1728,1691,1652,1571,1485,1372,1323,1189,1101,1057;UV(95%EtOH)(nm)332(ε=2.0×104);1H NMR(CDCl3,500MHz)δ9.14(s,1H),7.28(s,1H),6.93(bd,J=11.5Hz,1H),6.56(bdd,J=11.5,11.0Hz,1H),6.38(bt,J=6.0Hz,1H),5.94-5.81(m,3H),5.30-5.24(m,2H),5.17(s,1H),4.82(bs,2H),4.29(bd,J=10.0Hz,1H),4.21(bs,1H),4.18-4.08(m,2H),3.55(ddd,J=9.0,6.5,2.0Hz,1H),3.43(ddd,J=9.0,3.0,3.0Hz,1H),3.34(s,3H),3.25(s,3H),2.72(dqd,J=9.5,7.0,2.0Hz,1H),2.63(d,J=14.0Hz,1H),2.34(dd,J=14.0,11.0Hz,1H),2.00(bs,3H),1.78(d,J=1.0Hz,3H),1.78-1.74(m,2H),1.74-1.67(m,1H),0.99-0.95(m,6H);13C NMR(CDCl3,125MHz,用DEPT进行质子化碳的归属)δ183.8(18-C),180.9(21-C),168.4(1-C),156.0(7-O2CNH2),144.6(17-C),141.2(20-C),135.8(5-C),134.9(2-C),133.7(9-C),132.7(8-C),132.5(3′-C),126.9(4-C),126.5(3-C),118.5(31-C),108.8(19-C),108.7(16-C),81.6(7-C),81.4(12-C),81.2(6-C),72.6(H-C),57.1(6-或12-OCH3),56.7(6-或12-OCH3),47.8(1′-C),35.0(13-C),34.3(15-C),32.3(10-C),28.4(14-C),22.9(14-CH3),12.8(8-CH3),12.6(2-CH3),12.3(10-CH3);HRMS(FAB)found 586.3120[M+H]+,calcd.586.3129(C31H44N3O8)。
(4)的氢醌形式:17-烯丙氨基-17-去甲氧基-18,21-二氢格尔德霉素。(DHAAG).
17-烯丙氨基-17-去甲氧基格尔德霉素(3.2mg,5.5μmol)溶解在乙酸乙酯(3.0ml)中,然后加入连二亚硫酸钠盐(~85%,0.50g,2.4mmol)的水性溶液(2.5ml)。在室温下搅拌此混合物2小时。在氮保护下,分离浅黄色有机层,用盐水洗,通过无水硫酸钠干燥,并且浓缩,得到深黄色固体(3.0mg,93%)。1H NMR(用D2O-Na2S2O4交换可交换的氢,然后在CDCl3中进行,500MHz)δ7.66(bs,1H),6.87(bd,J=11.5Hz,1H),6.39(bdd,J=11.5,11.0Hz,1H),6.04-5.96(ddt,J=16.0,10.0,5.5Hz,1H),5.77(bd,J=9.5Hz,1H),5.68(bdd,J=11.0,10.0Hz,1H),5.29(bd,J=16.0Hz,1H),5.13(bd,J=10.0Hz,1H),5.01(s,1H),4.30(bd,J=10.0Hz,1H),3.56(bdd,J=9.0,2.0Hz,1H),3.47(bd,J=5.5Hz,2H),3.37-3.32(m,1H),3.32(s,3H),3.23(s,3H),2.80-2.71(m,1H),2.61-2.51(m,1H),1.90(bs,1H),1.79-1.72(m,7H),1.66-1.61(m,1H),0.96(d,J=6.5Hz,3H),0.85(d,J=7.0Hz,3H)。
实施例3
17-(2-二甲氨基乙烷基)氨基-17-去甲氧基格尔德霉素(5)
(Egorin,MJ等人,2002)。将N,N-二甲乙烯基二胺(6.0RI,0.055mmol)加入到在氯仿(1.0ml)中的(+)-格尔德霉素(4.3mg,7.7μmol)溶液。在室温下搅拌混合物。基于通过薄层色谱法(4小时)显示的GA的完全转换,用0.5%水性氢氧化钠溶液和盐水洗混合物,通过无水硫酸钠干燥,并且浓缩。通过在硅胶(乙酸乙酯/甲醇)上快速柱层析法分离得到紫色固体产物(4.5mg,95%)。IR(KBr)(caf)3462,3329,2932,2871,2824,2774,1733,1690,1653,1565,1485,1373,1321,1253,1188,1100,1055;UV(95%EtOH)(nm)332(ε=1.7×104);1HNMR(CDCl3,500MHz)89.18(s,1H),7.24(s,1H),7.04(bt,J=5.0Hz,1H),6.94(bd,J=11.5Hz,1H),6.57(bdd,J=11.5,11.0Hz,1H),5.90(bd,J=9.5Hz,1H),5.84(dd,J=11.0,10.0Hz,1H),5.17(s,1H),4.75(bs,2H),4.42(bs,1H),4.29(bd,J=10.0Hz,1H),3.70-3.42(m,3H),3.57(bdd,J=9.0,6.5Hz,1H),3.34(s,3H),3.25(s,3H),2.72(dqd,J=9.5,7.0,2.0Hz,1H),2.67(d,J=14.0Hz,1H),2.55(t,J=5.5Hz,2H),2.38(dd,J=14.0,11.0Hz,1H),2.25(s,6H),2.01(bs,3H),1.83-1.68(m,3H),1.78(bs,3H),0.98(d,J=7.0Hz,3H),0.95(d,J=6.5Hz,3H);MS(FAB)found 617[M+H]+
实施例4
17-氨基-17-脱甲氧基格尔德霉素(6)
(Schnur等人,1995b;Li,LH等人,1977;Sasaki,K等人,1979).将浓缩的氨水(28%,0.70ml,0.010mol)水性溶液在室温下加入到在乙腈(5.0ml)中的(+)-格尔德霉素(5.0mg,9.0μmol)溶液。黄色溶液缓慢转变为暗红色。基于通过薄层色谱法(5小时)显示的GA的完全转换,在乙酸乙酯和盐水之间分离此混合物。用盐水洗有机相,通过无水硫酸钠干燥,并且浓缩。通过在硅胶(正己烷/乙酸乙酯)上快速柱层析法分离固体残基得到暗红色固体产物(4.6mg,95%)。IR(KBr)(cm-1)3452,3339,2957,2931,2825,1721,1692,1617,1591,1495,1374,1323,1250,1190,1133,1101,1055;UV(95%EtOH)(nm)328(s=2.0×104);1H NMR(CDCl3,500MHz)δ9.08(s,1H),7.26(s,1H),6.95(bd,J=11.5Hz,1H),6.56(bdd,J=11.5,11.0Hz,1H),5.89-5.82(m,2H),5.37(bs,2H),5.17(s,1H),4.73(bs,2H),4.29(bd,J=10.0Hz,1H),3.98(bs,1H),3.59(ddd,J=9.0,6.5,2.0Hz,1H),3.42(ddd,J=9.0,3.0,3.0Hz,1H),3.34(s,3H),3.25(s,3H),2.75(dqd,J=9.5,7.0,2.0Hz,1H),2.65(d,J=14.0Hz,1H),2.01(bs,3H),1.97-1.75(m,4H),1.79(d,J=1.0Hz,3H),0.99-0.97(m,6H);13C NMR(CDCDCl3,125MHz)δ183.1,180.4,167.9,156.1,146.0,140.4,135.8,135.0,134.0,133.0,126.9,126.6,110.3,108.6,81.9,81.2,81.1,72.2,57.1,56.8,35.0,34.7,32.2,28.7,23.8,12.8,12.5,12.2;HRMS(FAB)found 546.2818[M+H]+,calcd.546.2816(C28H40N3O8)。
实施例5
17-(2-氯乙基)氨基-17-脱甲氧基格尔德霉素(7)
(Sasaki等人,前述)。将氢氧化钠水性溶液(2.80M,0.75ml,2.1mmol)加入到在乙腈(3.0ml)中(+)-格尔德霉素(11.7mg,0.021mmol)和2-氯乙基胺氢氯化物(242mg,2.1mmol)的混合物中。在室温下搅拌混合物。基于通过薄层色谱法(20小时)显示的GA的完全转换,在乙酸乙酯和盐水之间分离此混合物。用盐水洗有机相,通过无水硫酸钠干燥,并且浓缩。通过在硅胶(正己烷/乙酸乙酯)上快速柱层析法分离得到紫色固体产物(12.0mg,95%)。IR(KBr)(cm-1)3334,2938,2874,2822,1733,1696,1653,1577,1489,1375,1325,1274,1190,1136,1101,1060;UV(95%EtOH)(nm)332(ε=1.9×104);1H NMR(CDCl3,500MHz)δ9.09(s,1H),7.29(s,1H),6.94(bd,J=11.5Hz,1H),6.56(ddd,J=11.5,11.0,1.0Hz,1H),6.35(U,J=5.0Hz,1H),5.87(bd,J=9.5Hz,1H),5.85(bdd,J=11.0,10.0Hz,1H),5.18(s,1H),4.72(bs,2H),4.30(bd,J=10.0Hz,1H),4.03(bs,1H),3.94-3.83(m,2H),3.75-3.67(m,2H),3.56(ddd,J=9.0,6.5,2.0Hz,1H),3.43(ddd,J=9.0,3.0,3.0Hz,1H),3.35(s,3H),3.26(s,3H),2.73(dqd,J=9.5,7.0,2.0Hz,1H),2.70(d,J=14.0Hz,1H),2.24(dd,J=14.0,11.0Hz,1H),2.01(bs,3H),1.78(d,J=1.0Hz,3H),1.80-1.75(m,2H),1.75-1.68(m,1H),1.00-0.96(m,6H);13C NMR(CDCl3,125MHz)8183.8,181.2,168.3,155.9,144.7,140.8,135.9,135.0,133.6,132.9,127.0,126.5,110.0,109.1,81.6,81.4,81.2,72.7,57.1,56.7,46.9,42.7,35.1,34.4,32.4,28.8,23.0,12.8,12.6,12.5;MS(FAB)found608[M+H]+
实施例6
17-(2-氟代乙基)氨基-17-脱甲氧基格尔德霉素(8)
(Schnur等人,1995b)。将氢氧化钠水性溶液(1.10M,0.53ml,0.58mmol)加入到在乙腈(1.0ml)中的(+)-格尔德霉素(5.5mg,9.8u.mol)和2-氟代乙基胺氢氯化物(65mg,0.59mmol)的混合物中。在室温下搅拌混合物。基于通过薄层色谱法(12小时)显示的GA的完全转换,在乙酸乙酯和盐水之间分离此混合物。用盐水洗有机相,通过无水硫酸钠干燥,并且浓缩。通过在硅胶(正己烷/乙酸乙酯)上快速柱层析法分离得到紫色固体产物(5.7mg,98%)。IR(KBr)(cm-1)3465,3330,2954,2927,2873,1728,1691,1653,1576,1487,1375,1323,1255,1190,1103,1051;UV(95%EtOH)(nm)332(ε=1.7×104);1H NMR(CDCl3,500MHz)δ9.10(s,1H),7.29(s,1H),6.94(bd,J=11.5Hz,1H),6.57(bdd,J=11.5,11.0Hz,1H),6.36(bt,J=5.0Hz,1H),5.88-5.83(m,2H),5.18(s,1H),4.75(bs,2H),4.69-4.57(m,2H),4.30(bd,J=10.0Hz,1H),3.94-3.76(m,2H),3.56(bd,J=9.0Hz,1H),3.43(ddd,J=9.0,3.0,3.0Hz,1H),3.35(s,3H),3.26(s,3H),2.73(dqd,J=9.5,7.0,2.0Hz,1H),2.70(d,J=14.0Hz,1H),2.30(dd,J=14.0,11.0Hz,1H),2.01(bs,3H),1.80-1.76(m,2H),1.78(d,J=1.0Hz,3H),1.75-1.68(m,1H),0.99(d,J=7.0Hz,3H),0.97(d,J=6.5Hz,3H);13C NMR(CDCl3,125MHz)δ183.8,181.2,168.4,156.0,144.9,140.9,135.9,135.0,133.6,132.8,127.0,126.5,109.7,109.1,81.6,81.5(d,J=170Hz),81.4,81.2,72.6,57.2,56.7,46.0(d,J=20Hz),35.1,34.3,32.4,28.8,23.0,12.8,12.6,12.5;HRMS(FAB)found 591.2952[M]+,calcd.591.2956(C30H42FN3O8)。
实施例7
17-(2-乙酰基氨基乙基)氨基-17-去甲氧基格尔德霉素(9)
(Schnur等人,1995b).将N-乙酰基乙烯基二胺(90%,10.0μl,0.094mmol)在室温下加入到在氯仿(1.0ml)中的(+)-格尔德霉素(5.0mg,8.9mol)溶液中。基于通过薄层色谱法(10小时)显示的GA的完全转换,用蒸馏水洗此混合物,通过无水硫酸钠干燥,并且浓缩。通过在硅胶(乙酸乙酯)上快速柱层析法分离得到紫色固体产物(4.5mg,80%)。IR(KBr)(cm-1)3449,3338,2932,2881,2824,1718,1685,1654,1569,1487,1374,1323,1269,1189,1102,1057;1H NMR(CDCl3,500MHz)δ9.12(s,1H),7.23(s,1H),6.94(bd,J=11.5Hz,1H),6.63(bt,J=5.0Hz,1H),6.56(bdd,J=11.5,11.0Hz,1H),5.88(bd,J=9.5Hz,1H),5.84(dd,J=11.0,10.0Hz,1H),5.80(bt,J=6.0Hz,1H),5.17(s,1H),4.72(bs,2H),4.29(bd,J=10.0Hz,1H),4.17(bs,1H),3.77-3.62(m,2H),3.58-3.46(m,3H),3.42(ddd,J=9.0,3.0,3.0Hz,1H),3.34(s,3H),3.25(s,3H),2.73(dqd,J=9.5,7.0,2.0Hz,1H),2.64(d,J=14.0Hz,1H),2.33(dd,J=14.0,11.0Hz,1H),2.01(s,3H),2.00(d,J=1.0Hz,3H),1.80-1.76(m,2H),1.78(d,J=1.0Hz,3H),1.74-1.67(m,1H),0.98(d,J=7.0Hz,3H),0.95(d,J=6.5Hz,3H);HRMS(FAB)found 631.3344[M+H]+,calcd.631.3343(C32H47N4O9)。
实施例8
17-(6-乙酰基氨基-1-己基)氨基-17-去甲氧基格尔德霉素(10)
将在氯仿中(+)-格尔德霉素(5.7mg,0.010mmol)和N-(6-氨基己基)乙酰胺(5.5mg,0.035mmol)的溶液在室温下搅拌。基于通过薄层色谱法(20小时)显示的GA的完全转换,用蒸馏水洗此混合物,通过无水硫酸钠干燥,并且浓缩。通过在硅胶(乙酸乙酯)上快速柱层析法分离得到紫色固体产物(5.7mg,82%)。IR(KBr)(cm-1)3445,3323,3202,2931,2865,2824,1723,1687,1653,1562,1486,1371,1322,1256,1188,1135,1106;W(95%EtOH)(nm)333(s=1.2×104);1HNMR(CDCl3,500MHz,用COSY进行归属)δ9.17(bs,1H),7.26(s,1H),6.94(bd,J=11.5Hz,1H),6.57(bdd,J=11.5,11.0Hz,1H),6.26(bt,J=5.0Hz,1H),5.89(bd,J=9.5Hz,1H),5.85(dd,J=11.0,10.0Hz,1H),5.42(bs,1H),5.18(s,1H),4.73(bs,2H),4.31(bs,1H),4.29(bd,J=10.0Hz,1H),3.59-3.39(m,4H),3.35(s,3H),3.27-3.19(m,2H),3.25(s,3H),2.74(dqd,J=9.5,7.0,2.0Hz,1H),2.66(d,J=14.0Hz,1H),2.39(dd,J=14.0,11.0Hz,1H),2.01(bs,3H),1.96(s,3H),1.80-1.75(m,2H),1.78(d,J=1.0Hz,3H),1.73-1.62(m,3H),1.55-1.47(m,2H),1.46-1.33(m,4H),0.99(d,J=7.0Hz,3H),0.95(d,J=6.5Hz,3H);13CNMR(CDCl3,125MHz)δ183.9,180.7,170.0,168.4,156.0,144.9,141.5,135.9,135.0,133.8,132.8,127.0,126.6,108.7,108.4,81.7,81.5,81.2,72.7,57.2,56.7,45.8,39.4,35.1,34.4,32.4,29.7,29.6,28.6,26.5,26.4,23.4,22.9,12.8,12.6,12.4;HRMS(FAB)found 687.3967[M+H]+,calcd.687.3969(C36H55NO9)。
实施例9
(+)-生物素17-(6-氨基己基)氨基-17-去甲氧基格尔德霉素氨化物(11)
将1,6-二氨基正己烷(10.0mg,0.086mmol)加入到在氯仿(1.0ml)中的(+)-格尔德霉素(5.0mg,8.9μmol)的溶液在室温下搅拌。基于通过薄层色谱法(20小时)显示的GA的完全转换,用0.5%水性氢氧化钠溶液和盐水洗此混合物,通过碳酸钾干燥,并且浓缩。然后将产生的暗紫色固体和(+)-生物素N-氢氧基琥珀酰亚胺酯(3.0mg,8.8μmol)在DMF(1.0ml)中通宵搅拌。通过在硅胶(乙酸乙酯)上快速柱层析法去除溶剂和分离得到紫色固体产物(6.5mg,85%)。IR(KBr)(cm-1)3327,2931,2864,1709,1651,1562,1485,1371,1325,1255,1099,731;′H NMR(CDCl3,500MHz)δ9.19(s,1H),7.24(s,1H),6.94(bd,J=11.5Hz,1H),6.56(bdd,J=11.5,11.0Hz,1H),6.28(bt,J=5.0Hz,1H),5.87(bd,J=9.5Hz,1H),5.84(dd,J=11.0,10.0Hz,1H),5.88-5.77(m,2H),5.17(s,1H),5.15(bs,1H),4.87(bs,2H),4.50(dd,J=7.5,5.0Hz,1H),4.32-4.29(m,2H),4.23(bs,1H),3.58-3.41(m,4H),3.34(s,3H),3.26(s,3H),3.24-3.20(m,2H),3.17-3.12(m,1H),2.91(dd,J=13.0,5.0Hz,1H),2.75-2.69(m,2H),2.66(d,J=14.0Hz,1H),2.38(dd,J=14.0,11.0Hz,1H),2.21-2.15(m,2H),2.01(bs,3H),1.78(d,J=1.0Hz,3H),1.78-1.32(m,17H),0.98(d,J=7.0Hz,3H),0.95(d,J=6.5Hz,3H);[14]HRMS(FAB)found 871.4619[M+H]+,calcd.871.4592(C44H67N6O10S)。
实施例10
17-[2-[2-(2-乙酰基氨基乙氧基)乙氧基]乙基]氨基-17-去甲氧基格尔德霉素(12)
将2,2′-(乙烯基二氧)二(乙基胺)(56.0μl,0.38mmol),乙酸酐(46.0μl,0.48mmol)和三乙基胺(73.2μl,0.52mmol)在氯仿(1.0ml)中在室温下搅拌1小时,然后浓缩并在高度真空下干燥。其后,将无色固体残基与(+)-格尔德霉素(4.0mg,7.1μmol)在氯仿(1.0ml)中搅拌。基于通过薄层色谱法(20小时)显示的GA的完全转换,用蒸馏水洗此混合物,通过无水硫酸钠干燥,并且浓缩。通过在硅胶(乙酸乙酯/甲醇)上快速柱层析法分离得到所需要的紫色固体产物(1.1mg,21%)。IR(KBr)(cm-1)3446,3336,2960,2929,2877,1727,1689,1655,1566,1487,1375,1325,1261,1190,1103,1057;′H NMR(CDCl3,300MHz)δ9.17(s,1H),7.25(s,1H),6.94(bd,J=11.5Hz,1H),6.78(bt,J=5.0Hz,1H),6.57(bdd,J=11.5,11.0Hz,1H),6.36(bs,1H),5.89(bd,J=9.5Hz,1H),5.85(dd,J=11.0,10.0Hz,1H),5.18(s,1H),4.74(bs,2H),4.29(bd,J=10.0Hz,1H),4.26(bs,1H),3.78-3.40(m,14H),3.35(s,3H),3.25(s,3H),2.78-2.64(m,2H),2.39(dd,J=14.0,11.0Hz,1H),2.01(bs,3H),1.98(s,3H),1.78-1.67(m,3H),1.78(d,J=1.0Hz,3H),0.99-0.94(m,6H);HRMS(FAB)found 719.3864[M+H]+,calcd.719.3867(C36H55N4O11)。
实施例11
17-羧甲基氨基-17-脱甲氧基格尔德霉素(13)
将(+)-格尔德霉素(3.1mg,5.5μmol)和甘氨酸钠盐(10.7mg,0.11mmol)在乙醇(1.2ml)和水(0.3ml)的混合物中在室温下搅拌。基于通过薄层色谱法(3小时)显示的GA的完全转换,用稀释的盐酸酸化紫色混合物并且在氯仿和蒸馏水之间将其分离。通过无水硫酸钠干燥此有机相,并且浓缩。通过在硅胶(乙酸乙酯/甲醇))上快速柱层析法分离得到紫色固体产物(3.2mg,96%)。IR(KBr)(cm-1)3446,3305,2929,2875,1734,1693,1655,1618,1574,1485,1394,1319,1267,1139,1072;1H NMR(CDCl3,500MHz)δ8.91(s,1H),7.25(s,1H),6.83(bs,1H),6.80(bd,J=11.5Hz,1H),6.60(bdd,J=11.5,11.0Hz,1H),5.86-5.80(m,2H),5.16(s,1H),4.95(bs,2H),4.33-4.21(m,2H),4.27(bd,J=10.0Hz,1H),3.54(dd,J=9.0,2.0Hz,1H),3.42(ddd,J=9.0,3.0,3.0Hz,1H),3.33(s,3H),3.25(s,3H),2.70(dqd,J=9.5,7.0,2.0Hz,1H),2.59(d,J=14.0Hz,1H),2.27(dd,J=14.0,11.0Hz,1H),2.07(bs,3H),1.80-1.75(m,2H),1.62-1.54(m,1H),1.77(bs,3H),0.98(d,J=7.0Hz,3H),0.91(d,J=6.5Hz,3H);HRMS(FAB)found604.2867[M+H]+,calcd.604.2870(C30H42N3O10)。
实施例12
17-(1-氮杂环丁烷基)-17-去甲氧基格尔德霉素(14)
(Schnur,RC等人,1994)。将氮杂环丁烷(4.0,μl,0.059mmol)加入到a溶液of(+)-格尔德霉素(7.5mg,0.013mmol)溶液在二氯甲烷(1.5ml)中搅拌。基于通过薄层色谱法(40分钟)显示的GA的完全转换,用盐水洗此混合物,通过无水硫酸钠干燥,并且浓缩。通过在硅胶(正己烷/乙酸乙酯)上快速柱层析法分离得到深紫色固体产物(7.7mg,98%)。IR(in CH2Cl2)(cm-1)3422,3075,3049,2986,1733,1686,1651,1605,1540,1486,1420,1375,1283,1260,1103,1047;1H NMR(CDCl3,500MHz)δ9.16(s,1H),7.10(s,1H),6.92(bd,J=11.5Hz,1H),6.56(bdd,J=11.5,11.0Hz,1H),5.92(bd,J=9.5Hz,1H),5.82(dd,J=11.0,10.0Hz,1H),5.15(s,1H),4.79(bs,2H),4.72-4.58(m,4H),4.28(bd,J=10.0Hz,1H),3.54(bd,J=9.0Hz,1H),3.43(ddd,J=9.0,3.0,3.0Hz,1H),3.34(s,3H),3.24(s,3H),2.71(dqd,J=9.5,7.0,2.0Hz,1H),2.59(d,J=14.0Hz,1H),2.42(五重峰,J=8.0Hz,2H),2.23(dd,J=14.0,11.0Hz,1H),2.00(bs,3H),1.78(bs,3H),1.77-1.73(m,2H),1.69-1.62(m,1H),0.97(d,J=7.0Hz,3H),0.94(d,J=6.5Hz,3H);13C NMR(CDCl3,125MHz,用DEPT和HMQC进行质子化碳的归属)δ185.8(18-C),178.4(21-C),168.4(1-C),156.0(7-O2CNH2),145.9(17-C),140.5(20-C),135.5(5-C),135.1(2-C),134.0(9-C),132.6(8-C),126.7(4-C),126.6(3-C),109.6(19-C),109.2(16-C),81.8(7-C),81.6(12-C),81.3(6-C),72.5(11-C),58.9(11-和31-C),57.1(6-或12-OCH3),56.7(6-或12-OCH3),35.1(13-C),34.1(15-C),32.3(10-C),28.1(14-C),22.9(14-CH3),18.4(21-C),12.7(8-CH3),12.6(2-CH3),12.2(10-CH3);MS(FAB)found 586[M+H]+
实施例13
17-(1-氮丙啶基)-17-去甲氧基格尔德霉素(15)
将氮丙啶氮丙啶(Allen,CFH等人,1963)(0.30ml,5.80mmol)在二氯甲烷(2.0ml)中加入到(+)-格尔德霉素(5.8mg,0.010mmol)溶液。在室温下搅拌混合物。基于通过薄层色谱法(25分钟)显示的GA的完全转换,用盐水洗此混合物,通过无水硫酸钠干燥,并且浓缩。通过在硅胶(正己烷/乙酸乙酯)上快速柱层析法分离得到橙色固体产物(5.6mg,95%)。IR(KBr)(cm-1)3438,3338,3192,2925,2827,1736,1701,1687,1644,1585,1517,1457,1367,1272,1192,1112;1H NMR(CDCl3,500MHz)δ.8.77(s,1H)(22-NH),7.27(s,1H)(19-H),6.91(bd,J=11.5Hz,1H),6.55(bdd,J=11.5,11.0Hz,1H),5.86-5.80(m,2H),5.17(s,1H),4.80(bs,2H),4.30(bd,J=10.0Hz,1H),3.52(ddd,J=9.0,6.5,2.0Hz,1H),3.42-3.37(m,2H),3.34(s,3H),3.27(s,3H),2.73(dqd,J=9.5,7.0,2.0Hz,1H),2.57(d,J=14.0Hz,1H),2.50(dd,J=14.0,11.0Hz,1H),2.44-2.33(m,4H),2.00(bs,3H),1.80-1.76(m,2H),1.77(bs,3H),1.75-1.69(m,1H),0.99-0.96(m,6H);13NMR20(CDCl3,,125MHz,用DEPT进行质子化碳的归属)δ183.8(18-C),183.2(21-C),168.3(1-C),156.0(7-O2CN2z),152.7(17-C),138.8(20-C),136.1(5-C),134.9(2-C),133.3(9-C),133.1(8-C),127.0(4-C),126.4(3-C),125.4(16-C),111.6(19-C),81.6(7-C),81.1(12-C),81.1(6-C),72.7(11-C),57.2(6-或12-OCH3),56.7(6-或12-OCH3),35.1(13-C),33.6(15-C),32.3(10-C),29.2(17-NCH2),28.9(14-C),23.3(14-CH3),12.9(8-CH3),12.5(2-CH3),12.4(10-CH3);HRMS(FAB)found 572.2968[M+H]+,calcd.572.2926(C30H42N3O8)。
实施例14
5′-溴代geldanoxazinone(16)
3-溴代-4-硝基苯酚和3-溴代-6-硝基苯酚.将在12ml冰醋酸中的3.8ml发烟硝酸(89mmole)经过35分钟加入到在冰浴的烧瓶中,该烧瓶中有60ml冰醋酸,其含有15.2克(87.9mmole)3-溴代苯酚溶液。将反应物在室温下搅拌30分钟,然后将反应物倒在冰上。然后将其在真空中浓缩,在硅胶(1∶2乙酸乙酯∶正己烷作为洗脱液)上用中压层析法使得分离出产物3-溴代-4-硝基苯酚(3.47克,15.9mmole,18%收率);从醚/己烷中重结晶得到m.p.130-131℃(报导值为m.p.130-131℃(Wright,C等人,1987)以及131℃(Hodgson,HH等人,1926);1H NMR(DMSO-d6,500MHz)δ7.99(d,1H,J=9Hz),7.18(d,1H,J=3Hz),6.91(dd,1H,J=9,3Hz,);以及3-溴代-6-硝基苯酚(1.94克,8.90mmole,10%收率,从醚/己烷中重结晶;m.p.41.5-42.5℃(报导值为m.p.42-45℃(Hanzlik,RP等人,1990)和42℃(Hodson等人,);1H NMR(CDCl3,500MHz)δ10.60(s,1H),7.95(d,1H,J=9Hz),7.35(d,1H,J=2Hz),7.11(dd,1H,J=9,2Hz,);13C NMR(CDCl3;用HMQC进行归属)δ122.9(C-2),123.8(C-4),126.0(C-5),132.2(C-3),132.7(C-6),155.2(C-1);IR(KBr)3450(宽),1612,1578,1527,1475,1311,1235,1186,900cm-1).
2-氨基-5-溴代苯酚。将3-溴代-6-硝基苯酚(0.292克,1.34mmole)在0.5%水性氢氧化钠溶液(30mL)中搅拌。将亚硫酸氢钠(2.00克,85%,9.76mmole)加入到反应烧瓶中,并且在室温下搅拌15分钟。然后用稀释的盐酸酸化反应烧瓶直到pH达到5。其后,用40mL二乙基醚萃取三次,将组合有机层用无水硫酸钠干燥并浓缩,产生粗2-氨基-5-溴代苯酚(0.533克,m.p.99.5-100.5℃),其从乙醚/正己烷中重结晶,产生纯的产物(0.151克,0.80mmole,60%产量;m.p.125-127℃(分解)(报导值为m.p.149.5-150.5℃(Boyland,E等人,1954);1H NMR(CD3CN,500MHz)δ7.08(bs,1H),6.82(d,1H,J=2Hz),6.78(dd,1H,J=8,2Hz),6.56(d,1H,J=8Hz),4.03(bs,2H);IR(KBr)3496(宽),3377,3298,1598,1502,1431,1269,1210,916,877cm-1)。
5′-溴代geldanoxazinone(16)(Webb等人,前述;Rinehart,KL等人,1977)。将在冰醋酸(2.0ml)中的(+)-格尔德霉素(21.8mg,0.039mmol)和2-氨基-5-溴代苯酚(14.6mg,0.078mmol)混合物在78℃氮气下搅拌19小时,然后冷冻和浓缩的。通过在硅胶(正己烷/乙酸乙酯)上的快速层析法分离橙色残基,得到具有未反应的(+)-格尔德霉素污染的粗产品。其然后在氯仿中溶解并进行预备的HPLC分离(Waters Nova-Pak Silica 6μm7.8×300mm column,2.0ml/minCHCl3/EtOAc2∶3),产生亮橙色粉未产品(16.4mg,60%收率);mp274-278 ℃(分解)(lit.mp275-278℃)(Rinehart,前述)。IR(KBr)(cm-1)3442,3342,3209,2954,2926,2878,1734,1700,1615,1583,1507,1384,1314,1192,1111,1061(lit.1605,1585,1505)(Rinheart,前述);1H NMR(CDCl3,500MHz)δ9.13(bs,1H),8.33(s,1H),7.73(d,J=8.5Hz,1H),7.60(d,J=2.0Hz,1H),7.53(dd,J=8.5,2.0Hz,1H),7.03(bd,J=11.5Hz,1H),6.60(bdd,J=11.5,11.0Hz,1H),5.96(bd,J=9.5Hz,1H),5.86(dd,J=11.0,10.0Hz,1H),5.21(s,1H),4.72(bs,2H),4.35(bd,J=10.0Hz,1H),4.25(bs,1H),3.64(bdd,J=9.0,6.5Hz,1H),3.46(ddd,J=9.0,3.0,3.0Hz,1H),3.37(s,3H),3.27(s,3H),2.82-2.71(m,3H),2.08(bs,3H),1.98-1.86(m,2H),1.85-1.77(m,1H),1.81(d,J=1.0Hz,3H),1.01(d,J=7.0Hz,3H),0.99(d,J=6.5Hz,3H);13C NMR(CDCl3,125MHz)δ180.7,168.4,156.0,148.5,145.0,143.5,136.8,135.5,135.3,133.9,133.0,132.9,130.9,129.1,126.7,125.2,119.3,117.5,112.9,81.9,81.3,81.2,72.2,57.1,56.8,35.3,33.1,32.2,29.4,27.6,23.3,12.8,12.7,12.1;HRMS(FAB)found 698.2080[M+H]+,calcd.698.2077(C34H41BrN3O8)。
实施例15
5′-碘代geldanoxazinone(17)
3-碘代-4-硝基苯酚和3-碘代-6-硝基苯酚。将在12ml冰醋酸中的3.0ml发烟硝酸(75mmole)经过25分钟加入到冰浴的烧瓶中,烧瓶中有60ml冰醋酸,其含有15.03克(68.3mmole)3-碘代苯酚溶液。将反应物在室温下再搅拌30分钟,然后将反应物倒在冰上。然后将其在真空中浓缩,用150ml水吸收并且用两份300ml二氯甲烷萃取,将组合二氯甲烷层通过无水硫酸镁干燥,并且蒸发,得到17克有机残基。在硅胶(1∶2乙酸乙酯∶正己烷作为洗脱液)上用中压层析法使得分离出产物3-碘代-4-硝基苯酚(6.93克,26.1mmole,38%产量);m.p.121-123℃;1H NMR(CDCl3,300MHz)δ7.98(d,1H,J=9Hz),7.54(d,1H,J=3Hz),6.92(dd,1H,J=9,3Hz),5.54(bs,1H);IR(KBr)3150(宽),1600,1580,1512,1404,1336,1298,1212,1121,1023,870cm-1;和3-碘代-6-硝基苯酚(从二氯甲烷/正己烷重结晶得到3.07克,11.6mmole,17%产量;m.p.92-94℃(报导值为m.p.96℃(Hodgson,HH等人,1927);1H NMR(CDCl3,300MHz)δ10.53(s,1H),7.76(d,1H,J=9.0Hz),7.59(d,1H,J=2.0Hz),7.33(dd,1H,J=9.0,2.0Hz);13C NMR(CDCl3;用HMQC进行归属)105.2(C-3),125.6(C-5),129.2(C-2),129.7(C-4),133.4(C-6),154.6(C-1);IR(KBr)3430(宽),1604,1571,1518,1463,1317,1225,1172,1055,888cm-1;分析计算为C6H4INO3:C,27.19;H,1.52;N,5.29.found C,27.36;H,1.57;N,5.15。
2-氨基-5-碘代苯酚。将3-碘代-6-硝基苯酚(0.993克,3.75mmole)在水性氢氧化钠溶液(在100mL水中的0.233克NaOH)中搅拌。将亚硫酸氢钠(4.62克,85%,22.6mmole)加入到反应烧瓶并且在室温下搅拌40分钟。将反应烧瓶用包围的冰浴冷却并且加入醋酸直到pH达到5-6。然后将反应物用200mL二氯甲烷萃取三次,将组合的有机层通过无水硫酸镁干燥并浓缩,产生粗6-氨基-3-碘代苯酚(0.533克,m.p.99.5-100.5℃),用乙基醚/正己烷重结晶,产生纯的产物(0.463克,1.97mmole,53%收率;m.p.126-128℃(分解)(报导值m.p.141℃(Hodgson,HH等人,1928));1H NMR(CD3CN,500MHz)δ7.04(bs,1H),6.97(d,1H,J=2Hz),6.95(dd,1H,J=8,2Hz),6.45(d,1H,J=8Hz),4.05(bs,2H);IR(KBr)3455(宽),3380,3305,1714,1504,1430,1365,1279,1257,1223,890cm-1;分析计算为C6H6INO:C,30.66;H,2.57;N,5.96.found C,30.65;H,2.42;N,5.92.)。
5′-碘代geldanoxazinone(17)。将(+)-格尔德霉素(4.8mg,8.6μmol)和2-氨基-5-碘代苯酚(4.0mg,0.017mmol)的混合物在冰醋酸(1.0ml)中在78℃氮气下搅拌20小时,然后冷却和浓缩。通过在硅胶(正己烷/乙酸乙酯)上的快速层析法分离深橙色残基,得到具有未反应的(+)-格尔德霉素污染的粗产品。然后在氯仿中溶解并进行预备的HPLC分离(Waters Nova-Pak Silica 6μm7.8×300mm column,2.0ml/min CHCl3/EtOAc2∶3),产生亮橙色粉未产品(2.8mg,44%).IR(in CH2Cl2)(cm-1)3139,3076,3048,2995,2967,1733,1684,1599,1580,1496,1447,1423,1260,1098;1H NMR(CDCl3,500MHz,用COSY进行归属)δ9.12(bs,1H),8.30(s,1H),7.79(d,J=2.0Hz,1H),7.71(dd,J=8.5,2.0Hz,1H),7.55(d,J=8.5Hz,1H),7.01(bd,J=11.5Hz,1H),6.59(bdd,J=11.5,11.0Hz,1H),5.94(bd,J=9.5Hz,1H),5.84(dd,J=11.0,10.0Hz,1H),5.20(s,1H),4.71(bs,2H),4.33(bd,J=10.0Hz,1H),4.24(bs,1H),3.63(ddd,J=9.0,6.5,2.0Hz,1H),3.45(ddd,J=9.0,3.0,3.0Hz,1H),3.36(s,3H),3.26(s,3H),2.79-2.70(m,3H),2.06(bs,3H),1.97-1.84(m,2H),1.82-1.74(m,1H),1.80(d,J=1.0Hz,3H),0.99(d,J=7.0Hz,3H),0.97(d,J=6.5Hz,3H);13C NMR(CDCl3,125MHz)δ180.8,168.4,156.0,148.7,144.9,143.3,136.9,135.6,135.3,135.0,133.9,133.6,133.0,131.0,126.8,126.6,125.2,117.5,112.9,96.6,81.9,81.4,81.3,72.2,57.1,56.8,35.4,33.0,32.3,27.7,23.3,12.8,12.6,12.2;HRMS(FAB)found 746.1937[M+H]+,calcd.746.1938(C34H41IN3O8).
实施例16
11-O- 乙酰基-17-(1-氮杂环丁烷基)-17-去甲氧基格尔德霉素(18)
(Schnur et I.,.1995a)).将17-(1-氮杂环丁烷基)-17-去甲氧基格尔德霉素(3.2mg,5.5μmol)与乙酸酐(5.2μl 0.055mmol)和DMAP(7.3mg,0.060mmol)搅拌。基于通过薄层色谱法(40小时)显示的GA的完全转换,用盐水洗此混合物,通过无水硫酸钠干燥,并且浓缩。通过在硅胶(正己烷/乙酸乙酯)上快速柱层析法分离得到所需要的紫色固体产物(3.2mg,93%)。IR(in CH2Cl2)(cm-1)3686,3536,3420,3069,3052,2930,1734,1689,1649,1601,1585,1549,1486,1435,1374,1273,1102;1H NMR(CDCl3,500MHz)δ9.37(s,1H),7.13(bs,1H),6.94(s,1H),6.50(ddd,J=11.5,11.0,1.0Hz,1H),5.81(dd,J=11.0,7.5Hz,1H),5.45(bs,1H),5.28(bd,J=10.0Hz,1H),5.04(dd,J=8.0,3.5Hz,1H),4.64-4.54(m,4H),4.48(bd J,=7.5Hz,1H),3.63(bs,1H),3.33(s,3H),3.31(s,3H),2.85-2.77(m,1H),2.71(bd,J=10.0Hz,1H),2.38(五重峰,J=8.0Hz,2H),2.06-2.00(m,1H),1.98(bs,3H),1.97(s,3H),1.71-1.56(m,2H),1.68(bs,3H),1.28-1.18(m,1H),0.96-0.93(m,6H);[7]13C NMR(CDCl3,125MHz)δ186.2,178.0,170.6,169.2,155.7,145.6,140.4,135.6,134.8,132.9,128.3,126.2,109.2,108.6,80.0,79.2,78.4,75.1,58.5,57.6,56.1,35.8,33.0,30.1,29.7,21.6,20.9,18.5,15.6,14.1,12.3;HRMS(FAB)found 628.3237[M+H]+,calcd.628.3234(C33H46IN3O9)。
实施例17
17-(1-氮杂环丁烷基)-7-去氨甲酰基-17-脱甲氧基格尔德霉素(19)
(Schnur等人,1994,1995a,前述)将叔丁氧钾(5.3mg,0.045mmol)在氮气下加入到在三元丁醇(4.0ml)的17-(1-氮杂环丁烷基)-17-去甲氧基格尔德霉素(5.0mg,8.5μmol)溶液中。将反应物在室温下搅拌1小时,然后通过在乙酸乙酯和盐水之间分离淬熄。用盐水洗有机层,用无水硫酸钠干燥和浓缩。通过在硅胶(正己烷/乙酸乙酯)快柱层析法分离,得到紫色固体产物(4.4mg,95%)。IR(KBr)(cm-1)3461,3330,2955,2927,2871,2826,1685,1652,1539,1489,1404,1381,1287,1255,1191,1136,1106;′H NMR(CDCl3,500MHz)δ9.16(s,1H),7.09(s,1H),6.90(bd,J=11.5Hz,1H),6.54(bdd,J=11.5,11.0Hz,1H),5.98(dd,J=11.0,10.0Hz,1H),5.70(bd,J=9.5Hz,1H),4.72-4.59(m,4H),4.16(bd,J=10.0Hz,1H),3.98(s,1H),3.52(dd,J=9.0,2.0Hz,1H),3.41(ddd,J=9.0,3.0,3.0Hz,1H),3.34(s,3H),3.23(s,3H),2.73(dqd,J=9.5,7.0,2.0Hz,1H),2.57(d,J=14.0Hz,1H),2.42(五重峰,J=8.0Hz,2H),2.23(dd,J=14.0,11.0Hz,1H),2.01(d,J=1.0Hz,3H),1.77-1.71(m,2H),1.74(d,J=1.0Hz,3H),1.70-1.62(m,1H),0.97(d,J=7.0Hz,3H),0.94(d,J=6.5Hz,3H);13C NMR(CDCl3,125MHz)δ185.8,178.4,168.6,145.8,140.5,137.2,136.1,134.8,132.0,126.9,125.9,109.5,109.2,81.8,80.5,80.3,72.9,58.9,56.7,56.3,34.9,34.2,32.2,28.2,22.9,18.4,12.6,12.4,11.8;MS(FAB)found 543[M+H]+
实施例18
17,21-二氢格尔德霉素(20)
(Schur等人,1995b)将(+)-格尔德霉素(3.5mg,6.2μmol)在乙酸乙酯(2.5ml)中溶解,,然后加入连二亚硫酸钠盐(~85%,0.50g,2.4mmol)的水性溶液(2.5ml)。在室温下搅拌混合物。基于通过薄层色谱法(1小时)显示的GA的完全转换,分离有机层,用盐水洗此混合物,通过无水硫酸钠干燥,并且浓缩。通过在硅胶(正己烷/乙酸乙酯)上快速柱层析法分离得到淡黄色固体产物(3.3mg,94%)。1H NMR(CDCl3,500MHz)δ8.34(s,1H),8.08(s,1H),8.02(bs,1H),6.76(bd,J=11.5Hz,1H),6.37(bdd,J=11.5,11.0Hz,1H),5.94(bd,J=9.5Hz,1H),5.64(dd,J=11.0,10.0Hz,1H),5.04(bs,1H),4.95(s,1H),4.65(bs,2H),4.29(bd,J=10.0Hz,1H),3.81(s,3H),3.61(bd,J=9.0Hz,1H),3.43(bd,J=9.0Hz,1H),3.33(s,3H),3.21(s,3H),2.79-2.74(m,2H),2.35(bd,J=14.0Hz,1H),1.82-1.65(m,3H),1.76(bs,6H),0.92(d,J=6.5Hz,3H),0.86(d,J=7.0Hz,3H);HRMS(FAB)found 562.2886[M]+,calcd.562.2890(C29H42N2O9)。
实施例19
由化合物15制备的卤素-取代的GA衍生物:
标记的17-(2-卤代-乙基)氨基-17-去甲氧基格尔德霉素衍生物
17-(2-碘乙基)氨基-17-去甲氧基格尔德霉素.(17-IEG)将磷酸溶液(3.0M,20.0μl)在二甲基甲酰胺(0.20ml)中加入17-(1-氮丙啶基)-17-去甲氧基格尔德霉素(17-ARG)(1.1mg,1.92mol)和碘化钾(17.4mg,0.10mmol)溶液。10分钟后,在乙酸乙酯和盐水之间分离混合物。用盐水洗有机相,用无水硫酸钠干燥和浓缩,得到紫色固体产物(1.3mg,97%)。IR(KBr)(cm-1)3466,3336,2927,2824,1718,1690,1652,1576,1486,1374,1322,1252,1188,1099;1H NMR(CDCl3,500MHz)δ9.09(s,1H),7.30(s,1H),6.94(d,J=11.5Hz,1H),6.57(dd,J=11.5,11.0Hz,1H),6.34(bt,J=5.0Hz,1H),5.87(bd,J=9.5Hz,H),5.85(bdd,J=11.0,10.0Hz,1H),5.18(s,1H),4.73(br s,2H),4.30(d,J=10.0Hz,1H),4.03(bs,1H),3.91-3.87(m,2H),3.56(bd,J=9.0Hz,1H),3.44(ddd,J=9.0,3.0,3.0Hz,1H),3.35(s,3H),3.31-3.28(m,2H),3.26(s,3H),2.73(dqd,J=9.5,7.0,2.0Hz,1H),2.69(d,J=14.0Hz,1H),2.19(dd,J=14.0,11.0Hz,1H),2.01(bs,3H),1.80-1.76(m,2H),1.78(d,J=1.0Hz,3H),1.75-1.69(m,1H),0.99-0.96(m,6H);HRMS(FAB)found 700.2099[M+H]+,calcd.700.2095(C30H42IN3O8)。
Figure A20058001700200562
17-(2-溴代乙基)氨基-17-去甲氧基格尔德霉素.(17-BEG)将磷酸溶液(3.0M,20.0μl)在二甲基甲酰胺(0.20ml)中加入17-(1-氮丙啶基)-17-去甲氧基格尔德霉素(17-ARG)(1.1mg,1.92mol)和溴化钾(12.8mg,0.11mmol)溶液。10分钟后,在乙酸乙酯和盐水之间分离混合物。用盐水洗有机相,用无水硫酸钠干燥和浓缩,得到紫色固体产物(1.2mg,96%)。IR(KBr)(cm-1)3460,3335,2926,2850,2824,1723,1691,1652,1575,1487,1374,1322,1254,1189,1099;1HNMR(CDCl3,500MHz)δ9.08(s,1H),7.29(s,1H),6.94(d,J=11.5Hz,1H),6.57(dd,J=11.5,11.0Hz,1H),6.36(bt,J=5.0Hz,1H),5.87(bd,J=9.5Hz,H),5.85(bdd,J=11.0,10.0Hz,1H),5.18(s,1H),4.74(br s,2H),4.30(d,J=10.0Hz,1H),4.03(bs,1H),3.97-3.92(m,2H),3.58-3.52(m,3H),3.44(ddd,J=9.0,3.0,3.0Hz,1H),3.35(s,3H),3.26(s,3H),2.73(dqd,J=9.5,7.0,2.0Hz,1H),2.70(d,J=14.0Hz,1H),2.23(dd,J=14.0,11.0Hz,1H),2.01(bs,3H),1.79-1.76(m,2H),1.78(d,J=1.0Hz,3H),1.75-1.68(m,1H),0.99-0.96(m,6H);HRMS(FAB)found[M+H]+,calcd.(C30H42BrN3O8)。
Figure A20058001700200571
17-(2-氯乙基)氨基-17-去甲氧基格尔德霉素.(17-CEG)将盐酸溶液(1.0M,20.0μl)在二甲基甲酰胺(0.10ml)中加入17-(1-氮丙啶基)-17-去甲氧基格尔德霉素(17-ARG)(0.1mg,0.17μmol)和溴化钾(12.8mg,0.11mmol)溶液。2小时后,在乙酸乙酯和盐水之间分离混合物。用盐水洗有机相,用无水硫酸钠干燥和浓缩,得到紫色固体产物。此粗产物的TLC显示,原始物质完全转换为需要的标题中产物(主产物)和17-HEG(少量)。
17-(2-氟代乙基)氨基-17-去甲氧基格尔德霉素(17-FEG)将氢氟酸溶液(48%,10.0μl)在二甲替甲酰胺(0.10ml)中加入17-(1-氮丙啶基)-17-去甲氧基格尔德霉素(17-ARG)(0.1mg,0.17μmol)溶液。2小时后,在乙酸乙酯和盐水之间分离混合物。用盐水洗有机相,用无水硫酸钠干燥和浓缩,得到紫色固体产物。此粗产物的TLC显示,原始物质完全转换为需要的标题中产物(主产物)和17-HEG(少量)。
17-(2-氢氧基乙基)氨基-17-去甲氧基格尔德霉素(17-HEG)将磷酸溶液(3.0M,5.0μl)在DMSO(0.20ml)和水(0.05ml)中加入17-(1-氮丙啶基)-17-去甲氧基格尔德霉素(17-ARG)(0.1mg,0.17μmol)溶液。2小时后,在乙酸乙酯和盐水之间分离混合物。用盐水洗有机相,用无水硫酸钠干燥和浓缩,得到紫色固体产物。此粗产物的TLC显示,原始物质完全转换为需要的标题中产物。
实施例20
在HGF/SF-Met-uPA-纤溶酶 体系细胞 筛选实验中的格尔德霉素衍生物及其抑制活性
合成并检验GA衍生物中属于geldanoxazinone类的两种衍生物的抑制剂作用(化学结构参见上面)。这些衍生物可以用含有2-氨基苯酚的GA通过酸催化缩合来制备(见上述实施例)。从而用5-溴代-2-氨基苯酚和5-碘代-2-氨基苯酚分别以60%和44%产率制备加合物16和17。这些后者化合物中的每一种都发现对Met信号途径仅在纳摩尔浓度<8IC50就具有抑制作用。见表1。
在研究的GA柄形环改变对于活性的影响的尝试中,使用了活性17-氨基取代的-17-去甲氧基格尔德霉素衍生物17-N-氮杂环丁烷基-17-去甲氧基格尔德霉素(L4)来测试这种改变。
表1:化合物的uPA-纤溶酶抑制指数.
 化合物  化学名 uPA-纤溶酶抑制指数*
 8  17-(2-氟代乙基)氨基-17-去甲氧基格尔德霉素 19
 4  17-烯丙氨基-17-去甲氧基格尔德霉素 18.0
 15  17-N-氮丙啶基-17-去甲氧基格尔德霉素 15.7
 6  17-氨基-17-去甲氧基格尔德霉素 15.3
 14  17-N-氮杂环丁烷基-17-去甲氧基格尔德霉素 15
 5  17-(2-二甲氨基乙基)氨基-17-去甲氧基格尔德霉素 14.9
 1  格尔德霉素 14.3
 7  17-(2-氯乙基)氨基-17-去甲氧基格尔德霉素 14.0
 20  二氢格尔德霉素 12.7
 18  11-O-乙酰基-17-N-氮杂环丁烷基-17-去甲氧基格尔德霉素 7.9
 3  根赤壳菌素 7.9
 21  Macbecin II 6.5
 2  Macbecin I 6.4
 13  17-羧基甲基氨基-17-去甲氧基格尔德霉素 6.3
 9  17-(2-乙酰基氨基乙基)氨基-17-去甲氧基格尔德霉素 5.8
  17   5′-碘代geldanoxazone   5.8
  12   17-(8-乙酰氨基-3,6-dioxaoctyl氨基)-17-去甲氧基格尔德霉素   5.8
  19   17-N-氮杂环丁烷基-7-去氨基甲酰-17-去甲氧基格尔德霉素   5.7
  11   17-(6-生物素基氨基己基)氨基-17-去甲氧基格尔德霉素   5.5
  10   17-(6-乙酰基氨基己基)氨基-17-去甲氧基格尔德霉素   5.3
  16   5′-溴代geldanoxazone   5.3
*uPA-纤溶酶抑制指数或IC50,是指在经HGF/SF处理的MDCK细胞中,达到抑制50%uPA生成所需的药物浓度的负对数。IC50指数大于12的化合物属于fM-Gai(在fM或以下浓度范围的抑制剂),而指数低于8的化合物属于公知的nM-Gai(在nM范围内的抑制剂)组。
14R1=-C(O)NH2;R2=-H
18R1=-C(O)NH2;R2=-C(O)CH3
19R1=-H;R2=-H
后者化合物的11-羟基可以用乙酸酐和4-二甲氨基吡啶酯化得到11-O-乙酰基-17-N-氮杂环丁烷基-17-去甲氧基格尔德霉素(18)。
化合物14的7-尿烷基可以按照Schnur等人(前述)的方法稍微修改来去除,其通过用在三元丁醇(在溶剂二甲基亚砜中,其产生低产物收率)中的三元丁氧钾来处理,产生17-N-氮杂环丁烷基-7-去氨基甲酰-17-去甲氧基格尔德霉素(19)。对于柄形环的改变都产生了表现出只有<8IC50的Met-uPA-纤溶酶信号抑制活性(表1)。
如图2所示,化合物14是高度活性(>15IC50)的,超过了GA的活性,而化合物19是完全无活性的。化合物18的活性<8IC50
最后,研究实验了GA-相关的袢霉素macbecin I(3)和苯醌袢霉素的氢醌形式、二氢格尔德霉素(20)和macbecin II(21),以及根赤壳菌素(3)的抑制活性。结果见表1。尽管知道根赤壳菌素(Sharma,SV等人,1998)和macbecinsI(Blagosklonny等人,前述)和II(见此文)具有对于hsp90高度亲合力,这些化合物的每一种在本HGF/SF诱导的uPA-纤溶酶细胞筛选实验中表现出了很低的活性。但是,发现二氢格尔德霉素具有高度活性(>12IC50)。
如背景技术部分所述,对于GA及其衍生物的治疗潜力的研究主要集中在hsp90起关键作用的生物过程(Sausville等人,2003;Workman,2003;Banerji等人,2003)。对于癌细胞存活和增殖具有关键性的多个蛋白都依赖于这种蛋白分子伴侣(Neckers,L等人,2003;Maloney,A等人,2003)。GA衍生物的阻碍hsp90功能的能力产生了用于癌症治疗的17-N-烯丙氨基-17-去甲氧基格尔德霉素(4)的临床研究(前述)。初步报告显示用为抗癌治疗的有效性,但也显示其肝毒性所致的剂量限制。(非剂量限制包括贫血、厌食、恶心、呕吐和腹泻)。例如参见前述Neckers等人;和前述Sausville等人。
如同在此所公开的,许多GA衍生物作为癌细胞中的Met信号传导途径的抑制剂,其作用浓度远低于阻碍hsp90功能所需的浓度。此外公开了抑制活性不总与人类α-hsp90的亲合力相关。尽管在此公开的活性GA衍生物的未知靶点仍需进行确认,但这些结果说明了特定的结构-活性相关性。
尽管一些17-N-氨基-衍生的-17-去甲氧基格尔德霉素化合物在细胞筛选中是活性的,但其它的不是,尤其是那些具有更长的17-N-氨基取代基,例如化合物9,10,11和12以及羧化衍生物13。
对于柄形环的修改,当从活性GA衍生物14中去除7-尿烷基时,得到的去氨甲酰化的化合物19是无活性的。与hsp90的N末端结构域结合GA衍生物4和5的结晶分析(Stebbins等人,前述;Jez等人,前述)表明,尿烷官能度经历了与hsp90的许多氨基酸残基的氢结合反应。另外,Schnur等人(1995a)报告,7-尿烷对于抗-erbB-2活性是需要的。GA衍生物的7-尿烷深嵌在hsp90的ATP-结合位点中。因此,本发明人提出,在Met功能中GA结合的未知靶点具有与hsp90的此结合区域的类似性。由活性GA衍生物14的11-羟基乙酰化得到的化合物18在对于Met信号传导的细胞筛选中是无活性的。
再者,GA对于hsp90的直接作用是众所周知的。报告的GA细胞作用是这样的,在体外实验中,hsp90通常是向上调的,而Met表达的通常是向下调控的,如在实施例21中以及下面所述。也可参见Nimmanapalli,R等人,2001和Maulik,G等人,2002a。GA类对于hsp90和Met表达水平的这种作用在此公开了仅在更高浓度(<8IC50)。在亚纳摩尔浓度(>12IC50)下,uPA活性被抑制,hsp90或Met表达没有变化(下面实施例)。活性化合物的靶点不同于hsp90,如下所述。这里用于检测uPA活性的细胞筛选基于使用MDCK细胞系的HGF/SF诱导的uPA-纤溶酶网络。通过HGF/SF处理,MDCK细胞的uPA活性明显增加(图1和2;将对照组(″ctl″)与+HGF/SF对比)。但是,我们的高活性GA衍生物在飞摩尔浓度水平明显抑制此活性,而根赤壳菌素仅在纳摩尔水平抑制此活性(见图1,一些高活性GA衍生物的抑制作用)。
高活性GA衍生物不仅在fM水平抑制uPA活性,它们也抑制体外肿瘤细胞侵入(见下面实施例)。但是,仅在nM水平抑制增殖,与低活性或″nM-GA″衍生物浓度相同(Webb等人,前述)。这说明,GA类通过一些机理抑制增殖和侵入。例如,可能通过抑制hsp90功能来影响增殖,而通过GA与一个或多个未知靶点相互作用影响侵入。
为支持这个观点,有意地将MDCK细胞在含有macbecin II(21)的条件下培养,它能在nM水平下同时抑制侵入和增殖。保持MDCK细胞在macbecin II(21)的最高无毒浓度(3μM)条件中培养几个月。在此条件下,Met和hsp90都恢复到亲代(″对照″)水平,并且恢复了Met对HGF/SF的响应度,而且hsp90似乎仍保持与macbecin结合。令人惊异地,在macbecinII处理过的细胞中uPA-纤溶酶对GA类的敏感度与在亲代MDCK细胞中相同。HGF/SF可能仍然显著地向上调控了uPA活性,而它也可以被GA类在fM水平抑制。这些发现进一步证明本发明人的观点,GA通过非hsp90靶点抑制HGF/SF诱导的uPA活性。
在此观察的活性不同于以前公开的这些化合物与hsp90的相关亲合力。hsp90高亲合力化合物根赤壳菌素(3)(Roe等人,前述)在本细胞筛选实验中是无活性的,而hsp90结合化合物GA和17-N-烯丙氨基-17-去甲氧基GA(4)是活性的。尽管在这些细胞uPA筛选实验中的靶点结合点仍然未知,这个点也可能是ATP-结合点,尽管有些不同。
前述的Kamal等人提出,在肿瘤细胞中hsp90的高亲合力构象解释了17-N-烯丙氨基-17-去甲氧基GA(4)和根赤壳菌素(3)的肿瘤选择性。肿瘤细胞中的hsp90是以多蛋白分子伴侣复合体的形式存在,,而正常组织hsp90不是这样复合的。仍然不清楚,在此作用的靶点是否类似地被复合并且改变了GA结合位点的构象。
在此所述的Met信号传导途径对活性化合物精巧灵敏的敏感性说明了此化合物在阻断该信号途径中所起的催化作用。二氢格尔德霉素(20)被发现在本实验中是活性的,尽管比GA本身稍少一些。然而,据报告化合物20在空气中可以被氧化为GA(Schnur等人,1995b,前述),而这一点,作为在此揭示的化合物20具有活性的可能因素,不能被忽视。但是相关的袢霉素macbecin I(2)及其还原产物macbecin II(21)都被发现是无活性的。两个后者化合物都与hsp90结合。发明人认为,活性袢霉素衍生物(″fM-GA类″)参与了催化电子转移过程,并且介于二氢格尔德霉素(20)和GA之间的氧化还原电势对于该过程是关键性的。两个macbecin之间的电势差别可能不足以导致该过程的发生。
由于只需要低浓度的活性GA类物质,就可以抑制导致实体瘤侵入和转移行为的Met信号途径,因此这些化合物成为有吸引力的备选药物。它们在低浓度下就具有活性,可以消除记载的GA衍生物的剂量依赖型毒性。成功找出并分离这些衍生物的靶点,能够更好地筛选和设计出作为Met信号途径抑制剂的其它有效化合物。
实施例21
HGF/SF介导的肿瘤细胞侵入的格尔德霉素抑制:
A.原料和方法
细胞系和药物:MDCK(犬肾上皮细胞)、DBTRG、U373、U118、SW1783(人类成胶质细胞瘤细胞)、SK-LMS-1(人类平滑肌肉瘤细胞)是从ATCC购买的。DU145、PC-3(人类前列腺癌细胞)是来自于Dr.Han-Mo Koo实验室,Van Andel研究所。U87和SNB19人类成胶质细胞瘤细胞是来自于Dr.Jasti Rao,伊利诺伊大学。SNB19是在DMEM F12培养基中生长的。所有其它细胞是在Dulbecco′s Modified Eagle′s Medium(DMEM)培养基中生长的(二者都来自Gibco_,Invitrogen Corp.)。培养基中添加10%胎牛血清(FBS;Hyclone)和青霉素以及链霉素。
格尔德霉素及化学衍生物,17-(N-烯丙氨基)-17-去甲氧基格尔德霉素(17-AAG),和17-氨基-17-去甲氧基格尔德霉素(17-ADG)以及Macbecin II(MA)是由国家癌症研究所(NCI)提供的或如同在此所述合成的。根赤壳菌素(RA)是购自Sigma公司。
在含有1,2和3×10-6M的MA的培养基中MDCK细胞的长期培养(>3个月)得到了MDCKG1\MDCKG2和MDCKG3细胞。所有组分首先在0.01M的DMSO中稀释,等分为小份原料(5μl)并在-80℃冻存直到使用。在使用时,将原料解冻,并且用DMEM/10%FBS连续稀释。对于用MA长期培养,至少要一周两次更换用1,2和3×10-6M的此化合物制备的培养基。
HGF/SF-Met-uPA-纤溶酶细胞筛选(Webb等人,前述)。在96孔板(96-well plates)中以1500细胞/孔密度接种细胞(除SK-LMS-1细胞以外,其以5000细胞/孔密度接种),用于比色测定光强度,可以用MTS(Promega)测定细胞生长,或者通过Chromozyme PL(Boehringer Mannheim)测量uPA-纤溶酶活性。如前所述,细胞在DMEM/10%FBS中过夜生长。将药物溶解在DMSO中,并从原料浓度连续稀释至DMEM/10%FBS培养基,并且加到适当的孔中。在药物或试剂添加后,立即将HGF/SF(60ng/ml)加入到所有孔中(除了用作对照以计算基础生长和uPA-纤溶酶活性水平的孔)。在药物及HGF/SF添加后二十四小时,为了测定uPA-纤溶酶活性将板如下处理:将孔用DMEM(无酚红;Life Technologies,Inc.)洗涤两次,并且将200μl反应缓冲剂[50%(v/v)的在DMEM(无酚红)中的0.05单位/ml纤溶酶原,40%(v/v)50mMTris缓冲液(pH8.2),和10%(v/v)的100mM甘氨酸溶液中的3mM Chromozyme PL(BoehringerMannheim)]加入每个孔中。然后将板在37℃的5%CO2中培养4小时,此时在自动分光光度板阅读器上以405nm单波长读取产生的吸收度。uPA-纤溶酶抑制指数或IC50是指uPA-纤溶酶活性被抑制50%时浓度的负log10对数。
增殖实验。与uPA-纤溶酶检测实验同时,用MTS检测在96孔板(96-well plates)中的细胞增殖。细胞制剂与上述uPA-纤溶酶实验相同,除了在添加药物和HGF/SF 24小时后,要将15μl的MTS的PMS(吩嗪硫酸甲酯)溶液(0.92mg/ml PMS,在0.2gKCl,8.0gNaCl,0.2gKH2PO4,1.15gNa2HPO4,100mg MgCl2.6H2O,133mgCaCl2.2H2O中)加入到每个孔中。然后将板在37℃的5%CO2中培养4小时,此时在自动分光光度板阅读器上以490nm单波长读取吸收度。
扩散实验。与评估uPA活性同时,用MDCK细胞的96孔板检测细胞的扩散。细胞制剂与上面所述的相同(纤溶酶实验)。在测量uPA活性的同时,将正在进行扩散实验的细胞混合,染色(Diff-Quik Set,Dade Behring AG)并且摄像。
在生物体外细胞侵入实验。在生物体外侵入实验按照Jeffers等人,1996所述进行,使用由GFR-Matrigel_(Becton Dickinson)覆盖的24孔侵入室。将细胞在DMEM/0.1%BSA中悬浮并且接种于侵入(上部)室中(5-25×103细胞/孔)(DBTRG5,000,SNB19和U373 25,000细胞/孔)。用添加或未添加HGF/SF(100ng/ml)的DMEM/0.1%BSA填充下部室。为了评估GA抑制,在HGF/SF添加之后立即将GA连续地稀释到最终浓度为1μM-1fM的上部和下部室中。在24小时后,刮去在上部室中的剩余细胞。用Diff-Quik(Dade Behring Inc.)着色并在光学显微镜下计数通过Matrigel_侵入并且附着到插入物下部表面的细胞。
Met和其它蛋白质的蛋白质印记(Western Blot)和表达。以105细胞每皿的密度在60×15mm的皿中接种细胞。24小时后将HGF/SF(100ng/ml)加入到每个皿中。然后立即将连续稀释的GA或MA以所述的浓度加入到相应皿中,并且在细胞溶解前按所示时间长短培养细胞。为了检测Met和MAPK磷酸化,将105个细胞播种在60×15mm皿中并血清饥饿(serum-starved)培养24小时。在HGF/SF(100ng/ml)刺激后,细胞溶解10和30分钟。对于对照细胞不给予HGF/SF。在细胞溶解后,通过DC蛋白质实验(Bio-Rad)测定蛋白质浓度,等量的蛋白质经SDS-PAGE电泳分离,并在Western Blot中转移到PVDF膜(Invitrogen)上。在用5%干奶封闭后,用特定抗体在膜上做标记。所用的抗体是:Met(对于MDCK细胞,Met 25HZ:购自Cell Signaling;对于DBTRG,C-28,Santa Cruz Biologicals),phospho-Met(Tyr1234/1235兔多克隆抗体(Cell Signaling),phospho p44/42MAPK(Thr202/tyr204兔多克隆抗体(Cell Signaling),或β-肌动蛋白(AC-15:ab6276,Abcam),其用作上样对照。在暴露到HRP-结合的二抗(secondary antibody)后,用ECL(″增强化学荧光,Amersham Biosciences)培养膜,并且通过图像分析来检测化学荧光信号强度。
固相结合实验。依照Whitesell等人(1994)如下制备GA固定的亲合力凝胶珠:在室温下将GA(相对于亲合凝胶珠的1.5当量)与1,6-二氨基正己烷(5-10当量)在氯仿中搅拌。GA完全转换后(由TLC监视),用稀释的水性氢氧化钠和盐水洗此混合物。通过无水硫酸钠干燥有机层,过滤并浓缩,得到17-(6-氨基己基胺)-17-去甲氧基格尔德霉素的暗紫色固体产物(通过1H NMR纯化)。然后在DMSO中吸附中间产物,并且用Affi-Gel 10珠(Bio-Rad)搅拌两小时。用DMSO洗涤得到的紫色GA珠。
对照珠是由亲和凝胶连接上不具有HSP90亲合力的小链类似物制成的。在室温下将Affi-Gel 10珠(Bio-Rad)与N-(6-氨基己基)乙酰胺(Lee等人,1995)(1.3当量)在DMSO中搅拌2小时,然后用DMSO彻底洗涤。
上面得到的GA-珠和对照珠在5倍体积的TNESV(50mM tris-HCl(pH7.5),20mM Na2MoO4,0.09%NP-40,150mM NaCl和1mM原钒酸钠)中洗涤3次并且在4℃下的TNESV中旋转过夜,以水解任何未反应的N-氢氧基琥珀酰亚胺,然后在1%BSA的TNESV中(1∶10)室温振荡至少3小时。再次用TNESV洗涤3次后,这些珠悬浮在50%TNESV中并在-78℃贮存。
为进行亲合力下拉(pull-down)实验,在100×20mm皿中接种5×05细胞。在细胞生长至80%覆盖后,将不同浓度的GA或MA加入到皿中。在24小时后,用PBS洗涤细胞2次,并且将细胞溶解在添加CompleteTM蛋白酶抑制剂(Roche Molecular Biochemicals)的TNESV缓冲剂中。通过DC蛋白质实验测定蛋白质浓度。使用等量的蛋白质通过Western Blot检测Met和HSP90α蛋白。对于下拉(pull-down)实验,将调整到相等浓度的20μl的对照或GA珠加入到500Mμl的提取液中,并且在4℃下旋转过夜。用低速离心回收珠,并且用TNESV洗涤3次。60μl2X样品缓冲液加到珠中并且煮沸10分钟。此样品进行SDS-PAGE,然后进行Western Blot分析。
实施例22
格尔德霉素是在人类细胞中的HGF/SF诱导的uPA活性的有效抑制剂
本发明人的实验室此前已经提出,某些GA衍生物在极低浓度下抑制在MDCK细胞中HGF/SF诱导的uPA活性(Webb等人,2000)。称为″fM-GAi″化合物的最具活性的衍生物是其中GA的17-甲氧基由氨基或烷氨基(在此所述的)取代的那些化合物。
为确定人类肿瘤细胞是否象MDCK细胞表现出fM-GAi敏感性,首先在一些细胞系中筛选HGF/SF可诱导的uPA活性(表2)。在MDCK细胞中HGF/SF诱导出高水平的uPA活性。然而,我们也找到了表现出HGF/SF可诱导的uPA活性的四个人类肿瘤细胞系,也就是三种多形性成胶质细胞瘤(GBM)细胞系(DBTRG,U373和SNB19)以及高侵入性SK-LMS-1平滑肌肉瘤细胞(Jeffers等人,前述;Webb等人,2000)。这些化合物的详细的fM-GAi浓度-抑制测试列入表1??利用细胞系进行的??见表2??。根赤壳菌素(RA)和macbecin II(MA)用作在nM范围中抑制uPA活性的药物的实施例。如前述Webb等人在前面描述的,MDCK细胞用作对于fM-GAi药物敏感性的对照,表现出如同前述的相同敏感性(图1,板A)。重要地,只有加入到HGF/SF后表现出至少1.5倍uPA活性的人类肿瘤细胞系(表2)表现出与MDCK细胞类似的fM-GAi敏感性(图1,板B(DBTRG),C(U373),和D(SNB19),并且未示出数据)。这些化合物没有表现出对细胞增殖(图1,板E、F和G)的明显影响。fM-GAi化合物表现出在每个细胞系中跨越很宽浓度范围的剂量-依赖曲线,在MDCK和U373细胞中观察到17-AAG具有在10-17M低浓度时的抑制作用。
这些结果证明,对于fM-GAi化合物的敏感性不是某一特定细胞系的专有特征。但是,也看出,fM-GAi药物只有在那些受HGF/SF影响至少50%的uPA活性被诱导出来的细胞中是有效的。在敏感的GBM细胞系中,值得注意的是DBTRG和U373细胞(图1,分别是板B和C),观察到uPA活性基线由于响应fM-GAi化合物而降低。这可能与在一些GBM细胞中发现的低水平自分泌HGF/SF-Met信号传导有关。
RA和MA只在nM或更高浓度下抑制由HGF/SF-介导的对uPA活性的诱导,RA表现出比GA高得多的HSP90亲合力(Kd=19nM vs.1.2μM)(Roe等人,1999;Schulte等人,1999),只在nM浓度下即可抑制HGF/SF-介导的uPA活性。因此,尽管HSP90可能是nM-GAi类化合物的分子靶点,但是它不可能是这些敏感细胞中引起fM-GAi活性的原因。
表2在所选择细胞系中的uPA活性的HGF/SF诱导1
种类  细胞系  uPA活性诱导(倍数)
犬类肾上皮细胞  MDCK*  4.27
人类成胶质细胞瘤  DBTRG*  2.28
 SNB19*  1.95
 U373*  1.56
 U118  1.12
 U87  1.04
 SW1874  0.97
人类平滑肌肉瘤  SK-LMS-1*  2.01
人类前列腺恶性肿瘤  DU145  1.06
 PC-3  1.00
1为了测量HGF/SF可诱导的uPA活性,细胞在96孔板(96-well plates)中接种。24小时后,将HGF/SF一式三份加入到孔中,最终浓度为0,10,20,40,和60ng/ml,再培养24小时后测量uPA活性。所示值是每个细胞系在加入HGF/SF后uPA诱导的峰值与其本底uPA活性值之比率的平均值。
星号(*)表示显示出fM-GAi敏感性的那些细胞系(图1,未示出数据)。
实施例23
fM-GAi和HGF/SF诱导的扩散和侵入
下面的研究检验fM-GAi化合物,除了抑制uPA活性,是否影响体外实验中细胞扩散和肿瘤细胞侵入的生物活性。GA本身和17-AAG在pM-fM浓度范围内抑制HGF/SF诱导的MDCK细胞扩散(图10)。而且,图11-13表示,甚至在pM-fM浓度,GA能够完全阻止高侵入性的DBTRG、SNB199和U373人类GBM细胞在HGF/SF诱导的Matrigel_侵入过程。这种甚至在fM范围中的对侵入的显著抑制与fM-GAi对于uPA活性的HGF/SF诱导的抑制作用是接近相似的(比较图3-6)。
实施例24
不同于HSP90的另一个fM-GAi活性作用分子靶点的进一步证据
本发明人实验室此前的工作说明,GA在nM或更高浓度下抑制在SK-LMS-1和MDCK细胞中的uPAR表达和Met表达(Webb等人,前述),而在fM范围内,抑制uPA活性。一项研究检验了对fM-GAi化合物敏感的细胞系中Met和HSP90α的表达对GA和MA的敏感性(图14)。其他人提出,在nM水平GA向上调控HSP90α(Nimmanapalli等人,2001)并且向下调控Met表达(Maulik等人,2002a;Webb等人,前述)(图3,条带5和11分别表示MDCK和DBTRG细胞)。但是,在亚nM浓度的fM-GAi化合物例如GA的条件下,没有观察到HSP90α或Met相对浓度的显著改变(图14,条带6和12),在此浓度下uPA活性、扩散或体外侵入被抑制。
在10-5M MA中观察到GA对于HSP90α的上调和Met的下调(条带3和9),但是在10-6M观察到较少的响应(条带4和10)。重要地,在10-5M MA和10-6M的GA条件下用GA-亲合珠可恢复已低至可忽略水平的全部HSP90α(条带3、5、9和11),并且对于GA亲合珠可用的HSP90α在10-6MMA条件下也被减少了(条带4和10)。这些结果表明,在细胞溶解产物中的两种药物都有效地竞争阻止HSP90与珠形GA的结合,表明了可用结合点被阻断。从这些结果得到结论,在GA的亚nM浓度下,没有发生对于Met或HSP90α表达的影响。而且,nM-GAi药物MA,像GA,有效地与HSP90竞争结合GA-亲合珠,即使MA缺乏fM-GAi活性。这些结果表明,fM-GAi化合物的亚nM抑制作用不可能包括对于HSP90α的化学计量地有效方法中的结合。
实施例25
MDCK细胞用Macbecin II长期慢性处理的分析
从表明在MA治疗的细胞中HSP90α不能够结合GA-亲合珠的前述实验中预知,如果MDCK培养长期维持在最高无毒水平的MA上,在HSP90α和其它nM-GAi靶点分子上的结合位点将可能被占据,允许检验这些细胞是否仍对于fM-GAi化合物敏感。
检验了一些高浓度MA,但是只显示那些使用MDCK细胞可以耐受并继续生长的最高无毒水平的结果。在包含1-,2-和3×10-6M浓度的MA的培养基中长期培养MDCK细胞,以产生分别称为MDCKG1,MDCKG2,和MDCKG3的细胞。MDCK细胞可以在MA浓度增加到但不高于3×10-6M的条件下持续地增殖。所有细胞系在MA的存在下生长良好,尽管比亲代细胞的生长速率低(未示出)。在图15中显示了长期在MA中处理的细胞系对于10-6M GA或10-5M MA的急性刺激的响应。维持在1-2×10-6M MA中的细胞(MDCKG1-G2)表现出了正常水平的Met和HSP90(条带2和5),而在MDCKG3细胞(维持在3×10-6M MA中)中Met的丰度比在亲代细胞中的要低(比较条带1和8)。
在急性GA刺激24小时后,所有用MA长期慢性处理的细胞系都表现出在Met丰度上的明显减少,而用10-5M MA的刺激下减少得较少,特别是用MDCKG2和G3细胞(条带3,6,和9)。MDCKG1和G2细胞系对GA的刺激表现出HSP90α的急剧增加,但在MDCKG3细胞中不是这样。由这些结果可以得出,MDCKG3至少部分地具有了对10-6M GA的耐受性,而MDCKG1和G2较少如此,并且在较大程度上更像亲代细胞(对比图14和15)。
实施例26
在用Macbecin II长期慢性处理的MDCK细胞中的Met功能
为评估MA处理的MDCKG3细胞是否保持其对于GA的敏感性,进行了一项研究,首先检测用MA长期慢性处理的MDCK细胞中Met是否仍保持功能性。通过检测,Met的功能是HGF/SF诱导的下游信号传导(图16)、扩散活性(图17)和uPA活性的诱导(图18)。亲代MDCK细胞和MDCKG3细胞在HGF/SF刺激后表现出相当的Erk1和Erk2磷酸化时程(图16),以及类似的Met磷酸化水平和时程。因此,尽管在MDCKG3细胞中Met表达水平稍低(图4和5),HGF/SF诱导的Met与Erk1和Erk2磷酸化类型与MDCK亲代细胞是相似的。
MDCKG3细胞即使在3×10-6M MA的存在下仍然能响应HGF/SF而发生扩散(图6A,板d和e),而相同浓度的MA有效地阻断了MDCK细胞的扩散(图17,板c)。
下面检验GA在10-7到10-15M在MDCKG3细胞中HGF/SF诱导的细胞扩散的抑制活性(图17)。只有在10-15M GA,才再次完整观察到扩散(图6A,板i),表明即使是培养于3×10-6MA中的MDCKG3细胞仍保持着对fM-GAi的精巧敏感性。
下面的实验检验在用MA长期慢性处理的MDCK G3细胞中Met是否保持功能性,这通过HGF/SF诱导的下游uPA诱导来检测(图18)。正如在亲代MDCK细胞中那样,GA是比MA有效得多的HGF/SF诱导的uPA活性的抑制剂;它在MDCKG3细胞中的有效浓度可以在10-13M水平。放在一起考虑,这些发现表明,在MDCKG3细胞中Met在扩散活性和uPA诱导过程中通过Erk1和Erk2的信号传导中对于HGF/SF是完全响应的。
实施例22-26的讨论
HGF/SF诱导的uPA活性被公认与许多种实体瘤的侵入和转移相关的。当HGF/SF激起Met信号传导时,uPA和uPAR表达都被上调,并且纤溶酶原分裂成纤溶酶,导致细胞外的基体降解(Ellis等人,1993)。高水平的uPA和uPAR表达与临床上较差的预后相关(Duffy,1996;Duffy等人,1996;Harbeck等人,2002),并且,事实上,以uPAR为靶点的抗癌方法正在发展(Gondi等人,2003;Lakka等人,2003;Schweinitz等人,2004)。本发明人及同事先前开发了一种细胞途径筛选HGF/SF诱导的uPA-纤溶酶体系抑制剂的方法并且使用这种实验,发现fM-GAi化合物可以在MDCK细胞中以fM浓度抑制HGF/SF诱导的uPA-纤溶酶蛋白酶解作用(Webb等人,前述)。
上述实施例说明,fM-GAi在fM水平不仅抑制uPA-纤溶酶活性,而且抑制HGF/SF诱导的扩散(图2A)。MDCK细胞看来是在HGF/SF诱导的扩散实验和uPA-纤溶酶诱导实验(表2)中这些高效作用的最敏感的指示器。
本发明人发现,对于鼠乳腺癌细胞系DA3和人类前列腺癌细胞系DU145,两个细胞系均在HGF/SF的作用下扩散,但是uPA活性没有被HGF/SF诱导,并且扩散只有在nM浓度时被抑制。对此结果的解释是,HGF/SF可诱导的扩散和uPA-纤溶酶上调与fM-GAi敏感性有关,如表2和图1中结果所示。MDCK细胞仍是一种更好的测试系统,用于检测fM-GAi对扩散的影响。
同时在此第一次公开了响应HGF/SF的四种人类肿瘤细胞系中fM-GAi-介导的对uPA的抑制作用。因此,这些有效的作用也是人类肿瘤细胞的特性,不是MDCK细胞特有的东西。在敏感的人类细胞系中,uPA活性至少被HGF/SF上调了1.5倍,这看来是对于可靠测量fM-GAi抑制所必需的水平。在fM-GAi敏感的成胶质细胞瘤(GBM)细胞系中,uPA活性基线发生了显著的降低,但在非敏感性细胞系中,没有发生这种降低,尽管其uPA活性基线可能比敏感性细胞系中的更高。许多GBM细胞系以自分泌方式表达HGF/SF和Met(Koochekpour等人,前述),而“不敏感”细胞没有一个是这样。因此,基线的降低可以由作用方向为HGF/SF诱导途径的fM-GAi药物的精巧的效能活性来解释。另外,fM-GAi化合物抑制3种敏感的GBM细胞的侵入(体外),以及平行地抑制uPA,这证明uPA抑制与肿瘤侵入和转移的因果相关性。
在nM浓度,GA药物族的成员通过干扰HSP90α作为分子伴侣的功能以降低非正确折叠的癌蛋白来抑制肿瘤生长(Chavany等人,1996;Stebbins等人,1997;Whitesell & Cook,1996)。大部分已识别的细胞癌蛋白通过N末端的ATP结合结构域与HSP90结合,而该点也是与GA结合的结构域(Chavany等人,前述;Mimnaugh等人,1996;Schneider等人,1996;Schulte等人,1997)。通常地,在用nM浓度的GA处理的细胞中,HSP90表达被上调,而癌蛋白在24小时内降解。GA处理在6到24小时内诱导癌蛋白降解(Liu等人,1996;Maulik等人,前述;Nimmanapalli等人,2001;Tikhomirov & Carpenter,2000;Yang等人,2001),并伴随HSP90α表达的上调(Nimmanapalli等人,2001)。然而在人类小细胞肺癌(SCLC)细胞系中,GA治疗的效果是Met在HSP90表达几乎没有发生变化时就降解了(Maulik等人,前述)。
相反,此处表明,fM-GAi化合物在远低于引起HSP90上调或Met下调反应的浓度下抑制扩散、侵入和uPA活性。而且,即使在HGF/SF添加之后4小时才加入,fM-GAi化合物仍抑制uPA活性,尽管早在HGF/SF添加之后10分钟关键的信号传导元件的磷酸化反应就发生了。因此,这里已经说明,fM-GAi的抑制作用一定发生在Met信号传导的下游。
具有比GA更高的HSP90结合亲合力的RA只表现出nM-GAi uPA抑制。RA结合到与GA和fM-GAi相同的HSP90的ATP袋,但具有更高亲合力(Roe等人,1999;Schulte等人,1999)。此发现说明,fM-GAi化合物通过非HSP90靶点抑制HGF/SF诱导的uPA活性、细胞扩散和癌细胞侵入。对三种过程的同时抑制表明,fM-GAi药物以HGF/SF调控的转移/侵入途径中一种共同的步骤为靶点。这并非没有可能,HSP90分子伴侣的一个稀有亚类是fM-GAi抑制的原因。例如,Eustace等人(2004)提出,一种HSP90α异构体在癌的侵入性中起关键作用,并且此异构体是在细胞外表达并在细胞外相互作用以促进MMP2激活。
为检验此形式的HSP90α是否也是此处所述的敏感的uPA作用的原因,在uPA实验中使用GA珠进行研究。用细胞外的GA亲合力珠抑制HGF/SF诱导的uPA活性,仅在10-5M发生,证明uPA的fM水平抑制与这种HSP90α的胞外异构体无关。依照本发明,具有一个新的fM-GAi药物作用分子靶点。
成胶质细胞瘤是高侵入性肿瘤,HGF/SF对uPA-纤溶酶网络的刺激是GBM侵入的关键步骤(Gondi等人,2003;Rao,2003)。这些肿瘤浸润到正常脑组织中并沿血管蔓延,所以完全切除它们是不可能的。80%的GBM肿瘤表达HGF/SF,而100%过度表达Met(Birchmeier等人,前述)。发现uPA活性在星形细胞瘤中(特别在成胶质细胞瘤中)比在正常脑组织或低级神经胶质瘤中更高(Bhattacharya等人,2001;Gladson等人,1995;Yamamoto等人,1994),并且升高的uPA表达是一种预后不良的指示(Zhang等人,2000)。因此以Met和uPA为靶点的药物可能对于新治疗方法是重要的(Rao,2003)。一些本发明人及同事以前的研究测量了在一些GBM细胞系中的侵入可能性;DBTRG和U373是最具侵入性的细胞系(Koochekpour等人,1997)。SNB19细胞也是高侵入性的GBM细胞系(Lakka等人,2003)。如在此所示,所有三种侵入性的GBM细胞系表现出在极低浓度下fM-GAi对HGF/SF诱导的uPA活性和侵入性的抑制作用。17-AAG当前处于对于几种不同癌症的临床实验中(Blagosklonny,2002;Goetz等人,2003),但未用于成胶质细胞瘤。依照本发明,fM-GAi药物对于GBM脑癌的治疗是有效的。
上述引用的参考文献(作为缩写形式引用)
Abounader,R,Ranganathan,S,Lal,B,Fielding,K,Book,A,Dietz,H,Burger,P,Laterra,J.(1999)J NatlCancerInst91:1548-1556
Abounader,R,Lal,B,Luddy,C,Koe,G,Davidson,B,Rosen,E.M,Laterra,J.(2002)FASEB J16:108-110
Allen,CF,Spangler,FW,Webster,ER.(1963)Org Syizth Coll4:433
Banerji,U,Judson,I,Workman,P.(2003)Curr Cancer Drug Targets3:385-390
Bhattacharya,A,Lakka,SS,Mohanam,S,Boyd,D,Rao,JS(2001)ClinCane Res7:267-76
Birchmeier,C,Birchmeier,W,Gherardi,E,Vande Woude,GF(2003)NatRev Mol Cell Biol4:915-25
Blagosklonny,MV,Toretslcy,J,Bohen,S,Neckers,L.Proc Natl AcadSci USA 199693:8379-8383
Blagosldonny,MV(2002)Leulcemia 16:455-62
Bohen,SP(1998),Mol Cell Biol 18:3330-3339
Bonvini,P,An,WG,Rosolen,A,Nguyen,P,Trepel,J,Garcia deHerreros,A,Dunach,M,Neckers,LM(2001)CancRes 61:1671-7
Boyland,E,Sims,P.(1954)JChem Soc 980-985
Cao,B,Su,Y,Oskarsson,M,Zhao,P,Kort,EJ,Fisher,R.J,Wang,LM,Vande Woude,GF(2001)Pi-oc Natl Acad Sci USA 98:7443-7448
Chavany,C,Mimnaugh,E,Miller,P,Bitton,R,Nguyen,P,Trepel,J,Whitesell,L,Schnur,R,Moyer,J,Neclcers,L(1996)JBiolCZlem 271:4974-7
Christensen,J.G,Schreck,R,Burrows,J,Kuruganti,P,Chan,E,Le,P,Chen,J,Wang,X,Ruslim,L,Blake,R,Lipson,K.E,Ramphal,J,Do,S,Cui,J.J,Cherrington,J. M,Mendel,D.B.(2003)Canc Res 63:7345-7355
Danilkovitch-Miagkova,A,Zbar,B.(2002)JClin Invest 109:863-867
Date,K,Matsumoto,K,Shimura,H,Tanaka,M,Nakamura,T.(1997)FEBSLett 420:1-6
DeBoer C,Meulman PA,Wnuk RJ,Peterson DH.(1970),JAntibiot(TolRyo)23:442-7
Duffy,MJ(1996)Clin CancRes 2:613-618
Duffy,MJ,Duggan,C,Maguire,T,Mulcahy,K,Elvin,P,McDermott,E,Fennelly,JJ O′Higgins,N(1996)Enzyme Protein 49:85-93
Dutta,R,Inouye,M.(2000)Trends Biochem Sci 25:24-28
Egorin MJ,Rosen DM,Wolff JH,Callery PS,Musser SM,EisemanJL(1998)Canc Res 58:2385-2396
Egorin,MJ,Lagattuta,TF,Hamburger,DR,Covey,JM,White,KD,Musser,SM,Eiseman,JL.(2002)Cancer Chemother Pharmacol 49:7-19
Ellis,V,Behrendt,N,Dano,K(1993)MethodsEnzy7nol 223:223-33
Eustace,BK,Sakurai,T,Stewart,JK,Yimlamai,D,Unger,C,Zehetmeier,C,Lain,B,Torella,C,Henning,SW,Beste,G,Scroggins,BT,Neckers,L,Ilag,LL,Jay,DG (2004)Nat Cell Biol 6:507-14
Fink,AL.(1999)Physiol Rev 79425-449
Gladson,CL,Pijuan-Thompson,V,Olman,MA,Gillespie,GY &Yacoub,IZ(1995) AmJPathol 146:1150-60
Goetz,MP,Toft,DO,Ames,MM,Erlichman,C(2003)AnnOncol14:1169-76
Gondi,CS,Lakka,SS,Yanamandra,N,Siddique,K,Dinh,DH,Olivero,WC,Gujrati,M,Rao,JS(2003)Oncogene 22:5967-75
Grenert,JP,Sullivan,WP,Fadden,P,Haystead,TA,Clark,J,Mimnaugh,E,Krutzsch,H,Ochel,HJ,Schulte,TW,Sausville,E,Neckers,LM,Toft,DO.(1997)JBiol Chenz 272:23843-23850
Hanzlik,RP,Weller,PE,Desai,J,Zheng,J,Hall,LR,Slaughter,DE.(1990)J Org Chem 55:2736-2742
Harbeck,N,Kates,RE,Look,MP,Meijer-Van Gelder,ME,Klijn,JG,Kruger,A,Kiechle,M,Janicke,F,Schmitt,M,Foekens,JA(2002)CancRes62:4617-22
Hattori,N,Mizuno,S,Yoshida,Y,Chin,K,Mishima,M,Sisson,TH,Simon,RH,Nakamura,T,Miyake,M(2004)SnzJPathol 164:1091-8
Hodgson,HH,Moore,FH.(1926)J Chem Soc 155-161
Hodgson,HH,Moore,FH.(1927)JCliein Soc 630-635
Hodgson,HH,Kershaw,A.(1928)J Chem Soc 2703-2705
Ivy,PS,Schoenfeldt,M.(2004)Oncology(Huntingt)18:610 615 619-20
Jeffers,M,Rong,S,Vande Woude,GF(1996)Mol Cell Biol 16:1115-25
Jez,JM,Chen,JC,Rastelli,G,Stroud,RM,Santi,DV.(2003)Chem Biol10:361-368
Jiang,W.G,Grimshaw,D,Lane,J,Martin,T.A,Abounder,R,Laterra,J,Mansel,R.E.(2001)ClinCa7zc Res:7:2555-2562
Kamal,A,Thao,L,Sensintaffar,J,Zhang,L,Boehm,MF,Fritz,LC,Burrows,FJ.(2003)Nature 425:407-410
Koochekpour,S,Jeffers,M,Rulong,S,Taylor,G,Klineberg,E,Hudson,EA,Resau,JH,Vande Woude,GF(1997)CancRes 57:5391-8
Lakka,SS,Gondi,CS,Yanamandra,N,Dinh,DH,Olivero,WC,Gujrati,M,Rao,JS(2003)Carac Res 63:2454-61
Lee,YB,Park,MH,Folk,JE(1995)JMedCherra 38:3053-61
Li,LH,Clark,TD,Cowie,CH,Rinehart,KL.(1977)CancerTreat Rep61:815-824
Liu,ZG,Hsu,H,Goeddel,DV,Karin,M(1996)Cell 87:565-76
Maloney,A,Workman,P.(2002)Expert OpinBill ter 2:3-24
Maloney,A,Clarke,PA,Workman,P.(2003)Curr Cancer Drug Targets 3:331-341
Matsumoto,K,Nakamura,T.(2003)Cancer Sci:94:321-327
Maulik,G,Kijima,T,Ma,PC,Ghosh,SK,Lin,J,Shapiro,GI,Schaefer,E,Tibaldi,E,Johnson,BE,Salgia,R(2002a).Clin CancRes 8:620-6277
Maulik,G,Shrikhande,A,Kijima,T,Ma,PC,Morrison,PT,Salgia,R(2002b)Cytokine Growth Factor Rev 13:41-59
Mimnaugh,EG,Chavany,C,Neckers,L(1996)JBiol C/lem 271:22796-801
Morotti,A,Mila,S,Accornero,P,Tagliabue,E,Ponzetto,C.(2002)oncogene:21:4885-4893
Munster PN,Basso A,Solit D,Norton L,Rosen N(2001)Cliva CancRes7:2155-2158
Muroi,M,Izawa,M,Kosai,Y,Asai,M.(1980)J Antibiot 33:205-212
Neckers,L,Ivy,SP.(2003)Curr Opin Oncol 15:419-24
Nimmanapalli,R,O′Bryan,E,Bhalla,K.(2001)Canc Res 61:1799-1804
Ochel,HJ,Eiclihom,K,Gademann,G(2001)Cell StressChaperonnes 6:105-12
Picard,D,(2002)Cell Mol Life Sci 59:1640-1648
Pratt,WB,Toft,DO,(2003)Exp Biol Med 228:111-133
Rao,JS(2003)Nat Rev Cafzcer 3:489-501
Richter,K,Buchner,J.(2001)J CellPhysiol 188:281-290
Rinehart,KL.,Jr,W,MM,Witty,TR,Tipton,CD,Shield,LS.(1977)BioorgChem 6:353-369
Roe,SM,Prodromou,C,O′Brien,R,Ladbury,JE,Piper,PW,Pearl,LH,(1999)JMedChefs 42:260-266
Rong,S,Segal,S,Anver,M,Resau,J.H,Woude,G.F.V.(1994)ProcNatl Acad SciUS,91:4731- 4735
K Sasaki K,Rinehart KL,Slomp G,Grostic MF,Olson EC,(1970)J AmChem Soc 92:7591-7593(1970))
Sasaki,K,Yasuda,H,Onodera,K.(1979)JAntibiot 32:849-851
Sausville,EA,Tomaszewski,JE,Ivy,P.(2003)Curr Cancer Drug Targets3:377-383
Schneider,C,Sepp-Lorenzino,L,Nimmesgern,E,Ouerfelli,O,Danishefsky,S,Rosen,N,Hartl,FU(1996)Proc Natl Acad Sci USA 93:14536-41
Schnur,RC,Corman,ML.(1994)JOrg Chem 59:2581-2584
Schnur,RC,Corman,ML,Gallaschun,RJ,Cooper,BA,Dee,MF,Doty,JL,Muzzi,ML,DiOrio,CI,Barbacci,EG,Miller,PE,Pollack,VA,Savage,DM,Sloan,DE,Pustilnik,LR,Moyer,JD,Moyer,MP.(1995a)JMedChem 38:3813-3820
Schnur,RC,Corman,ML,Gallaschun,RJ,Cooper,BA,Dee,MF,Doty,JL,Muzzi,ML,Moyer,JD,DiOrio,CI,Barbacci,EG,Miller,PE,O′Brien,AT,Morin,MJ,Foster,BA,Pollack,VA,Savage,DM,Sloan,DE,Pustilnik,LR,Moyer,MP.(1995b)JMed Chem 38:3806-3812
Schulte,TW,An,WG,Neckers,LM(1997)BiochemBiopilys ResCommun 239:655-9
Schulte,TW,Akinaga,S,Soga,S,Sullivan,W,Stensgard,B,Toft,D,Neckers,LM.(1998)Cell StressCliaperones 3:100-108
Schulte,TW,Akinaga,S,Murakata,T,Agatsuma,T,Sugimoto,S,Nakano,H,Lee,YS,Simen,BB,Argon,Y,Felts,S,Toft,DO,Neckers,LM,Sharma,SV(1999)MolE7ldocrinol 13:1435-48
Schulte,TW,Neckers,LM,(1998)CancerClaemotlaer Pharnaacol 42:273-279
Schweinitz,A,Steinmetzer,T,Banke,IJ,Arlt,M,Sturzebecher,A,Schuster,O,Geissler,A,Giersiefen,H,Zeslawska,E,Jacob,U,Kruger,A,Sturzebecher,J(2004)J Biol Chem
Sharma,SV,Agatsuma,T,Nakano,H.(1998)oncogene 16:2639-2645
Solit,DB,Zheng,FF,Drobnjak,M,Munster,PN,Higgins,B,Verbel,D,Heller,G,Tong,W,Cordon-Cardo,C,Agus,DB,Scher,HI,Rosen,N(2002)Clin Canc Res 8:986-93
Stabile,L.P,Lyker,J.S,Huang,L,Siegfried,J.M.(2004)Gene Ther:11:325-335
Stebbins,CE,Russo,AA,Schneider,C,Rosen,N,Hartl,FU,Pavletich,NP.(1997)Cell:89:239-50
Tacchini,L,Matteucci,E,De Ponti,C,Desiderio,MA(2003)ExpCellRes 290:391-401
Takayama,H,LaRochelle,W.J,Sharp,R,Otsuka,T,Kriebel,P,Anver,M,Aaronson,S.A,Merlino,G.(1997)Proc Natl Acad Sci USA 94:701-706
Tildomirov,O,Carpenter,G(2000)JBiol Chem 275:26625-31
Webb,CP,Hose,CD,Koochekpour,S,Jeffers,M,Oskarsson,M,Sausville,E,Monks,A,Vande Woude,GF(2000)Canc Res 60:342-9
Whitesell,L,Cook,P(1996)Mol Endocrinol 10:705-12
Whitesell,L,Mimnaugh,EG,De Costa,B,Myers,CE,Neckers,LM.(1994)ProcNatl Acad Sci USA 91:8324-8328
Workman,P.(2003)CurrCancer Drug Targets 3:297-300
Wright,C,Shulkind,M,Jones,K,Thompson,M.(1987)TetrahedronLett 28:6389-6390
Yamamoto,M,Sawaya,R,Mohanam,S,Bindal,AK,Bruner,JM,Oka,K,Rao,VH,Tomonaga,M,Nicolson,GL,Rao,JS(1994)Carac Res 54:3656-61
Yang,J,Yang,JM,annone,M,Shih,WJ,Lin,Y,Hait,WN(2001)CaneRes 61:4010-6
Zhang,X,Bu,XY,Zhen,HN,Fei,Z,Zhang,JN,Fu,LA(2000)J ClinNeurosci 7:116-9
无论是否明确地引用,所有上述引用的参考文献全文在此作为参考引用。
本文已经全部地描述了本发明,本领域技术人员理解,在不偏离本发明的主旨和范围并且不需要过度实验的情况下,在等价的参数、浓度和条件的广泛范围内可以实现相同的内容。

Claims (31)

1.一种式I或式II所示的化合物
        式I                               式II
或者其在药学上可接受的盐类;
其在10-11M以下的浓度能抑制癌细胞中由HGF/SF导致的Met的激活,其中:
R1是低级烷基、低级烯基、低级炔基、任选被取代的低级烷基、烯基或炔基;低级烷氧基、烯氧基和炔氧基;直链或支链的烷基胺、烯基胺和炔基胺;任选被取代的3-6元环杂环基;
R2是H、低级烷基、低级烯基、低级炔基、任选被取代的低级烷基、烯基或炔基;低级烷氧基、烯氧基和炔氧基;直链和支链的烷基胺、烯基胺和炔基胺;任选被取代的3-6元环杂环基;
R3是H、低级烷基、低级烯基、低级炔基、任选被取代的低级烷基、烯基或炔基;低级烷氧基、烯氧基和炔氧基;直链或支链的烷基胺、烯基胺、炔基胺;或其中N是任选被取代的杂环烷基、杂环烯基或杂芳环中的一个环原子。
R4是H、低级烷基、低级烯基、低级炔基、任选被取代的低级烷基、烯基或炔基,且其中在C2=C3、C4=C5和C8=C9位的环双键任选被氢化成单键。
2.根据权利要求1所述的化合物,其为式I的苯醌化合物。
3.根据权利要求1所述的化合物,其为式II的氢醌化合物。
4.根据权利要求1所述的化合物,其以低于10-13M的浓度在癌细胞中抑制由HGF/SF导致的Met的激活。
5.根据权利要求4所述的化合物,其以低于10-15M的浓度在癌细胞中抑制由HGF/SF导致的Met的激活。
6.根据权利要求5所述的化合物,其以低于10-17M的浓度在癌细胞中抑制由HGF/SF导致的Met的激活。
7.根据权利要求1-6中任一项所述的化合物,其中R1是3-6元杂环,N是该杂环上的杂原子。
8.根据权利要求1-7中任一项所述的化合物,其中R2、R3和R4都是H。
9.权利要求1所述的化合物,其选自:
(a)17-(2-氟乙基)氨基-17-去甲氧基格尔德霉素;
(b)17-烯丙氨基-17-去甲氧基格尔德霉素;
(c)17-N-氮丙啶基-17-去甲氧基格尔德霉素;
(d)17-氨基-17-去甲氧基格尔德霉素;
(e)17-N-氮杂环丁烷基-17-去甲氧基格尔德霉素;
(f)17-(2-二甲氨基乙基)氨基-17-去甲氧基格尔德霉素;
(g)17-(2-氯乙基)氨基-17-去甲氧基格尔德霉素;以及
(h)二氢格尔德霉素。
10.一种药物组合物,其包括:
(a)权利要求1-9中任一项所述的化合物;以及
(b)药学上可接受的载体或赋形剂。
11.一种抑制具有Met的肿瘤或癌细胞的HGF/SF诱导的、Met受体介导的生物活性的方法,其包括给所述细胞提供有效量的权利要求1-9中任一项所述的化合物,该化合物抑制所述生物活性的IC50低于约10-13M。
12.根据权利要求11所述的方法,其中所述的生物活性是在所述细胞中诱导了uPA的活性。
13.根据权利要求11所述的方法,其中所述的生物活性是所述细胞的生长或扩散。
14.根据权利要求13所述的方法,其中所述细胞的生长是在体外的生长。
15.根据权利要求13所述的方法,其中所述细胞的生长是在体内的生长。
16.根据权利要求11所述的方法,其中所述的生物活性是所述细胞的侵入。
17.根据权利要求16所述的方法,其中所述细胞的侵入是在体外发生。
18.根据权利要求16所述的方法,其中所述细胞的侵入是在体内发生。
19.根据权利要求16所述的方法,其中所述细胞的侵入导致肿瘤转移。
20.一种抑制受试者体内由HGF/SF诱导的具有Met的肿瘤或癌细胞转移的方法,其包括给所述受试者提供有效量的权利要求1-9中任一项所述的化合物,该化合物在体外测得其抑制肿瘤细胞侵入的IC50低于约10-12M。
21.一种抑制受试者体内由HGF/SF诱导的具有Met的肿瘤或癌细胞转移的方法,其包括给所述受试者提供有效量的权利要求10所述的药物组合物,该药物组合物包含在体外测得其抑制肿瘤细胞侵入的IC50低于约10-12M的化合物。
22.根据权利要求11-19中任一项所述的方法,其中所述抑制导致由所述细胞引起的肿瘤的可测得的消退,或所述受试者体内肿瘤生长的可测得的衰减。
23.一种防止易感受试者体内Met阳性肿瘤的生长或转移的方法,包括对下述之一的所述受试者提供有效量的权利要求1-9中任一项所述的化合物或权利要求10所述的药物组合物:
(a)处于发生所述肿瘤的危险中,或者
(b)已经治疗的对象,处于复发所述肿瘤的危险中。
24.根据权利要求23所述的方法,其中该受试者是人类。
25.一种在具有HGF响应的Met表达的肿瘤的哺乳动物体内诱导抗肿瘤或抗癌响应的方法,其包括对所述哺乳动物给予有效量的权利要求1-9中任一项所述的化合物或权利要求10所述的药物组合物,从而诱导抗肿瘤或抗癌响应,其为:
(a)部分响应,特征为
(i)在所有可测量病变的两条最大直径的乘积至少减少了50%;
(ii)无新病变的迹象;以及
(iii)任何已存在的病变都无任何发展;或者
(b)完全响应,特征为肿瘤或癌的所有症状消失至少一个月。
26.根据权利要求25所述的方法,其中所述抗肿瘤或抗癌响应是部分抗肿瘤或抗癌响应。
27.根据权利要求25或26所述的方法,其中该哺乳动物是人类。
28.根据权利要求1-9中任一项所述的化合物,其用卤素放射性核素进行可检测的标记。
29.根据权利要求28所述的化合物,其中所述放射性核素与R1基结合。
30.根据权利要求28或29所述的化合物,其中所述放射性核素选自18F、76Br、76Br、123I、124I、125I和131I。
31.一种对作为权利要求1-9中任一项所述化合物的靶点的受试者中的肿瘤成像的方法,其包括给予有效量的权利要求28-30中任项所述标记了的化合物,并且用成像方法对可检测的标记进行成像。
CNA2005800170020A 2004-03-26 2005-03-28 格尔德霉素及其衍生物抑制癌侵入及识别新靶点 Pending CN1997632A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US55647404P 2004-03-26 2004-03-26
US60/556,474 2004-03-26

Publications (1)

Publication Number Publication Date
CN1997632A true CN1997632A (zh) 2007-07-11

Family

ID=34963888

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800170020A Pending CN1997632A (zh) 2004-03-26 2005-03-28 格尔德霉素及其衍生物抑制癌侵入及识别新靶点

Country Status (7)

Country Link
US (1) US20070297980A1 (zh)
EP (1) EP1737825A1 (zh)
JP (1) JP2007530596A (zh)
CN (1) CN1997632A (zh)
AU (1) AU2005228886A1 (zh)
CA (1) CA2560822A1 (zh)
WO (1) WO2005095347A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115460B (zh) * 2010-01-05 2014-08-20 杭州华东医药集团生物工程研究所有限公司 格尔德霉素衍生物及其制备方法和用途

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2409351T3 (es) 2003-12-23 2013-06-26 Infinity Discovery, Inc. Análogos de ansamicinas que contienen benzoquinona para el tratamiento de cáncer
US7259156B2 (en) * 2004-05-20 2007-08-21 Kosan Biosciences Incorporated Geldanamycin compounds and method of use
US7608611B2 (en) 2005-03-11 2009-10-27 The Regents Of The University Of Colorado Hsp90 inhibitors, methods of making and uses therefor
PE20081506A1 (es) 2006-12-12 2008-12-09 Infinity Discovery Inc Formulaciones de ansamicina
US7799934B2 (en) * 2007-06-29 2010-09-21 University Of South Florida Enantioselective ring-opening of aziridines
EP2190291B1 (en) 2007-08-23 2015-10-14 The Regents of The University of Colorado, A Body Corporate Hsp90 inhibitors with modified toxicity
EA021331B1 (ru) * 2008-05-20 2015-05-29 Общество С Ограниченной Ответственностью "Инкурон" Индуцирование клеточной гибели путем ингибирования адаптивной реакции теплового шока
KR20110090925A (ko) 2008-10-15 2011-08-10 인피니티 파마슈티컬스, 인코포레이티드 안사마이신 하이드로퀴논 조성물
WO2013074695A1 (en) 2011-11-14 2013-05-23 The Regents Of The University Of Colorado, A Body Corporate Hsp90 inhibitors with modified toxicity
US20140079636A1 (en) 2012-04-16 2014-03-20 Dinesh U. Chimmanamada Targeted therapeutics
WO2015038649A1 (en) 2013-09-10 2015-03-19 Synta Pharmaceuticals Corp. Targeted therapeutics
WO2015066053A2 (en) 2013-10-28 2015-05-07 Synta Pharmaceuticals Corp. Targeted therapeutics
JP2017505777A (ja) 2014-01-29 2017-02-23 シンタ ファーマスーティカルズ コーポレーション 標的化治療薬
MA39481A (fr) 2014-03-03 2015-09-11 Synta Pharmaceuticals Corp Thérapies ciblées
EP3131586A4 (en) 2014-03-18 2017-10-25 Madrigal Pharmaceuticals, Inc. Targeted therapeutics
JP2020524156A (ja) 2017-06-20 2020-08-13 マドリガル ファーマシューティカルズ インコーポレイテッドMadrigal Pharmaceuticals,Inc. 標的治療薬を含む併用療法
EP3641647A4 (en) 2017-06-20 2021-05-05 Madrigal Pharmaceuticals, Inc. TARGETED THERAPEUTICS

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2146668A1 (en) * 1992-10-14 1994-04-28 Luke Whitesell Tumoricidal activity of benzoquinonoid ansamycins against prostate cancer and primitive neural malignancies
AU2986800A (en) * 1999-02-08 2000-08-25 Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The Methods of inhibiting the hgf-met-upa-plasmin network
AU2003217393B8 (en) * 2002-02-08 2009-06-25 Conforma Therapeutics Corporation Ansamycins having improved pharmacological and biological properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115460B (zh) * 2010-01-05 2014-08-20 杭州华东医药集团生物工程研究所有限公司 格尔德霉素衍生物及其制备方法和用途

Also Published As

Publication number Publication date
AU2005228886A1 (en) 2005-10-13
US20070297980A1 (en) 2007-12-27
AU2005228886A2 (en) 2005-10-13
WO2005095347A1 (en) 2005-10-13
CA2560822A1 (en) 2005-10-13
JP2007530596A (ja) 2007-11-01
EP1737825A1 (en) 2007-01-03

Similar Documents

Publication Publication Date Title
CN1997632A (zh) 格尔德霉素及其衍生物抑制癌侵入及识别新靶点
CN116239601B (zh) 一种抗肿瘤化合物及其制备方法和应用
CN101421282B (zh) 用长春花生物碱n-氧化物和类似物治疗过度增殖性疾病
Kyle Hadden et al. Geldanamycin, radicicol, and chimeric inhibitors of the Hsp90 Nterminal ATP binding site
CN102268191B (zh) 七甲川吲哚花菁染料及其合成方法和应用
CN109790122A (zh) 杂环化合物
CN109311980A (zh) 通过依米立酮(imipridones)进行的g蛋白偶联受体(gpcr)调制
CN101535279A (zh) 含锌结合基的喹唑啉基egfr抑制剂
CN105683201B (zh) 新的含n‑杂环碳烯配体的金(iii)络合物、合成及其在癌症治疗和硫醇检测中的应用
CN108601781A (zh) 作为检测点激酶1(chk1)抑制剂的3,5-二取代吡唑及其制备及应用
CN101641338A (zh) 作为抗增殖制剂的多功能小分子
CN104693257B (zh) 苯磺酰基呋咱修饰的吉西他滨衍生物及其制备方法和用途
CN1934101B (zh) 脱氢苯基阿夕斯丁及其类似物以及脱氢苯基阿夕斯丁及其类似物的合成
CN104817574B (zh) 喜树碱衍生物及其抗肿瘤应用
CN107849050A (zh) 化合物
CN104387412A (zh) 埃罗替尼修饰的氟硼二吡咯衍生物及其制备和应用
CN109790156A (zh) 具有刺猬通路拮抗剂活性的手性杂环化合物及其制备方法和应用
CN110283162B (zh) 一种表皮生长因子受体抑制剂及其应用
Zhou et al. A designed cyclic peptide based on Trastuzumab used to construct peptide-drug conjugates for its HER2-targeting ability
CN101967142B (zh) 噻唑酰胺类化合物及其在治疗恶性肿瘤中的药物用途
CN105384738B (zh) 作为蛋白激酶抑制剂的杂环类化合物及其制备方法和用途
CN117209395A (zh) 选择性靶向增殖细胞核抗原药物合成方法及抗癌活性
CN108030777B (zh) 氯胍在制备抗肿瘤药物中的应用
CN105012307B (zh) Imb5046化合物在制备抗肿瘤药物中的用途
CN108834414A (zh) N,n-二甲基-3-[[5-(3-甲基-2-氧代-1-四氢吡喃-4-基-咪唑并[4,5-c]喹啉-8-基)-2-吡啶基]氧基]丙烷-1-胺氧化物作为atm(共济失调毛细血管扩张症突变的)激酶调节剂用于治疗癌症

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070711