CN1968939A - 生产烯烃氧化物、1,2-二醇、1,2-二醇醚或链烷醇胺的方法 - Google Patents

生产烯烃氧化物、1,2-二醇、1,2-二醇醚或链烷醇胺的方法 Download PDF

Info

Publication number
CN1968939A
CN1968939A CNA2005800200613A CN200580020061A CN1968939A CN 1968939 A CN1968939 A CN 1968939A CN A2005800200613 A CNA2005800200613 A CN A2005800200613A CN 200580020061 A CN200580020061 A CN 200580020061A CN 1968939 A CN1968939 A CN 1968939A
Authority
CN
China
Prior art keywords
raw material
alkene
catalyzer
carrier
rhenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800200613A
Other languages
English (en)
Other versions
CN100586939C (zh
Inventor
L·I·鲁宾斯泰因
R·C·耶茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1968939A publication Critical patent/CN1968939A/zh
Application granted granted Critical
Publication of CN100586939C publication Critical patent/CN100586939C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Abstract

一种烯烃环氧化方法,该方法包括下述步骤:使含烯烃和氧的原料与催化剂接触,所述催化剂包括沉积在氟化物矿化的载体上的银组分和高选择性掺杂剂;和产生含烯烃氧化物的产物混合物,其中原料中二氧化碳的浓度相对于总原料低于2mol%。

Description

生产烯烃氧化物、1,2-二醇、1,2-二醇醚 或链烷醇胺的方法
技术领域
本发明涉及生产烯烃氧化物、1,2-二醇、1,2-二醇醚或链烷醇胺的方法。
背景技术
在烯烃环氧化中,含有烯烃和氧源的原料与催化剂在环氧化条件下接触。所述原料可以含有其它组分。烯烃与氧反应形成烯烃氧化物。导致含有烯烃氧化物和通常未反应的原料与燃烧产物的产物混合物。
二氧化碳是环氧化方法中的一种副产物,并且可能存在于原料中。二氧化碳可能由于与未转化的烯烃和/或氧一起从产物混合物中回收并进行循环而存在于原料中。二氧化碳也可能以其它方式提供给原料。
催化剂包括沉积在载体(典型为α-氧化铝载体)上的银,所述银通常与一种或多种附加元素一起沉积。烯烃氧化物可与水反应,形成1,2-二醇;与醇反应,形成1,2-二醇醚;或者与胺反应,形成链烷醇胺。因此,可在多步工艺中生产1,2-二醇、1,2-二醇醚和链烷醇胺,所述多步工艺最初包括烯烃环氧化,然后用水、醇或胺转化所形成的烯烃氧化物。
可基于在烯烃环氧化中的选择性、活性和操作稳定性,来评估含银催化剂的性能。选择性是所转化的得到所需烯烃氧化物的烯烃的摩尔分数。当催化剂老化时,反应的烯烃分数通常随时间下降。为了维持烯烃氧化物产量所需的恒定水平,将提高反应温度。但提高温度引起反应对所需烯烃氧化物的选择性下降。另外,在反应器中使用的设备通常只耐受一定水平的温度。因此,在反应温度达到不适合反应器的温度时,必须终止反应。因此,可在高水平下维持选择性且在维持可接受水平的烯烃氧化物产量的同时在可接受的低反应温度下进行环氧化的时间越长,则在反应器内可保持催化剂的装填量越久并获得更多的产物。稳定性是指在使用装填量的催化剂的过程中,即当生产更多的烯烃氧化物时,工艺的选择性和/或活性如何变化。
现代银基催化剂除了银以外,还可包括一种或多种高选择性掺杂剂,例如含铼、钨、铬或钼的组分。在例如US-A-4761394和US-A-4766105中公开了高选择性催化剂。US-A-4766105和US-A-4761394公开了在含银催化剂中,铼可用作进一步的组分,其效果是烯烃环氧化的最初峰值选择性增加。
根据所使用的催化剂和烯烃环氧化工艺的参数,达到起始峰值选择性,即在该工艺的起始阶段中达到的最高选择性,所要求的时间可能改变。例如可在只操作1或2天之后达到该工艺的起始峰值选择性,或者可在例如多至1个月的操作之后达到。在这些美国专利中给出的工作实施例表明,在表面积为0.42m2/g的载体上,高达3mmol铼/kg催化剂的较高铼含量下,选择性有更高的趋势。EP-A-352850也教导了最新开发的包括载带在氧化铝载体上的银且用碱金属和铼组分促进的催化剂具有非常高的选择性。
尽管已经实现这些改进,但仍希望进一步改进含有银和高选择性掺杂剂的环氧化催化剂的性能,以便具体增加所述方法的初始峰值选择性和所达到的选择性的稳定性。
发明内容
本发明提供烯烃环氧化方法,该方法包括下述步骤:使含烯烃和氧的原料与催化剂接触,所述催化剂包括沉积在氟化物矿化的载体上的银组分和高选择性掺杂剂;和产生含烯烃氧化物的产物混合物,其中原料中二氧化碳的浓度低于2mol%。
本发明还提供生产1,2-二醇、1,2-二醇醚或链烷醇胺的方法,该方法包括将烯烃氧化物转化成1,2-二醇、1,2-二醇醚或链烷醇胺,其中通过本发明的包括使烯烃与氧反应的烯烃环氧化方法获得烯烃氧化物。
具体实施方式
本发明提供烯烃环氧化方法,其中在载体载带的催化剂存在下和在环氧化条件下使烯烃与氧接触,形成烯烃氧化物。
当使用含沉积在氟化物矿化的载体上的银组分和高选择性掺杂剂的催化剂进行烯烃环氧化方法并且其中原料中二氧化碳的浓度低于2mol%时,该方法显示出高的初始峰值选择性。另外,所述方法显示出改进的稳定性。
通过将氟掺入到载体内,获得氟化物矿化的载体。为了本发明的目的,通过将α-氧化铝或α-氧化铝前体与含氟物质结合,并煅烧该结合物,获得氟化物矿化的载体,当该结合物被煅烧时,所述含氟物质能释放氟化物,典型为氟化氢。在煅烧之前,可例如通过挤出或者喷雾,将该结合物形成为成形体。优选地,在低于1200℃下进行煅烧,更优选低于1100℃。优选地,在高于900℃下进行煅烧,更优选高于1000℃。若温度明显超过1200℃,则所释放的氟化物量可能过多,且载体的形态可能受到有害影响。
将含氟物质引入到载体内的方式不受限制,和本领域已知的将含氟物质引入到载体内的那些方法(和由其获得的那些氟化物矿化的载体)均可用于本发明。例如US-A-3950507和US-A-4379134公开了制备氟化物矿化的载体的方法,在此将其引入作为参考。
在一些实施方案中,氟化物矿化载体可以具有,且优选确实具有形态可表征为层状或者小片类型(这两个术语可互换使用)的粒状基质。因此,在至少一个方向上尺寸大于0.1μm的颗粒具有至少一个基本为平面的主表面。这种颗粒可具有两个或更多个平的主表面。在本发明可供替代的实施方案中,可使用具有所述小片类型结构且通过此处所述的氟化物矿化方法以外的方法制备的载体。
将含氟物质掺入到载体内的合适的工序包括添加含氟物质到α-氧化铝或α-氧化铝前体中。此处提及的α-氧化铝前体是煅烧后能转化成α-氧化铝的那些物质。α-氧化铝前体包括水合氧化铝,例如勃姆石、假勃姆石和三水铝石以及过渡氧化铝如χ、k、γ、δ、θ和η氧化铝。
若使用水合氧化铝,则含氟物质可适当加入到水合氧化铝中,然后例如通过挤出或喷雾将该结合物制成成形体。然后通过煅烧该成形体,将水合氧化铝转化成α-氧化铝。优选地,在低于1200℃下进行煅烧。在煅烧过程中,释放氟化物。类似地,含氟物质可合适地加入到过渡氧化铝如γ-氧化铝或者过渡氧化铝和水合氧化铝的结合物中。如前所述,将该结合物制成成形体并煅烧。
在另一合适的方法中,可将含氟物质加入到α-氧化铝或α-氧化铝前体或其混合物的成形体中。然后对该成形体进行煅烧。在另一合适的方法中,可在煅烧之后,即在形成α-氧化铝之后,将含氟物质加入到载体中。在这一方法中,可以按与银和其它促进剂一样的方式,例如通过浸渍,典型地为真空浸渍,方便地掺入含氟物质。
如前所述,优选在低于1200℃下进行煅烧。但本发明与进行煅烧的方式无关。因此,本发明考虑本领域已知的各种煅烧方式,例如在一个温度下保持一定的时间段,然后升高温度至第二温度并保持第二时间段。
可以通过任何已知的方法添加含氟物质。在一种这类合适的方法中,用含有含氟物质的溶液处理α-氧化铝或α-氧化铝前体。共研磨该结合物并转化成成形体。类似地,可采用含有含氟物质的溶液对该成形体进行真空浸渍。根据这一方法,可使用导致溶液中存在氟化物离子的溶剂和含氟物质的任何组合。
可用于本发明的含氟物质是当根据本发明掺入到载体内之后,在煅烧时,优选在低于1200℃下煅烧时,能释放氟化物(典型为氟化氢形式的氟化物)的那些物质。当在900℃-1200℃的温度下进行煅烧时,优选含氟物质能释放氟化物。本领域已知的这种含氟物质可用于本发明。合适的含氟物质包括有机和无机物质。合适的含氟物质包括离子、共价和极性共价化合物。合适的含氟物质包括F2、三氟化铝、氟化铵、氟化氢和二氯二氟甲烷。
通常含氟物质的用量使得包括沉积在氟化物矿化的载体上的银和高选择性掺杂剂的催化剂当在原料中二氧化碳浓度低于2mol%的烯烃环氧化方法中使用时,显示出的选择性大于对比催化剂,所述对比催化剂在不具有层状或小片类型形态的相同的非氟化物矿化的载体上沉积。典型地,加入到载体中的含氟物质的量为至少0.1wt%,且不大于5.0wt%,这相对于含氟物质掺入其内的载体材料的重量以所使用的元素氟的重量来计算。优选地,含氟物质的用量不小于0.2wt%,更优选不小于0.25wt%。优选地,含氟物质的用量不大于3.0wt%,更优选不大于2.5wt%。这些量是指最初添加的物质的量,且不必然反映成品载体内可最终存在的量。
除了以上所述氟化物矿化以外,通常不限制可用于本发明的载体。典型地,基于载体的重量,合适的载体包括至少85wt%的α-氧化铝,更典型地为90wt%,具体为95wt%,通常至多为99.9wt%。载体可还包括氧化硅、碱金属如钠和/或钾和/或碱土金属如钙和/或镁。
另外也不限制合适的载体的表面积、吸水性或其它性能。相对于载体的重量,载体的表面积可合适地为至少0.1m2/g,优选至少0.3m2/g,更优选至少0.5m2/g,和具体地至少0.6m2/g;和相对于载体的重量,表面积可合适地为至多10m2/g,优选至多5m2/g,和具体地至多3m2/g。此处所使用的“表面积”应理解为涉及通过Journal of theAmerican Chemical Society 60(1938)pp.309-316中所述的B.E.T.(Brunauer,Emmett and Teller)方法测定的表面积。高表面积的载体,具体地当它们是任选还包括氧化硅、碱金属和/或碱土金属的α-氧化铝载体时,提供改进的性能和操作稳定性。但当表面积非常大时,载体倾向于具有较低的压碎强度。
相对于载体的重量,载体的吸水性可合适地为至少0.2g/g,优选至少0.3g/g。相对于载体的重量,载体的吸水性可合适地为至多0.8g/g,优选至多0.7g/g。鉴于银和浸渍在载体上的其它元素(如果有的话)的更有效的沉积,较高的吸水性可能是有利的。但在较高的吸水性下,载体或者由其制备的催化剂可能具有较低的压碎强度。正如此处所使用的,据认为吸水性根据ASTM C20来测量,且吸水性表达为相对于载体的重量可吸收到载体孔隙内的水的重量。
催化剂包括作为催化活性组分的银。典型地通过使用相对于催化剂重量以元素重量计至少10g/kg的银量来获得明显的催化活性。优选地,催化剂包括的银量为50-500g/kg,更优选100-400g/kg,例如105g/kg或120g/kg或190g/kg或250g/kg或350g/kg。
除了银以外,该催化剂还可包括一种或多种高选择性掺杂剂。由US-A-4761394和US-A-4766105可知含高选择性掺杂剂的催化剂,在此将其引入作为参考。高选择性掺杂剂可包括例如含铼、钼、铬和钨中一种或多种的组分。高选择性掺杂剂可以以0.01-500mmol/kg的总量存在,这基于全部催化剂以元素(例如铼、钼、钨和/或铬)来计算。铼、钼、铬或钨可合适地作为氧化物或者作为氧阴离子如高铼酸根、钼酸根和钨酸根以盐或酸形式提供。可在本发明中使用高选择性掺杂剂,其量足以提供具有此处所公开的高选择性掺杂剂含量的催化剂。特别优选的催化剂除了银以外,还包括铼组分,以及更优选还包括铼共同促进剂。铼共同促进剂选自钨、钼、铬、硫、磷、硼、其化合物及其混合物。
当催化剂包括铼组分时,铼典型地可以以至少0.1mmol/kg的量存在,更典型地至少0.5mmol/kg,和优选至少1.0mmol/kg,具体地至少1.5mmol/kg,这相对于催化剂的重量以元素的量计算。铼典型地以至多5.0mmol/kg的量存在,优选至多3.0mmol/kg,更优选至多2.0mmol/kg,具体地至多1.5mmol/kg。再者,提供给载体的铼的形式对本发明来说并不关键。例如铼可合适地作为氧化物或氧阴离子如铼酸根或者高铼酸根以盐或酸形式提供。
如果存在,铼共同促进剂的优选量相对于催化剂重量基于相关元素即钨、钼、铬、硫、磷和/或硼的总量为0.1-30mmol/kg。提供给载体的铼共同促进剂的形式对本发明来说并不关键。例如铼共同促进剂可合适地作为氧化物或氧阴离子以盐或酸形式提供。
合适地,催化剂也可包括第IA族金属组分。第IA族金属组分典型地包括锂、钾、铷和铯中的一种或多种。优选地,第IA族金属组分是锂、钾和/铯。最优选地,第IA族金属组分包括铯或铯与锂的结合物。典型地,第IA族金属组分以0.01-100mmol/kg的量存在,更典型地为0.50-50mmol/kg,更典型地为1-20mmol/kg,这相对于催化剂重量以元素总量计算。提供给载体的第IA族金属的形式对本发明来说并不关键。例如第IA族金属可合适地作为氢氧化物或盐提供。
如此处所使用的,存在于催化剂内的第IA族金属组分的量据认为是在100℃下可用去离子水从催化剂中提取的量。提取方法包括在100℃下,在20ml每份的去离子水内加热催化剂样品5分钟,提取10g催化剂样品3次,并通过使用已知的方法如原子吸收光谱法测定在组合的提取物内的相关金属。
催化剂的制备,其中包括掺入银、高选择性掺杂剂和第IA族金属的方法,可用于制备可按本发明使用的催化剂。制备催化剂的方法包括用银化合物浸渍载体,并进行还原以形成金属银颗粒。例如可参考US-A-5380697、US-A-5739075、EP-A-266015、US-B-6368998、WO-00/15333、WO-00/15334和WO-00/15335,在此将其引入作为参考。
可在其中干燥催化剂的步骤过程中,实现阳离子银还原成金属银,以便该还原不要求独立的工艺步骤。如果浸渍溶液包括还原剂如草酸盐,则可能是这一情况。合适地在至多300℃,优选至多280℃,更优选至多260℃的反应温度下,和合适地在至少200℃,优选至少210℃,更优选至少220℃的反应温度下,合适地进行这一干燥步骤至少1分钟,优选至少2分钟的时间段,和合适地进行至多60分钟,优选至多20分钟,更优选至多15分钟,和更优选至多10分钟的时间段。
尽管可按照多种方式进行本发明的环氧化工艺,但优选的是通常在固定床内在环氧化条件下作为气相工艺进行,即其中原料以气相内与以固体材料存在的催化剂接触。环氧化条件是其中发生环氧化的温度和压力条件的组合。一般地,以连续工艺形式例如包括固定床、管式反应器的典型工业工艺来实施该方法。
典型的工业反应器具有通常彼此平行布置的多个延长的管子。尽管管子的尺寸和数量从一个反应器到另一个反应器可以变化,但在工业反应器内所使用的典型管子的长度为4-15米,和内径为1-7厘米。合适地,内径足以容纳催化剂。具体地,管子的内径足以容纳载体的成形体。在工业规模的操作中,本发明的方法常常包括至少10kg的催化剂量,例如至少20kg,通常范围为102-107kg,更经常的范围为103-106kg。
在本发明的环氧化方法中所使用的烯烃可以是任何烯烃,例如芳族烯烃如苯乙烯或二烯烃(不管共轭与否)如1,9-癸二烯或1,3-丁二烯。可使用烯烃混合物。典型地,烯烃是单烯烃,例如2-丁烯或异丁烯。优选地,烯烃是单-α烯烃,例如1-丁烯或丙烯。最优选的烯烃是乙烯。
可在宽的范围内选择原料内的烯烃浓度。典型地,相对于全部原料,原料内的烯烃浓度至多为80mol%。优选地,基于相同的基准,其范围为0.5-70mol%,具体为1-60mol%。此处所使用的原料被视为与催化剂接触的组合物。
本发明的环氧化工艺可以基于空气或氧气,参见“Kirk OthmerEncyclopedia of Chemical Technology”,第3版,第9卷,1980,pp.445-447。在空气基工艺中,空气或者富含氧气的空气用作氧化剂源,而在氧气基工艺中,高纯(典型地为至少95mol%)的氧气用作氧化剂源。目前大多数环氧化装置是氧气基装置,其为本发明的优选实施方案。
可在宽范围内选择原料内的氧气浓度。但在实践中,通常以避免可燃极限的浓度应用氧气。典型地,所采用的氧气浓度在全部原料的1-15mol%范围内,更典型地为2-12mol%。
为了保持在可燃极限以外,当烯烃的浓度增加时,可以降低原料内的氧气浓度。实际的安全操作范围与原料组成一起取决于反应条件,例如反应温度和压力。
有机卤化物可作为反应调节剂存在于原料内以供增加选择性,并相对于所需的烯烃氧化物的形成,抑制烯烃或烯烃氧化物不希望地氧化成二氧化碳和水。可接受的有机卤化物包括有机溴化物和有机氯化物,其中更优选有机氯化物。优选的有机卤化物是氯代烃或溴代烃,且优选选自甲基氯、乙基氯、二氯乙烷、二溴乙烷、乙烯基氯或其混合物。最优选的有机卤化物是乙基氯和二氯乙烷。
有机卤化物当在原料内以低浓度,例如相对于全部原料至多0.01mol%的浓度使用时,作为反应调节剂通常是有效的。具体地当烯烃是乙烯时,优选有机卤化物相对于全部原料以至多50×10-4mol%的浓度存在于原料内,具体地至多20×10-4mol%,更具体地至多15×10-4mol%,和相对于全部原料优选以至少0.2×10-4mol%的浓度存在于原料内,具体地至少0.5×10-4mol%,更具体地至少1×10-4mol%。
除了烯烃、氧气和有机卤化物以外,原料还可含有一种或多种任选的组分,例如惰性气体和饱和烃。惰性气体,例如氮气或氩气,相对于全部原料可以以30-90mol%的浓度存在于原料内,典型地为40-80mol%。该原料可含有饱和烃。合适的饱和烃是甲烷和乙烷。若存在饱和烃,则相对于全部原料它们可以以至多80mol%的量存在,具体地为至多75mol%。它们通常可以以至少30mol%的量存在,更经常为至少40mol%。可将饱和烃加入到原料内,以便提高氧气的可燃性极限。
可使用环氧化条件,其中包括选自宽范围的温度和压力,来进行环氧化工艺。优选地,反应温度范围为150-340℃,更优选范围为180-325℃。可逐渐或者以多步提高反应温度,例如以0.1-20℃、具体为0.2-10℃、更具体为0.5-5℃的步长提高反应温度。反应温度的总增加范围可以是10-140℃,更典型地为20-100℃。反应温度可典型地从使用新鲜催化剂时的150-300℃、更典型地200-280℃范围内的水平增加到由于老化导致催化剂活性下降时的230-340℃,更典型地240-325℃范围内的水平。
优选在范围为1000-3500kPa的反应器入口压力下进行环氧化工艺。“GHSV”或者气时空速是每小时通过单位体积填充催化剂的标准温度和压力(0℃,1atm,即101.3kPa)下的气体体积。优选地,当环氧化工艺是包括固定床催化剂的气相工艺时,GHSV范围为1500-10000Nl/(l.h)。
本发明的优点是当本方法在原料中二氧化碳浓度较低时实施时,该方法显示出高的初始峰值选择性和改进的稳定性,其中所述改进的稳定性包括改进的选择性稳定性和/或改进的活性稳定性。因此,本发明的方法优选在原料中二氧化碳浓度低于2mol%的条件下实施。优选二氧化碳的浓度低于1mol%,甚至更优选二氧化碳的浓度低于0.75mol%。当实施本发明时,二氧化碳的浓度通常为至少0.1mol%,并且二氧化碳的浓度更通常为至少0.3mol%。最优选二氧化碳的浓度为0.50-0.75mol%。可预期本发明的方法可以在二氧化碳的标准浓度下实施,即二氧化碳浓度若没有达到0mol%也很接近0mol%。事实上,在不存在二氧化碳时实施的方法也在本发明范围内。
当在原料中的这些二氧化碳浓度下操作时,使用包括沉积在氟化物矿化载体上的银组分和高选择性掺杂剂、优选包括铼组分的催化剂时,烯烃环氧化工艺实现大于85%的峰值选择性。优选地,这一方法实现大于87%的初始峰值选择性。更优选地,这一方法实现大于89%、甚至大于90%的峰值选择性。通常这一方法实现至多92%的选择性。
另外,当在原料中的这些二氧化碳浓度下操作时,使用包括沉积在氟化物矿化载体上的银组分和铼组分的催化剂时,烯烃环氧化工艺实现了改进的稳定性。因此,当所述方法实现大于90%的初值峰值选择性时,在累积的烯烃氧化物为每立方米所用催化剂0.4千吨烯烃氧化物(kT/m3)后,预期所述方法可以显示出大于90%的选择性。当累积的烯烃氧化物产量为0.8kT/m3后,可以预期实现大于90%初值峰值选择性的方法显示出大于89%的选择性。
可通过使用本领域已知的方法,例如通过在水中从产物混合物中吸收烯烃氧化物和任选通过蒸馏从水溶液中回收烯烃氧化物,从而从产物混合物中回收所产生的烯烃氧化物。可利用至少一部分含有烯烃氧化物的水溶液在随后工艺中将烯烃氧化物转化成1,2-二醇、1,2-二醇醚或链烷醇胺。用于该转化的方法没有限制,可使用本领域已知的那些方法。在这里所应用的术语“产物混合物”应理解为指从环氧化反应器的出口回收的产物。
转化成1,2-二醇或1,2-二醇醚可包括例如合适地使用酸或碱催化剂使烯烃氧化物与水反应。例如为了主要制备1,2-二醇和较少的1,2-二醇醚,则可在液相反应中,在酸催化剂如基于全部反应混合物0.5-1.0wt%的硫酸存在下,在50-70℃下,在1bar的绝对压力下,或者在气相反应中,在130-240℃和20-40bar的绝对压力下,优选在不存在催化剂时,使烯烃氧化物与10倍摩尔过量的水反应。若水的比例下降,则1,2-二醇醚的比例增加。如此生产的1,2-二醇醚可以是二醚、三醚、四醚或随后更高级的醚。或者,可通过用醇替代至少一部分水,通过用醇、具体为伯醇如甲醇或乙醇转化烯烃氧化物,从而制备1,2-二醇醚。
转化成链烷醇胺可包括使烯烃氧化物与胺如氨、烷基胺或二烷基胺反应。可使用无水或者含水氨。典型地使用无水氨,以利于生产单链烷醇胺。对于可用于烯烃氧化物转化成链烷醇胺的方法来说,可参考例如US-A-4845296,在此将其引入作为参考。
可在多种工业应用如食品、饮料、烟草、化妆品、热塑性聚合物、可固化树脂体系、洗涤剂、传热体系等领域中使用1,2-二醇和1,2-二醇醚。可例如在处理天然气(“脱硫”)中使用链烷醇胺。
除非另有说明,此处提及的有机化合物如烯烃、1,2-二醇、1,2-二醇醚、链烷醇胺和有机卤化物典型地具有至多40个碳原子,更典型地至多20个碳原子,具体地至多10个碳原子,更具体地至多6个碳原子。正如此处所定义的,碳原子的数量范围(即碳数)包括所述范围上下限所规定的数量。
已经大体描述了本发明,现参考下述实施例进一步理解本发明,所述实施例只是用于阐述目的,而不打算限制本发明,除非另有说明。
实施例1-氟化物矿化的载体的制备
通过在300g蒸馏水内溶解12.24g氟化铵,从而制备浸渍溶液。通过下式测定氟化铵的含量:
其中F是至少为1.5的因子。通过下式测定水的含量:
F×m氧化铝×WABS
其中m氧化铝是过渡γ-氧化铝起始材料的质量,wt%NH4F是所使用的氟化铵的重量百分数,和WABS是过渡氧化铝的吸水率(g H2O/g氧化铝)。因子“F”足够大,以便提供过量浸渍溶液,使氧化铝完全浸没。
使用切割成单独的圆柱成形体的挤出过渡氧化铝。经1分钟将150g过渡氧化铝抽真空到20mmHg,并在真空下,将最终的浸渍溶液加入到过渡氧化铝中。释放真空,并允许过渡氧化铝与液体接触3分钟。然后在500rpm下离心浸渍过渡氧化铝2分钟,以除去过量液体。在流动的氮气下,在120℃下干燥浸渍的过渡氧化铝粒料16小时。
将干燥的浸渍过渡氧化铝置于第一高温氧化铝坩埚内。将约50g氧化钙置于第二高温氧化铝坩埚内。将含有已浸渍的过渡氧化铝的高温氧化铝坩埚置于含有氧化钙的第二高温氧化铝坩埚内,然后用比第二坩埚直径小的第三高温氧化铝坩埚覆盖,以便通过第三坩埚和氧化钙封锁已浸渍的过渡氧化铝。将这一组件置于冷却炉内。在30分钟的时间段内,炉温从室温增加到800℃。然后在800℃下保持该组件30分钟,之后在1小时的时间段内加热到1200℃。然后在1200℃下保持该组件1小时。然后使该炉子冷却,并从该组件中取出氧化铝。
如此获得的载体(载体A)具有表1所述的性能。这一载体具有形态可表征为层状或小片类型的粒状基质。
表1
载体的性能
  载体A
  性能吸水率(g/g)表面积(m2/g) 0.590.71
实施例2-催化剂的制备
该实施例描述了下述实施例中所述的浸渍载体材料所使用的原料银浸渍溶液的制备。
在5升的不锈钢烧杯中,将415g试剂级氢氧化钠溶解在2340ml去离子水内。调节溶液的温度到50℃。在4升的不锈钢烧杯中,将1699g硝酸银溶解在2100ml去离子水内。调节溶液的温度到50℃。在搅拌下,同时在温度维持在50℃下,将氢氧化钠溶液缓慢加入到硝酸银溶液中。搅拌所得淤浆15分钟。通过按需要添加NaOH溶液,维持溶液的pH高于10。使用洗涤工序,所述洗涤工序包括通过使用过滤棒除去液体,之后用等体积的去离子水替换所除去的液体。重复这一洗涤工序,直到滤液的导电率下降到低于90微欧姆/厘米。在完成最后一次洗涤循环之后,添加1500ml去离子水,接着在搅拌下,同时在维持溶液于40℃(±5℃)下,以100g的递增量添加630g二水合草酸(4.997mol)。在添加最后130g二水合草酸的过程中监控溶液的pH,以便确保经长时间段pH不会下降到低于7.8。用过滤棒从该溶液中除去水,并将淤浆冷却到低于30℃。缓慢添加732g 92%的乙二胺到该溶液中。在这一添加过程中,维持温度低于30℃。使用刮刀手动搅拌该混合物,直到存在足够的液体可以机械搅拌。使用最终的溶液作为制备催化剂的原料银浸渍溶液。
通过混合95.2g比重为1.546g/cc的银原料溶液与在~2g 1∶1的乙二胺/水内0.0617g高铼酸铵的溶液、在~2g 1∶1的氨水/水中溶解的0.0287g偏钨酸铵和在水中溶解的0.1268g硝酸锂,从而制备用于制备催化剂A的浸渍溶液。添加额外的水,以调节溶液的比重为1.507g/cc。混合掺杂溶液与0.136g 44.62%的氢氧化铯溶液。使用这一最终浸渍溶液制备催化剂A。经1分钟将30g载体A抽真空到20mmHg,并在真空下将最终的浸渍溶液加入到载体A中,然后释放真空,并允许载体接触该液体3分钟。然后在500rpm下离心浸渍过的载体A2分钟,以除去过量液体。将浸渍过的载体A粒料置于振动的摇动器内,并在流动的空气中在250℃下干燥5.5分钟。最终的催化剂A的组成为18.3%Ag、400ppm的Cs/g催化剂、1.5μmol Re/g催化剂、0.75μmol W/g催化剂和12μmol Li/g催化剂。
实施例3-催化剂测试
使用催化剂A由乙烯和氧气生产烯烃氧化物。为此,将3.9g粉碎的催化剂装载到不锈钢U形管内。将该管浸渍在熔融的金属浴(加热介质)内,并将端部连接到气体流动体系上。调节所使用的催化剂重量和入口气体流量,得到3300Nl/(l.h)的气时空速,这相对于未粉碎的催化剂来计算。调节气体的流量为16.9Nl/h。入口气体压力为1370kPa。
气体混合物以“单程”操作模式流经催化剂床,在包括起始阶段的整个试验运行过程中,该气体混合物为30%v的乙烯、8%v的氧气、0.5%v的二氧化碳、61.5%v的氮气和2.0-6.0份/百万体积份(ppmv)的乙基氯。
对于催化剂A来说,起始反应器温度为180℃,所述温度将以每小时10℃的速度攀升到225℃,然后调节以便实现所需恒定水平的氧化乙烯产量,这方便地以反应器出口处的氧化乙烯分压或者产物混合物内的氧化乙烯的摩尔百分数来测量。
在41kPa的氧化乙烯分压的氧化乙烯产量水平下,催化剂A提供大于87%的起始峰值选择性,实际大于89%,和高达91%。在相同的氧化乙烯产量水平下,在不具有层状或小片类型形态的非氟化物矿化的载体上制备的对比催化剂预期提供较低的初始峰值选择性。
当催化剂A已经实现累积氧化乙烯产量为0.4kT/m3时,催化剂A提供大于87%的选择性,实际大于89%,和高达91%。在相同的氧化乙烯产量水平下,在不具有层状或小片类型形态的非氟化物矿化的载体上制备的对比催化剂预期提供较低的选择性。
当催化剂A已经实现累积氧化乙烯产量为0.8kT/m3时,催化剂A提供大于86%的选择性,实际大于88%,和高达90%。在相同的氧化乙烯产量水平下,在不具有层状或小片类型形态的非氟化物矿化的载体上制备的对比催化剂预期提供较低的选择性。

Claims (10)

1.一种烯烃环氧化方法,该方法包括下述步骤:
使含烯烃和氧的原料与催化剂接触,所述催化剂包括沉积在氟化物矿化的载体上的银组分和高选择性掺杂剂,所述高选择性掺杂剂包括铼、钼、铬和钨中的一种或多种;和
产生含烯烃氧化物的产物混合物,其中原料中二氧化碳的浓度相对于总原料低于2mol%。
2.权利要求1的方法,其中原料中二氧化碳的浓度相对于总原料低于1mol%,具体为低于0.75mol%。
3.权利要求1或2的方法,其中原料中二氧化碳的浓度相对于总原料为0.50-0.75mol%。
4.权利要求1-3任一项的方法,其中所述高选择性掺杂剂包括铼,并且所述催化剂还包括选自钨、钼、铬、硫、磷、硼、其化合物及其混合物中一种或多种的铼共同促进剂。
5.权利要求1-4任一项的方法,其中所述催化剂还包括第IA族金属。
6.权利要求1-5任一项的方法,其中所述载体包括α-氧化铝。
7.权利要求1-6任一项的方法,其中所述烯烃包括乙烯。
8.一种烯烃环氧化方法,该方法包括下述步骤:
使含烯烃和氧的原料与催化剂接触,所述催化剂包括沉积在具有形态为层状或小片类型的粒状基质的载体上的银组分和高选择性掺杂剂,所述高选择性掺杂剂包括铼、钼、铬和钨中的一种或多种;和
产生含烯烃氧化物的产物混合物,其中原料中二氧化碳的浓度相对于总原料低于2mol%。
9.权利要求8的方法,其中所述层状或小片类型的形态使得在至少一个方向上尺寸大于0.1μm的颗粒具有至少一个基本为平面的主表面。
10.一种生产1,2-二醇、1,2-二醇醚或链烷醇胺的方法,该方法包括使烯烃氧化物转化成1,2-二醇、1,2-二醇醚或链烷醇胺,其中所述烯烃氧化物通过权利要求1-9任一项的环氧化方法获得。
CN200580020061A 2004-06-18 2005-06-16 生产烯烃氧化物、1,2-二醇、1,2-二醇醚或链烷醇胺的方法 Active CN100586939C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58130204P 2004-06-18 2004-06-18
US60/581,302 2004-06-18

Publications (2)

Publication Number Publication Date
CN1968939A true CN1968939A (zh) 2007-05-23
CN100586939C CN100586939C (zh) 2010-02-03

Family

ID=35058741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200580020061A Active CN100586939C (zh) 2004-06-18 2005-06-16 生产烯烃氧化物、1,2-二醇、1,2-二醇醚或链烷醇胺的方法

Country Status (12)

Country Link
US (1) US7528270B2 (zh)
EP (1) EP1765799A1 (zh)
JP (1) JP5011105B2 (zh)
KR (1) KR20070036133A (zh)
CN (1) CN100586939C (zh)
BR (1) BRPI0512172A (zh)
CA (1) CA2571179C (zh)
MX (1) MXPA06014560A (zh)
MY (1) MY140566A (zh)
RU (1) RU2007101737A (zh)
TW (1) TW200616989A (zh)
WO (1) WO2006009756A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103124728A (zh) * 2010-09-29 2013-05-29 国际壳牌研究有限公司 改进的eo过程控制

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503304A (ja) * 2003-08-22 2007-02-22 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション アルキレンオキサイド製造用の変性アルミナ担体及び銀系触媒
CA2538992C (en) * 2003-08-22 2013-02-19 Union Carbide Chemicals & Plastics Technology Corporation Improved alumina carriers and silver-based catalysts for the production of alkylene oxides
EP1675678B1 (en) * 2003-10-16 2011-09-28 Dow Technology Investments LLC Catalysts having enhanced stability, efficiency and/or activity for alkylene oxide production
US7479565B2 (en) 2004-06-18 2009-01-20 Shell Oil Company Process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, or an alkanolamine
US8536083B2 (en) 2004-09-01 2013-09-17 Shell Oil Company Olefin epoxidation process, a catalyst for use in the process, a carrier for use in preparing the catalyst, and a process for preparing the carrier
MX2007002386A (es) * 2004-09-01 2007-04-23 Shell Int Research Proceso para epoxidacion de olefinas, catalizador para uso en el proceso, soporte para uso en la preparacion del catalizador, y proceso para preparar el soporte.
CA2598523C (en) * 2005-02-21 2015-11-24 Shell Internationale Research Maatschappij B.V. An olefin epoxidation process, a catalyst for use in the process, a carrier for use in making the catalyst, and a process for making the carrier
ATE509002T1 (de) 2006-07-21 2011-05-15 Dow Global Technologies Llc Verbessertes dieselpartikelfilter
US7977274B2 (en) * 2006-09-29 2011-07-12 Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg Catalyst with bimodal pore size distribution and the use thereof
CA2667980C (en) * 2006-11-01 2016-06-14 Dow Global Technologies Inc. Shaped porous bodies of alpha-alumina and methods for the preparation thereof
EP2155708B1 (en) 2007-05-09 2018-02-21 Shell Internationale Research Maatschappij B.V. A process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine
JP5542659B2 (ja) 2007-05-09 2014-07-09 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー エポキシ化触媒、触媒を調製する方法、および酸化オレフィン、1,2−ジオール、1,2−ジオールエーテル、1,2−カーボネートまたはアルカノールアミンの製造方法
US9372589B2 (en) * 2012-04-18 2016-06-21 Facebook, Inc. Structured information about nodes on a social networking system

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2294383A (en) 1942-09-01 Process for the preparation of
US2209908A (en) 1938-07-14 1940-07-30 Calorider Corp Contact mass for use in the catalytic vapor phase oxidation of organic compounds
US2177361A (en) 1939-06-22 1939-10-24 Us Ind Alcohol Co Production of olefin oxides
NL7015145A (zh) 1969-10-29 1971-05-04
US3950507A (en) 1974-03-19 1976-04-13 Boreskov Georgy Konstantinovic Method for producing granulated porous corundum
DE2967112D1 (en) 1978-02-10 1984-08-23 Ici Plc Production of olefine oxides
US4318896A (en) 1980-04-14 1982-03-09 Uop Inc. Manufacture of alumina particles
US4379134A (en) 1981-02-13 1983-04-05 Union Carbide Corporation Process of preparing high purity alumina bodies
HU185474B (en) 1981-11-10 1985-02-28 Almasfuezitoei Timfoeldgyar Process for preparing alpha-aluminium oxyde poor in alkali for ceramic purposes
US4428863A (en) 1982-07-06 1984-01-31 The Dow Chemical Company Alumina compositions of improved strength useful as catalyst supports
US4845296A (en) 1983-12-13 1989-07-04 Union Carbide Corporation Process for preparing alkanolamines
GB8423044D0 (en) 1984-09-12 1984-10-17 Ici Plc Production of ethylene oxide
US4994587A (en) 1985-08-12 1991-02-19 Union Carbide Chemicals And Plastics Company, Inc. Catalytic system for epoxidation of alkenes employing low sodium catalyst supports
US4994589A (en) 1985-08-13 1991-02-19 Union Carbide Chemicals And Plastics Company Inc. Catalytic system for epoxidation of alkenes
US4994588A (en) 1985-08-13 1991-02-19 Union Carbide Chemicals And Plastics Company Inc. Fluorine-containing catalytic system for expoxidation of alkenes
US4615875A (en) 1986-02-03 1986-10-07 Allied Corporation Process for preparing high purity alpha-alumina
GB8610441D0 (en) 1986-04-29 1986-06-04 Shell Int Research Preparation of silver-containing catalyst
GB8611121D0 (en) 1986-05-07 1986-06-11 Shell Int Research Silver catalyst
US4847064A (en) 1987-12-23 1989-07-11 Aluminum Company Of America Economical process for alpha alumina production
IL84232A (en) 1986-10-31 1992-06-21 Shell Int Research Catalyst and process for the catalytic production of ethylene oxide
US4761394A (en) 1986-10-31 1988-08-02 Shell Oil Company Ethylene oxide catalyst and process for preparing the catalyst
US4766105A (en) 1986-10-31 1988-08-23 Shell Oil Company Ethylene oxide catalyst and process for preparing the catalyst
GB8626687D0 (en) * 1986-11-07 1986-12-10 Shell Int Research Preparing silver catalyst
US4908343A (en) 1987-02-20 1990-03-13 Union Carbide Chemicals And Plastics Company Inc. Catalyst composition for oxidation of ethylene to ethylene oxide
CN1009437B (zh) 1988-02-03 1990-09-05 中国石油化工总公司 乙烯氧化制环氧乙烷高效银催化剂
CA1339317C (en) 1988-07-25 1997-08-19 Ann Marie Lauritzen Process for producing ethylene oxide
US5015614A (en) 1989-07-03 1991-05-14 Exxon Research And Engineering Company Novel alumina support materials
US5051395A (en) 1989-09-25 1991-09-24 Union Carbide Chemicals And Plastics Technology Corporation Alkylene oxide catalysts having enhanced activity and/or efficiency
US5187140A (en) 1989-10-18 1993-02-16 Union Carbide Chemicals & Plastics Technology Corporation Alkylene oxide catalysts containing high silver content
US5248557A (en) 1990-12-07 1993-09-28 E. I. Du Pont De Nemours And Company Coated refractory composition and method for making the same
AU639326B2 (en) 1990-05-23 1993-07-22 Atochem Ceramic preforms comprising monocrystalline hexagonal platelets of alpha-alumina, their production and applications thereof
CA2053404A1 (en) * 1990-10-12 1992-04-13 Erlind M. Thorsteinson Ultrahigh efficiency alkylene oxide catalysts having enhanced stability
US5145824A (en) 1991-01-22 1992-09-08 Shell Oil Company Ethylene oxide catalyst
JP3744010B2 (ja) 1993-06-30 2006-02-08 住友化学株式会社 α−アルミナ粉末の製造方法
US5380697A (en) 1993-09-08 1995-01-10 Shell Oil Company Ethylene oxide catalyst and process
DE69510989T2 (de) 1994-04-28 2000-01-20 Sumitomo Chemical Co Verfahren zur Herstellung von Alpha-Aluminiumoxidpulver
AUPN053395A0 (en) 1995-01-12 1995-02-09 Alcoa Of Australia Limited Production of alpha alumina
US5739075A (en) 1995-10-06 1998-04-14 Shell Oil Company Process for preparing ethylene oxide catalysts
US5780656A (en) 1997-04-14 1998-07-14 Scientific Design Company, Inc. Ethylene oxide catalyst and process
JP4698835B2 (ja) 1998-09-14 2011-06-08 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 触媒特性改良のため触媒表面からイオン化可能種を除去する方法
CN1145526C (zh) 1998-09-14 2004-04-14 国际壳牌研究有限公司 制备具有改进催化性能的催化剂的方法
KR100641542B1 (ko) 1998-09-14 2006-10-31 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 에폭시화 촉매 캐리어, 이의 제조 및 용도
US6203773B1 (en) 1999-07-12 2001-03-20 Alcoa Inc. Low temperature mineralization of alumina
US6417136B2 (en) 1999-09-17 2002-07-09 Phillips Petroleum Company Hydrocarbon hydrogenation catalyst and process
MXPA04008167A (es) * 2002-02-25 2004-11-26 Shell Int Research Catalizador de plata con soporte y proceso de epoxidacion que usa el mismo.
US6667270B2 (en) 2002-05-22 2003-12-23 Shell Oil Company Bismuth-and phosphorus-containing catalyst support, reforming catalysts made from same, method of making and naphtha reforming process
CA2538992C (en) 2003-08-22 2013-02-19 Union Carbide Chemicals & Plastics Technology Corporation Improved alumina carriers and silver-based catalysts for the production of alkylene oxides
EP1675678B1 (en) 2003-10-16 2011-09-28 Dow Technology Investments LLC Catalysts having enhanced stability, efficiency and/or activity for alkylene oxide production
US7479565B2 (en) 2004-06-18 2009-01-20 Shell Oil Company Process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, or an alkanolamine
MX2007002386A (es) 2004-09-01 2007-04-23 Shell Int Research Proceso para epoxidacion de olefinas, catalizador para uso en el proceso, soporte para uso en la preparacion del catalizador, y proceso para preparar el soporte.
CA2598523C (en) 2005-02-21 2015-11-24 Shell Internationale Research Maatschappij B.V. An olefin epoxidation process, a catalyst for use in the process, a carrier for use in making the catalyst, and a process for making the carrier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103124728A (zh) * 2010-09-29 2013-05-29 国际壳牌研究有限公司 改进的eo过程控制
US8859792B2 (en) 2010-09-29 2014-10-14 Shell Oil Company Olefin epoxidation process
CN103124728B (zh) * 2010-09-29 2014-10-22 国际壳牌研究有限公司 改进的eo过程控制

Also Published As

Publication number Publication date
US20060014971A1 (en) 2006-01-19
RU2007101737A (ru) 2008-07-27
JP2008503474A (ja) 2008-02-07
TW200616989A (en) 2006-06-01
JP5011105B2 (ja) 2012-08-29
MY140566A (en) 2009-12-31
EP1765799A1 (en) 2007-03-28
BRPI0512172A (pt) 2008-02-12
US7528270B2 (en) 2009-05-05
WO2006009756A1 (en) 2006-01-26
KR20070036133A (ko) 2007-04-02
CN100586939C (zh) 2010-02-03
CA2571179A1 (en) 2006-01-26
CA2571179C (en) 2014-06-10
MXPA06014560A (es) 2007-03-23

Similar Documents

Publication Publication Date Title
CN100572370C (zh) 生产烯烃氧化物、1,2-二醇、1,2-二醇醚或链烷醇胺的方法
CN100586939C (zh) 生产烯烃氧化物、1,2-二醇、1,2-二醇醚或链烷醇胺的方法
CN100553763C (zh) 负载的银催化剂和使用该催化剂的环氧化方法
CN101027124B (zh) 烯烃环氧化方法、用于该方法的催化剂、用于制备该催化剂的载体以及制备该载体的方法
CN101193702B (zh) 催化剂、制备催化剂的方法和生产环氧烷烃、1,2-二醇、1,2-二醇醚或链烷醇胺的方法
CN101336135B (zh) 再利用来自供体废环氧化催化剂的铼的方法
CN1956783A (zh) 制备银催化剂的方法、该催化剂及其用于烯烃氧化的用途
CN1809419A (zh) 烯烃环氧化方法及用于该方法的催化剂
CN1774293A (zh) 银催化剂组合物、制备该催化剂组合物的方法及该催化剂组合物用于乙烯环氧化反应的用途
CN101142018B (zh) 烯烃环氧化方法、用于该方法的催化剂、用于制备该催化剂的载体和用于制备该载体的方法
KR20070045316A (ko) 성형된 촉매의 제조방법, 성형된 촉매 및 이 촉매의 용도
JP2007531623A (ja) 銀触媒を調製する方法、該触媒、およびオレフィンを酸化するためのこの使用
WO2008064076A2 (en) A process for treating a carrier, a process for preparing a catalyst, the catalyst, and use of the catalyst
JP2007531621A (ja) 銀触媒を調製する方法、該触媒、およびオレフィンを酸化するための該触媒の使用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant