CN1962179A - 铸造伽马钛铝合金的直接滚轧 - Google Patents

铸造伽马钛铝合金的直接滚轧 Download PDF

Info

Publication number
CN1962179A
CN1962179A CNA2006101446049A CN200610144604A CN1962179A CN 1962179 A CN1962179 A CN 1962179A CN A2006101446049 A CNA2006101446049 A CN A2006101446049A CN 200610144604 A CN200610144604 A CN 200610144604A CN 1962179 A CN1962179 A CN 1962179A
Authority
CN
China
Prior art keywords
gamma
tial
tial alloy
cast condition
prefabricated blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006101446049A
Other languages
English (en)
Inventor
G·达斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of CN1962179A publication Critical patent/CN1962179A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • Y10T29/49991Combined with rolling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12812Diverse refractory group metal-base components: alternative to or next to each other

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Continuous Casting (AREA)

Abstract

一种用于生产γ-TiAl薄板的工艺包括以下步骤:形成γ-TiAl合金熔体;浇注所述γ-TiAl合金以形成铸态γ-TiAl合金;密闭所述铸态γ-TiAl合金以形成铸态γ-TiAl合金预制坯;以及滚轧该铸态γ-TiAl合金预制坯以形成包含γ-TiAl的薄板。

Description

铸造伽马钛铝合金的直接滚轧
技术领域
本披露涉及用于制造伽马TiAl合金(在下文中被称作“γ-TiAl”)的工艺,更具体地说,涉及直接滚轧γ-TiAl以便形成薄板。
背景技术
粉末冶金和铸锭冶金是用于生产γ-TiAl薄板的两种常用工艺,这两种工艺分别在流程图1a和1b中示出。
对于图1a所示的粉末冶金工艺而言,昂贵的氩气雾化粉末被用作初始材料。该粉末被封装在一个钛包壳中,在高温下抽空、密封,然后在1,300℃(2372)下进行2小时的热等静压压制形成坯段从而获得完全致密化,以便获得完全致密化。随后去掉该坯段的包壳并进行表面清理处理。然后将洁净的坯段密闭并在(α+γ)相区域进行等温滚轧,以便产生符合需要的厚度。滚轧后薄板通常是弯曲的,因而在真空中以1,000℃(1832)修平2小时。然后除去包壳材料并从两个表面磨削该扁平薄板以便获得所需厚度。该工艺产量高但采用粉末冶金法生产出的薄板因产生热诱发气孔而受损,所述气孔起因于被截留在粉末颗粒中的氩气,这样就限制了该薄板的超塑性成形能力。
对于图1b所示的铸锭冶金工艺而言,初始材料为铸态γ-TiAl铸锭。这些铸锭经受热等静压压制以便闭合通常与铸锭相关的收缩孔隙以及进行均匀化。然后将这些铸锭切成符合需要的尺寸并在1,200℃(2192)下等温锻造成薄饼。该锻造根据铸锭的尺寸通过单次或多次作业来完成。采用放电机加工技术将该薄饼切成矩形尺寸,并磨削机加工表面以便去除再铸造层并且在如同上文所述进行等温滚轧包壳之前去除锻造表面。铸锭冶金工艺产量低,原因在于薄饼的较大部分不能被利用。然而由于采用铸锭冶金法生产出的薄板不受热诱发气孔的损害,因而它们适于超塑成形。
因此,需要一种用于成形γ-TiAl合金薄板的工艺。
发明内容
本发明披露一种用于生产γ-TiAl薄板的工艺。所述工艺主要包括以下步骤:形成γ-TiAl合金熔体;浇注所述γ-TiAl合金以形成铸态γ-TiAl合金;密闭所述铸态γ-TiAl合金以形成铸态γ-TiAl合金预制坯;以及滚轧该铸态γ-TiAl合金预制坯以形成包含γ-TiAl的薄板。
本发明还披露一种制品,所述制品由根据本发明所述的工艺生产出的薄板制成。
本发明还披露一种预制坯,所述预制坯主要包括设置在包壳材料内的铸态γ-TiAl合金材料,其中所述铸态γ-TiAl合金材料具有适于进行滚轧而形成薄板的形状。
在附图和下面的说明书中对一个或更多本发明实施例的细节进行了图示和描述。通过阅读该说明书、附图和权利要求书将使本发明的其它特点、目标和优点更加明了。
附图说明
图1a是表示用于制造γ-TiAl薄板的一种现有技术粉末冶金工艺的流程图;
图1b是表示用于制造γ-TiAl薄板的一种现有技术铸锭冶金工艺的流程图;
图2是表示用于制造γ-TiAl薄板的本发明的直接滚轧工艺的流程图;
图3是表示使用本发明的工艺制造出的γ-TiAl薄板的显微组织的显微照片;
图4是表示使用本发明的工艺制造出的另一γ-TiAl薄板的显微组织的显微照片;和
图5是表示使用本发明的工艺制造出的又一γ-TiAl薄板的显微组织的显微照片。
在不同附图中相同的附图标记和标示表示同一零件。
具体实施方式
本发明的工艺通过将密闭的铸态γ-TiAl合金预制坯直接滚轧形成制品而生产出多种包含γ-TiAl的制品。与制造γ-TiAl制品的现有技术工艺不同,本发明的铸态γ-TiAl合金预制坯在密闭之前不经受附加的处理步骤例如雾化、热等静压压制、挤出或清理。一旦γ-TiAl合金被浇注成预制坯,该铸态γ-TiAl合金预制坯就被密闭并直接滚轧成包含γ-TiAl的制品。
为了进行解释说明,给出以下定义。“铸态γ-TiAl合金”指的是没有经受任何后继处理步骤例如雾化、热等静压压制、清理、挤出等的γ-TiA1浇注材料。“铸态γ-TiAl合金预制坯”指的是具有适于按传统滚轧工艺进行滚轧的形状并且用一种包壳材料密闭的铸态γ-TiAl合金,而且可选地在两者之间布置一种隔热材料。在此使用的术语“隔热材料”指的是一种起热屏障作用因而使该铸态γ-TiAl合金预制坯绝热的材料。
下面参见图2,图中示出了本发明工艺的流程图。在步骤1中可首先形成γ-TiAl合金熔体。该γ-TiAl合金熔体可使用本领域中已公知的多种熔化技术中的任何一种来形成。例如,该熔体可在适当的容器例如水冷铜坩埚中形成,所使用的熔化技术例如为,但不限于,真空电弧熔化(VAR)、真空感应熔化(VIM)、感应渣壳熔化(ISM)、电子束熔化(EB)以及等离子电弧熔化(PAM)。按照真空电弧熔化技术,一个电极用该合金成分制成并通过直接电弧加热也就是说在该电极和该坩埚之间形成的电弧进行熔化,并进入一个位于下面的不反应的坩埚之中。一个有效地冷却的铜坩埚在这方面是有用的。真空感应熔化包括在不反应难熔坩埚内加热和熔化合金炉料,所用的方法为:利用一个环绕的通电感应线圈来感应加热该炉料。感应渣壳熔化包括在一个被适当感应线圈围绕的水冷、分段、不污染铜坩埚内感应加热和熔化合金炉料。而电子束熔化和等离子电弧熔化两者包括利用对准有效冷却铜坩埚内炉料的电子束或等离子羽状流的构型进行熔化。
在使用本发明工艺时可使用多种不同的γ-TiAl合金,例如二元γ-TiAl和其它γ-TiAl合金。适当的γ-TiAl合金中含有Ti和Al,并且还可含有足够量的把多种性能如改进的延展性、抗蠕变性、抗氧化性、抗冲击性等给予该γ-TiAl合金薄板的Cr、Nb、Ta、W、Mn、B、C和Si。不同的γ-TiAl合金可大致包括以下原子量百分比的材料。
    元素     原子量百分比
    Ti     约46-54%
    Al     约44-47%
    Nb     约2-6%
    Cr     约1-3%
    Mn     约1-3%
    Cr     约1-3%
    W     约0.5-1%
    B     约0.2-0.5%
    Si     约0.1-0.4%
    C     约0.2%
下面参见图2中的步骤2a和2b,步骤1的γ-TiAl合金熔体可使用本领域的技术人员已公知的多种铸造工艺中的任何一种被浇注成γ-TiAl合金预制坯。在图2中的步骤2a中描述的一个实施例中,γ-TiAl合金熔体可被浇注成铸锭,然后用熟悉该技术的人们已公知的任何一些工艺例如切片法形成适于使用本领域的技术人员已公知的直接滚轧工艺进行进一步处理的铸态γ-TiAl合金预制坯。优选是,该铸态γ-TiAl合金预制坯具有大致矩形的形状,符合需要的γ-TiAl制品例如薄板可更加有效和高效地通过该形状进行滚轧。在图2步骤2b示出的一个其它可选的实施例中,该γ-TiAl合金熔体可被直接铸造成适于使用本领域的技术人员已公知的直接滚轧工艺进行进一步处理的铸态γ-TiAl合金预制坯。
下面参见图2中的步骤3,该铸态γ-TiAl合金预制坯随后可被密闭或者说被封闭,而不进行现有技术γ-TiAl制造工艺执行的多个附加工艺步骤。密闭铸态γ-TiAl合金预制坯降低了该铸态γ-TiAl合金预制坯在直接滚轧高温下发生氧化的可能性。如果发生氧化,该铸态γ-TiAl合金预制坯对于其显微组织和性能而言会产生不符需要的改变。在进行密闭之前可将一种隔热材料设置在该铸态γ-TiAl合金预制坯上并且基本上覆盖后者的整个表面。该隔热层防止在该铸态γ-TiAl合金预制坯和该密闭材料之间形成低熔点共晶体。该隔热层可使用本领域的技术人员已公知的一些技术中的任何一种进行施加,例如将该隔热材料等离子喷涂在该铸态γ-TiAl合金预制坯的表面上,或者将隔热材料薄片设置在铸态γ-TiAl合金预制坯整个表面周围。适合的隔热材料包括,但不限于:钼、氧化钇、钛、钢以及包括上述至少一种材料的组合物等。一旦施加该隔热材料,可使用本领域的技术人员已公知的一些工艺中的任何一种将该铸态γ-TiAl合金设置在一种包壳材料之内。该包壳材料优选基本上覆盖上面已布置该隔热材料的该铸态γ-TiAl合金的整个表面。适合的包壳材料包括,但不限于:钢及其合金、钛及其合金以及包括上述至少一种材料的组合物等。这些包壳材料具有可与γ-TiAl合金相比的强度和高温耐受性。优选在大约1200℃(2192)和1250℃(2282)之间的温度范围内进行该铸态γ-TiAl合金的密闭。这些温度条件模拟直接滚轧工艺条件并确保等温温度条件得到满足。特别有利的是:保持等温温度条件,从而使得该铸态γ-TiAl合金预制坯不经受不符需要的显微组织改变。
下面参见图2中的步骤4,然后可将该已密闭铸态γ-TiAl合金预制坯滚轧成符合需要的制品,例如一张薄板。可以使用本领域的技术人员已公知的常规滚轧技术。例如,可在一台传统轧制机上以大约1200℃(2192)和1400℃(2552)之间,并且优选在大约1200℃(2192)和1250℃(2282)之间的温度范围内进行滚轧。在该已密闭铸态γ-TiAl制品进行滚轧之后,随后可采用本领域的技术人员已公知的一些机械或化学处理技术中的任何一种除去该密闭材料和隔热材料。在除去该密闭材料和隔热材料之后,可使用本领域的技术人员已公知的一种或多种技术对所得γ-TiAl薄板进行表面磨削,以便达到大约25密耳(0.625毫米)至100密耳(2.54毫米)的所需厚度。根据本发明的工艺,所得到的γ-TiAl薄板可具有大约25密耳(0.625毫米)至60密耳(1.5毫米)的厚度,同时仍具有可与采用传统γ-TiAl制品工艺制造的γ-TiAl薄板可比的显微组织。
以下为试验部分
实例1
用双熔VAR铸造工艺制备出一种成分为54-Ti 46-Al(按原子%)的γ-TiAl铸锭,每个铸锭的直径为180毫米且长度为410毫米。使用放电机加工工艺将该γ-TiAl铸锭切成多块7英寸×12英寸×1/2英寸的铸造γ-TiAl板。每块铸造γ-TiAl板用砂纸磨光以便除去非铸造层。利用钛隔热层将每块铸造γ-TiAl板密闭。将每块已密闭的铸造γ-TiAl板在538℃(1000)和1×10-5托压力下预热1小时。在一种非氧化气氛下以1260℃(2300)的温度对每块已密闭的铸造γ-TiAl板进行热滚轧。再次预热和热滚轧每块已密闭的铸造γ-TiAl板直到获得多块具有100密耳厚度的铸造γ-TiAl板为止。然后去除密闭材料并将该铸造γ-TiAl薄板磨削至厚度为40密耳。最终的铸造γ-TiAl薄板的尺寸为24英寸×12英寸×40密耳。图3中的显微照片示出了一块实例1铸造γ-TiAl薄板在50微米分辨率情况下的显微组织。如图所示,实例1的铸造γ-TiAl薄板中包含多个伸长的细伽马晶粒和小体积分数的α-2-Ti3Al。此外,还能看到多个伸长的片晶,即在滚轧期间不能再结晶的铸态层状结构的残余物。
实例2
用感应渣壳熔化铸造工艺制备出一种成分为48.5-Ti 46.5-Al 4-(Cr、Nb、Ta、B)(按原子%)的γ-TiAl铸锭,每个铸锭的直径为180mm且长度为410mm。使用放电机加工工艺将该γ-TiAl铸锭切成多块7英寸×12英寸×1/2英寸的铸造γ-TiAl板。每块铸造γ-TiAl板用砂纸磨光以便除去非铸造层。利用钛隔热层将每块铸造γ-TiAl板密闭。将每块已密闭的铸造γ-TiAl板在538℃(1000)和1×10-5托压力下预热1小时。在一种非氧化气氛下以1260℃(2300)的温度对每块已密闭的铸造γ-TiAl板进行热滚轧。再次预热和热滚轧每块已密闭的铸造γ-TiAl板直到获得多块具有100密耳厚度的铸造γ-TiAl薄板为止。然后去除密闭材料并将该铸造γ-TiAl薄板磨削至厚度为40密耳。最终的铸造γ-TiAl薄板的尺寸为24英寸×12英寸×40密耳。图4中的显微照片示出了一块实例2铸造γ-TiAl薄板在100微米分辨率情况下的显微组织。如图所示,实例2的铸造γ-TiAl薄板中包含多个伸长的细伽马晶粒和小体积分数的伸长的α-2-Ti3Al和TiB2颗粒。
实例3
一种成分为49-Ti 47-Al 2-Nb 2-Mn(按原子百分比)和体积百分比为0.08%的TiB2并且大小为4.8英寸×3.4英寸×0.6英寸的商业可提供的47XD γ-TiAl铸板。利用钛隔热层将每块铸造γ-TiAl板密闭。将每块已密闭的铸造γ-TiAl板在538℃(1000)和1×10-5托压力下预热1小时。在一种非氧化气氛下以1260℃(2300)的温度对每块已密闭的铸造γ-TiAl板进行热滚轧。加热和热滚轧每块已密闭的铸造γ-TiAl板直到获得多块具有100密耳厚度的铸造γ-TiAl薄板为止。然后去除密闭材料并将该铸造γ-TiAl薄板磨削至厚度为27密耳。最终的铸造γ-TiAl薄板的尺寸为27英寸×6.3英寸×27密耳。图5中的显微照片示出了一块实例3铸造γ-TiAl薄板在20微米分辨率情况下的显微组织。该实例3铸造γ-TiAl薄板中包含多个伸长的细伽马晶粒和小体积分数的伸长的α-2-Ti3Al和TiB2颗粒。
如同在图3-5显微照片中的实例1-3的显微组织可以看到的那样,根据本发明的工艺制造的直接滚轧铸造γ-TiAl薄板内均未发现气孔。现在参见下面的表1,与使用Alcoa Howmet Castings of Cleveland,Ohio的商业可提供的铸态、热等静压压制、热处47XD γ-TiAl相比,本发明实例3的铸造γ-TiAl薄板具有一些增强的机械性能。
表1
  项目       屈服强度(千磅/平方英寸)       极限抗拉强度(千磅/平方英寸)      断裂应变率,%
    室温(70)   1300     室温(70) 1300     室温(70)   1300
  实例347XD单向滚轧(27密耳) 73 51 80 85 1.0 22
  47XD铸态、HIP+热处理 58 53 70 79 1.0 5
γ-TiAl合金在温度高于1300(704℃)-1400(760℃)的韧性-脆性转化温度时具有较高的可延展性。在这种状况下,γ-TiAl合金还在高温下具有低强度并且容易再结晶。由于已知γ-TiAl合金的这些固有特性,铸态γ-TiAl合金预制坯一旦在等温的温度状态下被密闭,就能成功地直接滚轧成薄板。在不首先经受附加处理步骤例如雾化、热等静压压制、挤出或修整的情况下,已密闭铸态γ-TiAl合金预制坯可取消现有技术工艺采用的多个昂贵和浪费的中间步骤。可以预测,本发明的工艺能够有效地将工艺成本缩减超过传统粉末冶金和铸锭冶金工艺成本的35%以上。
采用本发明的直接滚轧工艺制造出的γ-TiAl制品还具有超过采用现有技术工艺所制造γ-TiAl产品的增强的物理性能。传统的粉末冶金工艺包括在例如存在氩的气氛下执行的多个步骤。可以认识到,气氛微粒例如氩气体可被俘获在该γ-TiAl合金内。一旦该氩微粒发生扩散,所得到的γ-TiAl合金制品颗粒将具有热诱发气孔和较差的延性、较低的耐温性以及减小的耐冲击性。本发明的直接滚轧工艺借助于取消导致热诱发气孔的附加处理步骤而避免了这种危险。
应该理解,本发明不受在此描述和图示说明的限制,所述描述和图示说明仅被视为用来说明实施本发明的最佳模式,而且所述描述和图示可允许在形式、尺寸、零件布置和作业细节方面作出变型。本发明旨在包括由权利要求书确定的精神和范围内的所有这些变型。

Claims (16)

1.一种用于生产γ-TiAl薄板的工艺,所述工艺包括以下步骤:
形成γ-TiAl合金熔体;
浇注所述γ-TiAl合金以形成铸态γ-TiAl合金;
密闭所述铸态γ-TiAl合金以形成铸态γ-TiAl合金预制坯;以及滚轧该铸态γ-TiAl合金预制坯以形成包含γ-TiAl的薄板。
2.根据权利要求1所述的工艺,其特征在于,浇注所述γ-TiAl合金的步骤包括:
浇注所述γ-TiAl合金的铸锭;以及
切开所述γ-TiAl合金铸锭以便形成所述铸态γ-TiAl合金。
3.根据权利要求1所述的工艺,其特征在于,所述密闭步骤包括:
向所述铸态γ-TiAl合金施加隔热材料,以及
将所述铸态γ-TiAl合金密闭在包壳材料内。
4.根据权利要求1所述的工艺,其特征在于,在大约1200℃和1250℃之间的温度范围内执行所述密闭步骤。
5.根据权利要求1所述的工艺,其特征在于,所述滚轧步骤包括:
在大约1200℃和1400℃之间的温度范围内滚轧所述铸态γ-TiAl合金预制坯;以及
从所述薄板上除去一种或多种密闭材料。
6.根据权利要求5所述的工艺,其特征在于,所述温度范围在大约1200℃和1250℃之间。
7.根据权利要求5所述的工艺,其特征在于,除去步骤包括机械去除包括包壳材料和隔热材料的所述一种或多种密闭材料。
8.根据权利要求5所述的工艺,其特征在于,除去步骤包括化学去除包括包壳材料和隔热材料的所述一种或多种密闭材料。
9.由根据一种工艺生产出的薄板制成的制品,所述工艺包括以下步骤:
形成γ-TiAl合金熔体;
浇注所述γ-TiAl合金以形成铸态γ-TiAl合金;
密闭所述铸态γ-TiAl合金以形成铸态γ-TiAl合金预制坯;以及滚轧该铸态γ-TiAl合金预制坯以形成包含γ-TiAl的薄板。
10.一种预制坯,所述预制坯包括:设置在包壳材料内的铸态γ-TiAl合金材料,其中所述铸态γ-TiAl合金材料具有适于进行滚轧而形成薄板的形状。
11.根据权利要求10所述的预制坯,其特征在于,所述铸态γ-TiAl合金材料包含钛、铝以及从包括铬、铌、钽、钨、锰、碳、硅和硼的组中选定的一种或多种金属。
12.根据权利要求10所述的预制坯,其特征在于,所述包壳材料是一种金属合金。
13.根据权利要求10所述的预制坯,进一步包括设置在所述铸态γ-TiAl合金材料和所述包壳材料之间的隔热材料。
14.根据权利要求13所述的预制坯,其特征在于,所述隔热材料是一种金属合金。
15.根据权利要求13所述的预制坯,其特征在于,所述隔热材料是覆盖层或箔。
16.根据权利要求10所述的预制坯,其特征在于,所述形状大致呈矩形。
CNA2006101446049A 2005-11-09 2006-11-09 铸造伽马钛铝合金的直接滚轧 Pending CN1962179A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/270103 2005-11-09
US11/270,103 US7923127B2 (en) 2005-11-09 2005-11-09 Direct rolling of cast gamma titanium aluminide alloys

Publications (1)

Publication Number Publication Date
CN1962179A true CN1962179A (zh) 2007-05-16

Family

ID=37762215

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006101446049A Pending CN1962179A (zh) 2005-11-09 2006-11-09 铸造伽马钛铝合金的直接滚轧

Country Status (8)

Country Link
US (1) US7923127B2 (zh)
EP (1) EP1785502A1 (zh)
JP (1) JP2007131949A (zh)
KR (1) KR20070049970A (zh)
CN (1) CN1962179A (zh)
CA (1) CA2567421A1 (zh)
IL (1) IL178955A0 (zh)
SG (1) SG132614A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320648A (zh) * 2012-03-24 2013-09-25 通用电气公司 铝化钛金属间组合物
US10597756B2 (en) 2012-03-24 2020-03-24 General Electric Company Titanium aluminide intermetallic compositions
CN111349804A (zh) * 2020-02-28 2020-06-30 哈尔滨工业大学 一种Ti2AlNb合金板材制备方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944983B1 (fr) * 2009-04-30 2011-07-15 Cefival Procede et installation de fabrication de produits allonges en titane
AT508322B1 (de) * 2009-06-05 2012-04-15 Boehler Schmiedetechnik Gmbh & Co Kg Verfahren zur warmformgebung eines werkstückes
CN101774126B (zh) * 2009-12-29 2012-02-08 江苏常铝铝业股份有限公司 一种电站空冷岛用铝合金复合板带的制造方法及其产品
CN101811137A (zh) * 2010-04-13 2010-08-25 中南大学 一种TiAl基合金轧制板材的制备方法
US9175568B2 (en) 2010-06-22 2015-11-03 Honeywell International Inc. Methods for manufacturing turbine components
CN101906548B (zh) * 2010-07-09 2012-06-06 哈尔滨工业大学 TiB2颗粒增强TiAl基复合材料的制备方法
US8876992B2 (en) * 2010-08-30 2014-11-04 United Technologies Corporation Process and system for fabricating gamma TiAl turbine engine components
US9085980B2 (en) 2011-03-04 2015-07-21 Honeywell International Inc. Methods for repairing turbine components
US8506836B2 (en) 2011-09-16 2013-08-13 Honeywell International Inc. Methods for manufacturing components from articles formed by additive-manufacturing processes
US8858697B2 (en) 2011-10-28 2014-10-14 General Electric Company Mold compositions
US9266170B2 (en) 2012-01-27 2016-02-23 Honeywell International Inc. Multi-material turbine components
US9011205B2 (en) 2012-02-15 2015-04-21 General Electric Company Titanium aluminide article with improved surface finish
US8932518B2 (en) 2012-02-29 2015-01-13 General Electric Company Mold and facecoat compositions
US20150093287A1 (en) * 2012-05-16 2015-04-02 Gkn Aerospace Sweden Ab Applying a titanium alloy on a substrate
US8906292B2 (en) 2012-07-27 2014-12-09 General Electric Company Crucible and facecoat compositions
US9120151B2 (en) * 2012-08-01 2015-09-01 Honeywell International Inc. Methods for manufacturing titanium aluminide components from articles formed by consolidation processes
US8708033B2 (en) 2012-08-29 2014-04-29 General Electric Company Calcium titanate containing mold compositions and methods for casting titanium and titanium aluminide alloys
US8992824B2 (en) 2012-12-04 2015-03-31 General Electric Company Crucible and extrinsic facecoat compositions
US9592548B2 (en) 2013-01-29 2017-03-14 General Electric Company Calcium hexaluminate-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
WO2014149122A2 (en) * 2013-03-15 2014-09-25 United Technologies Corporation Process for manufacturing a gamma titanium aluminide turbine component
US9192983B2 (en) 2013-11-26 2015-11-24 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US9511417B2 (en) 2013-11-26 2016-12-06 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US10391547B2 (en) 2014-06-04 2019-08-27 General Electric Company Casting mold of grading with silicon carbide
US9963977B2 (en) 2014-09-29 2018-05-08 United Technologies Corporation Advanced gamma TiAl components
FR3036640B1 (fr) 2015-05-26 2017-05-12 Snecma Procede de fabrication d'une aube de turbomachine en tial
CN105695910B (zh) * 2016-02-03 2017-06-16 中南大学 一种TiAl基合金板材超塑性成形方法
RU2741609C1 (ru) * 2020-05-28 2021-01-27 Акционерное общество "ГОЗНАК" Способ изготовления композиционного многослойного изделия на основе и многослойное изделие
CN114850215B (zh) * 2022-04-27 2023-01-10 燕山大学 一种TiAl合金板材轧制方法及装置
CN115404381B (zh) * 2022-09-14 2023-06-30 西北工业大学 一种TiAl合金薄板及其低成本轧制方法
CN117798670B (zh) * 2024-02-29 2024-05-03 朝阳市班瑞金属新材料科技有限公司 一种金属加工用冷轧复合装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472652A (en) 1987-09-14 1989-03-17 Fujitsu Ltd Test monitoring and controlling system
US5411700A (en) * 1987-12-14 1995-05-02 United Technologies Corporation Fabrication of gamma titanium (tial) alloy articles by powder metallurgy
JPH0818044B2 (ja) 1989-01-23 1996-02-28 株式会社神戸製鋼所 金属間化合物薄板の製造方法
US4966816A (en) * 1989-06-07 1990-10-30 Titanium Metals Corporation Of America (Timet) Pack assembly for hot rolling
US5028491A (en) 1989-07-03 1991-07-02 General Electric Company Gamma titanium aluminum alloys modified by chromium and tantalum and method of preparation
JPH0696760B2 (ja) 1989-09-27 1994-11-30 京都大学長 TiA▲l▼の圧延加工法
JPH03197656A (ja) * 1989-12-25 1991-08-29 Nippon Steel Corp TiAl系金属間化合物の熱間加工方法
US5284620A (en) * 1990-12-11 1994-02-08 Howmet Corporation Investment casting a titanium aluminide article having net or near-net shape
JP2686020B2 (ja) 1991-07-05 1997-12-08 新日本製鐵株式会社 超塑性変形能を有するβ+γTiAl基金属間化合物合金とその製造方法
JP2729011B2 (ja) 1991-07-05 1998-03-18 新日本製鐵株式会社 高強度を有するTiAl基金属間化合物合金及びその製造方法
US5424027A (en) * 1993-12-06 1995-06-13 The United States Of America As Represented By The Secretary Of The Air Force Method to produce hot-worked gamma titanium aluminide articles
JPH07251202A (ja) 1994-03-11 1995-10-03 Sumitomo Metal Ind Ltd 純チタン熱間圧延板材の製造方法
US5442847A (en) * 1994-05-31 1995-08-22 Rockwell International Corporation Method for thermomechanical processing of ingot metallurgy near gamma titanium aluminides to refine grain size and optimize mechanical properties
JPH08225906A (ja) 1995-02-22 1996-09-03 Kobe Steel Ltd TiAl基合金薄板およびその製造方法
JPH08238503A (ja) 1995-03-02 1996-09-17 Nippon Steel Corp TiAl基金属間化合物の熱間加工法
JP3328557B2 (ja) * 1997-09-11 2002-09-24 新日本製鐵株式会社 高強度を有するTiAl基金属間化合物合金及びその製造方法
DE19747257C2 (de) * 1997-10-25 2001-04-26 Geesthacht Gkss Forschung Vorrichtung zur Kapselung von Rohlingen aus metallischen Hochtemperatur-Legierungen
AT2881U1 (de) * 1998-06-08 1999-06-25 Plansee Ag Verfahren zur herstellung eines tellerventiles aus gamma-tial-basislegierungen
JP4287991B2 (ja) * 2000-02-23 2009-07-01 三菱重工業株式会社 TiAl基合金及びその製造方法並びにそれを用いた動翼

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320648A (zh) * 2012-03-24 2013-09-25 通用电气公司 铝化钛金属间组合物
US10597756B2 (en) 2012-03-24 2020-03-24 General Electric Company Titanium aluminide intermetallic compositions
CN111349804A (zh) * 2020-02-28 2020-06-30 哈尔滨工业大学 一种Ti2AlNb合金板材制备方法
CN111349804B (zh) * 2020-02-28 2022-01-14 哈尔滨工业大学 一种Ti2AlNb合金板材制备方法

Also Published As

Publication number Publication date
KR20070049970A (ko) 2007-05-14
US7923127B2 (en) 2011-04-12
CA2567421A1 (en) 2007-05-09
EP1785502A1 (en) 2007-05-16
JP2007131949A (ja) 2007-05-31
US20070107202A1 (en) 2007-05-17
SG132614A1 (en) 2007-06-28
IL178955A0 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
CN1962179A (zh) 铸造伽马钛铝合金的直接滚轧
Liu et al. Design of powder metallurgy titanium alloys and composites
JP5239022B2 (ja) 高強度高靭性マグネシウム合金及びその製造方法
US5429796A (en) TiAl intermetallic articles
US9255309B2 (en) Fine grain niobium sheet via ingot metallurgy
US8668760B2 (en) Method for the production of a β-γ-TiAl base alloy
CN108787750B (zh) 一种β凝固TiAl合金板材的一步大变形轧制方法
CN111057903B (zh) 一种大规格钛合金锁紧环及其制备方法
WO2016127716A1 (zh) 一种高强韧合金材料及其半固态烧结制备方法和应用
CN110643853B (zh) 一种高强韧高稳定性TiAl-Ni合金板材的制备方法
WO2002083964A1 (en) Quasi-crystalline phase hardened magnesium alloy with excellent hot formability and method for preparing the same
CN104942271B (zh) 一种铍铝合金板材及其制备方法
CN103170600B (zh) 一种铝硅合金分闸件半固态流变压铸成形工艺
CN106521238A (zh) 含纳米Y2O3的细晶高强TiAl合金及其制备方法
Chen et al. A novel method for net-shape forming of hypereutectic Al–Si alloys by thixocasting with powder preforms
EP0445114B1 (en) Thermomechanical processing of rapidly solidified high temperature al-base alloys
US6066291A (en) Nickel aluminide intermetallic alloys for tooling applications
US20030185701A1 (en) Process for the production of Al-Fe-V-Si alloys
Fujii et al. Al-Sc master alloy prepared by mechanical alloying of aluminum with addition of Sc2O3
Hong et al. Hot deformation behaviour and ledeburite refinement mechanism for hypoeutectoid low alloy white cast irons
JP2019189907A (ja) Al−Si−Mg系アルミニウム合金板
US6033498A (en) Thermal processing of nickel aluminide alloys to improve mechanical properties
GB2536483B (en) A method of Forming a Metal Component
CN116121592A (zh) 一种高强度、抗蠕变、高耐蚀锌合金及其制备方法
CN117286357A (zh) 大尺寸等温锻造模具用tzm合金及其制备工艺和用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication