US20030185701A1 - Process for the production of Al-Fe-V-Si alloys - Google Patents

Process for the production of Al-Fe-V-Si alloys Download PDF

Info

Publication number
US20030185701A1
US20030185701A1 US10/112,052 US11205202A US2003185701A1 US 20030185701 A1 US20030185701 A1 US 20030185701A1 US 11205202 A US11205202 A US 11205202A US 2003185701 A1 US2003185701 A1 US 2003185701A1
Authority
US
United States
Prior art keywords
magnesium
alloys
melt
master alloys
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/112,052
Inventor
Kanai Sahoo
Sivaramakrishnan Chittur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Council of Scientific and Industrial Research CSIR
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PCT/IN2002/000071 priority Critical patent/WO2003080881A1/en
Application filed by Individual filed Critical Individual
Priority to US10/112,052 priority patent/US20030185701A1/en
Assigned to COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH reassignment COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHITTUR, SIVARAMAKRISHNAN S., SAHOO, KANAI L.
Publication of US20030185701A1 publication Critical patent/US20030185701A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • the present invention relates to an improved process for the production of high strength and high wear resistant Al—Fe—V—Si alloys.
  • the present invention will be useful for the industries engaged in production of high strength wear resistant aluminium alloys which are widely used in aerospace, transport and other engineering sectors.
  • U.S. Pat. No. 2,963,780 discloses a method for obtaining improved tensile strength at 350° C. in aluminium based alloys (see also: U.S. Pat. No. 2,967,351; U.S. Pat. No. 3,462,248).
  • the alloys are formed by atomization of the liquid metals into finely divided droplets by high velocity gas streams. The droplets are then rapidly cooled to obtain the desired alloys. In atomization process the molten alloy is impacted by a high energy fluid for obtaining powders. The powders are cold pressed, degassed followed by hot consolidation (E. J. Lavernia, J. D Ayers, T. S. Srivatsan, International Materials Review, vol.
  • the product capacity is limited to a small size only because the ribbon or powder so obtained are compacted or sintered to a small for obtaining homogeneous structure.
  • the main object of the present invention is to establish melting treatment process for the production of cast and mechanically worked high strength and high wear resistant Al-fe-V—Si alloys leading to superior properties.
  • the present invention provides a process for the production of high strength and high wear resistant Al—Fe—V—Si alloy which comprises
  • the degassing of the melt is effected by adding flux or argon gas.
  • the magnesium used is pure magnesium of 99.8% purity.
  • the pure aluminium used is of 99.6% purity.
  • the magnesium used is magnesium bearing master alloys selected from the group consisting of Al—Mg, F 3 —Si—Mg and Ni—Mg master alloys.
  • the magnesium bearing master alloys used is selected from Al-10-20% Mg, Fe—Si-9-20% Mg and Ni-10-20% Mg.
  • the process of present invention makes use of melting and alloying in a furnace. Casting are made in die casting or in permanent mould for ensuring a cooling rate 10-50° C./s, which is common in foundry practices.
  • the microstructure of the cast materials reveals ten-armed star shaped particles with composition similar to Al 3 F 3 with some amount of V and Si along with other interdendritic Al—Fe-silicide phases. These star shaped particles act as notches, which are deleterious to the toughness of the materials.
  • the chunky star shaped particles prevent proper feeding of the casting which results in microporosity in castings. Thus, the mechanical properties of the samples deteriorate to a greater extent.
  • the present invention aims to modify/block primary intermetallic phases as well as interdendritic silicide phases by treating the melt with elemental magnesium or magnesium bearing master alloys to get a structure containing uniform distribution of intermetallic phases.
  • the uniform distribution of primary and interdendritic phases are obtained with addition of magnesium or magnesium bearing master alloys because morphology of the interface changes, thus resulting in the creation of more nuclei. It also breaks dendrite of the primary particles leading to structural change and fine particles.
  • Cooling rate required is much lesser than the existing of rapid solidification.
  • the process of present invention has achieved distribution of refined primary intermetallic and interdendritic suicide phases.
  • the cast and mechanically worked products produced by the present invention exhibit comparable mechanical properties to those produced by rapid solidification processing route.

Abstract

The present invention relates to an improved process for the production of high strength and high wear resistant Al—Fe—V—Si alloys. The present invention comprises modifying/blocking primary intermetallic phases as well as interdendritic silicide phases by treating the melt with elemental magnesium or magnesium bearing master alloys to get a structure containing uniform distribution of intermetallic phases. The uniform distribution of primary and interdendritic phases are obtained with addition of magnesium or magnesium bearing master alloys because morphology of the interface changes resulting in the creation of more nuclei. It also breaks dendrite of the primary particles leading to structural change and fine particles. The present invention is useful for the industries engaged in production of high strength wear resistant aluminium alloys which are widely used in aerospace, transport and other engineering sectors.

Description

    FIELD OF THE INVENTION
  • The present invention relates to an improved process for the production of high strength and high wear resistant Al—Fe—V—Si alloys. The present invention will be useful for the industries engaged in production of high strength wear resistant aluminium alloys which are widely used in aerospace, transport and other engineering sectors. [0001]
  • BACKGROUND OF THE INVENTION
  • In the general melting and casting process, the wide differences of densities and melting point of Al, Fe, V and Si couple with low diffusivity of Fe, V in Al pose problems in producing cast homogeneous structure. Al—Fe—V—Si alloys are generally produced and shaped through a costly technique or rapid solidification—powder compacting—extrusion/rolling route. In the prior art rapid solidification processes, such as atomization and melt spinning are used to obtain rapidly solidified alloy powders or ribbons respectively. [0002]
  • U.S. Pat. No. 2,963,780 discloses a method for obtaining improved tensile strength at 350° C. in aluminium based alloys (see also: U.S. Pat. No. 2,967,351; U.S. Pat. No. 3,462,248). The alloys are formed by atomization of the liquid metals into finely divided droplets by high velocity gas streams. The droplets are then rapidly cooled to obtain the desired alloys. In atomization process the molten alloy is impacted by a high energy fluid for obtaining powders. The powders are cold pressed, degassed followed by hot consolidation (E. J. Lavernia, J. D Ayers, T. S. Srivatsan, International Materials Review, vol. 37, No. 1 (1992), 1-44). Then it is hot worked for obtaining final product. The melt spinning process employed a high pressure shock wave of gas to propel a small droplet of melt against a clean rotating metal wheel to produce a brittle ribbon or thin sheet. The ribbons are pulverized to obtain powder. The powders may be cold pressed and sintered or consolidated and heat treated (E. J. Lavernia, J. D. Ayers, T. S. Srivatsan, International Materials Review, vol. 37, No. 1 (1992), 1-44). Then it is extruded or rolled to make material for final product. U.S. Pat. No. 4,347,076 discloses formation of high strength aluminum alloys at temperatures of about 350° C. obtained by rapid solidification techniques. However, alloys obtained herein have low engineering ductility at room temperature and thus cannot be used in structural applications where a minimum tensile elongation of about 3% is required, for example in gas turbines. [0003]
  • Rapid solidification techniques are however, capital intensive and require high skill of operation because: [0004]
  • (i) the cooling rate is very high (10 to 10) which is difficult to achieve unless huge capital cost equipment is used [0005]
  • (ii) the powders/ribbons so obtained are not of uniform size leading to deterioration of mechanical properties [0006]
  • (iii) the steps of consolidation of the rapidly solidified alloy powders/melt spin ribbons and process to shape give additional cost to the technique [0007]
  • (iv) the product capacity is limited to a small size only because the ribbon or powder so obtained are compacted or sintered to a small for obtaining homogeneous structure. [0008]
  • It is therefore important to produce alloys which overcome the above problems associated with the art and at the same time where the manufacturing processes are not capital intensive. [0009]
  • OBJECTS OF THE INVENTION
  • The main object of the present invention is to establish melting treatment process for the production of cast and mechanically worked high strength and high wear resistant Al-fe-V—Si alloys leading to superior properties. [0010]
  • It is an object of the invention to provide a process for the production of Al—Fe—V—Si alloy in cast route whose mechanical properties are comparable with those of identical alloy made by the known process as mentioned above. [0011]
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention provides a process for the production of high strength and high wear resistant Al—Fe—V—Si alloy which comprises [0012]
  • (i) melting pure aluminum, Al—Fe—V, Al—Si master alloys at a temperature in the range of 800 to 1000° C. to obtain a melt of Al—Fe—V—Si in the following composition ranges. [0013]
  • Fe=8 to 10 wt %, V=0.8 to 1.0 wt %, Si=0.8 to 1.7 wt % and balance Al, [0014]
  • (ii) degassing the said melt [0015]
  • (iii) adding magnesium or magnesium bearing master alloys in the range of 0.05-1.0 wt % to the degassed melt. [0016]
  • (iv) pouring the resultant melt in a die to obtain a casting followed by cooling [0017]
  • (v) heating the casting obtained to a temperature in the range of 350 to 500° C. [0018]
  • (vi) hot rolling/extrusion of the homogenized casting in the temperature range of 250 to 500° C. [0019]
  • In another embodiment of the invention the degassing of the melt is effected by adding flux or argon gas. [0020]
  • In still another embodiment of the invention the magnesium used is pure magnesium of 99.8% purity. [0021]
  • In an embodiment of the invention the pure aluminium used is of 99.6% purity. [0022]
  • In yet another embodiment of the invention the magnesium used is magnesium bearing master alloys selected from the group consisting of Al—Mg, F[0023] 3—Si—Mg and Ni—Mg master alloys.
  • In another embodiment of the invention the magnesium bearing master alloys used is selected from Al-10-20% Mg, Fe—Si-9-20% Mg and Ni-10-20% Mg. [0024]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The process of present invention makes use of melting and alloying in a furnace. Casting are made in die casting or in permanent mould for ensuring a cooling rate 10-50° C./s, which is common in foundry practices. The microstructure of the cast materials reveals ten-armed star shaped particles with composition similar to Al[0025] 3F3 with some amount of V and Si along with other interdendritic Al—Fe-silicide phases. These star shaped particles act as notches, which are deleterious to the toughness of the materials. Moreover, the chunky star shaped particles prevent proper feeding of the casting which results in microporosity in castings. Thus, the mechanical properties of the samples deteriorate to a greater extent.
  • The present invention aims to modify/block primary intermetallic phases as well as interdendritic silicide phases by treating the melt with elemental magnesium or magnesium bearing master alloys to get a structure containing uniform distribution of intermetallic phases. The uniform distribution of primary and interdendritic phases are obtained with addition of magnesium or magnesium bearing master alloys because morphology of the interface changes, thus resulting in the creation of more nuclei. It also breaks dendrite of the primary particles leading to structural change and fine particles. [0026]
  • The following examples are given by way of illustration and should not be construed to limit the scope of invention.[0027]
  • EXAMPLE 1
  • 2 kg of Al-8.0% Fe-0.8% V=0.9% Si alloy was melted in a clay bonded graphite crucible in electric resistance furnace. The alloy was modified with 0.5% pure magnesium. The materials taken were metallic silicon 18 gm, ferro-vanadium 25 gm, aluminium—30%, iron master alloy 510 gm. 0.5% pure magnesium (10 gm) was used to modify the alloy. After melting the melt was kept at a temperature of 860° C. for complete dissolution of solute elements. Degassing treatment was done by pure argon followed by magnesium treatment at temperature of 850° C. The melt was poured in metallic mould of 30 nun diameter. The specimen so obtained was evaluated for microstructure and mechanical properties. The microstructure was uniform distribution of primary and interdendritic phases in aluminium matrix. The mechanical properties were reported in Table-1. [0028]
    TABLE 1
    Mechanical properties of unmodified and modified alloys
    0.2% proof
    strength Strength Elongation
    Alloy composition Condition of the alloy (kg/mm2) (kg/mm2) %
    Al-8.3Fe-0.8 V-0.9 Si As cast, untreated 12.5 13 2.5
    Al-8.3Fe-O.8 V-0.9 Si 0.5% Mg treated 18 20 5
    Al-8.3Fe-0.8 V-O.9 Si 1.0% Mg treated 19 22 6.5
    Al-8.3Fe-0.5 V-0.9 Si 1.0% of Al-20% Mg treated 21 25 7
    Al-8.3Fe-0.8 V-0.9 Si 1.5% of Al-20% Mg treated 23 26 8
    Al-8.3Fe-0.8 V-0.9 Si 0.5% of Ni-20% Mg treated 25 29 9
    Al-8.3Fe-0.8 V-0.9 Si 1.0% of Ni-20% Mg treated 27 32 9.5
  • EXAMPLE 2
  • 2 k.g of Al-8.0% Fe-0.8% V-0.9% Si alloy was melted in clay bonded graphite crucible in electric resistance furnace. The melt was modified with 1.0% of aluminum 20% magnesium master alloy 20 gm of master alloy was taken. The microstructure obtained by this modification was more uniform distribution of primary and interdendritic phase. The particle size distribution was liner than pure magnesium treatment. The mechanical properties were shown in Table-1. The alloys were further hot rolled at a temperature of 350° C. and deformation was 75%. The mechanical properties was shown in Table-2 [0029]
    TABLE 2
    Mechanical Properties of hot worked alloys,
    hot rolled at 350° C., reduction 75%
    0.2% proof
    strength Strength Elongation
    Alloy composition Condition of the alloy (kg/mm2) (kg/mm2) %
    Al-8.3Fe-0.8 V-0.9 Si 1.0% of Al-20% Mg 26 32 8.5
    Al-8.3Fe-0.8 V-0.9 Si 1.5% of Al029% Mg treated 29 35 9.0
    Al-8.3Fe-0.8 V-0.9 Si 0.5% of Ni-20% Mg treated 29.5 35 12
    Al-8.3Fe-0.8 V-0.9 Si 1.0% of Ni-20% Mg treated 32 38 11.5
  • EXAMPLE 3
  • 3 kg of aluminum 08.3% iron-0.8% vanadium-0.9% silicon alloy was melted in a clay bonded graphite crucible in electric resistance furnace. The alloy was modified with 1.0% of nickel—20% magnesium The materials taken were silicon 30 gm, ferro-vanadium 38 gm, aluminium—30% iron master alloy 780 gm, nickel magnesium 30 gm. After degassing the melt the alloy was modified. Prior to modification the master alloy was preheated to 250° C. The microstructure obtained by modification was more uniform distribution or primary and interdentic phase. The particle size distribution was finer than pure magnesium treatment. The mechanical properties were shown in Table-1. The alloys were further hot rolled at a temperature of 350° C. and deformation was 75%. The mechanical properties are shown in Table-2. [0030]
  • By the process of present invention a cast high strength and high wear resistant Al—Fe—V—Si alloy having uniforms distribution of primary phases in the form of cuboidal, hexagonal, rectangular shape and refined interdendritic phase has been achieved. The properties of the alloy produced by the process of present invention are comparable to those obtained known process. The mechanical properties also improved considerably after hot working as shown in Table 1 and 2 above. [0031]
  • The Main Advantages of Present Invention Are: [0032]
  • 1. The steps involved for making the alloy are simple economic and takes much shorter time than the existing process of rapid solidification route. [0033]
  • 2. Costly equipment for making powders/ribbons are avoided in the process of present invention. [0034]
  • 3. Cooling rate required is much lesser than the existing of rapid solidification. [0035]
  • 4. The process of present invention has achieved distribution of refined primary intermetallic and interdendritic suicide phases. [0036]
  • 5. The cast and mechanically worked products produced by the present invention exhibit comparable mechanical properties to those produced by rapid solidification processing route. [0037]
  • 6. The cost of production of the present invention is much cheaper than the existing process of rapid solidification route. [0038]

Claims (6)

We claim:
1. A process for the production of high strength and high wear resistant Al—Fe—V—Si alloy which comprises
(i) melting pure aluminum, Al—Fe—V, Al—Si master alloys at a temperature in the range of 800 to 1000° C. to obtain a melt of Al—Fe—V—Si in the following composition ranges.
Fe=8 to 10 wt %, V=0.8 to 1.0 wt %, Si=0.8 to 1.7 wt % and balance Al,
(ii) degassing the said melt
(iii) adding magnesium or magnesium bearing master alloys in the range of 0.05-1.0 wt % to the degassed melt.
(iv) pouring the resultant melt in a die to obtain a casting followed by cooling
(v) heating the casting obtained to a temperature in the range of 350 to 500° C.
(vi) hot rolling/extrusion of the homogenized casting in the temperature range of 250 to 500° C.
2. A process as claimed in claim 1 wherein the pure aluminium used is of 99.6% purity.
3. A process as claimed in claim 1 wherein the degassing of the melt is effected by adding flux or argon gas.
4. A process as claimed in claim 1 wherein the magnesium used is pure magnesium of 99.8% purity.
5. A process as claimed in claim 1 wherein the magnesium used is magnesium bearing master alloys selected from the group consisting of Al—Mg, F3—Si—Mg and Ni—Mg master alloys.
6. A process as claimed in claim 5 wherein the magnesium bearing master alloys used is selected from Al-10-20% Mg, Fe—Si-9-20% Mg and Ni-10-20% Mg.
US10/112,052 2002-03-26 2002-04-01 Process for the production of Al-Fe-V-Si alloys Abandoned US20030185701A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/IN2002/000071 WO2003080881A1 (en) 2002-03-26 2002-03-26 Process for the production of al-fe-v-si alloys
US10/112,052 US20030185701A1 (en) 2002-03-26 2002-04-01 Process for the production of Al-Fe-V-Si alloys

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/IN2002/000071 WO2003080881A1 (en) 2002-03-26 2002-03-26 Process for the production of al-fe-v-si alloys
US10/112,052 US20030185701A1 (en) 2002-03-26 2002-04-01 Process for the production of Al-Fe-V-Si alloys

Publications (1)

Publication Number Publication Date
US20030185701A1 true US20030185701A1 (en) 2003-10-02

Family

ID=30002056

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/112,052 Abandoned US20030185701A1 (en) 2002-03-26 2002-04-01 Process for the production of Al-Fe-V-Si alloys

Country Status (2)

Country Link
US (1) US20030185701A1 (en)
WO (1) WO2003080881A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880086A1 (en) * 2004-12-23 2006-06-30 Renault Sas Mechanical friction component, for use as brake or clutch discs or drums, notably for motor vehicles, incorporates a friction zone of an alloy of aluminium and iron and other chosen elements
WO2007039340A1 (en) * 2005-09-30 2007-04-12 BAM Bundesanstalt für Materialforschung und -prüfung Method for producing a wear-resistant aluminum alloy, an aluminum alloy obtained according to the method, and use thereof
DE102011004133A1 (en) 2011-02-15 2012-08-16 Federal-Mogul Wiesbaden Gmbh Method for producing a lead-free, plated aluminum plain bearing
US9945018B2 (en) 2014-11-26 2018-04-17 Honeywell International Inc. Aluminum iron based alloys and methods of producing the same
RU2725498C1 (en) * 2019-09-18 2020-07-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Sintered ligature from powder materials for alloying aluminum alloys
CN112779442A (en) * 2020-12-28 2021-05-11 北京康普锡威科技有限公司 High-strength heat-resistant aluminum alloy powder for 3D printing and preparation method thereof
NL2032205B1 (en) * 2021-12-13 2023-06-27 Univ Guilin Technology Wrought aluminium-ferro alloy and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2395610C2 (en) * 2008-07-17 2010-07-27 Олег Владимирович Анисимов Procedure for generation of additives and addition alloys for production of alloys

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880086A1 (en) * 2004-12-23 2006-06-30 Renault Sas Mechanical friction component, for use as brake or clutch discs or drums, notably for motor vehicles, incorporates a friction zone of an alloy of aluminium and iron and other chosen elements
WO2007039340A1 (en) * 2005-09-30 2007-04-12 BAM Bundesanstalt für Materialforschung und -prüfung Method for producing a wear-resistant aluminum alloy, an aluminum alloy obtained according to the method, and use thereof
US20080219882A1 (en) * 2005-09-30 2008-09-11 Mathias Woydt Method for Producing a Wear-Resistant Aluminum Alloy,An Aluminum Alloy Obtained According to the Method, and Ues Thereof
DE102011004133A1 (en) 2011-02-15 2012-08-16 Federal-Mogul Wiesbaden Gmbh Method for producing a lead-free, plated aluminum plain bearing
WO2012110115A1 (en) 2011-02-15 2012-08-23 Federal-Mogul Wiesbaden Gmbh Method for producing a lead-free, plated aluminium plain bearing
DE102011004133B4 (en) * 2011-02-15 2015-11-19 Federal-Mogul Wiesbaden Gmbh Method for producing a lead-free, plated aluminum plain bearing
US9193017B2 (en) 2011-02-15 2015-11-24 Federal-Mogul Wiesbaden Gmbh Method for producing a lead-free, plated aluminium plain bearing
US9945018B2 (en) 2014-11-26 2018-04-17 Honeywell International Inc. Aluminum iron based alloys and methods of producing the same
RU2725498C1 (en) * 2019-09-18 2020-07-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Sintered ligature from powder materials for alloying aluminum alloys
CN112779442A (en) * 2020-12-28 2021-05-11 北京康普锡威科技有限公司 High-strength heat-resistant aluminum alloy powder for 3D printing and preparation method thereof
NL2032205B1 (en) * 2021-12-13 2023-06-27 Univ Guilin Technology Wrought aluminium-ferro alloy and preparation method thereof

Also Published As

Publication number Publication date
WO2003080881A1 (en) 2003-10-02

Similar Documents

Publication Publication Date Title
EP0295008B1 (en) Aluminium alloy composites
US4297135A (en) High strength iron, nickel and cobalt base crystalline alloys with ultrafine dispersion of borides and carbides
US8333924B2 (en) High-strength and high-toughness magnesium alloy and method for manufacturing same
US5897830A (en) P/M titanium composite casting
JP4923498B2 (en) High strength and low specific gravity aluminum alloy
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
US20140010700A1 (en) Direct extrusion of shapes with l12 aluminum alloys
CN1962179A (en) Direct rolling of cast gamma titanium aluminide alloys
JP2010531388A (en) Structural material of Al alloy containing Mg and high Si and method for producing the same
KR101264219B1 (en) Mg alloy and the manufacturing method of the same
JP4764094B2 (en) Heat-resistant Al-based alloy
CN109234552B (en) Method for preparing high-Cu-content Al-Cu alloy through solidification under pressure
CN104942271A (en) Beryllium-aluminum alloy sheet and manufacturing method thereof
CN110373574A (en) A kind of nearly cocrystallizing type high-strength temperature-resistant Al-Ce line aluminium alloy and preparation method
CN114351017A (en) Casting method and application of high-toughness high-heat-conductivity aluminum alloy ingot
US20030185701A1 (en) Process for the production of Al-Fe-V-Si alloys
EP0668806B1 (en) Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon alloy
CN110997959A (en) Copper-based alloy for producing bulk metallic glass
JP2807374B2 (en) High-strength magnesium-based alloy and its solidified material
CA2159121C (en) Ductile, light weight, high strength beryllium-aluminum cast composite alloy
US4726843A (en) Aluminum alloy powder product
CN114318179B (en) Preparation method of high-strength super-toughness amorphous alloy composite material with bionic structure
DE10064056B9 (en) A process for producing a sintered body of high-hardness, high-chromium-content cast iron
JP2002505375A (en) Method for producing continuous casting of sliding bearing aluminum alloy and continuous casting
Fujii et al. Al-Sc master alloy prepared by mechanical alloying of aluminum with addition of Sc2O3

Legal Events

Date Code Title Description
AS Assignment

Owner name: COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH, IND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAHOO, KANAI L.;CHITTUR, SIVARAMAKRISHNAN S.;REEL/FRAME:013119/0178

Effective date: 20020520

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION