CN1925000A - 具有受限电流路径的电流垂直平面读传感器及其制造方法 - Google Patents

具有受限电流路径的电流垂直平面读传感器及其制造方法 Download PDF

Info

Publication number
CN1925000A
CN1925000A CNA2006101280626A CN200610128062A CN1925000A CN 1925000 A CN1925000 A CN 1925000A CN A2006101280626 A CNA2006101280626 A CN A2006101280626A CN 200610128062 A CN200610128062 A CN 200610128062A CN 1925000 A CN1925000 A CN 1925000A
Authority
CN
China
Prior art keywords
current
layer
sensor stack
conductive path
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006101280626A
Other languages
English (en)
Inventor
杰弗里·R·奇尔德雷斯
乔丹·A·凯延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Publication of CN1925000A publication Critical patent/CN1925000A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/308Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices lift-off processes, e.g. ion milling, for trimming or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/398Specially shaped layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49041Fabricating head structure or component thereof including measuring or testing with significant slider/housing shaping or treating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明公开一种具有光刻定义的导电通路形成的受限电流路径的CPP读传感器及其制造方法。在一示例中,在第一屏蔽层上形成包括导电间隔层的传感器堆叠结构。绝缘层沉积在间隔层上并与之相邻,暴露绝缘层的一个或更多部分的抗蚀剂结构形成在绝缘层上。采用在适当位置的抗蚀剂结构,暴露的绝缘层部分通过蚀刻被去除从而形成穿过绝缘层向下到间隔层的一个或更多孔。导电材料随后沉积在该一个或更多孔内从而形成电流约束结构的一个或更多光刻定义的导电通路。这样的光刻定义的导电通路增大了读传感器有源检测区域中的电流密度,由此同时增大其电阻和磁致电阻。可以改变和选择通路的尺寸和数量以精确“调整”该传感器的电阻和磁致电阻。

Description

具有受限电流路径的电流垂直平面读传感器及其制造方法
技术领域
本发明总地涉及数据存储装置中磁头的读传感器,更特别地,涉及电流垂直平面(CPP)型的读传感器。
背景技术
计算机通常包括辅助存储装置,该辅助存储装置具有其上可写数据且可以从其读取数据用于以后使用的介质。包括旋转磁盘的直接存取存储装置(盘驱动器)通常用于以磁形式在盘表面存储数据。数据记录在盘表面上同心的、径向间隔开的道(track)上。然后使用包括读传感器的磁头从盘表面上的道读取数据。
在大容量盘驱动器中,通常称为MR头的磁致电阻(MR)读传感器可用于以比薄膜感应头更大的线密度从盘表面读取数据。MR传感器通过其MR检测层(也称为“MR元件”)的电阻变化来检测磁场,该电阻是MR层所检测的磁通的强度和方向的函数。由于来自被记录的磁介质的外磁场(信号场)导致MR元件中磁化方向改变,这又导致MR元件中电阻的变化以及检测电流或电压的相应变化,所以能从磁介质读取被记录的数据。一般范畴的MR传感器是显示GMR效应的巨磁致电阻(GMR)传感器。在GMR传感器中,MR检测层的电阻作为非磁层(间隔层)间隔开的磁层之间传导电子的自旋相关输运以及发生在磁层和非磁层界面及磁层内的伴随自旋相关散射的函数而改变。仅使用由非磁材料(例如铜)层间隔开的两铁磁材料(例如镍铁、钴铁或镍铁钴)层的GMR传感器通常称为自旋阀(SV)传感器,其表现SV效应。
称作被钉扎层的铁磁(FM)层之一通常通过与反铁磁(AFM)层(例如氧化镍、铁锰或铂锰)交换耦合而使其磁化被固定。AFM钉扎层产生的钉扎场应大于退磁场从而确保在施加外场(例如来自记录于盘上的位的场)期间被钉扎层的磁化方向保持固定。然而,称为自由层的另一FM层的磁化不固定,并且响应于来自记录在磁介质上的信息的场(信号场)而自由旋转。被钉扎层可以是反平行(AP)被钉扎结构的一部分,该反平行被钉扎结构包括形成于第一和第二AP被钉扎层之间的反平行耦合(APC)层。例如,第一AP被钉扎层可以是交换耦合到AFM钉扎层且被其钉扎的层。通过第一和第二AP被钉扎层之间强烈的反平行耦合,使第二AP被钉扎层的磁矩反平行于第一AP被钉扎层的磁矩。
根据被钉扎层位于传感器的底部附近接近于第一读间隙层还是位于传感器的顶部附近接近于第二读间隙层,传感器可分为底型传感器或顶型传感器。根据被钉扎结构是具有单向磁矩的一个或多个FM层还是APC层分隔开的具有反平行磁矩的一对AP被钉扎层,传感器又可分为简单被钉扎或AP被钉扎传感器。传感器还可分为单或双传感器,其中单传感器仅采用一个被钉扎层,双传感器采用两个被钉扎层,自由层结构位于其间。
读传感器也可以是电流垂直平面(CPP)型传感器,其中电流垂直于传感器层的主平面流动。第一和第二屏蔽层分别与传感器的底部和顶部接合,从而同时用作传感器的导电引线。CPP传感器可以与面内电流(CIP)型传感器对比,CIP型传感器中电流在与传感器的主薄膜平面平行的平面内传导。在CPP传感器中,当自由层与AP被钉扎结构之间的间隔层是非磁且导电(例如铜)的时候,电流被称作“检测电流”;但是当间隔层是非磁且非导电(例如氧化铝)的时候,电流被称作“隧穿电流”。下文中,电流被称为垂直电流Ip,其可以是检测电流或者隧穿电流。
所有传统的金属CPP读传感器都有几个缺点。首先,它们的电阻-面积(RA)乘积十分低。对于通常的传感器面积,这导致读传感器具有低电阻值,其较差地匹配到读电路的放大器。此外,来自读传感器层(例如AFM层)的对磁致电阻没有贡献的寄生电阻降低了传感器的信噪比(SNR)。最后,与使用电流Ip作为隧穿电流的磁隧道结(MTJ)CPP传感器不同,所有金属CPP传感器的较低电阻要求它们以非常高的电流密度运行。但是,例如自旋转矩现象(spin torque phenomenon)和来自垂直电流Ip的奥斯特场的影响限制了适于稳定的传感器操作的电流密度。
可以通过限制垂直电流Ip穿过传感器堆叠的流动来增加CPP读传感器的电流密度。通常,这可以通过利用在传感器内放置一个或多个超薄绝缘层(纳米氧化层或NOL)所产生的“电流屏(current-screen)”层来实现。通过此工艺产生许多小的随机分布的导电细孔(pore)或洞(hole),其限制了传感器有源层(active layer)附近的电流流动并集中了该处的电流密度。但是实践中,该工艺很难控制并且不能获得足够且可制造的结果。随着传感器变得更小,传感器覆盖如此小的膜区域,使得导电细孔分布的统计学变化以及因此电流密度的统计学变化会导致传感器电阻的不可控和不可接受的变化。
因此,需要克服现有技术的这些或其它缺陷。
发明内容
本发明公开一种具有光刻定义的导电通路(via)制成的受限电流路径的电流垂直平面(CPP)读传感器及其制造方法。在一个示意性示例中,在第一屏蔽层上形成包括导电间隔层的至少一部分传感器堆叠结构。在该间隔层上并与其相邻地沉积绝缘层,在该绝缘层上形成暴露该绝缘层的一个或多个部分的抗蚀剂结构。采用在适当位置(in place)的抗蚀剂结构,通过蚀刻去除所述一个或多个暴露的绝缘层部分从而形成穿过所述绝缘层向下到达该间隔层的一个或多个孔(aperture)。随后在该一个或多个孔内沉积导电材料从而形成电流约束结构的一个或多个光刻定义的导电通路。有利地,这样的光刻定义的导电通路增加了读传感器的检测层区域中的电流密度,由此同时增加了其电阻和磁致电阻。可以改变和选择通路的尺寸和数量从而精确地“调整”传感器的电阻和磁致电阻。
附图说明
为了更全面地理解本发明的本质和优点及其优选使用模式,请结合附图参照下面的详细说明,附图中:
图1是示例性现有技术磁盘驱动器的平面图;
图2是在图1的平面2-2中观察到的带有盘驱动器的磁头的滑块的端视图;
图3是磁盘驱动器的正视图,其中采用了多个盘和磁头;
图4是用于支承滑块和磁头的示例性现有技术悬臂系统的等距图;
图5是沿图2的平面5-5截取的磁头的ABS示图;
图6是在图2的平面6-6中观察到的滑块和合并式磁头的局部视图;
图7是沿图6的平面7-7截取的滑块的局部ABS示图,示出磁头的读和写元件;
图8是沿图6的平面8-8截取的视图,线圈层和引线之上的全部材料被去除;
图9是具有电流垂直平面(CPP)型传感器的磁头的放大等距ABS示图;
图10是流程图,描述了具有光刻定义的导电通路制成的受限电流路径的CPP传感器的制造工艺;
图11是与图10的流程图描述的步骤对应的图11-15的一系列部分制造的传感器结构的ABS示图中的第一幅,示出包括导电间隔层的读传感器堆叠结构形成在第一屏蔽层之上;
图12是与图10的流程图描述的步骤对应的图11-15的一系列部分制造的传感器结构的ABS示图中的第二幅,除了在间隔层上形成绝缘层以外,与图11所示的相同;
图13是与图10的流程图描述的步骤对应的图11-15的一系列部分制造的传感器结构的ABS示图中的第三幅,除了在绝缘层顶上施加并构图抗蚀剂结构暴露绝缘层的绝缘材料之外,与图12所示的相同;
图14是与图10的流程图描述的步骤对应的图11-15的一系列部分制造的传感器结构的ABS示图中的第四幅,除了暴露的绝缘材料被去除和穿过绝缘层形成通路之外,与图13所示的相同;
图15是与图10的流程图描述的步骤对应的图11-15的一系列部分制造的传感器结构的ABS示图中的第五幅,除了在通路内在绝缘层之上形成导电材料由此形成具有光刻定义的导电通路的电流约束结构之外,与图14所示的相同;
图16是ABS示图,显示本申请一示例性实施例的CPP读传感器;
图17是显示本申请一供选实施例的CPP读传感器的ABS示图,除了电流约束结构具有两个光刻定义的导电通路之外,与图16所示的相同;
图18是显示本申请一供选实施例的CPP读传感器的ABS示图,除了电流约束结构具有三个光刻定义的导电通路之外,与图16所示的相同;
图19是图16的示例性实施例的CPP读传感器的等距图,显示了光刻定义的导电通路的示例性道宽(trackwidth)和条高(stripe height)尺寸;
图20是图16和19的电流约束结构的俯视图,显示了光刻定义的导电通路的示例性道宽和条高尺寸;
图21是图16和19-20的光刻定义的导电通路的条高尺寸的一个变型的俯视图;
图22是流程图,其描述了具有形成在传感器堆叠结构上的光刻定义的导电通路的CPP传感器的制造工艺;
图23是与图22的流程图所描述的步骤对应的图23-27的一系列部分制造的传感器结构的ABS示图中的第一幅,显示了包括导电层帽层的读传感器堆叠结构形成在检测层结构之上;
图24是与图22的流程图所描述的步骤对应的图23-27的一系列部分制造的传感器结构的ABS示图中的第二幅,除了在帽层之上形成绝缘层之外,与图23所示的相同;
图25是与图22的流程图所描述的步骤对应的图23-27的一系列部分制造的传感器结构的ABS示图中的第三幅,除了在绝缘层顶上施加并构图抗蚀剂结构暴露绝缘层的绝缘材料之外,与图24所示的相同;
图26是与图22的流程图所描述的步骤对应的图23-27的一系列部分制造的传感器结构的ABS示图中的第四幅,除了去除暴露的绝缘材料并穿过绝缘层形成孔之外,与图25所示的相同;
图27是与图22的流程图所描述的步骤对应的图23-27的一系列部分制造的传感器结构的ABS示图中的第五幅,除了在绝缘层之上的通路孔内形成导电材料由此形成具有光刻定义的导电通路的电流约束结构之外,与图26所示的相同;
图28是显示本申请一示例性实施例的CPP读传感器的ABS示图。
具体实施方式
本申请公开一种具有光刻定义的导电通路制成的受限电流路径的电流垂直平面(CPP)读传感器及其制造方法。在一个示意性示例中,至少部分传感器堆叠结构形成在第一屏蔽层之上。绝缘层沉积在传感器堆叠结构的至少部分帽层结构之上且与之相邻,在绝缘层之上形成暴露绝缘层的一个或多个部分的抗蚀剂结构。采用在适当位置的抗蚀剂结构,通过蚀刻去除所述一个或多个暴露的绝缘部分从而形成穿过绝缘层向下到帽层结构的一个或多个孔。随后在该一个或多个孔内沉积导电材料从而形成电流约束结构的一个或多个光刻定义的导电通路,其形成传感器堆叠结构的顶部。有利地,这样的光刻定义的导电通路增大了检测层区域中读传感器的电流密度,由此同时增大了其电阻和磁致电阻。可以改变和选择通路的尺寸和数量从而精确地“调整”传感器的电阻和磁致电阻。因为有证据表明在研磨损坏的读传感器边缘附近磁致电阻效应降低,因此在传感器结构的中心隔离单个或数个通路从而避免这样的损坏也是有利的。
下面的描述是目前构思的用于实施本发明的较佳实施例。进行该描述是为了显示本发明的一般原理,而不意味着限制这里主张的发明概念。
现在参照附图,其中相似的附图标记表示相似或相同的部件,图1-3显示了磁盘驱动器30。盘驱动器30包括支承并旋转磁盘34的芯轴(spindle)32。通过由马达控制器38控制的芯轴马达36来旋转芯轴32。滑块42包括组合的读和写磁头40且通过悬臂44和由致动器47可旋转地定位的致动臂46被支承。磁头40可以利用根据本发明制造的读传感器。在图3所示的大容量直接存取存储装置(DASD)中可以使用多个盘、滑块和悬臂。悬臂44和致动臂46通过致动器47被移动从而定位滑块42,使得磁头40与磁盘34的表面处于转换关系(transducing relationship)。当通过芯轴马达36转动盘34时,滑块42被支承在盘34的表面与气垫面(ABS)48之间的薄(通常0.05μm)的气垫(空气承垫)上。然后可以使用磁头40向盘34表面上的多个环形道写信息,以及从其上读信息。处理电路50与头40交换代表这样的信息的信号,提供用于旋转磁盘34的芯轴马达驱动信号,以及向致动器47提供用于将滑块42移动到各个道的控制信号。在图4中,显示了安装到悬臂44的滑块42。如图3所示,上述部件可以安装在外壳55的框架54上。图5是滑块42和磁头40的ABS视图。滑块42具有支承磁头40的中心轨(rail)56,以及侧轨58和60。轨56、58和60从交叉轨62延伸。相对于磁盘34的旋转,交叉轨62处于滑块42的前导边缘64,磁头40处于滑块42的拖尾边缘66。
图6是合并式磁头40的侧剖面正视图,其包括写头部分70和读头部分72。读头部分72包括利用CPP传感器74的CPP巨磁致电阻(GMR)读头。图7是图6的ABS视图。CPP传感器74夹在铁磁的第一和第二屏蔽层80和82之间。响应于外磁场,CPP传感器74的电阻改变。通过传感器传导的检测电流IS使得这些电阻变化表现为电势变化。然后通过图3所示的处理电路50将这些电势变化作为读回信号处理。
磁头40的写头部分70包括夹在第一和第二绝缘层86和88之间的线圈层84。可以采用第三绝缘层90来平坦化该头,从而消除线圈层84导致的第二绝缘层中的波纹。在本领域中将第一、第二和第三绝缘层称作“绝缘堆叠”。线圈层84以及第一、第二和第三绝缘层86、88和90夹在第一和第二极片层92和94之间。第一和第二极片层92和94在背空隙96处磁耦合并具有在ABS处通过写间隙层102分隔开的第一和第二极尖(pole tip)98和100。由于第二屏蔽层82和第一极片层92是公共层,所以将该头称作合并式头。在背负式头中,绝缘层位于第二屏蔽层和第一极片层之间。如图2和4所示,第一和第二焊料连接104和106将来自自旋阀传感器74的引线连接到悬臂44上的引线112和114,第三和第四焊料连接116和118将来自线圈84的引线120和122(见图8)连接到悬臂44上的引线124和126。
图9是图7所示的现有技术读头部分的放大ABS示图。读头包括CPP传感器74。例如氧化铝的第一和第二绝缘层127和128覆盖传感器74每侧的第一屏蔽层80并稍微覆盖传感器的第一和第二侧壁130和132。第一和第二硬偏置层(HB)134和136在绝缘层127和128上,并与侧壁130和132相邻。金属籽层(图9未示出)形成在绝缘层127和128与硬偏置层134和136之间。硬偏置层134和136使得磁场纵向延伸穿过传感器74,用于稳定自由层。传感器74以及第一和第二硬偏置层134和136位于铁磁的第一和第二屏蔽层80和82之间,第一和第二屏蔽层80和82可以用作将垂直电流Ip传导通过传感器74的引线。
图10是流程图,其描述了具有一个或更多光刻定义的导电通路制成的电流约束结构的示例性CPP读传感器的制造工艺。图11-15是一系列ABS示图,示出与图10的流程图描述的步骤对应的部分制造的传感器结构,将结合图10的流程步骤参考图11-15。
结合图11从图10的起始块1002开始,在第一屏蔽层(S1)1172上形成具有导电间隔层部分(SP-1)1132的至少一部分CPP传感器堆叠结构1100(图10的步骤1004)。CPP传感器堆叠结构1100可以由任何适当的传感器材料制成,在此实施例中,包括(从下至上)籽层(SL)1112、反铁磁(AFM)钉扎层1114,被钉扎层结构1104和间隔层部分(SP-1)1132。在此“顶SV”示例配置中,被钉扎层结构1104形成在间隔层部分1132之下并与之相邻且在AFM钉扎层1114之上并与之相邻。AFM钉扎层1114形成在被钉扎层结构1104之下并与之相邻且在籽层1112之上并与之相邻。籽层(seed layer)1112形成在第一屏蔽层1172之上并与之相邻且在AFM钉扎层1114之下用于促进沉积在其上的层的改善的织构(texture)。在此实施例中,间隔层部分1132将仅形成所得CPP读传感器的整个间隔层结构的底部分或底子层(sublayer)(SP-1)。间隔层部分1132是高度导电且非磁的,可以由合适的材料例如铜(Cu)或金(Au)制成。
利用沉积工艺1190在间隔层部分1132上且与之相邻地沉积绝缘材料(图10的步骤1006)。结果示于图12中,其中绝缘层1140与间隔层部分1132接触地形成。绝缘层1140可以由任何适当的电绝缘材料例如氧化铝(Al2O3)或其它绝缘材料例如氧化硅(SiO2)、氮化硅(Si3N4)、氧化镁(MgO)或氧化钽(Ta2O5)制成。由于其将形成间隔层结构的一部分,所以绝缘层1140形成有非常小的厚度,例如在10埃与100埃之间。
然后执行抗蚀剂结构形成工艺1290,在图13中,抗蚀剂结构1392施加并构图在绝缘层1140上并与之相邻,暴露绝缘层1140的绝缘材料1142(图10的步骤1008)。可以由光致抗蚀剂制成抗蚀剂结构1392。供选地,可以由与电子束(e-束)光刻工艺兼容的抗蚀剂制成抗蚀剂结构1392。尽管抗蚀剂结构1392显示并描述为单层抗蚀剂,但是它可以替代地是多层抗蚀剂(例如双层或三层抗蚀剂)。如图所示,形成抗蚀剂结构1392从而定义用于随后形成的光刻定义的导电通路的具有适当宽度W13的开口。如果使用光学光刻形成抗蚀剂结构1392,则如果抗蚀剂是正抗蚀剂就在将被去除的区域中曝光抗蚀剂薄膜。如果抗蚀剂为负抗蚀剂,则在将要保留的区域中曝光。最后,抗蚀剂经基本显影液处理。如果使用电子束(e束)光刻来形成抗蚀剂结构1392,则如果抗蚀剂为正抗蚀剂就在将被去除的区域中电子束曝光抗蚀剂薄膜。如果抗蚀剂为负抗蚀剂,则在将要保留的区域中曝光。最后,抗蚀剂经适当的显影液处理。将最终决定所得导电通路的宽度的宽度W13可以在3与40纳米(nm)内。在此实施例中,仅单个开口形成在抗蚀剂结构1392的中心内(在传感器堆叠结构1100的宽度和所得读传感器的道宽的中心线)。但是,开口的数量将根据所需通路的数量而改变。
采用在适当位置的抗蚀剂结构1392,利用蚀刻工艺1390(例如离子研磨)通过抗蚀剂结构1392的开口来去除暴露的绝缘材料1142(图10的步骤1010)。结果示于图14中,其中形成孔1482向下到达间隔层部分1132的顶部从而暴露导电材料1432。如果沿整个条高(SH)尺寸执行蚀刻,则可以将绝缘层完全分为第一和第二绝缘层部分1442和1444。一旦到达间隔层部分1132的顶部就中断离子研磨工艺,在此暴露了间隔层部分1132的导电材料1432。因此,孔1482形成为向下穿过整个绝缘层,被绝缘层部分1442和1444包围,并具有与抗蚀剂结构的开口基本相同的宽度W13。图14还显示了此时利用适当的溶液或其它适当的技术可去除抗蚀剂结构。
然后执行沉积工艺1490从而在暴露的导电材料1432上孔1482内沉积导电材料(图10的步骤1012)。结果示于图15中,其中导电材料1534不仅形成在孔1482内,也形成在绝缘层部分1442和1444之上。结果,形成电流约束结构1580的光刻定义的导电通路1582。在光刻定义的导电通路1582上和绝缘部分1442和1444上形成的导电材料1534形成整个间隔层结构的顶部或顶子层(SP-2)。在此实施例中,仅单个通路形成在该结构的中心内(其在传感器堆叠结构1100的宽度和所得读传感器的道宽的中心线)。但是,通路的数量将根据设计而改变。注意,可以替代地进行图14的沉积工艺1490而抗蚀剂结构1392保持在位,直到孔1432被填充以导电材料从而形成带绝缘部分1442和1444的平坦顶表面。在孔被填充以导电材料从而形成通路之后,去除抗蚀剂结构1392,并沉积其余的导电材料以形成间隔层的顶子层。
与图10的流程图描述的步骤对应的方法在末端块1014结束,但是可以随后进行其它的处理步骤。例如,利用另外的制造工艺1590来完成CPP读传感器的形成,在图16中作为CPP读传感器1600示出。这些工艺1590可以利用本领域已知的任何适当技术(传统的或其它的)从而完成每个设计要求的制造。
如上所述,图10的方法中利用的优选光刻工艺包括以下步骤:在传感器堆叠结构的绝缘层上形成抗蚀剂结构,其暴露绝缘层的绝缘材料;采用在适当位置的抗蚀剂结构蚀刻所述暴露的绝缘材料从而形成穿过该绝缘层的孔;以及在该孔内形成导电材料从而形成光刻定义的导电通路。但是,作为替代,导电层可以被蚀刻且绝缘材料可以随后沉积在其附近从而形成通路。此供选的光刻工艺可以包括更详细的步骤:在导电层上形成抗蚀剂结构,其暴露导电层的导电材料;采用在适当位置的抗蚀剂结构,蚀刻掉暴露的导电材料从而形成穿过导电层的孔;以及在孔内沉积绝缘材料从而包围光刻定义的导电通路。
如图16所示,通过上述方法制成的所得CPP读传感器1600具有传感器堆叠结构1602(“顶SV”),其形成在由端部区域1650和1654包围的中心区域1652中。传感器堆叠结构1602从下至上包括籽层1612、AFM钉扎层1614、被钉扎层结构1604、电流约束结构1680、检测层结构(F)1624和帽层1620。帽层1620形成在第二屏蔽层1674之下并与之相邻且在检测层结构1624之上并与之相邻。检测层结构1624形成在帽层1620之下并与之相邻且在电流约束结构1680之上并与之相邻。电流约束结构1680形成在检测层结构1624之下并与之相邻且在被钉扎层结构1604上并与之相邻。被钉扎层结构1604形成在电流约束结构1680之下并与之相邻且在AFM钉扎层1614之上并与之相邻。AFM钉扎层1614形成在被钉扎层结构1604之下并与之相邻且在籽层1612之上并与之相邻。籽层1612形成在第一屏蔽层1172之上并与之相邻且在AFM钉扎层1614之下并与之相邻用于促进沉积在其上的层的改善的织构。CPP读传感器1600具有形成在第一屏蔽层1172之上并与之相邻在端区域1650和1652中的第一和第二绝缘层1660和1662,以及传感器堆叠结构1602的侧壁。此外,CPP读传感器1600具有形成在绝缘层1660和1662之上并与之相邻的第一和第二硬偏置层1664和1666。最后,示出第二屏蔽层(S2)1674形成于平坦化的结构之上。
注意,代替电流约束结构1680形成在整个间隔层内,它可以形成在间隔层之上或之下。在此变型中,光刻定义的导电通路可以由与间隔层相同或不同的非磁导电材料或者由下面/上面的磁层的铁磁材料形成。
下面的材料可以用在CPP读传感器1600中。第一和第二屏蔽层1172和1674可以由例如镍铁(NiFe)的任何适当的材料制成;籽层1612可以具有例如镍铁铬(NiFeCr)或NiFe的任何适当材料的一个或多个层;AFM钉扎层结构1614可以由例如铂锰(PtMn)或替代地铱锰(IrMn)的任何适当的材料制成;被钉扎层结构1604可以由例如钴(Co)或钴铁(CoFe)的任何适当的材料制成;电流约束结构1680的导电部分1632和1634可以由例如铜(Cu)或金(Au)的任何适当的材料形成,而电流约束结构1680的绝缘部分1642和1644可以由例如氧化铝(Al2O3)的任何适当的材料形成;检测层结构1624可以由例如CoFe或替代地NiFe的任何适当的材料形成;帽层1620可以由例如钽(Ta)的任何适当的材料形成;第一和第二绝缘层1660和1662可以由例如Al2O3的任何适当的材料形成;第一和第二硬偏置层1664和1666可以由例如钴铂铬(Co-Pt-Cr)或其它钴基合金的任何适当的材料形成。
下面各层的厚度可以用于CPP读传感器1600中。第一和第二屏蔽层1172和1674可以具有约30nm至约500nm的厚度范围;籽层1612可以具有约10埃至约100埃的厚度范围;AFM钉扎层结构1614可具有约30埃至约300埃的厚度范围;被钉扎层结构1604可具有约10埃至约100埃的厚度范围;电流约束结构1680的导电部分1632和1634可分别具有约2埃至约10埃的厚度范围;电流约束结构1680的绝缘部分1642和1644可分别具有约5埃至约100埃的厚度范围;光刻定义的导电通路1582可具有约5埃至约100埃的厚度范围;检测层结构1624可具有约10埃至约100埃的厚度范围;帽层1620可具有约5埃至约50埃的厚度范围;第一和第二绝缘层1660和1662可具有约10埃至约100埃的厚度范围;第一和第二硬偏置层1664和1666可具有约20nm至约200nm的厚度范围。
如图16所示,此示例性实施例的电流约束结构1680形成为具有第一间隔层部分(SP-1)和第二间隔层部分(SP-2)的间隔层的一部分或在其内。第一间隔层部分SP-1与检测层结构1624(位于其上)相邻地形成,第二间隔层部分SP-2与被钉扎层结构1604(位于其下)相邻地形成。在此实施例中,电流约束结构1680具有绝缘材料1642和1644包围的单个光刻定义的导电通路1582,且位于结构的中心。但是,如稍后将相关于图17和18显示且描述的那样,在电流约束结构1680内可以引入任意适当数目的优选平均分布的通路。
可以相对于CPP读传感器1600的道宽TWS16来定义光刻定义的导电通路1582的宽度W13。优选地,光刻定义的导电通路1582的宽度W13小于或等于CPP读传感器1600的道宽TWS16的1/2。在此实施例中,道宽TWS16约为100nm(30至200nm的范围),宽度W13约为10nm(3至40nm的范围)。图16更清楚地显示了光刻定义的导电通路1582形成在传感器堆叠结构1602的宽度和CPP读传感器1600的道宽TWS16的中心线LC16处。对于单个导电通路,注意距离D16定义每个绝缘材料部分1642和1644的宽度,其中W13+(2*D16)=TWS16
现在关于图19、20和21论述光刻定义的导电通路1582沿条高(SH)方向的尺寸。在图19中,示出了传感器堆叠结构1602的等距示图。如图所示,传感器堆叠结构1602具有与其相关的条高SHS19,光刻定义的导电通路1582沿条高方向具有尺寸LV19。在此实施例中,LV19=SHS19。更一般地,尺寸LV19等于或小于条高SHS19。图20示出沿图16和19的线20-20截取的俯视图,其示出了光刻定义的导电通路1582形成在传感器堆叠结构1602的条高SHS19的中心线LC19。在图21中,显示了此示例性实施例的变型的俯视图。再次,光刻定义的导电通路2182沿条高方向具有尺寸LV21。在图21的实施例中,光刻定义的导电通路2182的尺寸LV21小于条高SHS20。在此情况下,距离D21定义每个绝缘材料部分的高度,其中LV21+(2*D22)=SHS19。对于单个导电通路的实施例,光刻定义的导电通路2182形成在传感器堆叠结构1602的条高SHS19的中心线LC19
本申请的具有带一个或更多光刻定义的导电通路的电流约束结构的CPP读传感器具有优点。很重要地,光刻定义的导电通路增大了检测层区域中读传感器的电流密度,由此同时增大了其电阻和磁致电阻。特别是随着读传感器的尺寸减小,对读传感器的电流密度要求的更严格的控制可以通过设计和在制造期间实现。可以改变和选择通路的尺寸和数量,从而精确地“调整”传感器的电阻和磁致电阻。由于有证据表明在研磨损坏的读传感器边缘附近磁致电阻效应降低,所以在传感器结构的中心隔离单个或数个通路从而避免这样的损坏也是有利的。
现在参照图17,其显示了本申请的CPP读传感器1700的供选实施例。除了CPP读传感器1700的电流约束结构1780不同以外,图17与关于图16所显示和描述的相同。特别地,电流约束结构1780形成有与传感器堆叠结构1702的宽度和CPP读传感器1700的道宽S17的中心线LC17相等地间隔开的两个光刻定义的导电通路1782和1784。类似于图16,电流约束结构1780是具有第一间隔层部分(SP-1)和第二间隔层部分(SP-2)的间隔层结构的一部分,其中第二间隔层部分SP-2与检测层结构1624(位于其上)相邻地形成,第一间隔层部分SP-1与被钉扎层结构1604(位于其下)相邻地形成。光刻定义的导电通路1782和1784具有形成在其中的导电材料1734,其部分构成间隔层。光刻定义的导电通路1782由左边的绝缘材料1742和右边的绝缘材料1744包围。类似地,光刻定义的导电通路1784由左边的绝缘材料1744和右边的绝缘材料1746包围。
在此实施例中,选择光刻定义的导电通路1782和1784的每个宽度WA17,使得(2*WA17)小于或等于CPP读传感器1700的道宽TWS17的1/2。光刻定义的导电通路1782和1784形成为与传感器堆叠结构1702的道宽TWS17的中心线LC17均等地间隔开距离D17A,其中(2*WA17)+(2*D17A)+(2*D17B)=TWS17。注意,距离D17B可以等于、小于或大于距离D17A。如关于图20-22所论述的那样,光刻定义的导电通路1782和1784也具有可以改变的条高尺寸。
一种制造图17这样的结构的方法,除了电流约束结构1780形成为具有两个光刻定义的导电通路1782和1784之外,与前面关于图10描述的方法相同。此处,光致抗蚀剂结构形成有两个开口(例如在图12-13中),执行蚀刻从而产生两个孔(例如在图13-14中),并在两个孔内进行沉积(例如在图14-15中)。
参照图18,显示了本申请的CPP读传感器1800的供选实施例。除了CPP读传感器1800的电流约束结构1880不同以外,图18与图16所示的相同。特别地,电流约束结构1880形成有三个光刻定义的导电通路1882、1884和1886,其与传感器堆叠结构1802的宽度和CPP读传感器1800的道宽TWS17的中心线LC18均等间隔开。类似于图16-17,电流约束结构1880是具有第一间隔层部分(SP-1)和第二间隔层部分(SP-2)的间隔层结构的一部分,其中第二间隔层部分SP-2与检测层结构1624(位于其上)相邻地形成,第一间隔层部分SP-1与被钉扎层结构1604(位于其下)相邻地形成。光刻定义的导电通路1882、1884和1886具有形成在其中的导电材料1834,其部分构成间隔层结构。光刻定义的导电通路1882被其左侧的绝缘材料1842和其右侧的绝缘材料1844包围。类似地,光刻定义的导电通路1884被其左侧的绝缘材料1844和其右侧的绝缘材料1846包围。此外类似地,光刻定义的导电通路1886由其左侧的绝缘材料1846和其右侧的绝缘材料1848包围。
在此实施例中,选择光刻定义的导电通路1882、1884和1886的各宽度WA18,使得(3*WA18)小于或等于CPP磁头1800的道宽TWS18的1/2。光刻定义的导电通路1884形成在传感器堆叠结构1802的道宽TWS18的中心线LC18处,而光刻定义的导电通路1882和1886形成为与中心线LC18均等间隔开距离D18A,其中(3*WA18)+(2*D18A)+(2*D18B)=道宽TWS18。注意,距离D18B可以等于、小于或大于距离D18A。如关于图20-22所论述的,光刻定义的导电通路1882、1884和1886也具有可以改变的条高尺寸。
一种制造图18这样的结构的方法,除了电流约束结构1880形成有三个光刻定义的导电通路1882、1884和1886之外,与关于图10所述的方法相同。此处,光致抗蚀剂结构形成有三个开口(例如在图12-13中),进行蚀刻从而产生三个孔(例如在图13-14中),并在三个孔内进行沉积(例如在图14-15中)。
图22是流程图,其描述了用于具有一个或更多光刻定义的导电通路制成的电流约束结构的另一示例性CPP读传感器的制造工艺。图23-27是示出与图22的流程图描述的步骤对应的部分制造的传感器结构的一系列ABS示图,现在将结合图22的流程图对其进行说明。
结合图23从图22的起始块2202开始,在第一屏蔽层(S1)2372上形成CPP传感器堆叠结构2300的至少一部分(图22的步骤2204)。CPP传感器堆叠结构2300具有至少一部分导电帽层结构(CAP)2320。CPP传感器堆叠结构2300可以由任何适当的传感器材料构成,在此实施例中,包括(从下至上)籽层(SL)2312、反铁磁(AFM)钉扎层2314,被钉扎层结构2304、间隔层(SP)2332、检测层结构(F)2324和帽层结构2320。在此“顶SV”示例性配置中,检测层结构2324形成在帽层结构2320之下并与之相邻且在间隔层2332之上并与之相邻。被钉扎层结构2304形成在间隔层2332之下并与之相邻且在AFM钉扎层2314之上并与之相邻。AFM钉扎层2314形成在被钉扎层结构2304之下并与之相邻且在籽层2312之上并与之相邻。籽层2312形成在第一屏蔽层2372之上并与之相邻且在AFM钉扎层2314之下并与之相邻,用于促进沉积在其上的层的改善的织构。
在此实施例中,帽层结构部分2320将仅形成所得CPP读传感器顶部的底部或底子层。帽层结构2320是高度导电且非磁的,可以由例如钽(Ta)的适当材料制成。
利用沉积工艺2390在帽层结构2320上并与之相邻地沉积绝缘材料(图22的步骤2206)。结果示于图24中,其中绝缘层2440形成为与帽层结构2320接触。绝缘层2440可以由任何适当的电绝缘材料例如氧化铝(Al2O3)或其它绝缘材料例如SiO2、Si3N4、MgO或Ta2O5制成。绝缘层2440将形成所得传感器堆叠结构的顶部的一部分,且形成有例如10埃与100埃之间的厚度。
然后进行抗蚀剂结构形成工艺2490,在图25中,在绝缘层2440之上并与之相邻地施加并构图抗蚀剂结构2592,暴露绝缘层2440的绝缘材料2542(图22的步骤2208)。抗蚀剂结构2592可以是或者包括光致抗蚀剂。供选地,可以由与电子束(e-束)光刻工艺兼容的抗蚀剂制成抗蚀剂结构2592。尽管抗蚀剂结构2592显示并描述为单层抗蚀剂,但是它可以替代地是多层抗蚀剂(例如双层或三层抗蚀剂)。如果使用光学光刻来形成抗蚀剂结构2592,则如果抗蚀剂为正抗蚀剂,就在将被去除的区域中曝光抗蚀剂薄膜。如果抗蚀剂为负抗蚀剂,就在将被保留的区域中曝光。最后,抗蚀剂经基本的显影液处理。如果使用电子束(e-束)光刻来形成抗蚀剂结构2592,则倘若抗蚀剂为正抗蚀剂,就在将被去除的区域中电子束曝光抗蚀剂薄膜。如果抗蚀剂为负抗蚀剂,就在将要保留的区域中曝光。最后,抗蚀剂经适当的显影液处理。在此实施例中,仅单个开口形成在抗蚀剂结构2592的中心内(传感器堆叠结构2300的宽度和所得读传感器的道宽的中心线)。但是,开口的数量将根据所需通路的数量而改变。
如图25所示,形成抗蚀剂结构2592从而定义具有适当宽度W25的开口用于随后形成的光刻定义的导电通路。将最终决定所得导电通路的宽度的宽度W25可以在3与50纳米(nm)内。
采用在适当位置的抗蚀剂结构2592,利用蚀刻工艺2590(例如离子研磨)来通过抗蚀剂结构2592的开口去除暴露的绝缘材料2540(图22的步骤2210)。结果示于图26中,其中孔2682形成为向下到达帽层结构2320的顶部从而暴露其导电材料2620。如果沿着整个条高(SH)尺寸进行蚀刻,则可以将绝缘层完全分为第一和第二绝缘层部分2642和2644。一旦到达帽层结构2320的顶部就中断离子研磨工艺,在此暴露了帽层结构2320的导电材料2620。供选地,可以继续研磨工艺直到帽层中的任意所需深度,但是应当在出现对自由层的任何损坏之前停止。这样,孔2682形成为向下穿过整个绝缘层,被绝缘层部分2642和2644包围,并具有与抗蚀剂结构的开口基本相同的宽度W25。图26还显示了在此时可以使用适当的溶剂或其它适当的技术去除抗蚀剂结构。
然后进行沉积工艺2690从而在暴露的导电材料2620之上在孔2682内沉积导电材料(图22的步骤2212)。结果示于图27中,其中仅在孔2682内形成导电材料2720。结果,形成了电流约束结构2780的光刻定义的导电通路2782。导电材料2720形成在光刻定义的导电通路2782内,并形成整个帽层结构的顶部或顶子层。显然地,电流约束结构2780形成为传感器堆叠结构的一部分和顶部。在此实施例中,仅单个通路形成在结构的中心内(在传感器堆叠结构2300的宽度和所得读传感器的道宽的中心线)。但是,通路的数量和位置将根据设计而改变。
供选地,导电材料可以不仅形成在孔2682内,还形成在绝缘层部分2642和2644上。在此情况下,图26的沉积工艺2690可以替代地用保持在位的抗蚀剂结构2592进行,直到孔2632被填充以导电材料从而形成带绝缘部分2642和2644的平坦顶表面。在孔被填充以导电材料从而形成通路之后,去除抗蚀剂结构2592,并沉积其余的导电材料从而形成帽层结构的顶子层。
与图22的流程图描述的步骤对应的方法在末端块2214结束,但是随后可以进行额外的处理步骤。例如,利用额外的制造工艺2790来完成CPP读传感器的形成,图28中示出为CPP读传感器2800。这些工艺2790可以利用本领域已知的任何适当技术(传统的或其它的)来完成每个设计要求的制造。
如上所述,图22的方法中利用的优选光刻工艺包括以下步骤:在传感器堆叠结构的绝缘层上形成抗蚀剂结构,其暴露绝缘层的绝缘材料;采用在适当位置的抗蚀剂结构,蚀刻暴露的绝缘材料从而形成穿过绝缘层的孔;以及在孔内形成导电材料从而形成光刻定义的导电通路。但是作为替代,可以蚀刻导电层,绝缘材料可以随后沉积到其附近从而形成通路。此替代光刻工艺可以包括更详细的步骤:在导电层上形成抗蚀剂结构,其暴露导电层的导电材料;采用在适当位置的抗蚀剂结构,蚀刻掉暴露的导电材料从而形成穿过导电层的开口;以及在开口内沉积绝缘材料从而包围光刻定义的导电通路。
作为另一替代,可以对帽层使用氧化工艺从而帮助产生本申请的电流约束结构。在此情况下,使用光刻工艺来形成穿过帽层的一个或多个孔。接着,对帽层材料进行氧化工艺从而产生电绝缘材料。然后,可以在孔内沉积导电材料从而形成光刻定义的导电通路。
如图28所示,由上述方法制成的所得CPP读传感器2800具有传感器堆叠结构2802(“顶SV”),其形成在由端区域2850和2854包围的中心区域2852中。传感器堆叠结构2802从下至上包括籽层2812、AFM钉扎层2814、被钉扎层结构2804、间隔层2832、检测层结构2824和电流约束结构2880。电流约束结构2880包括帽层子层2820、绝缘部分2842和2844、以及导电材料2720,其形成传感器堆叠结构2802的顶部并作为它的一部分。电流约束结构2880形成在第二屏蔽层2874之下并与之相邻且在检测层结构2824之上并与之相邻。
检测层结构2824形成在电流约束结构2880之下并与之相邻且在间隔层2832之上并与之相邻。间隔层2832形成在检测层结构2824之下并与之相邻且在被钉扎层结构2804之上并与之相邻。被钉扎层结构2804形成在间隔层2832之下并与之相邻且在AFM钉扎层2814之上并与之相邻。AFM钉扎层2814形成在被钉扎层结构2804之下并与之相邻且在籽层2812之上并与之相邻。籽层2812形成在第一屏蔽层2372之上并与之相邻且在AFM钉扎层2814之下并与之相邻,用于促进沉积在其上的层的改善的织构。CPP读传感器2800具有形成在端区域2850和2852中在第一屏蔽层2372之上并与之相邻以及在传感器堆叠结构2802的侧壁上的第一和第二绝缘层2860和2862。此外,CPP读传感器2800具有形成在绝缘层2860和2862之上并与之相邻的第一和第二硬偏置层2864和2866。最后,示出第二屏蔽层(S2)2874形成在平坦化的结构之上。
下面的材料可以用在CPP读传感器2800中。第一和第二屏蔽层2372和2874可以由例如NiFe的任何适当的材料形成;籽层2812可以具有例如NiFeCr或NiFe的任何适当材料的一个或多个层;AFM钉扎层结构2814可以由例如PtMn或供选的IrMn的任何适当的材料形成;被钉扎层结构2804可以由例如Co或CoFe的任何适当的材料形成;间隔层2832可以由例如Cu或Au的任何适当的导电非磁材料形成;检测层结构2824可以由例如CoFe或供选的NiFe的任何适当的材料形成;电流约束结构2880的导电部分2820和2720可以由例如Ta的任何适当的材料形成,而电流约束结构2880的绝缘部分2842和2844可以由例如Al2O3的任何适当的材料形成;第一和第二绝缘层2860和2862可以由例如Al2O3的任何适当的材料形成;第一和第二硬偏置层2864和2866可以由例如Co-Pt-Cr或其它钴基合金的任何适当的材料形成。
下面各层的厚度可以用在CPP读传感器2800中。第一和第二屏蔽层2372和2874可具有约30nm至约500nm的厚度范围;籽层2812可具有约10埃至约100埃的厚度范围;AFM钉扎层结构2814可具有约30埃至约300埃的厚度范围;被钉扎层结构2804可具有约10埃至约100埃的厚度范围;间隔层2832可具有约5埃至约20埃的厚度范围;检测层结构2824可具有约10埃至约100埃的厚度范围;电流约束结构2880的导电部分2820和2720可分别具有约5埃至约50埃的厚度范围;电流约束结构2880的绝缘部分2842和2844可分别具有约5埃至约50埃的厚度范围;光刻定义的导电通路2782可具有约5埃至约50埃的厚度范围;第一和第二绝缘层2860和2862可具有约10埃至约100埃的厚度范围;第一和第二硬偏置层2864和2866可具有约20nm至约200nm的厚度范围。
如图28所示,此示例性实施例的电流约束结构2880形成在具有导电部分(例如帽层)2820和2720以及绝缘部分2842和2844的帽层结构内或作为其一部分。导电部分2820与检测层结构2824(位于其下)相邻地形成,导电部分2720以及绝缘部分2842和2844与第二屏蔽层2874(位于其上)相邻地形成。在此实施例中,电流约束结构2880具有被绝缘材料2842和2844包围的单个光刻定义的导电通路2782,并且位于该结构的中心。
可以相对于CPP读传感器2800的道宽TWS28定义光刻定义的导电通路2782的宽度W25。优选地,光刻定义的导电通路2782的宽度W25小于或等于CPP读传感器2800的道宽TWS28的1/2。在此实施例中,道宽TWS28约为100nm(30至200nm的范围),宽度W25约为10nm(3至50nm的范围)。图28更清楚地显示了光刻定义的导电通路2782形成在传感器堆叠结构2802的宽度和CPP读传感器2800的道宽TWS28的中心线LC28。对于单个导电通路,注意距离D28定义每个绝缘材料部分2842和2844的宽度,其中W25+(2*D28)=TWS28
注意,如先前关于图17和18的电流约束结构1780和1880显示和描述的那样,在电流约束结构2880内可以引入任何适当数量的优选均等分布的通路。此外,关于图19、20和21中光刻定义的导电通路1582沿条高(SH)方向的尺寸的论述也适用于光刻定义的导电通路2782沿SH方向的尺寸。
本发明的具有带一个或更多光刻定义的导电通路的电流约束结构的CPP读传感器具有优点。很重要地,光刻定义的导电通路增大了检测层区域中读传感器的电流密度,由此同时增大了其电阻和磁致电阻。尤其随着读传感器的尺寸减小,对读传感器的电流密度要求的严格控制可以通过设计和在制造期间实现。可以改变和选择通路的尺寸和数量从而精确地“调整”传感器的电阻和磁致电阻。因为磁致电阻效应会由于研磨损坏而在读传感器边缘附近降低,所以在传感器堆叠结构的中心隔离单个或数个通路从而避免这样的损坏也是有利的。
本申请的CPP传感器可包括关于图16-19显示和描述的所有层。但是,本领域技术人员理解,关于图16-19和28描述的层仅是全部可行的CPP传感器层配置的几个示例。例如,CPP传感器显示为顶型CPP传感器;但是传感器可以是底型CPP传感器。供选配置可包括双CPP传感器、堆叠内偏置结构、AP被钉扎层结构和AP检测层结构等。
也可以进行其它的结构变化。如上所述,电流约束结构可以与检测层结构相邻地形成或者形成在帽层结构内或与之相邻。供选地,电流约束结构可以与被钉扎层结构或AFM钉扎层结构相邻地形成。此外如上所述,光刻定义的导电通路可以形成在间隔层内。但是,供选地,光刻定义的导电通路可以形成在间隔层之上或之下,或者在帽层之上或之下。
本说明中要特别注意的是光刻定义的导电通路的相对位置。具体地,上述实施例描述了光刻定义的导电通路的位置在传感器堆叠结构的道宽的中心线和/或传感器堆叠结构的条高的中心线上,或者与其均等地间隔开。供选地,本申请的光刻定义的导电通路可以形成在任何适当位置用于适当的电流,如临近ABS。此外,如关于图22具体论述的那样,本申请的电流约束结构可以具有在条高方向上的尺寸小于条高尺寸的光刻定义的导电通路。但是,其它的配置是可行的。例如,光刻定义的导电通路的二维矩阵(俯视时)可以形成在电流约束结构内。此外,可以按照用户的需要使用多个本申请的电流约束结构。
如此处所述,本申请的CPP读传感器具有受限电流路径。在一示例性实施例中,CPP读传感器包括传感器堆叠结构;以及与传感器堆叠结构的导电层相邻地形成的传感器堆叠结构的电流约束结构,其中电流约束结构具有绝缘材料包围的光刻定义的导电通路。具有带这样的光刻定义的导电通路电流约束结构的CPP读传感器比现存传感器具有优点。很重要地,光刻定义的导电通路增大了特别在读传感器的有源区域内的电流密度,由此同时增大了其总电阻和磁致电阻。尤其随着读传感器的尺寸不断减小,对读传感器的电流密度要求的严格控制可以通过设计和在制造期间实现。可以改变和选择通路的尺寸和数量从而精确地“调整”传感器的电阻和磁致电阻。因为有证据表明在读传感器的研磨损坏的边缘附近磁致电阻效应降低,所以在传感器结构的中心隔离单个或数个通路从而避免这样的损坏也是有利的。
本申请的磁头包括:第一和第二屏蔽层;以及在第一和第二屏蔽层之间形成的CPP读传感器。CPP读传感器包括:传感器堆叠结构;与传感器堆叠结构的导电层相邻地形成的传感器堆叠的电流约束结构,其中电流约束结构具有绝缘材料包围的光刻定义的导电通路。本申请的盘驱动器可包括:外壳;可旋转地支承在外壳内的磁盘;磁头;安装在外壳中用于支承磁头使其与磁盘处于转换关系的支承件(support);芯轴马达,用于旋转磁盘;连接到支承件用于移动磁头到相对于所述磁盘的多个位置的致动器定位装置;连接到磁头组件、芯轴马达、致动器的处理器,用于与磁头交换信号以控制磁盘的移动且控制磁头的位置;磁头组件,包括具有上述CPP传感器的读头。
一种制造具有受限电流路径的CPP读传感器的方法,包括以下步骤:形成至少一部分传感器堆叠结构并执行光刻工艺从而形成与传感器堆叠结构的导电层相邻的电流约束结构,其中电流约束结构包括被绝缘材料包围的光刻定义的导电通路。光刻工艺可以包括以下步骤:在传感器堆叠结构的绝缘层上形成抗蚀剂结构,其暴露绝缘层的绝缘材料;采用在适当位置的抗蚀剂结构,蚀刻以去除暴露的绝缘材料从而形成穿过绝缘层的孔;以及在孔内形成导电材料从而形成光刻定义的导电通路。供选地,光刻工艺可以包括以下步骤:在导电层上形成抗蚀剂结构,其暴露导电层的导电材料;采用在适当位置的抗蚀剂结构,蚀刻从而去除暴露的导电材料,由此形成穿过导电层的开口;以及在开口内形成绝缘材料以包围光刻定义的导电通路。
再次如上所述,CPP读传感器可以具有传感器堆叠结构和与传感器堆叠结构的导电层相邻地形成的电流约束结构,其中该电流约束结构具有被绝缘材料包围的光刻定义的导电通路。但是,CPP读传感器可具有其它各种特征。作为示例,电流约束结构的光刻定义的导电通路可具有小于或等于传感器堆叠结构宽度的1/2的宽度。此外例如,光刻定义的导电通路可以形成在导电层内。供选地,光刻定义的导电通路可以形成在导电层上并与之接触。此外供选地,光刻定义的导电通路可以形成在导电层之下。光刻定义的导电通路可以形成在传感器堆叠结构的道宽的中心线。此外注意,电流约束结构可具有与传感器堆叠结构的道宽的中心线均等间隔开地形成的多个光刻定义的导电通路。导电层可包括与传感器堆叠结构的检测层结构相邻地形成的间隔层。供选地,导电层可包括与传感器堆叠结构的检测层结构相邻地形成的帽层。此外,电流约束结构可包括与传感器堆叠结构的条高的中心线均等间隔开地形成的多个光刻定义的导电通路。在一个实施例中,导电层是形成在传感器堆叠结构的检测层与钉扎层之间的间隔层的至少一部分,光刻定义的导电通路是形成在传感器堆叠结构的宽度的中心线处的电流约束结构的单个光刻定义的导电通路。
在本申请的一个特定实施例中,CPP读传感器包括:传感器堆叠结构;以及传感器堆叠结构的形成为传感器堆叠结构的顶部的电流约束结构,其中电流约束结构具有被绝缘材料包围的光刻定义的导电通路。特定实施例的磁头包括:第一和第二屏蔽层;以及形成在第一和第二屏蔽层之间的CPP读传感器。CPP读传感器包括传感器堆叠结构;传感器堆叠的形成为传感器堆叠结构的顶部的电流约束结构,其中电流约束结构具有被绝缘材料包围的光刻定义的导电通路。此特定CPP传感器可具有上述其它各种特征中的一些。此外,对于此特定CPP传感器,光刻定义的导电通路的底部宽度可以小于或等于光刻定义的导电通路的顶部宽度。
特定实施例的盘驱动器可包括:外壳:可旋转地支承在外壳内的磁盘;磁头;安装在外壳中用于支承磁头使其与磁盘处于转换关系的支承件;芯轴马达,用于旋转磁盘;连接到支承件用于将磁头移动到相对于所述磁盘的多个位置的致动器定位装置(actuator positioning means);连接到磁头组件、芯轴马达、以及致动器的处理器,用于与磁头交换信号以控制磁盘的移动且控制磁头的位置;磁头组件,包括具有上述CPP传感器的读头。
如此处所述,一种制造所述特定实施例的具有受限电流路径的CPP读传感器的方法,包括以下步骤:形成至少一部分传感器堆叠结构并进行光刻工艺从而形成电流约束结构作为传感器堆叠结构的顶部,其中电流约束结构包括被绝缘材料包围的光刻定义的导电通路。光刻工艺可以包括以下步骤:在传感器堆叠结构的绝缘层上形成抗蚀剂结构,其暴露绝缘层的绝缘材料;采用在适当位置的抗蚀剂结构,蚀刻从而去除暴露的绝缘材料,由此形成穿过绝缘层的孔;以及在孔内形成导电材料从而形成光刻定义的导电通路。供选地,光刻工艺可包括以下步骤:在传感器堆叠结构的导电层(例如帽层)的至少一部分上形成抗蚀剂结构,其暴露导电层的导电材料;采用在适当位置的抗蚀剂结构,蚀刻从而去除暴露的导电材料,由此形成穿过导电层的开口;以及在开口内形成绝缘材料以包围光刻定义的导电通路。
一种制造特定实施例的CPP的优选方法包括以下步骤:形成读传感器的至少一部分传感器堆叠结构;在传感器堆叠结构的导电层上并与之相邻地形成绝缘层,该导电层形成传感器堆叠结构的帽层的至少一部分;在绝缘层上形成抗蚀剂结构,其暴露绝缘层的绝缘材料;采用在适当位置的抗蚀剂结构,蚀刻从而去除暴露的绝缘材料,由此形成穿过绝缘层向下到达导电层的一个或多个孔;以及在所述一个或多个孔内形成导电材料从而形成作为传感器堆叠结构的顶部的电流约束结构的一个或多个光刻定义的导电通路。
应当理解,上面仅是本发明优选实施例的说明,在不脱离所附权利要求定义的本发明的实质与范围的情况下,可以进行各种改变、替换和变化。说明书和权利要求书中的任何术语或短语几乎没有给出与它们原来语义不同的特定意义,因此说明书不用于将术语限定在不适当的狭窄意义上。

Claims (21)

1.一种制造具有受限电流路径的电流垂直平面(CPP)读传感器的方法,包括:
形成传感器堆叠结构;以及
进行光刻工艺从而与该传感器堆叠结构的导电层相邻地形成电流约束结构,该电流约束结构包括被绝缘材料包围的光刻定义的导电通路。
2.如权利要求1所述的方法,其中进行光刻工艺的步骤还包括步骤:
在该导电层上形成绝缘层;
在该绝缘层上形成抗蚀剂结构,其暴露该绝缘层的绝缘材料;
采用在适当位置的该抗蚀剂结构,蚀刻所述暴露的绝缘材料从而形成到所述导电层的孔;以及
在所述孔内形成导电材料,由此形成光刻定义的导电通路。
3.如权利要求1所述的方法,其中所述进行光刻工艺的步骤还包括步骤:
在所述导电层上形成抗蚀剂结构,其暴露该导电层的导电材料;
采用在适当位置的该抗蚀剂结构,蚀刻从而去除所述暴露的导电材料,由此形成光刻定义的导电通路;以及
在所述暴露的导电材料被去除的地方形成绝缘材料。
4.如权利要求1所述的方法,其中该光刻定义的导电通路具有小于或等于该传感器堆叠结构宽度的1/2的宽度。
5.如权利要求1所述的方法,其中所述进行光刻工艺的步骤还包括进行光学光刻工艺的步骤。
6.如权利要求1所述的方法,其中所述进行光刻工艺的步骤还包括进行电子束(e-束)光刻工艺的步骤。
7.如权利要求1所述的方法,其中所述光刻定义的导电通路形成在所述导电层之下。
8.如权利要求1所述的方法,其中所述光刻定义的导电通路形成在所述传感器堆叠结构的道宽的中心线处。
9.如权利要求1所述的方法,其中所述电流约束结构还包括与所述传感器堆叠结构的道宽的中心线均等间隔开地形成的多个所述光刻定义的导电通路。
10.如权利要求1所述的方法,其中所述导电层包括与所述传感器堆叠结构的检测层结构相邻地形成的间隔层。
11.如权利要求1所述的方法,其中所述导电层包括与所述传感器堆叠结构的检测层结构相邻地形成的帽层。
12.如权利要求1所述的方法,其中所述导电层包括与所述传感器堆叠结构的钉扎层结构相邻地形成的间隔层。
13.如权利要求1所述的方法,其中所述导电层包括形成在所述传感器堆叠结构的检测层与钉扎层之间的间隔层的至少一部分,该光刻定义的导电通路包括形成在该传感器堆叠结构的宽度的中心线处的所述电流约束结构的单个光刻定义的导电通路。
14.一种制造具有受限电流路径的电流垂直平面(CPP)读传感器的方法,包括:
形成该读传感器的至少一部分传感器堆叠结构;
在该传感器堆叠结构的导电层上并与之相邻地形成绝缘层,该导电层形成该传感器堆叠结构的至少一部分间隔层;
在该绝缘层上形成抗蚀剂结构,其暴露该绝缘层的绝缘材料;
采用在适当位置的该抗蚀剂结构,蚀刻从而去除所述暴露的绝缘材料,由此形成穿过该绝缘层向下到所述导电层的一个或更多孔;以及
在所述一个或更多孔内形成导电材料从而形成所述读传感器的电流约束结构的一个或更多光刻定义的导电通路。
15.如权利要求14所述的方法,其中所述光刻定义的导电通路具有小于或等于所述传感器堆叠结构宽度的1/2的宽度。
16.如权利要求14所述的方法,其中该光刻定义的导电通路形成在所述间隔层内。
17.如权利要求14所述的方法,其中该光刻定义的导电通路形成在该间隔层之下。
18.如权利要求14所述的方法,其中该光刻定义的导电通路形成在该传感器堆叠结构的道宽的中心线和所述传感器堆叠结构的条高的中心线之一处。
19.如权利要求14所述的方法,其中该电流约束结构包括与该传感器堆叠结构的道宽的中心线和该传感器堆叠结构的条高的中心线之一均等间隔开地形成的多个光刻定义的导电通路。
20.一种具有受限电流路径的电流垂直平面(CPP)读传感器,包括:
传感器堆叠结构;
与该传感器堆叠结构的导电层相邻地形成的传感器堆叠结构的电流约束结构;且
所述电流约束结构包括被绝缘材料包围的光刻定义的导电通路。
21.一种电流垂直平面(CPP)读传感器,包括:
形成为传感器堆叠结构的顶部的电流约束结构;且
该电流约束结构包括被绝缘材料包围的光刻定义的导电通路。
CNA2006101280626A 2005-09-01 2006-09-01 具有受限电流路径的电流垂直平面读传感器及其制造方法 Pending CN1925000A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/219,108 2005-09-01
US11/219,108 US7765675B2 (en) 2005-09-01 2005-09-01 CPP read sensors having constrained current paths made of lithographically-defined conductive vias and methods of making the same

Publications (1)

Publication Number Publication Date
CN1925000A true CN1925000A (zh) 2007-03-07

Family

ID=37803749

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006101280626A Pending CN1925000A (zh) 2005-09-01 2006-09-01 具有受限电流路径的电流垂直平面读传感器及其制造方法

Country Status (3)

Country Link
US (1) US7765675B2 (zh)
JP (1) JP2007067406A (zh)
CN (1) CN1925000A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760446A (zh) * 2011-04-25 2012-10-31 希捷科技有限公司 在abs处带有电流约束的三层读取器
CN112133331A (zh) * 2019-06-25 2020-12-25 西部数据技术公司 检测供应电流限值的数据存储装置
CN113588741A (zh) * 2020-05-01 2021-11-02 爱科来株式会社 电化学式传感器的制造方法和电化学式传感器
CN113823330A (zh) * 2020-06-19 2021-12-21 西部数据技术公司 横向偏置强度增强

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7134184B2 (en) * 2003-11-12 2006-11-14 Headway Technologies, Inc. Process of manufacturing a narrow track CCP head with bias cancellation
US20070086122A1 (en) * 2005-10-19 2007-04-19 Hitachi Global Storage Technologies CPP magnetoresistive sensor having a reduced, shield defined track width
US8675316B2 (en) * 2008-04-11 2014-03-18 HGST Netherlands B.V. Magnetoresistive sensor with sub-layering of pinned layers
US8551626B2 (en) * 2009-06-25 2013-10-08 Seagate Technology Llc CCP-CPP magnetoresistive reader with high GMR value
US8576519B1 (en) 2012-10-11 2013-11-05 HGST Netherlands B.V. Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with magnetic damping material at the sensor edges

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289845A (en) * 1978-05-22 1981-09-15 Bell Telephone Laboratories, Inc. Fabrication based on radiation sensitive resists and related products
US5491600A (en) * 1994-05-04 1996-02-13 International Business Machines Corporation Multi-layer conductor leads in a magnetoresistive head
US5818323A (en) 1994-09-09 1998-10-06 Sanyo Electric Co., Ltd. Magnetoresistive device
JPH08138213A (ja) * 1994-11-08 1996-05-31 Hitachi Ltd 磁気抵抗効果型ヘッド
US6510031B1 (en) 1995-03-31 2003-01-21 International Business Machines Corporation Magnetoresistive sensor with magnetostatic coupling to obtain opposite alignment of magnetic regions
US5729410A (en) * 1996-11-27 1998-03-17 International Business Machines Corporation Magnetic tunnel junction device with longitudinal biasing
JPH10241123A (ja) 1997-02-28 1998-09-11 Nec Corp 磁気抵抗効果ヘッド
KR100532377B1 (ko) 1998-01-15 2006-02-08 삼성전자주식회사 비편향 자기 저항 헤드
JPH11316919A (ja) * 1998-04-30 1999-11-16 Hitachi Ltd スピントンネル磁気抵抗効果型磁気ヘッド
US6330136B1 (en) * 1998-10-14 2001-12-11 Read-Rite Corporation Magnetic read sensor with SDT tri-layer and method for making same
US6118638A (en) * 1998-11-02 2000-09-12 Read-Rite Corporation CPP magnetoresistive device and method for making same
JP2002084018A (ja) 2000-09-08 2002-03-22 Canon Inc 磁気デバイス及びその製造方法、並びに固体磁気メモリ
US6707649B2 (en) 2001-03-22 2004-03-16 Alps Electric Co., Ltd. Magnetic sensing element permitting decrease in effective element size while maintaining large optical element size
US6636389B2 (en) 2001-08-03 2003-10-21 International Business Machines Corporation GMR magnetic transducer with nano-oxide exchange coupled free layers
US6755109B2 (en) * 2002-09-10 2004-06-29 Techmold Company Cable stripper
US7040005B2 (en) 2003-03-19 2006-05-09 Headway Technologies, Inc. Process of making a GMR improvement in CPP spin valve head by inserting a current channeling layer (CCL)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760446A (zh) * 2011-04-25 2012-10-31 希捷科技有限公司 在abs处带有电流约束的三层读取器
CN102760446B (zh) * 2011-04-25 2016-12-07 希捷科技有限公司 在abs处带有电流约束的三层读取器
CN112133331A (zh) * 2019-06-25 2020-12-25 西部数据技术公司 检测供应电流限值的数据存储装置
US11126248B2 (en) 2019-06-25 2021-09-21 Western Digital Technologies, Inc. Data storage device detecting supply current limit
CN112133331B (zh) * 2019-06-25 2021-11-23 西部数据技术公司 检测供应电流限值的数据存储装置
CN113588741A (zh) * 2020-05-01 2021-11-02 爱科来株式会社 电化学式传感器的制造方法和电化学式传感器
CN113823330A (zh) * 2020-06-19 2021-12-21 西部数据技术公司 横向偏置强度增强
CN113823330B (zh) * 2020-06-19 2024-02-13 西部数据技术公司 横向偏置强度增强

Also Published As

Publication number Publication date
US20070047154A1 (en) 2007-03-01
US7765675B2 (en) 2010-08-03
JP2007067406A (ja) 2007-03-15

Similar Documents

Publication Publication Date Title
US8194366B1 (en) TMR read head structures with differential stripe heights
US7562437B2 (en) Method of manufacturing a wrap around shield for a perpendicular write pole using a laminated mask
US8266785B2 (en) Method for manufacturing a magnetoresistive sensor having a novel junction structure for improved track width definition and pinned layer stability
JP5630963B2 (ja) 複合シード層およびこれを有する磁気再生ヘッド、ならびにtmrセンサおよびccp−cpp−gmrセンサの形成方法
US9042062B2 (en) Magnetic sensor with recessed AFM shape enhanced pinning and soft magnetic bias
JP5914283B2 (ja) シザーズ構造を有する磁気抵抗センサの磁気バイアス構造
CN1925000A (zh) 具有受限电流路径的电流垂直平面读传感器及其制造方法
CN1945870A (zh) 用于构图电流垂直平面磁致电阻器件的双研磨工艺
US7820455B2 (en) Method for manufacturing a tunnel junction magnetoresistive sensor with improved performance and having a CoFeB free layer
JP2012059345A (ja) 絶縁構造を改良した平面垂直通電型(cpp)磁気抵抗(mr)センサ
US8213132B2 (en) Magnetic sensor having a physically hard insulation layer over a magnetic bias structure
US9202482B2 (en) Magnetic sensor having an extended pinned layer with stitched antiferromagnetic pinning layer
JP5852541B2 (ja) 磁気抵抗センサーのための磁気バイアス構造
US7329362B2 (en) Dual angle milling for current perpendicular to plane (CPP) magnetoresistive sensor definition
CN100468807C (zh) 控制用于读传感器限定的掩模轮廓的方法
JP5971681B2 (ja) 低抵抗キャップ構造を有する磁気読取りセンサを製造する方法
US20070217080A1 (en) Current perpendicular to plane (CPP) magnetoresistive sensor with back flux guide
JP2014225318A (ja) 幅を低減した上部電極及び下部電極を有する平面垂直通電(cpp)磁気抵抗センサ並びにその製造方法
US7788798B2 (en) Method for manufacturing a perpendicular magnetic write head with wrap around magnetic trailing and side shields
CN1801328A (zh) 具有读写为跨磁道的磁化的数据的磁记录盘驱动器
US20120187079A1 (en) Method for manufacturing a magnetic sensor having a flat upper shield
CN101064113A (zh) 在平坦化表面上开连接通孔的工艺
US20060273066A1 (en) Method for manufacturing a magnetic sensor having an ultra-narrow track width
US20150118520A1 (en) Low resistance magnetic sensor with extended pinned layer structure
US20070188940A1 (en) Tunnel MR head with long stripe height stabilized through side-extended bias layer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070307