CN1956936B - 陶瓷坯土、陶瓷成型体、陶瓷结构体以及它们的制备方法 - Google Patents

陶瓷坯土、陶瓷成型体、陶瓷结构体以及它们的制备方法 Download PDF

Info

Publication number
CN1956936B
CN1956936B CN2005800169678A CN200580016967A CN1956936B CN 1956936 B CN1956936 B CN 1956936B CN 2005800169678 A CN2005800169678 A CN 2005800169678A CN 200580016967 A CN200580016967 A CN 200580016967A CN 1956936 B CN1956936 B CN 1956936B
Authority
CN
China
Prior art keywords
ceramic
hydroxide
layered double
base soil
pottery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005800169678A
Other languages
English (en)
Other versions
CN1956936A (zh
Inventor
富田崇弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority claimed from PCT/JP2005/005882 external-priority patent/WO2005095302A1/ja
Publication of CN1956936A publication Critical patent/CN1956936A/zh
Application granted granted Critical
Publication of CN1956936B publication Critical patent/CN1956936B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及通过将含有陶瓷形成材料的成型原料混炼而得到的陶瓷坯土,作为成型原料,除陶瓷形成材料之外,还含有层状双氢氧化物,所述层状双氢氧化物相对于其与陶瓷形成材料的合计为0.5~50%质量的比例,同时用NGK粘土硬度仪测定的硬度为4~18mm。

Description

陶瓷坯土、陶瓷成型体、陶瓷结构体以及它们的制备方法
技术领域
本发明涉及陶瓷坯土、陶瓷成型体、陶瓷结构体以及它们的制备方法。更具体地说,本发明涉及在用于制备陶瓷结构体时通过防止或降低烧结时二氧化碳或有害气体的发生,可以防止或抑制环境污染、地球变暖,同时可得到裂隙等缺陷小、高强度的蜂窝结构体的陶瓷坯土、陶瓷成型体、高强度陶瓷结构体以及它们的高效制备方法。
背景技术
陶瓷制品的成型通常使用旋压成型、挤出成型、注射成型、加压成型、片材成型等方法,但如果只是陶瓷原料粉末,无法获得这些成型所必需的塑性、形状保持性等,因此要添加水、有机粘合剂等,制成的陶瓷成型原料后进行成型。例如,有人公开了一种陶瓷结构体的制备方法,该方法是:在挤出成型中,将陶瓷原料、水、有机粘合剂等混炼,将塑性得到提高的成型原料(坯土)挤出成型,干燥、烧结(例如参照专利文献1)。
关于陶瓷的成型性,使其具有塑性或形状保持性的有机粘合剂的添加量越多,则成型性越高。例如,在挤出成型中,为了成型近年来需求增加的大型结构体或泡孔状(セル)结构的复杂的结构体,与制备小型或者单纯结构的陶瓷结构体的情况相比,必需有成型性良好的混炼土(坯土),结果,不得不添加较多的有机粘合剂。
但是,有机粘合剂的添加量多,则烧结时有机粘合剂被烧掉,成型时,有机粘合剂所占有的空间产生缺陷,出现结构体的机械强度降低等问题。另外,在大型结构体中,烧结时有机粘合剂燃烧,燃烧热导致结构体内部高温,由于结构体内外温度差产生热应力,发生裂隙等缺陷,不仅使结构体的机械强度降低,也使成品率大幅降低。并且,烧结时,有机粘合剂的燃烧产生二氧化碳或有害气体,释放到大气中,产生大气污染或地球变暖等环境方面的问题。
另一方面,作为陶瓷器原料的粘土(蛙目粘土等)即使不含有上述有机粘合剂也具有可成型的塑性。表达塑性的原因有:颗粒细、形状成扁平或针状、与水生成氢键等(参照非专利文献1)。因此人们尝试将具有上述特征的化合物像以往的有机粘合剂那样添加到陶瓷原料粉末中,使陶瓷原料坯土具有塑性(参照非专利文献2、3)。
但是,对于上述非专利文献1~3所公开的膨润土、蒙脱石等具有塑性的粘土矿物,其天然产出的物质中杂质多,并且均有资源枯竭的危险性,而对于合成品或天然产出的物质的纯化物,又有比有机粘合剂价格高等问题。
专利文献1:日本特许第3227039号公报
非专利文献1:粘土手册第二版(技报堂出版、1987)
非专利文献2:人工粘土(人工粘土研究会十周年纪念刊物)
非专利文献3:The Use of Montmorillonites as Extrusion Aids forAlumina,Ceram.Engi.Sci.Proc.12[1-2].33-48页(1991)
本发明鉴于上述问题而设,其目的在于提供在用于制备陶瓷结构体时,可通过防止或降低烧结时二氧化碳或有害气体的发生,防止或抑制环境污染、地球变暖,同时可获得裂隙等缺陷少、高强度的陶瓷结构体的陶瓷坯土、陶瓷成型体、高强度陶瓷结构体以及它们的高效制备方法.
发明内容
为实现上述目的,本发明提供以下陶瓷坯土、陶瓷成型体、高强度陶瓷结构体以及它们的高效制备方法。
[1]陶瓷坯土,该陶瓷坯土通过将含有陶瓷形成材料的成型原料混炼而获得,其特征在于:上述成型原料除上述陶瓷形成材料之外,还含有下式(I)所示的层状双氢氧化物,该层状双氢氧化物相对于其与上述陶瓷形成材料的总量为0.5~50%质量的比例,且通过NGK粘土硬度仪测定的硬度为4~18mm:
[M2+ 1-xM3+ x(OH)2][(CO3)x/2·yH2O]        (I)
上式(I)中,M2+、M3+分别表示二价阳离子、三价阳离子,x为二价阳离子(M2+)和三价阳离子(M3+)的合计中三价阳离子(M3+)的组成比例,表示0.1≤x≤0.4范围的值,y为层状双氢氧化物中水的摩尔数,表示阳离子或x的值对应的任意值。
[2]上述[1]的陶瓷坯土,其中上述层状双氢氧化物是下式(II)所示的水滑石:
Mg1-zAlz(OH)2(CO3)z/2·mH2O              (II)
上式(II)中,z为Mg和Al的合计中Al的组成比例,表示0.1≤z≤0.4范围的值,m为水滑石中水的摩尔数,表示z的值对应的任意值。
[3]上述[1]的陶瓷坯土,其中上述层状双氢氧化物是下式(III)所示的水滑石:
Mg6Al2(OH)16CO3·4H2O                     (III)。
[4]陶瓷成型体,该陶瓷成型体是将上述[1]~[3]中任一项的陶瓷坯土成型而得到的。
[5]上述[4]的陶瓷成型体,其中该陶瓷成型体是成型为蜂窝形状的蜂窝成型体。
[6]陶瓷结构体,该陶瓷结构体是将上述[4]或[5]的陶瓷成型体烧结而得到的。
[7]陶瓷坯土的制备方法,该方法是将含有陶瓷形成材料的成型原料进行混炼,获得陶瓷坯土,其中上述成型原料除上述陶瓷形成材料之外,还使用下式(I)所示的层状双氢氧化物,该层状双氢氧化物相对于其与上述陶瓷形成材料的合计为0.5~50%质量的比例:
[M2+ 1-xM3+ x(OH)2][(CO3)x/2·yH2O]        (I)
上式(I)中,M2+、M3+分别表示二价阳离子、三价阳离子,x为二价阳离子(M2+)和三价阳离子(M3+)的合计中三价阳离子(M3+)的组成比例,表示0.1≤x≤0.4范围的值,y为层状双氢氧化物中水的摩尔数,表示阳离子或x的值对应的任意值。
[8]上述[7]的陶瓷坯土的制备方法,其中上述层状双氢氧化物使用下式(II)所示的水滑石:
Mg1-zAlz(OH)2(CO3)z/2·mH2O    (II)
上式(II)中,z为Mg和Al的合计中Al的组成比例,表示0.1≤z≤0.4范围的值,m为水滑石中水的摩尔数,表示z的值对应的任意值。
[9]上述[7]或[8]的陶瓷坯土的制备方法,其中上述层状双氢氧化物使用下式(III)所示的水滑石:
Mg6Al2(OH)16CO3·4H2O           (III)。
[10]上述[7]~[9]中任一项的陶瓷坯土的制备方法,其中所得上述陶瓷坯土通过NGK粘土硬度仪测定的硬度为4~18mm。
[11]陶瓷成型体的制备方法,该方法是将由上述[7]~[10]中任一项的方法得到的上述陶瓷坯土进一步成型,得到陶瓷成型体。
[12]上述[11]的陶瓷成型体的制备方法,该方法是将上述陶瓷坯土成型为蜂窝形状,得到蜂窝成型体。
[13]陶瓷结构体的制备方法,该方法是将由上述[11]或[12]的方法得到的上述陶瓷成型体进一步烧结,获得陶瓷结构体。
本发明提供在用于制备陶瓷结构体时,可通过防止或降低烧结时二氧化碳或有害气体的产生,来防止或抑制环境污染、地球变暖,同时可得到裂隙等缺陷少、高强度的陶瓷结构体的陶瓷坯土、陶瓷成型体、高强度陶瓷结构体以及它们的高效制备方法。
实施发明的最佳方式
以下,具体说明实施本发明的最佳方式。
本发明的陶瓷坯土是通过将含有陶瓷形成材料的成型原料进行混炼而得到的陶瓷坯土,其特征在于:上述成型原料除上述陶瓷形成材料之外,还含有层状双氢氧化物,该层状双氢氧化物相对于其与上述陶瓷形成材料的合计为0.5~50%质量的比例,且用NGK粘土硬度仪测定的硬度为4~18mm。
本发明中,成型原料除陶瓷形成材料之外,还使用进一步含有层状双氢氧化物的物质。其它成分还有:有机粘合剂,作为分散介质的水、分散剂、造孔剂等。
陶瓷坯土用于制备陶瓷结构体时,陶瓷坯土中的陶瓷形成材料是以下材料:陶瓷坯土成型为陶瓷成型体,在进行陶瓷成型体烧结后构成陶瓷结构体。陶瓷形成材料例如有:氧化铝形成材料、莫来石形成材料、氧化锆形成材料、堇青石形成材料、钛酸铝形成材料、氮化硅形成材料、碳化硅形成材料、氮化铝形成材料等。构成这些形成材料的成分可以是含有该形成材料中所含的元素的氧化物等,例如,构成堇青石形成材料的成分有:滑石粉、高岭土、氧化铝、氢氧化铝、二氧化硅、氧化镁等含有选自镁、铝和硅的至少一种元素的氧化物,氢氧化物或碳酸盐等。构成堇青石形成材料的各成分的粒径例如优选如下:滑石粉为0.5~50μm、高岭土为0.1~20μm、氧化铝为0.1~20μm、氢氧化铝为0.1~20μm、二氧化硅为1~100μm、氧化镁为0.1~50μm。另外,对各成分的构成比例没有特别限制,只要是烧结后主相为堇青石的构成比例即可。另外,构成碳化硅形成材料的成分有碳化硅、碳、硅等选自硅和碳的至少一种元素的单体或化合物,烧结助剂可以是Y2O3、Al2O3、MgO、SiO2、或碱土金属氧化物或稀土氧化物等。构成碳化硅形成材料的各成分的粒径例如优选如下:碳化硅为0.5~50μm、硅为0.1~20μm、碳为0.1~50μm、烧结助剂为0.01~10μm。另外,对于各成分的构成比例没有特别限定,只要是烧结后主相为碳化硅的构成比例即可。并且,构成钛酸铝形成材料的成分有氧化铝、氢氧化铝、氧化钛等选自铝和钛的至少一种元素的化合物,烧结助剂可以是高岭土、二氧化硅或碱土金属氧化物或稀土氧化物等。构成钛酸铝形成材料的各成分的粒径例如优选如下:氧化铝为0.05~20μm、氧化钛为0.01~10μm、烧结助剂为0.01~50μm。另外,对各成分的构成比例没有特别限定,只要是烧结后的主相为钛酸铝的构成比例即可。
相对于陶瓷形成材料和层状双氢氧化物的合计,陶瓷形成材料的含有比例优选50~99.5%质量。即使低于50%质量也没有问题,但是,所得陶瓷结构体的组成难以达到所希望的要求,并且在成本方面也有问题;超过99.5%质量,则难以成型。
为了提高将成型原料混炼而制备的陶瓷坯土的塑性、成型性,可根据需要使用有机粘合剂。用于制备陶瓷结构体时,有机粘合剂可发挥保持其形状的形状保持剂的功能,因此可根据需要使用。另一方面,由于有机粘合剂在烧结时产生二氧化碳或有害气体,从而促进了环境污染、地球变暖,并且,在成型时,有机粘合剂占有的空间出现缺陷,或者在陶瓷结构体上发生裂隙等缺陷,有陶瓷结构体的强度降低的问题,因此成型原料中的含有量必需要限制在必要最低限度。由此,本发明中,相对于100重量份陶瓷形成材料和层状双氢氧化物的合计,优选使有机粘合剂的含有比例为10重量份以下,进一步优选5%质量以下。可根据用途使其为0质量份(可以完全不含有)。
所述有机粘合剂例如可以是有机高分子。具体有:羟基丙氧基甲基纤维素、羟基丙基甲基纤维素、甲基纤维素、羟基乙基纤维素、羧基甲基纤维素、聚乙烯醇等。有机粘合剂可以单独使用一种或将两种以上组合使用。
本发明中,使用有机粘合剂时,如上所述,相对于100质量份陶瓷形成材料和层状双氢氧化物的合计,优选使有机粘合剂的含有比例控制在10质量份以下,由此,在用于制备陶瓷结构体时,有望消除烧结时二氧化碳或有害气体的产生对环境污染、地球变暖的促进,或者成型时有机粘合剂占有的空间产生缺陷或者陶瓷结构体上发生裂隙等缺陷、使陶瓷结构体的强度降低的问题,为了弥补陶瓷坯土的塑性、成型性的降低,成型原料可以使用进一步含有层状双氢氧化物的物质,所述层状双氢氧化物同时具有陶瓷化功能和使材料具有塑性(成型性)的功能。
本发明中,层状双氢氧化物是指下式(I)所示物质。
[M2+ 1-xM3+ x(OH)2][(CO3)x/2·yH2O]        (I)
上式(I)中,M2+、M3+分别表示二价阳离子、三价阳离子,x表示二价阳离子(M2+)和三价阳离子(M3+)合计中三价阳离子(M3+)的组成比例(二价阳离子(M2+)的组成比例为(1-x)),具体地说,通常表示0.1≤x≤0.4范围的值,优选0.2≤x≤0.33范围的值,这根据阳离子或阴离子的组合而定,y表示层状双氢氧化物中水的摩尔数,具体地说,表示与阳离子或阴离子的组合或x的值对应的任意值。另外,二价阳离子(M2+)与三价阳离子(M3+)的比值(M2+/M3+)优选1.5/1~9/1,进一步优选2/1~4/1。该比值(M2+/M3+)为1.5/1~9/1,则可提高成型性。
上述二价阳离子有:Mg2+、Ca2+、Sr2+、Zn2+、Ni2+、Co2+、Fe2+、Mn2+等二价金属离子,还可以使用单独一种或将两种以上组合使用。上述三价阳离子有:Al3+、Fe3+、Cr3+、Ti3+、Y3+、Ce3+、Mo3+等三价金属离子,还可以单独使用一种或将两种以上组合使用。上述阴离子有:CO3 2-、Cl-、NO3 -、CH3COO-、PO4 3-等,其中,从提高成型性的角度考虑,优选CO3 2-,还可以单独使用一种或将两种以上组合使用。
本发明中使用的层状双氢氧化物相对于其与陶瓷形成材料的合计,优选含有0.5~50%质量,进一步优选含有1~30%质量.低于0.5%质量,则不能够体现充分的成型性,虽然超过50%质量也没有问题,但是,所得陶瓷结构体的组成难以达到所希望的要求.另外,本发明所使用的含有层状双氢氧化物的陶瓷坯土通过NGK粘土硬度仪(日本ガイシ(株)制造)测定的硬度为4~18mm,优选6~17mm.低于4mm,则用于制备陶瓷结构体时,陶瓷成型体的形状保持性降低;超过18mm,则成型性降低.
本发明所使用的层状双氢氧化物优选为颗粒状。从提高成型性的角度考虑,其粒径优选为30μm以下,进一步优选10μm以下。另外,从提高成型性的角度考虑,过筛残余量优选0.05%以下,进一步优选0.01%以下。其中,过筛残余量如下测定:在挤出成型为规定形状例如蜂窝形状时,使用该挤出模具的狭缝宽度的1/3大小筛孔的筛子。称取规定重量的用于测定残余量的原料,一边通入水一边过筛。将即使通入水仍最后残留在筛子上面的原料回收,干燥,测定重量。过筛残余量是指该重量相对于用于测定残余物的原料的重量的比例。另外,从提高成型性角度考虑,优选杂质的总量为2%以下,进一步优选1%以下。这里,杂质是指含有构成本发明的层状双氢氧化物的元素以外的元素的单体或化合物。因此,层状双氢氧化物例如为水滑石时,含有构成水滑石的元素Mg或Al的化合物不视为杂质。被视为杂质的化合物例如有:Fe2O3、TiO2、CaO、K2O、Na2O等。另外,从提高成型性的角度考虑,优选比表面积为0.5~200m2/g,进一步优选1~150m2/g。并且,从提高成型性的角度考虑,优选表观比重为0.05~1g/cm3
本发明所使用的层状双氢氧化物可根据陶瓷形成材料的种类使用适当组成的层状双氢氧化物。例如,使用堇青石形成材料作为陶瓷形成材料时,可以使用含有Mg2+作为二价阳离子、Al3+作为三价阳离子的层状双氢氧化物;使用氮化硅形成材料时,由于使用氧化镁或氧化钇作为其烧结助剂,因此可以使用含有Mg2+作为二价阳离子、Y3+作为三价阳离子的层状双氢氧化物。关于阴离子,可根据层状双氢氧化物的合成条件或陶瓷的制备条件选择适当的阴离子。本发明中使用的层状双氢氧化物可以单独使用一种,也可以将两种以上组合使用。
从价格、杂质量的角度看,本发明中使用的层状双氢氧化物优选下式(II)所示的水滑石。特别是合成水滑石,其与蒙脱石(合成品、矿物的纯化品)等比较,价格便宜,因此优选。
Mg1-zAlz(OH)2(CO3)z/2·mH2O        (II)
上式(II)中,z表示Mg和Al合计中Al的组成比例(Mg的组成比例为(1-z),CO3的组成比例为(z/2)),具体地说,通常表示0.1≤z≤0.4范围的值,优选0.2≤z≤0.33范围的值,m表示水滑石中水的摩尔数,具体地说,表示与z的值对应的任意值。
本发明所使用的层状双氢氧化物如果是下式(III)所示的水滑石,则成型性良好,因此进一步优选。
Mg6Al2(OH)16CO3·4H2O              (III)
用于制备多孔质的陶瓷结构体时,成型原料中可以进一步含有造孔剂。所述造孔剂成为气孔的模板,因此可以在蜂窝结构体中形成所希望形状、大小、分布的气孔,使气孔率增加,可得到高气孔率的多孔质蜂窝结构体。所述造孔剂例如有:石墨、小麦粉、淀粉、酚醛树脂、聚甲基丙烯酸甲酯、聚乙烯、聚对苯二甲酸乙二醇酯、发泡树脂(丙烯腈系塑料球)、吸水性树脂等。它们在形成气孔的同时本身被燃烧掉,因此,其中,从抑制二氧化碳或有害气体的发生以及裂隙的产生的角度考虑,优选发泡树脂。使用造孔剂时,相对于100质量份成型原料,有机粘合剂和造孔剂的含有比例的合计为10质量份以下,优选8%质量以下。
含有作为分散介质的水的比例根据使用的成型原料而不同,因此难以一概而论,优选调节水的量达到具有上述的硬度。
对将上述成型原料进行混炼的方法没有特别限定,例如有使用捏合机、真空坯土混炼机等的方法。
本发明的陶瓷成型体是将上述陶瓷坯土成型而得到的。
对陶瓷成型体的形状没有特别限定,例如可以是片状、管状、莲藕状、蜂窝状等。其中,为蜂窝状时,优选使用通过蜂窝状的间隔使两个端面之间贯通形成多个泡孔的蜂窝成型体。将蜂窝成型体用于DPF等过滤器用途时,优选泡孔的端部在两个端面部分互相不同地被封闭。对陶瓷成型体的整体形状没有特别限制,为蜂窝成型体时,例如可以是圆筒状、四棱柱状、三棱柱状等。另外,对蜂窝成型体的泡孔形状(与泡孔的形成方向垂直的截面的泡孔形状)也没有特别限制,例如可以是四角形、六角形、三角形等。
对制备本发明的陶瓷成型体的方法没有特别限定,可以使用旋压成型、挤出成型、注射成型、加压成型、片材成型等以往公知的成型方法。其中,优选的例子是使用具有所希望的泡孔形状、间隔厚度、泡孔密度的喷嘴将上述制备的陶瓷坯土挤出成型的方法等。对干燥方法也没有特别限定,例如可以使用热风干燥、微波干燥、介电干燥、减压干燥、真空干燥、冷冻干燥等以往公知的干燥方法。其中,从可迅速且均匀地使成型体整体干燥的角度考虑,优选将热风干燥和微波干燥或介电干燥组合的干燥方法。
通过将上述所得陶瓷成型体进行预烧(脱脂),可以制成预烧体。预烧是指使成型体中的有机物(粘合剂、造孔剂、分散剂等)燃烧并除去的操作。通常,有机粘合剂的燃烧温度为100~300℃左右,造孔剂的燃烧温度为200~800℃左右,因此预烧温度可以是200~1000℃左右。对预烧时间没有特别限定,通常为1~10小时左右。预烧的气氛可根据陶瓷形成材料的种类适当选择,可以是大气气氛、氧气氛、氮气氛、氩气氛、将它们适当混合的气氛、真空气氛等。
本发明的陶瓷结构体可通过将上述陶瓷成型体(根据需要制成预烧体)进行烧结(实际烧结)而获得。实际烧结是指使预烧体中的成型原料进行烧结,以确保规定的强度的操作。烧结条件(温度、时间)根据成型原料的种类而不同,因此可根据其种类选择适当条件。本发明中,例如使用堇青石形成材料时,优选在1300~1500℃对陶瓷成型体进行烧结。进一步优选在1350~1450℃进行烧结。低于1300℃,则无法获得目标结晶相(例如堇青石),超过1500℃,则可能熔解。另外,使用碳化硅形成材料时,优选在1300~2500℃对陶瓷成型体进行烧结。进一步优选在1350~2400℃进行烧结。低于1300℃,则无法获得目标结晶相(例如碳化硅),超过2500℃,则分解或升华。并且,使用钛酸铝形成材料时,优选在1300~1800℃对陶瓷成型体进行烧结。进一步优选在1400~1700℃进行烧结。低于1300℃,则无法获得目标结晶相(例如钛酸铝),超过1800℃,则可能熔解。另外,烧结的气氛可根据陶瓷形成材料的种类适当选择,可以是大气气氛、氧气氛、氮气氛、氩气氛、氢气氛、将它们适当混合的气氛、真空气氛等。本发明中,例如使用堇青石形成材料或钛酸铝形成材料时,优选在大气气氛、氧气氛、氮气氛、将它们适当混合的气氛等中对陶瓷成型体进行烧结。另外,使用碳化硅形成材料时,优选在氮气氛、氩气氛、将它们适当混合的气氛、真空气氛等中对陶瓷成型体进行烧结。
本发明的陶瓷结构体由上述方法获得,是以缺陷或裂隙少、高强度的陶瓷(例如堇青石)为主要成分(优选含有60%以上)的结构体.堇青石的优选组成例如是2MgO·2Al2O3·5SiO2。另外,氧化铝的优选组成例如为Al2O3,莫来石的优选组成为3Al2O3·2SiO2,氧化锆的优选组成为ZrO2,钛酸铝的优选组成为Al2TiO5,氮化硅的优选组成为Si3N4,碳化硅的优选组成为SiC,氮化铝的优选组成为AlN。
实施例
以下,通过实施例进一步具体说明本发明,但本发明并不受这些实施例的任何限定。
实施例中所得到的陶瓷坯土的成型性(成型不良、喷嘴堵塞、破裂)中,成型不良通过确认是否有坯土的流动性差、并由此在加强筋或外壁上发生毛刺(ササクレ)来评价;喷嘴堵塞通过确认是否有成型体在挤出方向上连续发生的断裂来评价;破裂通过目视确认泡孔破裂来评价,以及由一侧的端面沿挤出方向照射光、从另一端面观察、确认是否有因泡孔破裂而存在不透光的泡孔来评价。另外,干燥断裂(干燥后,本来该连续的加强筋/泡孔变为不连续)、烧结断裂(烧结后,本来该连续的加强筋/泡孔变成不连续)以及烧结熔解(烧结后,原本该具有的形状破损)可通过目视确认各个干燥体和烧结体外观上是否有断裂,还可以由一侧端面沿挤出方向照射光,由相反端面观察,通过确认制品内部的断裂来进行评价。并且,测定等压破坏强度(MPa)和热膨胀系数(10-6/℃),以此作为判定实施例得到的陶瓷结构体是否为高强度的指标。等压破坏强度的测定方法按照社团法人汽车技术会的汽车规格JASO-M505-87,热膨胀系数按照JIS R1618,在40℃~800℃的范围内测定挤出方向的热膨胀系数。并且,作为表示实施例所得陶瓷结构体在烧结时二氧化碳或有害气体的发生得到降低的指标,测定烧结时的重量减少。烧结时的重量减少的测定方法是测定烧结前的蜂窝结构体的重量(M1)和烧结后的重量(M2),以重量减少(%)=[(M1-M2)/M1]×100计算。
(层状双氢氧化物的选择)
实施例中,选择并使用表1所示的层状双氢氧化物(种类:1~39)。
[表1]
  层状双氢氧化物种类   平均粒径(μm)   过筛残余量(%)   杂质量(%)   比表面积(m<sup>2</sup>/g)   表现比重(g/cm<sup>3</sup>)   M<sup>2+</sup>/M<sup>3+</sup>比   层间离子种类 M2+ M3+
  1   0.1   0.01   0.3   20   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  2   0.5   0.01   0.3   18   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  3   3   0.01   0.3   15   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  4   8   0.01   0.3   14   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  5   12   0.01   0.3   13   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  层状双氢氧化物种类   平均粒径(μm)   过筛残余量(%)   杂质量(%)   比表面积(m<sup>2</sup>/g)   表现比重(g/cm<sup>3</sup>)   M<sup>2+</sup>/M<sup>3+</sup>比   层间离子种类 M2+ M3+
  6   25   0.01   0.3   12   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  7   35   0.01   0.3   11   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  8   3   0.03   0.3   15   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  9   3   0.07   0.3   15   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  10   3   0.01   0.8   15   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  11   3   0.01   1.3   15   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  12   3   0.01   1.8   15   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  13   3   0.01   2.2   15   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  14   3   0.01   0.3   0.4   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  15   3   0.01   0.3   0.7   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  16   3   0.01   0.3   3   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  17   3   0.01   0.3   8   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sub>2+</sub>   Al<sup>3+</sup>
  18   3   0.01   0.3   27   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  19   3   0.01   0.3   35   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  20   3   0.01   0.3   55   0.29   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  21   3   0.01   0.3   15   0.04   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  22   3   0.01   0.3   15   0.12   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  23   3   0.01   0.3   15   0.25   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  24   3   0.01   0.3   15   0.36   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  25   3   0.01   0.3   15   0.42   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sub>2+</sub>   Al<sup>3+</sup>
  26   3   0.01   0.3   15   0.81   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  27   3   0.01   0.3   15   1.06   3/1   CO<sub>3</sub><sup>2-</sup>   Mg<sub>2+</sub>   Al<sup>3+</sup>
  层状双氢氧化物种类   平均粒径(μm)   过筛残余量(%)   杂质量(%)   比表面积(m<sup>2</sup>/g)   表现比重(g/cm<sup>3</sup>)   M<sup>2+</sup>/M<sup>3+</sup>比   层间离子种类 M2+ M3+
  28   3   0.01   0.4   15   0.3   5/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  29   3   0.01   0.4   15   0.29   4/1   CO<sub>3</sub><sup>2-</sup>   Mg<sub>2+</sub>   Al<sup>3+</sup>
  30   3   0.01   0.3   15   0.28   2.25/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  31   3   0.01   0.5   15   0.3   2/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  32   3   0.01   0.5   15   0.3   1.8/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  33   5   0.01   0.4   16   0.27   3/1   Cl<sup>-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  34   6   0.01   0.5   15   0.29   3/1   NO<sub>3</sub><sup>-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  35   5   0.01   0.4   16   0.3   3/1   CH<sub>3</sub>COO<sup>-</sup>   Mg<sup>2+</sup>   Al<sup>3+</sup>
  36   0.1   0.01   0.8   12   0.41   2/1   CO<sub>3</sub><sup>2-</sup>   Ca<sup>2+</sup>   Al<sup>3+</sup>
  37   0.2   0.01   0.9   8   0.59   2/1   CO<sub>3</sub><sup>2-</sup>   Sr<sup>2+</sup>   Al<sup>3+</sup>
  38   0.1   0.01   0.8   9   0.51   2/1   CO<sub>3</sub><sup>2-</sup>   Zn<sup>2+</sup>   Al<sup>3+</sup>
  39   0.1   0.01   0.7   10   0.36   2/1   CO<sub>3</sub><sup>2-</sup>   Mg<sup>2+</sup>   Fe<sup>3+</sup>
(实施例1)
通过将含有陶瓷形成材料的成型原料混炼,得到陶瓷坯土的压实体,接着,将所得陶瓷坯土的压实体进行成型,得到蜂窝成型体,接着,将所得蜂窝成型体烧结,得到蜂窝结构体.即,首先,作为批料No.1,向作为陶瓷(堇青石)形成材料的高岭土、滑石粉、氧化铝、氢氧化铝和二氧化硅(表2中,以质量份表示各添加量,同时在括号内以平均粒径(μm)表示粒径.也有不含在批料No.1中,但作为其它的陶瓷形成材料,含有碳化硅、硅、氧化钛(金红石)的批料)中添加作为层状双氢氧化物的水滑石,混合(水滑石成分的含有比例相对于其与陶瓷形成材料的合计为10%质量,调节其它的量,使其接近于陶瓷组成),向其中添加作为粘合剂的甲基纤维素(相对于100质量份陶瓷形成材料和层状双氢氧化物的合计为10质量份)、发挥分散剂功能的、且作为表面活性剂的月桂酸钾(相对于100质量份陶瓷形成材料和层状双氢氧化物的合计为0.2质量份)和水(相对于100质量份陶瓷形成材料和层状双氢氧化物的合计为35质量份),制成成型材料,将其混炼,得到陶瓷坯土的压实体.将该坯土的硬度用NGK粘土硬度仪测定,为12mm.将其用挤出成型机成型为蜂窝形状,不会发生喷嘴的堵塞或成型不良,可以成型.将所得蜂窝成型体用微波和热风干燥,在1420℃、大气气氛中烧结7小时.此时,所得蜂窝结构体未发生干燥断裂或烧结断裂.另外,通过X射线衍射鉴定所得蜂窝结构体的结晶相,堇青石为主相.蜂窝结构体的等压破坏强度为9MPa,热膨胀系数为0.7×10-6/℃.烧结时的重量减少为9%.将以上汇总,在表3中给出含有表2所示的陶瓷形成材料的成型原料的整体配比,同时在表4中给出所得陶瓷坯土、蜂窝成型体和蜂窝结构体的特性.表4中的符号◎、○、△、×是表示关于成型不良、喷嘴堵塞、破裂、干燥断裂、烧结断裂、烧结熔解的如下的评价结果.
(成型不良)◎:成型状态极好;○:外壁可观察到一部分毛刺,但良好;△:内部的加强筋和外壁两者观察到毛刺,不良,但在可接受的水平;×:内部的加强筋和外壁两者均观察到毛刺,是不可接受的水平。
(喷嘴堵塞)◎:喷嘴没有堵塞;○:只有一个加强筋产生喷嘴堵塞;△:在多个加强筋上出现喷嘴堵塞但可以接受;×:多个加强筋上出现喷嘴堵塞,不可接受。
(破裂)◎:成型时泡孔没有破裂,干燥后的泡孔形状与喷嘴狭缝形状相似;△:成型时泡孔发生破裂、干燥后的泡孔形状不与喷嘴狭缝形状相似,但是由一侧端面沿挤出方向照射光,从相反的端面观察时,不存在由于泡孔破裂而导致的光不能透过的泡孔;×:成型时发生泡孔破裂,干燥后的泡孔形状不与喷嘴狭缝形状相似,由一侧端面沿挤出方向照射光,由另一端面观察时,存在因泡孔破裂而导致的不能透光的泡孔。
(干燥断裂)◎:无干燥断裂;○:只是由端面以下1cm以内的表层有轻微断裂,干燥后切开断端面时,可容易地切落至断裂部分;△:由端面至内部,1cm以上处有断裂,但干燥后切断端面时,可切落至断裂部分;×:由端面至内部,1cm以上处有断裂,干燥后切断端面时,不能切落至断裂部分。
(烧结断裂)◎:无烧结断裂;×:有烧结断裂。
(烧结熔解)◎:尺寸收缩在10%以内,外观形状与干燥体相似;△:尺寸收缩在10%以上,外观形状与干燥体相似;×:尺寸收缩在10%以上,外观形状为干燥体破裂的形状。
(实施例2~41、比较例1~6)
实施例1中,将成型原料的全体配比改为表3所示的批料No.使用(例如实施例2使用表2、3所示的批料No.2的配比),得到具有表4所示特性的陶瓷坯土、蜂窝成型体以及蜂窝状结构体,除此之外与实施例1同样进行。实施例3~41、比较例2~6是在陶瓷(堇青石)形成材料中添加层状双氢氧化物,混合,向其中添加作为造孔材料的发泡树脂(相对于100质量份陶瓷形成材料和层状双氢氧化物的合计,为表3所示的质量份)。
(实施例42~46)
实施例1中,将成型原料的全体配比改为表3所示的批料No.使用(例如实施例42使用表2、3所示的批料No.42的配比),在400℃、大气气氛中预烧4小时,然后在1450℃、氩气氛中烧结2小时,得到具有表4所示特性的陶瓷坯土、蜂窝成型体和蜂窝结构体,除此之外与实施例1同样地进行。实施例42~46是向陶瓷(碳化硅为主要成分)形成材料中添加层状双氢氧化物并混合,向其中添加作为造孔材料的发泡树脂(相对于100质量份陶瓷形成材料和层状双氢氧化物的合计,为表3所示的质量份)。
(实施例47~51)
实施例1中,将成型原料的全体配比改为表3所示的批料No.使用(例如实施例47使用表2、3所示的批料No.47的配比),在1500℃、大气气氛中烧结4小时,得到具有表4所示特性的陶瓷坯土、蜂窝成型体和蜂窝结构体,除此之外与实施例1同样地进行.实施例47~51是在陶瓷(钛酸铝为主要成分)形成材料中添加层状双氢氧化物并混合,向其中添加作为造孔材料的发泡树脂(相对于100质量份陶瓷形成材料和层状双氢氧化物的合计,为表3所示的质量份).
[表2]
[表3]
  批料No.   陶瓷形成材料   层状双氢氧化物种类   添加量   发泡树脂   粘合剂   表面活性剂   水
  1   90   3   10   0   0   0.2   35
  2   90   3   10   0   4   0.2   36
  3   95   1   5   1   3   0.2   28
  4   95   2   5   1   3   0.2   28
  5   95   3   5   1   3   0.2   28
  6   95   4   5   1   3   0.2   28
  7   95   10   5   1   3   0.2   28
  8   95   17   5   1   3   0.2   28
  9   95   18   5   1   3   0.2   30
  10   95   23   5   1   3   0.2   28
  11   95   24   5   1   3   0.2   28
  12   95   5   5   1   3   0.2   28
  13   95   6   5   1   3   0.2   28
  14   95   7   5   1   3   0.2   28
  15   95   8   5   1   3   0.2   28
  16   95   9   5   1   3   0.2   28
  17   95   11   5   1   3   0.2   28
  18   95   12   5   1   3   0.2   28
  19   95   13   5   1   3   0.2   28
  20   95   14   5   1   3   0.2   28
  21   95   15   5   1   3   0.2   28
  22   95   16   5   1   3   0.2   28
  批料No.   陶瓷形成材料   层状双氢氧化物种类   添加量   发泡树脂   粘合剂   表面活性剂   水
  23   95   19   5   1   3   0.2   33
  24   95   20   5   1   3   0.2   36
  25   95   21   5   1   3   0.2   28
  26   95   22   5   1   3   0.2   28
  27   95   25   5   1   3   0.2   28
  28   95   26   5   1   3   0.2   28
  29   95   27   5   1   3   0.2   28
  30   95   28   5   1   3   0.2   28
  31   95   29   5   1   3   0.2   28
  32   95   30   5   1   3   0.2   28
  33   95   31   5   1   3   0.2   28
  34   95   32   5   1   3   0.2   28
  35   95   3   5   1   3   0.2   38
  36   95   3   5   1   3   0.2   20
  37   99   3   1   1   3   0.2   28
  38   60   3   30   1   3   0.2   28
  39   95   33   5   1   3   0.2   28
  40   95   34   5   1   3   0.2   28
  41   95   35   5   1   3   0.2   28
  42   95   3   5   1   3   0.2   27
  43   95   36   5   1   3   0.2   27
  44   95   37   5   1   3   0.2   27
  批料No.   陶瓷形成材料   层状双氢氧化物种类   添加量   发泡树脂   粘合剂   表面活性剂   水
  45   95   38   5   1   3   0.2   27
  46   95   39   5   1   3   0.2   27
  47   95   3   5   1   3   0.2   25
  48   95   36   5   1   3   0.2   25
  49   95   37   5   1   3   0.2   25
  50   95   38   5   1   3   0.2   25
  51   95   39   5   1   3   0.2   25
  52   100   -   0   0   8   0.2   33
  53   100   -   0   1   8   0.2   34
  54   99.9   3   0.1   1   3   0.2   28
  55   40   3   60   1   3   0.2   28
  56   95   3   5   1   3   0.2   42
  57   95   3   5   1   3   0.2   14
[表4]
产业实用性
本发明在化学、电力、钢铁、工业废弃物处理等各种领域中可用于作为防止环境污染、地球变暖对策而有效的各种装置、机器、材料中。

Claims (13)

1.一种陶瓷坯土,该陶瓷坯土通过将含有陶瓷形成材料的成型原料混炼而获得,其特征在于:所述陶瓷形成材料为碳化硅形成材料、堇青石形成材料、钛酸铝形成材料中的一种,所述成型原料除所述陶瓷形成材料之外,还含有下式(I)所示的层状双氢氧化物,该层状双氢氧化物相对于其与所述陶瓷形成材料的总量为0.5~50%质量的比例,并且,所述陶瓷坯土通过NGK粘土硬度仪测定的硬度为4~18mm:
[M2+ 1-xM3+ x(OH)2][(CO3)x/2·yH2O](I)
上式(I)中,M2+、M3+分别表示二价阳离子、三价阳离子,x为三价阳离子M3+在二价阳离子M2+和三价阳离子M3+的合计中所占的组成比例,表示0.1≤x≤0.4范围的值,y为层状双氢氧化物中水的摩尔数,表示对应于阳离子或x值的任意值。
2.权利要求1的陶瓷坯土,其中所述层状双氢氧化物是下式(II)所示的水滑石:
Mg1-zAlz(OH)2(CO3)z/2·mH2O    (II)
上式(II)中,z为Mg和Al的合计中Al的组成比例,表示0.1≤z≤0.4范围的值,m为水滑石中水的摩尔数,表示对应于z值的任意值。
3.权利要求1的陶瓷坯土,其中所述层状双氢氧化物是下式(III)所示的水滑石:
Mg6Al2(OH)16CO3·4H2O    (III)。
4.一种陶瓷成型体,该陶瓷成型体是将权利要求1~3中任一项的陶瓷坯土成型而得到的。
5.权利要求4的陶瓷成型体,该陶瓷成型体是成型为蜂窝形状的蜂窝成型体。
6.一种陶瓷结构体,该陶瓷结构体是将权利要求4或5的陶瓷成型体烧结而得到的。
7.一种陶瓷坯土的制备方法,该方法是将含有陶瓷形成材料的成型原料进行混炼,获得陶瓷坯土,其中所述陶瓷形成材料为碳化硅形成材料、堇青石形成材料、钛酸铝形成材料中的一种,所述成型原料除所述陶瓷形成材料之外,还使用下式(I)所示的层状双氢氧化物,该层状双氢氧化物相对于其与所述陶瓷形成材料的合计为0.5~50%质量的比例:
[M2+ 1-xM3+ x(OH)2][(CO3)x/2·yH2O]   (I)
上式(I)中,M2+、M3+分别表示二价阳离子、三价阳离子,x为三价阳离子M3+在二价阳离子M2+和三价阳离子M3+的合计中所占的组成比例,表示0.1≤x≤0.4范围的值,y为层状双氢氧化物中水的摩尔数,表示对应于阳离子或x值的任意值。
8.权利要求7的陶瓷坯土的制备方法,其中所述层状双氢氧化物使用下式(II)所示的水滑石:
Mg1-zAlz(OH)2(CO3)z/2·mH2O    (II)
上式(II)中,z为Mg和Al的合计中Al的组成比例,表示0.1≤z≤0.4范围的值,m为水滑石中水的摩尔数,表示对应于z值的任意值。
9.权利要求7或8的陶瓷坯土的制备方法,其中所述层状双氢氧化物使用下式(III)所示的水滑石:
Mg6Al2(OH)16CO3·4H2O    (III)。
10.权利要求7~9中任一项的陶瓷坯土的制备方法,其中制得的所述陶瓷坯土通过NGK粘土硬度仪测定的硬度为4~18mm。
11.一种陶瓷成型体的制备方法,该方法是将由权利要求7~10中任一项的方法得到的所述陶瓷坯土进一步成型,得到陶瓷成型体。
12.权利要求11的陶瓷成型体的制备方法,该方法是将所述陶瓷坯土成型为蜂窝形状,得到蜂窝成型体。
13.一种陶瓷结构体的制备方法,该方法是将由权利要求11或12的方法得到的所述陶瓷成型体进一步烧结,获得陶瓷结构体。
CN2005800169678A 2004-03-31 2005-03-29 陶瓷坯土、陶瓷成型体、陶瓷结构体以及它们的制备方法 Expired - Fee Related CN1956936B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004107450 2004-03-31
JP107450/2004 2004-03-31
JP011479/2005 2005-01-19
JP2005011479 2005-01-19
PCT/JP2005/005882 WO2005095302A1 (ja) 2004-03-31 2005-03-29 セラミックス坏土、セラミックス成形体、セラミックス構造体及びこれらの製造方法

Publications (2)

Publication Number Publication Date
CN1956936A CN1956936A (zh) 2007-05-02
CN1956936B true CN1956936B (zh) 2010-05-12

Family

ID=35055109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800169678A Expired - Fee Related CN1956936B (zh) 2004-03-31 2005-03-29 陶瓷坯土、陶瓷成型体、陶瓷结构体以及它们的制备方法

Country Status (2)

Country Link
US (2) US20050221974A1 (zh)
CN (1) CN1956936B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806656B1 (ko) * 2004-04-22 2008-02-26 니뽄 가이시 가부시키가이샤 다공질 허니컴 구조체의 제조 방법 및 다공질 허니컴구조체
JP2007001836A (ja) * 2005-06-27 2007-01-11 Ngk Insulators Ltd ハニカム構造体の製造方法
EP2067588B1 (en) * 2006-09-28 2013-01-16 Hitachi Metals, Ltd. Method for producing ceramic honeycomb filter
EP2080743B1 (en) * 2006-10-05 2013-07-10 NGK Insulators, Ltd. Ceramic kneaded clay and usage thereof
US7932167B2 (en) * 2007-06-29 2011-04-26 International Business Machines Corporation Phase change memory cell with vertical transistor
JP4571990B2 (ja) * 2008-03-31 2010-10-27 日本碍子株式会社 ハニカム構造体の製造方法
JP4705991B2 (ja) * 2008-10-30 2011-06-22 日本特殊陶業株式会社 スパークプラグ用アルミナ基焼結体及びその製造方法、並びにスパークプラグ及びその製造方法
US8138108B2 (en) * 2009-02-27 2012-03-20 Corning Incorporated Aluminum titanate-containing ceramic-forming batch materials and methods using the same
US20110040006A1 (en) * 2009-08-17 2011-02-17 Basf Se Compositions with Improved Dirt Pickup Resistance Comprising Layered Double Hydroxide Particles
JP5560081B2 (ja) * 2010-03-30 2014-07-23 日本碍子株式会社 セラミックス坏土、セラミックス成形体、セラミックス構造体及びこれらの製造方法
EP2634161A4 (en) * 2010-10-29 2014-04-16 Sumitomo Chemical Co METHOD FOR PRODUCING A BURNED BODY AND FUEL OVEN USED THEREFOR
JP5875997B2 (ja) * 2012-03-22 2016-03-02 日本碍子株式会社 ハニカム構造体及びハニカム構造体の製造方法
JP5883410B2 (ja) * 2013-03-29 2016-03-15 日本碍子株式会社 ハニカム構造体の製造方法
CN117383948B (zh) * 2023-10-31 2024-08-23 江苏诺明高温材料股份有限公司 一种玻璃窑用耐侵蚀耐热震型锆莫来石砖及其成型装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656156A (en) * 1986-01-21 1987-04-07 Aluminum Company Of America Adsorbent and substrate products and method of producing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346722A (en) * 1993-05-18 1994-09-13 Corning Incorporated Method for improving the thermal shock resistance of a washcoated body
US5507980A (en) 1993-07-06 1996-04-16 Aristech Chemical Corporation Basic inorganic binders
JP3227039B2 (ja) 1993-11-16 2001-11-12 日本碍子株式会社 コージェライトハニカム構造体の製造方法
US6376405B1 (en) * 1998-02-11 2002-04-23 Akzo Nobel N.V. Process for producing anionic clay using two types of alumina compounds
GB2348205B (en) 1999-03-25 2001-06-27 Murata Manufacturing Co Paste composition green sheet and multilayer substrate
WO2002068329A1 (en) * 2001-02-09 2002-09-06 Akzo Nobel N.V. Process for the preparation of anionic clay

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656156A (en) * 1986-01-21 1987-04-07 Aluminum Company Of America Adsorbent and substrate products and method of producing same

Also Published As

Publication number Publication date
CN1956936A (zh) 2007-05-02
US20060035778A1 (en) 2006-02-16
US7442663B2 (en) 2008-10-28
US20050221974A1 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
CN1956936B (zh) 陶瓷坯土、陶瓷成型体、陶瓷结构体以及它们的制备方法
JP4745963B2 (ja) ハニカム構造体の製造方法及びハニカム成形体
CN100447105C (zh) 钛酸铝镁结晶构造体及其制备方法
CN101091925B (zh) 废气净化催化剂用蜂窝状载体及其制造方法
JP5584417B2 (ja) セラミックス坏土、及び、その利用
JP2003511331A (ja) 耐火性nzp型構造体並びにその作成及び使用方法
CN102378746A (zh) 钛酸铝系陶瓷体的制造方法
CN102548934A (zh) 钛酸铝系陶瓷煅烧体的制造方法
US8679997B2 (en) Ceramic clay, ceramic formed article, and ceramic structure, and manufacturing methods thereof
KR20110128802A (ko) 티탄산알루미늄계 세라믹스 소결체의 제조 방법 및 티탄산알루미늄계 세라믹스 소결체
US9457345B2 (en) Silicon carbide porous material, honeycomb structure and electric heating-type catalyst carrier
CN102245534A (zh) 钛酸铝系烧成体的制造方法
EP2903951B1 (en) Ceramic structures
JP2014189447A (ja) 多孔質材料、ハニカム構造体及び多孔質材料の製造方法
CN102510847A (zh) 陶瓷煅烧体的制造方法
EP2546212B1 (en) Method for producing porous aluminum magnesium titanate
CN102264669A (zh) 钛酸铝系烧成体的制造方法
JP2010116289A (ja) チタン酸アルミニウム系セラミックスの製造方法
JP6324563B2 (ja) 多孔質材料の製造方法
JP4970935B2 (ja) セラミックス坏土、セラミックス成形体、セラミックス構造体及びこれらの製造方法
CN108137413A (zh) 钛酸锆锡组合物、包含其的陶瓷体、及其制造方法
JP2001181025A (ja) フェライト製品の焼成用治具
JPH01317162A (ja) アルミナ・シリカ系焼結体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100512

Termination date: 20170329