CN1982500A - 指示器的形成方法 - Google Patents
指示器的形成方法 Download PDFInfo
- Publication number
- CN1982500A CN1982500A CN 200610152333 CN200610152333A CN1982500A CN 1982500 A CN1982500 A CN 1982500A CN 200610152333 CN200610152333 CN 200610152333 CN 200610152333 A CN200610152333 A CN 200610152333A CN 1982500 A CN1982500 A CN 1982500A
- Authority
- CN
- China
- Prior art keywords
- telltale
- formation method
- pvd
- slab
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 103
- 239000000463 material Substances 0.000 claims abstract description 101
- 239000013590 bulk material Substances 0.000 claims abstract description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 43
- 230000008569 process Effects 0.000 claims description 18
- 239000011343 solid material Substances 0.000 claims description 8
- 238000005266 casting Methods 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 4
- 238000003466 welding Methods 0.000 claims description 4
- 238000001312 dry etching Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 238000003698 laser cutting Methods 0.000 claims description 2
- 238000005240 physical vapour deposition Methods 0.000 abstract description 164
- 239000013077 target material Substances 0.000 abstract description 71
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000013459 approach Methods 0.000 abstract description 2
- 239000011148 porous material Substances 0.000 abstract 2
- 239000007789 gas Substances 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000002994 raw material Substances 0.000 description 14
- 230000003245 working effect Effects 0.000 description 14
- 238000001125 extrusion Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 239000010949 copper Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000001636 atomic emission spectroscopy Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- PCLURTMBFDTLSK-UHFFFAOYSA-N nickel platinum Chemical compound [Ni].[Pt] PCLURTMBFDTLSK-UHFFFAOYSA-N 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000000641 cold extrusion Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- UAQYANPRBLICHN-UHFFFAOYSA-N zinc dioxosilane sulfide Chemical compound [Si](=O)=O.[S-2].[Zn+2] UAQYANPRBLICHN-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
本发明提供一种指示器的形成方法,包括下列步骤:提供一块状材料;形成多个贯穿孔于该块状材料中;以及分割该块状材料以成为多个分离的构件,每个构件包括一个上述贯穿孔,其中每个构件形成该指示器的围封物,该指示器是用来对于一可消耗材料的厚板接近或已经减少至该可消耗材料的一既定量发出信号。本发明所述的指示器的形成方法,可降低物理气相沉积靶材的消耗成本,制造成本以及增加获利。
Description
技术领域
本发明是有关于一种物理气相沉积技术。特别是有关于一种物理气相沉积的靶材(target)。
背景技术
物理气相沉积(以下也简称“PVD”)制程是一种已知用来沉积材料薄膜于基底的方法,通常用来制造半导体装置。PVD制程是在高真空反应室中完成,上述反应室(chamber)之中含有基底(例如晶圆)以及欲沉积于基底上的材料固体来源或厚板,亦即PVD靶材。在PVD制程中,PVD靶材由固体物理性地转换成为气体。靶材材料的气体由PVD靶材传输至基底的表面,然后在基底上冷凝而成为薄膜。
有许多用以完成PVD的方法,例如蒸镀、电子束蒸镀、等离子喷涂沉积以及溅镀(sputtering)。目前,溅镀是一种用来执行PVD最常用的方法。溅镀的过程中,反应室会产生等离子并且针对PVD靶材,而由于高能量的等离子粒子(离子)的碰撞作用,等离子会物理性地移动或侵蚀(溅镀)PVD靶材反应表面的原子或分子而成为靶材材料的气体。靶材材料的被溅镀的原子或分子的气体会经由一减压的区域传输至基底的表面,然后冷凝于基底上,而形成靶材材料的薄膜。
PVD靶材的使用寿命有限,如果过度使用PVD靶材,亦即超过PVD靶材的使用寿命,会引起可靠度及安全的考量,例如过度使用PVD靶材会导致PVD靶材穿孔(perforation)以及系统放电(arcing),而可能导致产量减少、PVD系统或工具损伤以及安全的问题。
目前,决定PVD靶材的使用寿命的方式为,追踪被PVD系统或制程设备消耗所累积的能量,亦即千瓦-小时(kw-hr)的量。然而由追踪累积的能量的方法,需要花时间精通并且此方法的准确度只单纯仰赖技术员的亲自操作的经验。即使精通此方法,判断的PVD靶材的使用寿命仍然小于实际的使用寿命,而大约有20%~40%的PVD靶材会(依PVD靶材的型态而定)浪费掉。如图1所示的问题,图1为传统包含原料厚板的PVD靶材结构的腐蚀轮廓图形。如图1所示,在PVD制程系统操作后的1769kw-hrs,会有大约60%的原始PVD靶材的量留下来(靶材残留)。
靶材利用率低是由于缩短PVD靶材使用寿命,此会造成PVD靶材消耗成本高,事实上,在半导体制造中,PVD靶材消耗成本是最主要的成本之一。因此,如果大部分被浪费掉的靶材材料能够被利用,PVD靶材消耗成本就会实质地降低。换言之,会显著地降低制造成本以及增加获利。
靶材利用率低也会造成更频繁地置换PVD靶材,所以PVD系统或设备的维修也更为频繁。再者,置换PVD靶材时,为了使用新靶材,需要花费时间去重新调整PVD制程。
因此,有需要提供一种改良的指示器的形成方法。
发明内容
为解决现有技术中的上述问题,本发明提供一种指示器的形成方法,包括下列步骤:提供一块状材料;形成多个贯穿孔于该块状材料中;以及分割该块状材料以成为多个分离的构件,每个构件包括一个上述贯穿孔(bores),其中每个构件形成该指示器的围封物(enclosure),该指示器是用来对于一可消耗材料的厚板接近或已经减少至该可消耗材料的一既定量发出信号。
本发明所述的指示器的形成方法,该块状材料与可消耗材料的厚板是由相同的材料构成。
本发明所述的指示器的形成方法,更包括在该围封物之中提供一发出信号的元件,以形成该指示器,并且该发出信号的元件是细丝元件、电极元件、气体材料、液体材料或固体材料,该固体材料与该可消耗材料的厚板由不同材料构成。
本发明所述的指示器的形成方法,更包括一嵌入该指示器于该可消耗材料的厚板。
本发明所述的指示器的形成方法,该形成该多个贯穿孔的步骤是由激光钻孔、高压水钻孔、干蚀刻钻孔或其组合完成,并且该分割该块状材料的步骤是由激光切割、高压水切割、机械切割或其组合完成。
本发明另提供一种指示器的形成方法,包括下列步骤:提供一第一模具构件,其具有一既定形状的外表面;形成一材料层于该第一模具构件的外表面上;以及由该第一模具构件将该材料层分离,其中该材料形成该指示器的围封物,该指示器是用来对于一可消耗材料的厚板接近或已经减少至该可消耗材料的一既定量发出信号。
本发明所述的指示器的形成方法,该材料层与可消耗材料的厚板是由相同的材料构成。
本发明所述的指示器的形成方法,更包括在该围封物的中提供一发出信号的元件,以形成该指示器,并且该发出信号的元件是细丝元件、电极元件、气体材料、液体材料或固体材料。
本发明所述的指示器的形成方法,更包括一嵌入该指示器于该可消耗材料的厚板。
本发明所述的指示器的形成方法,形成该材料层的方法是由物理气相沉积法、电化学镀膜法、浇铸、挤压或其组合完成。
本发明所述的指示器的形成方法,更包括一提供一第二模具构件的步骤,该第二模具构件具有一既定形状的内表面,并且在形成该材料层的步骤,该内表面用以形成该材料层的外表面,并且在分离的步骤,其中该材料层由该第二模具构件分离。
本发明又提供一种指示器的形成方法,包括下列步骤:提供一模具构件,其具有一既定形状的外表面;形成一材料薄板于该模具构件的外表面上;以及将该薄板彼此相对的边缘接合在一起,以形成该指示器的一围封物,其中该指示器是用来对于一可消耗材料的厚板接近或已经减少至该可消耗材料的一既定量发出信号。
本发明所述的指示器的形成方法,该材料薄板与可消耗材料的厚板是由相同的材料构成。
本发明所述的指示器的形成方法,更包括在该围封物的中提供一发出信号的元件,以形成该指示器,并且该发出信号的元件是细丝元件、电极元件、气体材料、液体材料或固体材料。
本发明所述的指示器的形成方法,更包括一嵌入该指示器于该可消耗材料的厚板。
本发明所述的指示器的形成方法,该接合步骤是由焊接法完成。
本发明所述的指示器的形成方法,可降低物理气相沉积靶材的消耗成本,制造成本以及增加获利。
附图说明
图1为传统包含原料厚板的PVD靶材结构的腐蚀轮廓图形;
图2A为具体实施例的PVD靶材结构的俯视图;
图2B为图2A的2B-2B线的剖面图;
图3为另一具体实施例的PVD靶材结构的剖面图;
图4为又一具体实施例的PVD靶材结构的剖面图;
图5显示一具体实施例的PVD靶材结构的使用寿命终点的侦测系统;
图6显示另一具体实施例的PVD靶材结构的使用寿命终点的侦测系统;
图7A与图7B为具有多个管状指示器的PVD靶材的俯视图;
图8A与图8B为靶材剖面图,上述靶材具有可供管子嵌入于其中的两个具体的位置;
图8C为用以嵌入管子于图8A所示的位置的具体方法;
图8D为图8C所示的金属箔片的主视图;
图9A至图9F为各种具体实施例的管状指示器的管子立体图;
图10为显示在制造管子时,从管子移除芯棒类似物的模具构件的立体图;
图11A及图11B显示用以在块状物中制造管状指示器的管子的具体方法的立体图;
图12A、图12B、图13A及图13B显示利用一种具体薄板形成方法以制造管状指示器的管子的立体图;
图14为另一具体实施例的PVD靶材结构的立体图;
图15为又一具体实施例的PVD靶材结构的立体图;
图16显示一表格,其列举一些适用于靶材材料的具体指示器层的材料;
图17A为显示第一具体实施例的管子制造方法的步骤流程图;
图17B为显示第二具体实施例的管子制造方法的步骤流程图;
图18A为显示可用于管子制造的一具体实施例的模具/挤压模设备的立体图;
图18B为显示可用于管子制造的另一具体实施例的模具/挤压模设备的立体图;
图19为显示第三具体实施例的管子制造方法的步骤流程图;
图20为显示第四具体实施例的管子制造方法的步骤流程图。
具体实施方式
本发明一实施例的物理气相沉积(以下可简称“PVD”)靶材结构含有使用寿命终点的指示器。图2A的俯视图之中的符号“ 100”表示PVD靶材结构,并且图2B为图2A的2B-2B线的剖面图。PVD靶材结构100包括较佳材料的可消耗厚板(PVD靶材)110以及细丝指示器120,其嵌入PVD靶材110的底部表面114。
PVD靶材110包括反应表面112、相对于反应表面112的底部表面114以及延伸于反应表面112与底部表面114之间的侧壁表面116。PVD靶材110可以是各种形状,适合的形成例如为圆形、正方形、长方形、椭圆形、三角形、不规则的形状等。PVD靶材110可使用已知的PVD靶材的形成方式形成。例如可参考美国专利号6,858,102,发明名称为“含铜的溅镀靶材以及形成含铜溅镀靶材的方法”。
在一实施例中,圆形的PVD靶材110的直径为18英寸、厚度为0.250英寸。在其他实施例中,PVD靶材110可以是其他适合的尺寸。PVD靶材110可以由适合的原料构成,例如镍(Ni)、镍-铂(Ni-Pt)合金、镍-钛(Ni-Ti)合金、钴(Co)、铝(Al)、铜(Cu)、钛(Ti)、钽(Ta)、钨(W)、铟锡氧化物(ITO)、硫化锌-二氧化硅(ZnS-SiO2)、金(Au)、银(Ag)或其他贵金属。
细丝指示器120包括由管子122形成的围封物(enclosure),上述管子122含有相对地设置的开口端122a、122b,且开口端122a、122b以绝缘物126a、126b密封住。绝缘物126a、126b密封管子122的内部122c,并且悬吊细丝124于管子122的内部122c。在一实施例中,可抽空内部122c的空气,以形成真空环境。在另一实施例中,管子122的内部122c可填入惰性气体。
细丝124包括弯曲的边界末端部124a、124b,其延伸穿越绝缘物126a、126b,绝缘物126a、126b将弯曲的边界末端部124a、124b与管子122以及PVD靶材110加以电性绝缘。细丝124的弯曲边界末端部124a、124b终止于外部,以形成细丝端子或细丝导线125a、125b。细丝导线125a、125b能够连接细丝124至后述的监视仪器。
在一具体实施例之中,管子122可利用与PVD靶材110相同的材料构成。管子122的直径必须足够小,以致于其位置足以接近底部表面114,使得PVD靶材110已接近完全使用时,管子122仍不会穿过PVD靶材110。例如,在一具体实施例中,管子122的直径可以是0.5mm。
典型地,细丝124是使用与PVD靶材110相同的材料构成,在另一实施例中,细丝124可使用不同于PVD靶材110的材料构成,并且PVD靶材110不会影响物理气相沉积的结果。在一实施例中,细丝124的直径为大约0.2mm。
绝缘物126a、126b是由电性绝缘材料或是这些材料的组合构成。在一具体实施例中,绝缘物126a、126b是由陶瓷或氧化铝(Al2O3)构成。
细丝指示器120作为感测器或发出信号的元件,在PVD靶材110的材料被使用而减少至特定量时,发出指示信息,以代表PVD靶材结构100的使用寿命的终点。当PVD靶材结构100的量低于此特定量仍继续使用时(PVD靶材过度使用),可能会引起PVD靶材110的穿孔(perforation)以及系统放电(arcing)进而导致产量减少、PVD系统或工具损伤以及安全的问题。在PVD靶材结构100之中使用细丝指示器120可使PVD靶材110的使用寿命最大化,并且可精确地且自动地侦测何时应置换PVD靶材结构100,进而防止上述的靶材的相关问题。
细丝指示器120的特征或用途在于,可以利用连接于细丝指示器120的细丝124的监视装置330(图5)现场(in-situ)监视。在一实施例中,用来监视的细丝124的部分可以是细丝124的电阻或阻抗,而且监视装置330可以是欧姆表(ohmmeter)。举例而言,当PVD靶材结构在PVD制程反应室之中开始使用时,由监视装置330监视到细丝124的电阻或阻抗为一起始值。当PVD靶材110在PVD制程中腐蚀,直到管子122破裂使悬吊于管子122细丝124露出于PVD制程环境中,因而使等离子(假使进行溅镀时)接触且侵蚀细丝124。此时,细丝124的电阻或阻抗会由起始值产生变化,而表示PVD靶材结构100已经达到使用终点。在此终点,PVD靶材110残留的量可以是PVD靶材110原始重量的预定的百分比,例如,在一实施例中,当细丝124开始露出时,PVD靶材110残留的量为0.5%的原始量。当靶材进一步在PVD制程反应室使用时,PVD靶材110以及细丝124会继续侵蚀直到细丝124断裂。此时,由于细丝124成为开路,所以电阻值或阻抗会再改变,此表示PVD靶材结构100已达到其使用终点。使用先前的例子,当细丝124断裂时,PVD靶材110残留的量大约为0.2%至0.1%的原始量。当接收到第二次电阻或阻抗改变的信息时,可以利用技术员以人工停止PVD制程系统或工具的操作,或者是由监视装置330传送信号至PVD制程系统或工具(或是操作此工具的控制器),使其自动停止操作。
请参照图3,其显示另一具体实施例的PVD靶材结构100’的剖面图。PVD靶材结构100’包括上述可消耗靶材110(由想要的原料构成)以及电极指示器120’,其嵌入靶材110的底部表面114。除了以两个分隔且相对的电极124a’、124b’取代细丝124以外,电极指示器120’与上述实施例的细丝指示器120相同,电极124a’、124b’包括边界末端部124aa、124bb,其延伸穿越绝缘物126a、126b,边界末端部124aa、124bb终止于外部而形成细丝导线125a’、125b’,细丝导线125a’、125b’能够使电极124a’、124b’与前述的监视装置330接合(如图5所示)。
在操作方面,当电极指示器120’的管子122破裂时,电极指示器120’的电极124a’、124b’会侦测到由进入管子122的等离子中的离子产生的电流。在此实施例中,连接于电极124a’、124b’的监视装置或仪器可以是电流测量装置或仪器。
图4为又一具体实施例的PVD靶材结构200的剖面图。PVD靶材结构200包括由上述实施例中适当的原料构成的靶材210以及惰性气体指示器220,其嵌入靶材210的底部表面214。
惰性气体指示器220包括具有开口端222a、222b的管子222,管子222可与图2A、图2B所示的实施例相同的管子。管子222的开口端222a、222b可由密封材料226密闭或密封,上述密封材料226例如利用与管子222相同或其他适合的材料形成的插塞,管子222可填入惰性气体224,例如氦气(He),其不会影响物理气相沉积制程的结果。
进行PVD制程时,气体侦测装置430(图6)会侦测惰性气体224的逸散出,以现场监视PVD靶材结构200。当PVD靶材210在PVD制程中,惰性气体224会留在管子222之中不受干扰,直到PVD制程中例如溅镀等离子的外力使管子222破裂。此时,填入管子222中的惰性气体224会逸散出,使气体侦测装置430可侦测到惰性气体224。气体侦测装置430的侦测方法可以是光学放射光谱(OES)、残余气体分析(RGA)或其他适合的方法。在一具体实施例中,惰性气体指示器220可使PVD靶材结构200的PVD靶材210减少至其原始可以使用量的0.5%。
因此,以惰性气体指示器220作为感测器操作,在PVD靶材210的材料被使用而减少至特定量时,用来表示PVD靶材结构200的使用寿命的终点。
在另一具体实施例中,可利用其他的物质来取代填入惰性气体指示器220的管子222中的惰性气体,上述物质不会影响到PVD的结果。此物质可以是在暴露于PVD制程中能够蒸发,并且能够在后续制程中被侦测到的固体或液体物质。上述固体物质可以是列举于图16的表格“涂覆材料”栏位列举的粉末状材料,图16的表格之中针对各种“靶材材料”栏位中分别列举不会影响到PVD制程的一些具体的材料。液体物质可以是液体状态的惰性气体(例如氦气),其可以注射于管子之中。当填入液体时,管子的直径例如为0.03mm左右。
上述PVD靶材结构100、100’、200包括单一管状细丝指示器120、电极指示器120’、惰性气体指示器220。在另一具体实施例中,PVD靶材结构可以包括多个管状指示器,其分布于PVD靶材材料,较佳为分布于靶材较易侵蚀的位置(图7A)。分布多个管状指示器于PVD靶材,会增加侦测的均一性并且能够侦测靶材局部的腐蚀。图7A以及图7B显示两个具体实施例的PVD靶材结构500、500’,包括二个或更多个管状指示器520(长度可以分别小于或等于4cm)、520’,其分布并嵌入于PVD靶材510、510’的底部表面514、514’。如图7A所示,多个管状指示器520可放射状地分布于整个PVD靶材510,而且彼此分隔着。如图7B所示,多个管状指示器520’可放射状地分布于整个PVD靶材510’,以致于多个管状指示器520’于PVD靶材510’的中心彼此接合。
如图8A以及图8B所示,在一些具体实施例中,管状指示器620可嵌入于PVD靶材610的底部表面614,使得管子622与PVD靶材610的底部表面614齐平或者管子622略凹陷于PVD靶材610的底部表面614(并且靶材底板650可由铜(Cu)、例如Cu-Zn合金或任何适用的材料构成)。如图8C所示,在一实施例中,此可利用形成PVD靶材610以作为由适用的材料(例如钽)构成的原料构件610.1以及由界面材料(例如钛)构成的界面构件610.2。原料构件及界面构件610.1及610.2的邻近的表面可提供对应的管子接收凹槽611.1及611.2,其尺寸及形状为能够接收管子622的一部分。管子622置于管子接收凹槽611.1及611.2内,并且利用热压接合步骤使原料构件与界面构件610.1及610.2;以及管子622与靶材底板650接合在一起,上述热压接合步骤是在足以使原料构件与界面构件610.1及610.2;以及管子622与靶材底板650彼此物理性地接合在一起的压力及温度下进行。特别是,压力以及温度是视底板的材料、靶材的原料以及接合时间而决定。举例而言(例如以铜底板以及钽原料为例),使用的温度及压力分别为大约400℃(些微地大于1/3铜的熔点1083℃)以及大约13000psi。在一些实施例中,可以在界面构件610.2的管子接收凹槽611.2之中设置薄金属箔片610.3。如图8D所示,金属箔片610.3可作为阻障层,用以防止界面构件610.2的原子迁移进入管子622的管子接收凹槽611.2的区域以及原料构件610.1。在另一实施例中,管状指示器620’可部分地嵌入PVD靶材610’的底部表面614’,使得管子622’的顶部些微地高于PVD靶材610’的底部表面614’,如图8B所示。本实施例之中的靶材底板650’包括凹陷660,用以接收突出于PVD靶材610’的底部表面614’的管子622’的部分,以致于PVD靶材610’的底部表面614’可设置于靶材底板650’上。
管状指示器的管子可制成任何适合及适用的形状,管子可具有外表面及内表面,且具有相同或不同的剖面形状。图9A至图9F为各种具体实施例的管状指示器的管子立体图。图9A显示具有圆形剖面的外表面及内表面710a、720a的管子700a。图9B显示具有方形剖面的外表面及内表面710b、720b的管子700b。图9C显示具有方形剖面的外表面710c及圆形剖面的内表面720c的管子700c。图9D显示具有圆形剖面的外表面710d及三角形剖面的内表面720d的管子700d。图9E显示具有圆形剖面的外表面710e及方形剖面的内表面720e的管子700e。图9F显示具有方形剖面的外表面710f及三角形剖面的内表面720f的管子700f。管子的外表面及内表面可以是例如长方形、椭圆形等其他剖面形状。
请参照图14,其显示另一具体实施例的PVD靶材结构的立体图,以符号“800”来表示PVD靶材结构。PVD靶材结构800包括上述可消耗的PVD靶材810(由想要的原料构成)以及侦测层820,其设于邻接PVD靶材810的底面表面814。图14的实施例中,侦测层820可将PVD靶材结构800耦接于底板850。
图15为又一具体实施例的PVD靶材结构的立体图,以符号“800’”来表示PVD靶材结构。除了在侦测层820下额外加一层靶材材料层830以外,PVD靶材结构800’与图14所示的PVD靶材结构800相同。图15的实施例之中,靶材材料层830将PVD靶材结构800’耦接于底板850上。
在图14以及图15之中,侦测层820是由与PVD靶材不同且不会影响到PVD制程结果的材料构成。图16显示一表格,其针对列举具体靶材材料的具体指示层的材料。
在PVD制程中,当等离子轰击PVD靶材结构800或800’的侦测层820时,侦测层820侦测到气体,此气体也可以通过OES、RGA或其他类似方法现场监视及侦测得到。
PVD靶材结构800或800’的终点侦测决定,也可以通过增加两个或多个由不同材料构成的侦测层侦测而得。因此,当等离子轰击第一层侦测层时,会显示留下的靶材材料的第一残留量,接着当等离子轰击下一层侦测层时,会显示留下的靶材材料的后续的残留量,其小于先前的第一残留量。可视需要增加其他材料的额外层以提供额外层的材料残留量。
PVD靶材结构可含有或不含靶材底板。PVD制程系统及设备可在没有明显地修改及/或改变硬件的情况下使用PVD靶材结构。再者,PVD靶材结构可以使用于不同的磁性PVD系统,其例如包括电容式耦合等离子(CCP)及感应式耦合等离子(ICP)系统等。本发明的PVD靶材也可以用于各种PVD电源供应系统,其包括但不限于直流电力系统、交流电力系统以及射频电力系统。
另一实施例为制造管状靶材结构的管子的方法。图17A为显示第一具体实施例的管子制造方法的步骤流程图。步骤901中,提供模具/挤压设备950(图18A),其包括同心圆设置的外模具构件及内模具构件951、952。外模具构件及内模具构件951、952是由适用于挤压及/或浇铸的金属、金属合金及/或金属材料的硬质材料制成。适用于模具构件的材料可包括但不限于陶瓷材料、聚合物材料、金属材料及其组合。模具/挤压设备950的外模具构件951的内表面951a用以形成管子的外表面,而模具/挤压设备950的内模具构件952的外表面952a用以形成管子的内表面。图18A的实施例之中,模具/挤压设备950的外模具构件951具有圆形剖面形状,而模具/挤压设备950的内模具构件952也具有圆形剖面形状。这样的模具/挤压设备可用来制作如图9A显示的管子。模具/挤压设备950的外模具构件951及内模具构件952经过适当的设计后,可用来制作想要的形状,例如包括图9B至图9F所示的管子。
请再参考图17A,此方法的步骤902包括经由模具/挤压设备950的外模具构件951及内模具构件952之间定义的空间953挤压(extrude)想要的材料。挤压可使用冷或热挤压方法完成。在另一实施例中,方法的步骤902包括经由模具/挤压设备950的外模具构件951及内模具构件952之间定义的空间953浇铸(cast)想要的材料。浇铸可通过熔化想要的管子材料,然后将此熔化的材料倒入或注入模具/挤压设备950的外模具构件951及内模具构件952之间定义的空间953之中。如果在步骤902中管子材料是利用浇铸方式完成,接下来步骤903是在熔化的管子材料冷却后,将管子从模具/挤压设备950移除。
图17B为显示第二具体实施例的管子制造方法的步骤流程图。步骤911中,提供一模具设备960(图18B),其包括芯棒(mandrel)类似物的模具构件961。此模具构件961是由适合以PVD或电化学镀层形成于模具构件961上方的金属、金属合金及/或金属材料的硬质材料制成。适用于模具构件的材料可包括但不限于陶瓷材料、聚合物材料、金属材料及其组合。模具设备960的模具构件961的外表面961a具有圆形剖面形状,这样的模具设备可用来制作如图9A显示的管子。模具设备960的模具构件961经过适当的设计后,可用来制作想要的形状,例如包括图9B至图9F所示的管子。
请再参考图17B,方法的步骤912包括沉积想要的管子材料于模具构件961的外表面962上,直到得到想要的薄膜厚度(管子的壁厚度)为止。沉积的步骤可使用例如电化学镀层(ECP)或PVD的方式形成。在步骤913中,芯棒类似物的模具构件构件961与管子彼此分离。在一具体实施例中,分离的方式可以如图10所示,以物理性的方法将芯棒类似物的模具构件由管子移开,在另一具体实施例中,可采用化学性的方法以蚀刻剂将模具构件与管子分离。
图19为显示第三具体实施例的管子制造方法的步骤流程图。在第三具体实施例的管子制造方法中,管子是以块状制程步骤制作而成。在步骤921中,形成多个贯穿孔941于想要的管子材料940的块状物之中,如图11A所示,多个贯穿孔941定义多个管子的内表面,在步骤922中,将管子材料的块状物切断或分割成为多个分离的管子942,如图11B所示,每一个管子942包括一个贯穿孔941。贯穿孔941可利用传统的激光、高压水、湿蚀刻或干蚀刻或其组合等方法形成。可使用传统的激光、高压水或机械切割方法或其组合将块状的管子材料940切断或分割成为分离的管子。
图20为显示第四具体实施例的管子制造方法的步骤流程图。步骤931中,提供想要的管子材料的延展性薄板980、980’,步骤932中,由薄板980、980’形成想要的形状的管子981、981’,如图12A及图13A所示。薄板980、980’可通过环绕着如图18B所示相对应的芯棒,而形成想要的管子的形状。接着,在步骤933中,将管子981、981’的相匹配(matching)且相对的(opposing)边缘982、982’彼此接合在一起,以完成管子981、981’,如图12B以及图13B所示。接合的方法可以使用例如焊接方式(welding)来完成。
本发明另一实施例中,用来侦测PVD靶材结构的使用寿命终点的系统。图5显示的系统是以符号“300”来表示,系统300包括PVD制程反应室310;如图2A、图2B及图3所示的PVD靶材结构320,其设置于PVD制程反应室310之中;以及监视装置330,其连接于PVD靶材结构320,用以现场监视PVD靶材结构320的细丝或电极指示器组合340的状态。
图6显示另一具体实施例的PVD靶材结构的使用寿命终点的侦测系统,其是以符号“400”来表示,系统400包括PVD制程反应室410;如图4、图14及图15所示的PVD靶材结构420,其设置于PVD制程反应室410之中;以及气体侦测装置430,用以现场监视及侦测惰性气体指示器或PVD靶材结构420的侦测层440。
以上所述仅为本发明较佳实施例,然其并非用以限定本发明的范围,任何熟悉本项技术的人员,在不脱离本发明的精神和范围内,可在此基础上做进一步的改进和变化,因此本发明的保护范围当以本申请的权利要求书所界定的范围为准。
附图中符号的简单说明如下:
100、100’、200:PVD靶材结构
110、210、510、510’、610、610’:PVD靶材
112:反应表面
114:底部表面
116:侧壁表面
124:细丝
124a’、124b’:电极
120:细丝指示器
122、222、622、622’:管子
122c:管子的内部
224:惰性气体
124a、124b、124aa、124bb:边界末端部
125a、125b、125a’、125b’:细丝导线
126a、126b:绝缘物
122a、122b、222a、222b:开口端
226:密封材料
300、400:侦测系统
310、410:反应室
320、420、500、500’:PVD靶材结构
330:监视装置
430:气体侦测装置
340:指示器组合
440:侦测层
514、514’、614、614’:底部表面
520、520’、620、620’:管状指示器
650、650’:靶材底板
660:凹陷
610.1:原料构件
610.2:界面构件
610.3:金属箔片
611.1、611.2:凹槽
700a、700b、700c、700d、700e、700f:管子
710a、710b、710c、710d、710e、710f:外表面
720a、720b、720c、720d、720e、720f:内表面
940:管子材料
941:贯穿孔
942:管子
980、980’:薄板
981、981’:管子
982、982’:边缘
800、800’:PVD靶材结构
810:PVD靶材
820:侦测层
814:底面表面
850:底板
830:靶材材料层
950:模具/挤压设备
951:外模具构件
952:内模具构件
953:空间
960:模具设备
961:模具构件
962:外表面
Claims (16)
1.一种指示器的形成方法,其特征在于,该指示器的形成方法包括下列步骤:
提供一块状材料;
形成多个贯穿孔于该块状材料中;以及
分割该块状材料以成为多个分离的构件,每个构件包括一个上述贯穿孔,其中每个构件形成该指示器的围封物,该指示器是用来对于一可消耗材料的厚板接近或已经减少至该可消耗材料的一既定量发出信号。
2.根据权利要求1所述的指示器的形成方法,其特征在于,该块状材料与可消耗材料的厚板是由相同的材料构成。
3.根据权利要求1所述的指示器的形成方法,其特征在于,更包括在该围封物之中提供一发出信号的元件,以形成该指示器,并且该发出信号的元件是细丝元件、电极元件、气体材料、液体材料或固体材料,该固体材料与该可消耗材料的厚板由不同材料构成。
4.根据权利要求3所述的指示器的形成方法,其特征在于,更包括一嵌入该指示器于该可消耗材料的厚板。
5.根据权利要求1所述的指示器的形成方法,其特征在于,该形成该多个贯穿孔的步骤是由激光钻孔、高压水钻孔、干蚀刻钻孔或其组合完成,并且该分割该块状材料的步骤是由激光切割、高压水切割、机械切割或其组合完成。
6.一种指示器的形成方法,其特征在于,该指示器的形成方法包括下列步骤:
提供一第一模具构件,其具有一既定形状的外表面;
形成一材料层于该第一模具构件的外表面上;以及
由该第一模具构件将该材料层分离,其中该材料层形成该指示器的围封物,该指示器是用来对于一可消耗材料的厚板接近或已经减少至该可消耗材料的一既定量发出信号。
7.根据权利要求6所述的指示器的形成方法,其特征在于,该材料层与可消耗材料的厚板是由相同的材料构成。
8.根据权利要求7所述的指示器的形成方法,其特征在于,更包括在该围封物的中提供一发出信号的元件,以形成该指示器,并且该发出信号的元件是细丝元件、电极元件、气体材料、液体材料或固体材料。
9.根据权利要求8所述的指示器的形成方法,其特征在于,更包括一嵌入该指示器于该可消耗材料的厚板。
10.根据权利要求6所述的指示器的形成方法,其特征在于,形成该材料层的方法是由物理气相沉积法、电化学镀膜法、浇铸、挤压或其组合完成。
11.根据权利要求6所述的指示器的形成方法,其特征在于,更包括一提供一第二模具构件的步骤,该第二模具构件具有一既定形状的内表面,并且在形成该材料层的步骤,该内表面用以形成该材料层的外表面,并且在分离的步骤,其中该材料层由该第二模具构件分离。
12.一种指示器的形成方法,其特征在于,该指示器的形成方法包括下列步骤:
提供一模具构件,其具有一既定形状的外表面;
形成一材料薄板于该模具构件的外表面上;以及
将该薄板彼此相对的边缘接合在一起,以形成该指示器的一围封物,其中该指示器是用来对于一可消耗材料的厚板接近或已经减少至该可消耗材料的一既定量发出信号。
13.根据权利要求12所述的指示器的形成方法,其特征在于,该材料薄板与可消耗材料的厚板是由相同的材料构成。
14.根据权利要求12所述的指示器的形成方法,其特征在于,更包括在该围封物的中提供一发出信号的元件,以形成该指示器,并且该发出信号的元件是细丝元件、电极元件、气体材料、液体材料或固体材料。。
15.根据权利要求14所述的指示器的形成方法,其特征在于,更包括一嵌入该指示器于该可消耗材料的厚板。
16.根据权利要求12所述的指示器的形成方法,其特征在于,该接合步骤是由焊接法完成。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US72039005P | 2005-09-26 | 2005-09-26 | |
US60/720,390 | 2005-09-26 | ||
US60/728,724 | 2005-10-20 | ||
US11/427,618 | 2006-06-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1982500A true CN1982500A (zh) | 2007-06-20 |
CN100476018C CN100476018C (zh) | 2009-04-08 |
Family
ID=38165332
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101523346A Active CN100529160C (zh) | 2005-09-26 | 2006-09-26 | 可消耗材料的厚板及物理气相沉积靶材料 |
CNB2006101523312A Active CN100560784C (zh) | 2005-09-26 | 2006-09-26 | 侦测制程机台使用的消耗性材料厚板寿命的系统及方法 |
CNB2006101523331A Expired - Fee Related CN100476018C (zh) | 2005-09-26 | 2006-09-26 | 指示器的形成方法 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101523346A Active CN100529160C (zh) | 2005-09-26 | 2006-09-26 | 可消耗材料的厚板及物理气相沉积靶材料 |
CNB2006101523312A Active CN100560784C (zh) | 2005-09-26 | 2006-09-26 | 侦测制程机台使用的消耗性材料厚板寿命的系统及方法 |
Country Status (1)
Country | Link |
---|---|
CN (3) | CN100529160C (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103088304A (zh) * | 2011-10-28 | 2013-05-08 | 光洋应用材料科技股份有限公司 | 具有警示功能的溅镀靶材 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009245988A (ja) * | 2008-03-28 | 2009-10-22 | Tokyo Electron Ltd | プラズマ処理装置、チャンバ内部品及びチャンバ内部品の寿命検出方法 |
CN103594309A (zh) * | 2012-08-14 | 2014-02-19 | 无锡华润上华科技有限公司 | 氧化物刻蚀方法及设备 |
CN102994970B (zh) * | 2012-11-16 | 2014-12-10 | 京东方科技集团股份有限公司 | 一种靶材使用检测系统和方法 |
CN106032565A (zh) * | 2015-03-11 | 2016-10-19 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 靶材组件及物理气相沉积设备 |
CN105861999B (zh) * | 2016-04-05 | 2018-08-07 | 基迈克材料科技(苏州)有限公司 | 高纯细晶金属镍热挤压旋转靶材 |
CN105734507B (zh) * | 2016-04-05 | 2018-06-19 | 基迈克材料科技(苏州)有限公司 | 成膜均匀的细晶镍合金旋转靶材及其热挤压优化制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08176808A (ja) * | 1993-04-28 | 1996-07-09 | Japan Energy Corp | 寿命警報機能を備えたスパッタリングタ−ゲット |
US6638402B2 (en) * | 2001-06-05 | 2003-10-28 | Praxair S.T. Technology, Inc. | Ring-type sputtering target |
-
2006
- 2006-09-26 CN CNB2006101523346A patent/CN100529160C/zh active Active
- 2006-09-26 CN CNB2006101523312A patent/CN100560784C/zh active Active
- 2006-09-26 CN CNB2006101523331A patent/CN100476018C/zh not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103088304A (zh) * | 2011-10-28 | 2013-05-08 | 光洋应用材料科技股份有限公司 | 具有警示功能的溅镀靶材 |
Also Published As
Publication number | Publication date |
---|---|
CN1982498A (zh) | 2007-06-20 |
CN100529160C (zh) | 2009-08-19 |
CN1982497A (zh) | 2007-06-20 |
CN100560784C (zh) | 2009-11-18 |
CN100476018C (zh) | 2009-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4646883B2 (ja) | Pvdターゲット構造体を製造する方法 | |
CN100476018C (zh) | 指示器的形成方法 | |
US7233048B2 (en) | MEMS device trench plating process and apparatus for through hole vias | |
TW200925310A (en) | Target designs and related methods for coupled target assemblies, methods of production and uses thereof | |
WO2013022635A2 (en) | Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate | |
De Boer et al. | Design, fabrication, performance and reliability of Pt-and RuO2-coated microrelays tested in ultra-high purity gas environments | |
EP0622823A1 (en) | Sputtering targets having life alarm function | |
JP5399339B2 (ja) | 消耗材料からなるpvd用ターゲット構造体 | |
KR20090040332A (ko) | Pvd 타겟 및 이의 제조방법 | |
EP2119806A1 (en) | Multilayer film forming method and multilayer film forming apparatus | |
TWI458844B (zh) | 修飾後濺鍍標靶及沈積元件,及其製造與使用方法 | |
JP2014051746A (ja) | 冷却能を向上させると共に撓みおよび変形を減少させるターゲットの設計およびその関連方法 | |
EP1087033A1 (en) | Extended life sputter targets | |
US20070065963A1 (en) | Method of manufacturing a micro-mechanical element | |
TWI429774B (zh) | 用於氣相沉積應用之線圈及其製法 | |
CN102044523A (zh) | 半导体器件结构及其制造方法 | |
US20060226003A1 (en) | Apparatus and methods for ionized deposition of a film or thin layer | |
KR20190141642A (ko) | 일종의 반도체 업계에 응용되는 플라즈마를 직접 기입하여 분사하는 기술 | |
EP1595003A2 (en) | Apparatus and methods for ionized deposition of a film or thin layer | |
US20100287751A1 (en) | Method for producing functional composite material | |
Dighe | Thermally actuated MEMS seal for vacuum applications | |
JP2010248588A (ja) | 成膜方法、成膜装置、及び半導体装置の製造方法 | |
WO2004032184A9 (en) | Low temperature salicide forming materials and sputtering targets formed therefrom | |
CN102030304A (zh) | 微机电前处理方法及结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090408 |
|
CF01 | Termination of patent right due to non-payment of annual fee |