CN1922499A - 网络分析器、网络分析方法、程序和记录媒体 - Google Patents

网络分析器、网络分析方法、程序和记录媒体 Download PDF

Info

Publication number
CN1922499A
CN1922499A CNA2005800056487A CN200580005648A CN1922499A CN 1922499 A CN1922499 A CN 1922499A CN A2005800056487 A CNA2005800056487 A CN A2005800056487A CN 200580005648 A CN200580005648 A CN 200580005648A CN 1922499 A CN1922499 A CN 1922499A
Authority
CN
China
Prior art keywords
coefficient
signal
error factor
terminal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800056487A
Other languages
English (en)
Other versions
CN100439928C (zh
Inventor
中山喜和
田边武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohde and Schwarz GmbH and Co KG
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Publication of CN1922499A publication Critical patent/CN1922499A/zh
Application granted granted Critical
Publication of CN100439928C publication Critical patent/CN100439928C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

可以取得传送跟踪的相位从而可以修正测定系统误差。具备:测定系统误差因子记录部80,其记录与DUT2引起的频率变换无关地产生的测定系统误差因子;和误差因子取得部90,把从端子2a输出的信号表示为输入到端子2a的信号乘以第一系数的积与输入到另一端子2b的信号乘以第二系数的积的和,测定第二系数大小的比为恒定的校正用混频器的第一系数以及第二系数,根据记录在测定系统误差因子记录部80内的测定系统误差因子和第一系数以及第二系数,取得因频率变换而产生的传送跟踪。

Description

网络分析器、网络分析方法、程序和记录媒体
技术领域
本发明涉及运算计量被测定物的电路参数的网络分析器。
背景技术
目前,已经在测定被测定物(DUT:Device Under Test)的电路参数(例如S参数)。以下参照图25来说明现有技术的被测定物(DUT)的电路参数的测定方法。
从信号源110经DUT200把频率为f1的信号发送到接收部120。该信号由接收部120接收。设接收部120接收到的信号的频率为f2。通过测定由接收部120接收到的信号可以取得DUT200的S参数或频率特性。
此时,由于信号源110等测定系统与DUT200的不匹配,会在测定中产生测定系统误差。该测定系统误差例如是Ed:由电桥的方向性引起的误差、Er:由频率跟踪引起的误差、Es:由源匹配引起的误差。在图26中表示有关f1=f2时的信号源110的信号流向图。RFIN是从信号源110输入到DUT200等的信号,S11m是根据从DUT200等反射来的信号求出的DUT200等的S参数,S11a是无测定系统误差的真实的DUT200等的S参数。
在f1=f2的情况下,例如可以像专利文献1(特开平11-38054号公报)所记载的那样修正误差。把这样的修正叫做校准,下面对校准进行简略说明。将校正套件与信号源110连接,实现开路、短路和负载(标准负荷Z0)三种状态。用电桥来取得从此时的校正套件反射的信号,来求出对应于三种状态的三种S参数(S11m)。根据三种S参数求出三种变量Ed、Er、Es。
但是,存在频率f1不等于f2的情况。例如DUT200是具有混频器等频率变换功能的装置的情况。在图27中表示与频率f1不等于频率f2时的信号源110有关的信号流向图,Ed、Es与频率f1等于频率f2的情况一样,但是Er被分为Er1和Er2。通过如专利文献1中所记载的校准只求出三种S参数(S11m),所以只能求出Ed、Es、Er1·Er2。而求不出Er1以及Er2。
另外,在频率f1不等于f2的情况下,不能忽视由接收部120引起的测定系统误差。在图28中表示将信号源110与接收部120直接连接时的信号流向图。S21m是根据接收部120接收到的信号求得的DUT200等的S参数。如图28所示,产生称为Et、EL的由接收部120引起的测定系统误差。关于这种测定系统误差,也无法通过如专利文献1中所记载的校准求出。
因此,在频率f1不等于频率f2的情况下,像专利文献2(国际公开第03/087856号小册子)所记载的那样来修正误差。首先,把三种校正套件(开路、短路和负载(标准负荷Z0))与信号源连接。由于这与专利文献1中记载的方法一样,所以能够求出Ed、Es、Er1·Er2。然后,将信号源与功率计连接。可以根据功率计的测定结果求出Er1和Er2(参照专利文献2的图6、图7)。并且,将信号源与接收部直接连接,可以根据此时的测定结果求出Et、EL(参照专利文献2的图8、图9)。
此外,将传送跟踪定义为Er1·Et。通过专利文献2中记载的方法可以测定Er1和Et,所以也可以求出传送跟踪Er1·Et。
但是,在通过专利文献2中记载的方法求出了传送跟踪Er1·Et的情况下,为了测定Er1必须使用功率计。由于使用功率计,所以无法取得传送跟踪的相位。
因此,本发明的课题在于:可以取得传送跟踪的相位,从而可以修正测定系统的误差。
发明内容
本发明的结构为具备:测定系统误差因子记录单元,其记录与被测定物引起的频率变换无关地产生的测定系统误差因子;校正用系数输出单元,其把从某端子输出的信号表示为输入到该端子的信号乘以第一系数的积与输入到另一端子的信号乘以第二系数的积的和,输出所测定的第二系数大小的比为恒定的校正用频率变换元件的第一系数以及第二系数;和传送跟踪取得单元,其根据记录在测定系统误差因子记录单元内的测定系统误差因子和校正用系数输出单元所输出的第一系数和第二系数,取得因频率变换而产生的传送跟踪。
根据上述那样构成的本发明,测定系统误差因子记录单元记录与被测定物引起的频率变换无关地产生的测定系统误差因子。校正用系数输出单元把从某端子输出的信号表示为输入到该端子的信号乘以第一系数的积与输入到另一端子的信号乘以第二系数的积的和,输出所测定的第二系数大小的比为恒定的校正用频率变换元件的第一系数以及第二系数。传送跟踪取得单元根据记录在测定系统误差因子记录单元内的测定系统误差因子和校正用系数输出单元所输出的第一系数和第二系数,来取得因频率变换而产生的传送跟踪。
另外,本发明在把校正用频率变换元件的第一系数设为M11′、M22′,把第二系数设为M12′、M21′,把输入到第一端子的信号设为a1,把从第一端子输出的信号设为b1,把输入到第二端子的信号设为a2,把从第二端子输出的信号设为b2时,
b1=M11′×a1+M12′×a2
b2=M21′×a1+M22′×a2
优选|M12′|/|M21′|恒定。
另外,本发明对于任意端子,第二系数的大小最好都一样。
另外,本发明优选具备:输入信号测定单元,其在测定系统误差因子产生之前测定与输入给被测定物的输入信号有关的输入信号参数;多个端口,其与被测定物的端子连接,对输入信号进行输出;和被测定物信号测定单元,其对与从被测定物的端子输入给端口的被测定物信号有关的被测定物信号参数进行测定。
另外,本发明的校正用系数输出单元优选根据由输入信号测定单元测定到的输入信号参数与由被测定物信号测定单元测定到的被测定物信号参数的比,来求出校正用频率变换元件的第一系数和第二系数。
另外,本发明的传送跟踪取得单元优选根据从被测定物信号不伴随频率变换地从被测定物的端子输出开始直到由被测定物信号测定单元接收为止所产生的误差因子的比,来取得传送跟踪。
本发明包含如下过程来进行校正:测定系统误差因子记录单元记录与被测定物引起的频率变换无关地产生的测定系统误差因子的测定系统误差因子记录过程;校正用系数输出单元把从某端子输出的信号表示为输入到该端子的信号乘以第一系数的积与输入到另一端子的信号乘以第二系数的积的和,输出所测定的第二系数大小的比为恒定的校正用频率变换元件的第一系数以及第二系数的校正用系数输出过程;传送跟踪取得单元根据记录在测定系统误差因子记录单元内的测定系统误差因子和校正用系数输出单元输出的第一系数以及第二系数,来取得因频率变换而产生的传送跟踪的传送跟踪取得过程。
本发明是用来使计算机执行如下处理的程序:记录与被测定物引起的频率变换无关地产生的测定系统误差因子的测定系统误差因子记录处理;把从某端子输出的信号表示为输入到该端子的信号乘以第一系数的积与输入到另一端子的信号乘以第二系数的积的和,输出所测定的第二系数大小的比为恒定的校正用频率变换元件的第一系数以及第二系数的校正用系数输出处理;根据通过测定系统误差因子记录处理所记录的测定系统误差因子和通过校正用系数输出处理输出的第一系数和第二系数来取得因频率变换而产生的传送跟踪的传送跟踪取得处理。
本发明是一种记录媒体,其可由计算机读取,并记录了用于使计算机执行如下处理的程序:记录与被测定物引起的频率变换无关地产生的测定系统误差因子的测定系统误差因子记录处理;把从某端子输出的信号表示为输入到该端子的信号乘以第一系数的积与输入到另一端子的信号乘以第二系数的积的和,输出所测定的第二系数大小的比为恒定的校正用频率变换元件的第一系数以及第二系数的校正用系数输出处理;根据通过测定系统误差因子记录处理所记录的测定系统误差因子和通过校正用系数输出处理输出的第一系数和第二系数来取得因频率变换而产生的传送跟踪的传送跟踪取得处理。
附图说明
图1是表示本发明实施方式的网络分析器1的结构的方框图。
图2是表示DUT2的结构的图(图2(a))以及表示在第一端子2a与第二端子2b输入输出的信号的关系的图(图2(b))。
图3是表示经由测定部20将输入信号(频率f1)提供给DUT2的状态(称为正向路径)的图(端子14a与端子14b相连接)(图3(a));表示经由测定部30将输入信号(频率f2)提供给DUT2的状态(成为逆向路径)的图(端子14a与端子14c相连接)(图3(b))。
图4是表示正向路径误差因子取得部60的构成的功能框图。
图5是表示校正用具6的端子6a与端口4a相连接的状态的图。
图6是体现了校正用具6与端口4a相连接的状态的信号流向图。
图7是表示将端口4b与端口4a相连接的状态的图。
图8是体现了将端口4b与端口4a相连接的状态的信号流向图。
图9是表示逆向路径误差因子取得部70的构成的功能框图。
图10是表示误差因子取得部90的构成的功能框图。
图11是表示与网络分析器1相连接的状态的校正用混频器8的图。
图12是表示电路参数测定部98的构成的功能框图。
图13是表示本发明实施方式的动作的流程图。
图14是表示网络分析器1的测定系统误差因子(Ed、Er、Es、EL、Et)取得顺序的流程图。
图15是表示DUT2的M参数的取得顺序的流程图。
图16是表示变形例(之一)的网络分析器1的结构的框图。
图17是表示变形例(之二)的网络分析器1的结构的框图。
图18是为了证明公式1而参照的、表示网络分析器1的结构的框图。
图19是体现了图18所示的网络分析器1的FWD系统的信号流向图。
图20是体现了图18所示的网络分析器1的REV系统的信号流向图。
图21是对图19所示的信号流向图进行了变形的信号流向图。
图22是对图20所示的信号流向图进行了变形的信号流向图。
图23表示与图21所示的信号流向图对应的测定系统的误差因子。
图24表示与图22所示的信号流向图对应的测定系统的误差因子。
图25用于说明现有技术的被测定物(DUT)的电路参数的测定方法。
图26是与现有技术的频率f1=f2时的信号源110有关的信号流向图。
图27是与现有技术的频率f1不等于频率f2时的信号源110有关的信号流向图。
图28是将现有技术的信号源110与接收部120直接相连接时的信号流向图。
具体实施方式
以下参照附图说明本发明的实施方式。
图1是表示本发明实施方式的网络分析器1的结构的方框图。在网络分析器1上连接有DUT(Device Uuder Test:被测定物)2。网络分析器1测定DUT2的电路参数,例如测定S参数。在使用混频器(乘法器)作为DUT2时,特别把S参数称为M参数。
图2(a)表示DUT2的结构。DUT2是混频器(乘法器)。DUT2具有第一端子2a、第二端子2b、RF信号处理部2R、IF信号处理部2I和本地信号处理部2L。
当从第一端子2a输入频率f1的信号a1时,该信号被提供给RF信号处理部2R。将本地信号Lo(频率fLo)提供给本地信号处理部2L。把对RF信号处理部2R提供的信号(频率f1)和对本地信号处理部2L提供的信号(频率fLo)进行混合,作为频率f2(=f1-fLo)的信号b2从IF信号处理部2I经由第二端子2b输出。当从第一端子2a输入频率f1的信号a1时,信号的一部分不由DUT2进行频率变换而被反射,作为频率仍为f1的信号b1从第一端子2a输出。
当从第二端子2b输入频率为f2的信号a2时,该信号被提供给IF信号处理部2I。此外,本地信号Lo(频率fLo)被提供给本地信号处理部2L。把对RF信号处理部2R提供的信号(频率为f1)和对本地信号处理部2L提供的信号(频率为fLo)进行混合,作为频率为f1(=f2+fLo)的信号b1从RF信号处理部2R经由第一端子2a输出。此外,当从第二端子2b输入频率为f2的信号a2时,信号的一部分不由DUT2进行频率变换而被反射,作为频率仍为f2的信号b2从第二端子2b输出。
这里,把频率为f1的信号a1标记为a1(f1),把频率为f2的信号a2标记为a2(f2),把频率为f1的信号b1标记为b1(f1),把频率为f2的信号b2标记为b2(f2)。
图2(b)表示在第一端子2a以及第二端子2b输入输出的信号的关系。即,下式成立。
b1=M11×a1+M12×a2
b2=M21×a1+M22×a2
其中把M11和M22称为第一系数,把M12和M21称为第二系数。
返回到图1,网络分析器1具备端口4a、4b、DUT用本地信号端口4c、信号源10、测定部20、30、DUT用本地信号振荡器40、切换器52、54、56、正向路径误差因子取得部60、逆向路径误差因子取得部70、测定系统误差因子记录部80、误差因子取得部90和电路参数测定部98。
端口4a与测定部20和第一端子2a相连接。端口4a把来自信号源10的输入信号(频率为f1)输出到第一端子2a。
端口4b与测定部30和第二端子2b相连接。端口4b把来自信号源10的输入信号(频率为f2)输出到第二端子2b。
DUT用本地信号端口4c与DUT用本地信号振荡器40相连接。DUT用本地信号端口4c把来自DUT用本地信号振荡器40的DUT用本地信号提供给DUT2。
信号源10具有信号输出部12、电桥13、开关14、内部混频器16、接收机(Rch)18(输入信号测定单元)。
信号输出部12输出频率为f1或f2的输入信号。
电桥13把从信号输出部12输出的信号提供给内部混频器16和开关14。电桥13供给的信号可以说是不受网络分析器1引起的测定系统误差因子的影响的信号。
开关14具有端子14a、14b、14c。端子14a与电桥13连接,从电桥13接收信号。端子14b与测定部20连接,端子14c与测定部30连接。端子14a与端子14b或端子14c连接。如果将端子14a与端子14b连接,信号输出部12输出的输入信号(此时设输入信号的频率为f1)被提供给测定部20。如果将端子14a与端子14c连接,信号输出部12输出的输入信号(此时设输入信号的频率为f2)被提供给测定部30。
内部混频器16把由电桥13所提供的信号与内部本地信号混合后输出。
接收机(Rch)18(输入信号测定单元)测定内部混频器16所输出的信号的S参数。由此,接收机(Rch)18在网络分析器1引起的测定系统误差的影响产生之前,测定与输入信号有关的S参数。
测定部20具有电桥23、内部混频器26、接收机(Ach)28(被测定物信号测定单元)。
电桥23向端口4a输出由信号源10所提供的信号。此外,经由端口4a接收从DUT2反射回来的信号以及通过了DUT2的信号,并提供给内部混频器26。此外,把从DUT2反射回来的信号和通过了DUT2的信号称为被测定物信号。
内部混频器26把由电桥23提供的信号与内部本地信号混合后输出。
接收机(Ach)28(被测定物信号测定单元)测定内部混频器26所输出的信号的S参数。由此,接收机(Ach)28测定与被测定物信号有关的S参数。
测定部30具有电桥33、内部混频器36、接收机(Bch)38(被测定物信号测定单元)。
电桥33向端口4b输出由信号源10提供的信号。而且,经由端口4b接收从DUT2反射回来的信号和通过了DUT2的信号,并提供给内部混频器36。此外,把从DUT2反射回来的信号和通过了DUT2的信号称为被测定物信号。
内部混频器36把由电桥33提供的信号与内部本地信号混合后输出。
接收机(Bch)38(被测定物信号测定单元)测定内部混频器36所输出的信号的S参数。由此,接收机(Bch)38测定与被测定物信号有关的S参数。
DUT用本地信号振荡器40把本地信号Lo(频率为fLo)提供给DUT2。
图3通过信号流向图来体现了图1所示的状态。M11、M21、M12、M22是DUT2的真实的(排除了测定系统误差因子的影响)M参数。
图3(a)表示将输入信号(频率为f1)经由测定部20提供给DUT2的状态(称为正向路径)(端子14a与端子14b相连接),图3(b)表示将输入信号(频率为f2)经由测定部30提供给DUT2的状态(称为逆向路径)(端子14a与端子14c相连接)。
测定系统误差因子在正向路径(参照图3(a))中,具有Ed1(电桥的方向性引起的误差)、Ei1、Eo1(频率跟踪引起的误差)、Es1(源匹配引起的误差)、Eg2、EL2。
测定系统误差因子在逆向路径(参照图3(b))中,具有Ed2(电桥的方向性引起的误差)、Ei2、Eo2(频率跟踪引起的误差)、Es2(源匹配引起的误差)、Eg1、EL1。
切换器52把接收机(Ach)28的测定结果提供给正向路径误差因子取得部60、误差因子取得部90以及电路参数测定部98中的某一个。
切换器54把接收机(Bch)38的测定结果提供给逆向路径误差因子取得部70、误差因子取得部90以及电路参数测定部98中的某一个。
切换器56把接收机(Rch)18的测定结果提供给正向路径误差因子取得部60、逆向路径误差因子取得部70、误差因子取得部90以及电路参数测定部98中的某一个。
正向路径误差因子取得部60经由切换器52接收接收机(Ach)28的测定结果。而且,正向路径误差因子取得部60经由切换器56接收接收机(Rch)18的测定结果。并且,根据接收机(Ach)28的测定结果和接收机(Rch)18的测定结果,取得正向路径(参照图3(a))中的Ed1、Ei1·Eo1(=Er1)、Es1、EL2。
图4是表示正向路径误差因子取得部60的结构的功能方框图。正向路径误差因子取得部60具有切换器62、第一正向路径误差因子取得部64、第二正向路径误差因子取得部66。
切换器62把接收机(Ach)28的测定结果和接收机(Rch)18的测定结果发送给第一正向路径误差因子取得部64或第二正向路径误差因子取得部66。具体地说,在将校正用具6(后述)与端口4a相连接时,对第一正向路径误差因子取得部64发送接收机(Ach)28的测定结果和接收机(Rch)18的测定结果。在将端口4b与端口4a相连接时,对第二正向路径误差因子取得部66发送接收机(Ach)28的测定结果以及接收机(Rch)18的测定结果。
第一正向路径误差因子取得部64取得Ed1、Ei1·Eo1(=Er1)、Es1。图5表示校正用具6的端子6a与端口4a相连接的状态。如特开平11-38054号公报(专利文献1)所记载的那样,公知校正用具6实现开路、短路和负载(标准负荷Z0)三种状态。
图6通过信号流向图体现了把校正用具6与端口4a相连接的状态。这里,接收机(Rch)18的测定结果是R1(f1),接收机(Ach)28的测定结果是A1(f1)。R1(f1)与A1(f1)的关系如下述的公式。
【1式】
A 1 ( f 1 ) R 1 ( f 1 ) = Ed 1 + Er 1 · X 1 - Es 1 · X
这里,由于连接三个种类的校正用具6,所以求出三种R1(f1)与A1(f1)的组合。由此,要求出的变量也是称为Ed1、Ei1·Eo1(=Er1)、Es1的三种变量。
第二正向路径误差因子取得部66从第一正向路径误差因子取得部64接收Ed1、Ei1·Eo1(=Er1)、Es1,并经切换器62接收接收机(Ach)28的测定结果和接收机(Rch)18的测定结果。而且,第二正向路径误差因子取得部66取得EL2。
图7表示将端口4b与端口4a相连接的状态。图8通过信号流向图体现了将端口4b与端口4a相连接的状态。这里,接收机(Rch)18的测定结果是R1(f1),接收机(Ach)28的测定结果是A1(f1)。此外,设经由测定部20从端口4a输出输入信号(频率为f1)。R1(f1)与A1(f1)的关系如下述公式。
【2式】
A 1 ( f 1 ) R 1 ( f 1 ) = Ed 1 + Er 1 · EL 2 1 - Es 1 · EL 2
这里,由于Ed1、Er1、Es1为已知,所以可以求出EL2。第二正向路径误差因子取得部66把Ed1、Ei1·Eo1(=Er1)、Es1、EL2输出给测定系统误差因子记录部80。
逆向路径误差因子取得部70经由切换器54接收接收机(Bch)38的测定结果。而且,逆向路径误差因子取得部70经由切换器56接收接收机(Rch)18的测定结果。并且,根据接收机(Bch)38的测定结果和接收机(Rch)18的测定结果,取得逆向路径(参照图3(b))中的Ed2、Ei2·Eo2(=Er2)、Es2、EL1。
图9是表示逆向路径误差因子取得部70的结构的功能方框图。逆向路径误差因子取得部70具有切换器72、第一逆向路径误差因子取得部74、第二逆向路径误差因子取得部76。
切换器72把接收机(Bch)38的测定结果和接收机(Rch)18的测定结果发送给第一逆向路径误差因子取得部74或第二逆向路径误差因子取得部76。具体地说,在使校正用具6与端口4b相连接时,对第一逆向路径误差因子取得部74发送接收机(Bch)38的测定结果和接收机(Rch)18的测定结果。在使端口4b与端口4a相连接时,向第二逆向路径误差因子取得部76发送接收机(Bch)38的测定结果以及接收机(Rch)18的测定结果。
第一逆向路径误差因子取得部74取得Ed2、Ei2·Eo2(=Er2)、Es2。关于校正用具6,前面已有说明,所以省略说明。这里,如果设接收机(Rch)18的测定结果为R2(f2),设接收机(Bch)38的测定结果为B2(f2),则R2(f2)与B2(f2)的关系如下述的公式。
【3式】
R 2 ( f 2 ) R 2 ( f 2 ) = Ed 2 + Er 2 · X 1 - Es 2 · X
这里,由于连接三个种类的校正用具6,所以求出三种R2(f2)与B2(f2)的组合。因此,要求出的变量也是称为Ed2、Ei2·Eo2(=Er2)、Es2的三种变量。
第二逆向路径误差因子取得部76从第一逆向路径误差因子取得部74接收Ed2、Ei2·Eo2(=Er2)、Es2,并经由切换器72接收接收机(Bch)38的测定结果和接收机(Rch)18的测定结果。而且,第二逆向路径误差因子取得部76取得EL1。
这里,在设接收机(Rch)18的测定结果为R2(f2),设接收机(Bch)38的测定结果为B2(f2)时,R2(f2)与B2(f2)的关系如下述公式。此外,设经由测定部30从端口4b输出输入信号(频率为f2)。
【4式】
B 2 ( f 2 ) R 2 ( f 2 ) = Ed 2 + Er 2 · EL 1 1 - Es 2 · EL 1
这里,由于Ed2、Er2、Es2为已知,所以能够求出EL1。第二逆向路径误差因子取得部76把Ed2、Ei2·Eo2(=Er2)、Es2、EL1输出给测定系统误差因子记录部80。
测定系统误差因子记录部80从正向路径误差因子取得部60接收Ed1、Ei1·Eo1(=Er1)、Es1、EL2,并从逆向路径误差因子取得部70接收并记录Ed2、Ei2·Eo2(=Er2)、Es2、EL1。Ed1、Er1、Es1、EL2、Ed2、Er2、Es2、EL1是与被测定物的频率变换无关地产生的测定系统误差因子。
误差因子取得部90取得因频率变换而产生的传送跟踪。把传送跟踪Et21、Et12分别定义为Et21=Ei1·Eg2、Et12=Ei2·Eg1。传送跟踪是因被测定物的频率变换而产生的测定系统误差因子。
此外,如图11所示,在取得传送跟踪时,将校正用混频器8与网络分析器1连接。校正用混频器8与DUT2大体相同。其中,如果把第一系数设为M11′和M22′,把第二系数设为M12′和M21′,则|M12′|与|M21′|的比恒定,如果在作为校正用混频器8使用双方向性混频器的情况下,|M12′|=|M21’|。
经由测定部20把输入信号(频率为f1)提供给这样的校正用混频器8,而且,经由测定部30提供输入信号(频率为f1),根据此时的接收机(Rch)18的测定结果、接收机(Ach)28的测定结果以及接收机(Bch)38的测定结果来取得传送跟踪。
图10是表示误差因子取得部90的构成的功能方框图。误差因子取得部90具有测定系统误差因子读出部910、切换器922、正向路经测定数据取得部924、逆向路经测定数据取得部926、电路参数取得部(校正用系数输出单元)928、传送跟踪取得部930。
测定系统误差因子读出部910从测定系统误差因子记录部80读出Ed1、Er1、Es1、EL2、Ed2、Er2、Es2、EL1,并输出给传送跟踪取得部930。
切换器922把接收机(Rch)18的测定结果、接收机(Ach)28的测定结果以及接收机(Bch)38的测定结果发送给正向路经测定数据取得部924或逆向路经测定数据取得部926。具体地说,在经由测定部20提供了输入信号(频率为f1)时(端子14a与端子14b相连接),把测定结果发送给正向路径测定数据取得部924。在经由测定部30提供输入信号(频率为f2)时(端子14a与端子14c相连接),把测定结果发送给逆向路径测定数据取得部926。
正向路径测定数据取得部924把从切换器922接收到的接收机(Rch)18的测定结果作为R1(f1)、把接收机(Ach)28的测定结果作为A1(f1)、把接收机(Bch)38的测定结果作为B1(f2)输出给电路参数取得部928。
逆向路径测定数据取得部926把从切换器922接收到的接收机(Rch)18的测定结果作为R2(f2)、把接收机(Ach)28的测定结果作为A2(f1)、把接收机(Bch)38的测定结果作为B2(f2)输出给电路参数取得部928。
电路参数取得部(校正用系数输出单元)928根据从正向路径测定数据取得部924接收到的R1(f1)、A1(f1)、B1(f2)以及从逆向路径测定数据取得部926接收到的R2(f2)、A2(f1)、B2(f2),取得校正用混频器8的M参数。
当把由电路参数取得部928取得的M参数设为M11m′、M12m′、M21m′和M22m′时,那么下式成立:
M11m′=A1(f1)/R1(f1)
M12m′=A2(f1)/R2(f2)
M21m′=B1(f2)/R1(f1)
M22m′=B2(f2)/R2(f2)
传送跟踪取得部930接收由电路参数取得部928所取得的校正用混频器8的M参数M11m′、M12m′、M21m′、M22m′和由测定系统误差因子读出部910读出来的Ed1、Er1、Es1、EL2、Ed2、Er2、Es2、EL1,并取得传送跟踪Et21、Et12。
首先,通过详细分析网络分析器1可知下述公式1那样的关系。证明后面进行叙述。把EL1、EL2的L标记为小写的1。
【5式】
Eg 1 = ( 1 - Ed 1 Es 1 - El 1 Er 1 ) Eo 1 (公式1)
Eg 2 = ( 1 - Ed 2 Es 2 - El 2 Er 2 ) Eo 2
因此,如果设X=Eo2/Eo1,则传送跟踪Et21、Et12如下述的公式2所示。此外,把EL1、EL2的L标记为小写的1。
【6式】
Et 21 = Er 1 X ( 1 - Ed 2 Es 2 - El 2 Er 2 ) (公式2)
Et 12 = Er 2 1 X ( 1 - Ed 1 Es 1 - El 1 Er 1 )
此外,Eo1是从被测定物信号不伴随频率变换地从DUT2的第一端子2a输出开始直到由接收机(Ach)28接收为止产生的误差因子。Eo2是从被测定物信号不伴随频率变换地从DUT2的第二端子2b输出开始直到由接收机(Bch)38接收为止产生的误差因子。
Ed1、Er1、Es1、EL1、Ed2、Er2、Es2以及EL2可以使用由测定系统误差因子读出部910所读出的。因此,如果已知X,则可以求出跟踪Et21、Et12。
这里,校正用混频器8的M参数M11′、M12′、M21′、M22′和由电路参数取得部928所取得的校正用混频器8的M参数的测定结果M11m′、M12m′、M21m′、M22m′具有下述公式3的关系。此外,把EL1、EL2的L标记为小写的1。
【7式】
M 11 M 12 M 21 M 22 = M 11 m - Ed 1 Er 1 M 12 m Et 12 M 21 m Et 21 M 22 m - Ed 2 Er 2 1 + Es 1 M 11 m - Ed 1 Er 1 El 1 M 12 m Et 12 El 2 M 21 m Et 21 1 + Es 2 M 22 m - Ed 2 Er 2 - 1 (公式3)
当把公式2用于公式3,来求出M21′/M12′时,成为如下的公式4。其中,省略了M11′等的′(撇号),而标记为M11等。并把EL1、EL2的L标记为小写的1。
【8式】
M 21 M 12 = 1 X 2 · M 21 m ( 1 - Ed 1 Es 1 - El 1 Er 1 ) [ Er 2 + ( M 22 m - Ed 2 ) ( Es 2 - El 2 ) ] M 12 m ( 1 - Ed 2 Es 2 - EL 2 Er 2 ) [ Er 1 + ( M 11 m - Ed 1 ) ( Es 1 - El 1 ) ] (公式4)
这里,由于|M12′|=|M21′|,所以M12′=M21′×eθ。其中θ是由本地信号Lo的相位决定的常数。关于X解公式4,得到下述的公式5。其中省略了M11′等的′(撇号),而标记为M11等。此外,把EL1、EL2的L标记为小写的1。
【9式】
X = e θ 2 M 21 m ( 1 - Ed 1 Es 1 - El 1 Er 1 ) [ Er 2 + ( M 22 m - Ed 2 ) ( Es 2 - El 2 ) ] M 12 m ( 1 - Ed 2 Es 2 - El 2 Er 2 ) [ Er 1 + ( M 11 m - Ed 1 ) ( Es 1 - El 1 ) ] (公式5)
以正向路径误差因子取得部60或逆向路径误差因子取得部70测定系统误差因子的期间的任意时刻为基准,如果设该基准时刻的θ为0,则可以决定公式5中的θ。
由此,根据记录在测定系统误差因子记录部80内的Ed1、Er1、Es1、EL1、Ed2、Er2、Es2、EL2和电路参数取得部(校正用系数输出单元)928所取得的校正用混频器8的M参数M11m′、M12m′、M21m′、M22m′,求出X(公式5),并可以根据X取得传送跟踪Et21、Et12(公式2)。
电路参数测定部98取得DUT2的真实的M参数。所谓真实的M参数是指去除了误差因子的影响。
如图1所示,在取得DUT2的真实的M参数时,把DUT2与网络分析器1连接。经由测定部20对DUT2提供输入信号(频率为f1),而且经由测定部30提供输入信号(频率为f2),并且根据此时的接收机(Rch)18的测定结果、接收机(Ach)28的测定结果和接收机(Bch)38的测定结果,取得DUT2的真实的M参数。
图12是表示电路参数测定部98的构成的功能方框图。电路参数测定部98具有测定系统误差因子读出部980、切换器982、正向路经测定数据取得部984、逆向路经测定数据取得部986、电路参数取得部988、真实值电路参数取得部989。
测定系统误差因子读出部980从测定系统误差因子记录部80读出Ed1、Er1、Es1、EL2、Ed2、Er2、Es2、EL1,并输出给真实值电路参数取得部989。
切换器982把接收机(Rch)18的测定结果、接收机(Ach)28的测定结果和接收机(Bch)38的测定结果发送给正向路经测定数据取得部984或逆向路经测定数据取得部986。具体地说,在经由测定部20提供了输入信号(频率为f1)时(端子14a与端子14b相连接),把测定结果发送给正向路径测定数据取得部984。在经由测定部30提供了输入信号(频率为f2)时(端子14a与端子14c相连接),把测定结果发送给逆向路径测定数据取得部986。
正向路径测定数据取得部984把从切换器982接收到的接收机(Rch)18的测定结果作为R1(f1)、把接收机(Ach)28的测定结果作为A1(f1)、把接收机(Bch)38的测定结果作为B1(f2),输出给电路参数取得部988。
逆向路径测定数据取得部986把从切换器982接收到的接收机(Rch)18的测定结果作为R2(f2)、把接收机(Ach)28的测定结果作为A2(f1)、把接收机(Bch)38的测定结果作为B2(f2),输出给电路参数取得部988。
电路参数取得部988根据从正向路径测定数据取得部984接收到的R1(f1)、A1(f1)、B1(f2)以及从逆向路径测定数据取得部986接收到的R2(f2)、A2(f1)、B2(f2),取得DUT2的M参数。
当把由电路参数取得部988取得的M参数设为M11m、M12m、M21m以及M22m时,那么:
M11m=A1(f1)/R1(f1)
M12m=A2(f1)/R2(f2)
M21m=B1(f2)/R1(f1)
M22m=B2(f2)/R2(f2)
真实值电路参数取得部989接收由电路参数取得部988所取得的DUT2的M参数M11m、M12m、M21m和M22m、由测定系统误差因子读出部980读出来的Ed1、Er1、Es1、EL2、Ed2、Er2、Es2、EL1和由误差因子取得部90所取得的传送跟踪Et21、Et12,来取得DUT2的真实的M参数M11、M12、M21和M22。
可以用公式3来求出DUT2的真实的M参数M11、M12、M21和M22。
然后,说明本发明的实施方式的动作。图13是表示本发明的实施方式的动作的流程图。
首先,取得网络分析器1的测定系统误差因子(Ed、Er、Es、EL、Et)(S10)。此外,Ed总括地代表Ed1和Ed2、Er总括地代表Er1和Er2、Es总括地代表Es1和Es2、EL总括地代表EL1和EL2、Et总括地代表Et21和Et12。
然后,把DUT2与网络分析器1连接,测定DUT2的M参数(S20)。
图14是表示网络分析器1的测定系统误差因子(Ed、Er、Es、EL、Et)的取得顺序的流程图。
首先使用校正用具6来测定Ed、Er、Es(S102)。
详细地说,首先,将三个种类的(开路、短路和负载(标准负荷Z0))的校正用具6与端口4a连接。经由切换器62,把此时的接收机(Ach)28的测定结果和接收机(Rch)18的测定结果提供给第一正向路经误差因子取得部64。第一正向路经误差因子取得部64求出Ed1、Er1、Es1。
然后,把三个种类的(开路、短路和负载(标准负荷Z0))的校正用具6与端口4b连接。经由切换器72把此时的接收机(Bch)38的测定结果和接收机(Rch)18的测定结果提供给第一逆向路经误差因子取得部74。第一逆向路经误差因子取得部74求出Ed2、Er2、Es2。
然后,直接连接端口4a和端口4b,来测定EL(S104)。
详细地说,从端口4a经由测定部20对输入信号(频率为f1)进行输出。经由切换器62,把此时的接收机(Ach)28的测定结果和接收机(Rch)18的测定结果提供给第二正向路经误差因子取得部66。第二正向路经误差因子取得部66求出EL2。第二正向路经误差因子取得部66把Ed1、Er1、Es1、EL2输出给测定系统误差因子记录部80。
然后从端口4b经由测定部30对输入信号(频率为f2)进行输出。经由切换器72把此时的接收机(Bch)38的测定结果和接收机(Rch)18的测定结果提供给第二逆向路经误差因子取得部76。第二逆向路经误差因子取得部76求出EL1。第二逆向路经误差因子取得部76把Ed2、Er2、Es2、EL1输出给测定系统误差因子记录部80。
然后,把校正用混频器8与网络分析器1连接,测定R、A、B(S106)。其中,R总括地代表R1(f1)和R2(f2)、A总括地代表A1(f1)和A2(f1)、B总括地代表B1(f2)和B2(f2)。
详细地说,经由测定部20提供输入信号(频率为f1)。经由切换器922把此时的接收机(Rch)18的测定结果和接收机(Ach)28的测定结果和接收机(Bch)38的测定结果提供给正向路经测定数据取得部924。正向路经测定数据取得部924把R1(f1)、A1(f1)、B1(f2)输出给电路参数取得部928。
然后,经由测定部30提供输入信号(频率为f2)。经由切换器922把此时的接收机(Rch)18的测定结果、接收机(Ach)28的测定结果和接收机(Bch)38的测定结果提供给逆向路经测定数据取得部926。逆向路经测定数据取得部926把R2(f2)、A2(f1)、B2(f2)输出给电路参数取得部928。
电路参数取得部928求出校正用混频器8的M参数M11m′、M12m′、M21m′以及M22m′。
最后,传送跟踪取得部930接收由电路参数取得部928所取得的校正用混频器8的M参数M11m′、M12m′、M21m′、M22m′和由测定系统误差因子读出部910读出来的Ed1、Er1、Es1、EL2、Ed2、Er2、Es2、EL1,取得传送跟踪Et21、Et12(S108)。
具体地说,如果通过公式5求出X,并代入到公式2内,可以取得传送跟踪Et21、Et12。
图15是表示DUT2的M参数的取得顺序的流程图。
首先,将DUT2与网络分析器1连接,测定R、A、B(S202)。
详细地说,经由测定部20提供输入信号(频率为f1)。经由切换器982把此时的接收机(Rch)18的测定结果、接收机(Ach)28的测定结果和接收机(Bch)38的测定结果提供给正向路经测定数据取得部984。正向路经测定数据取得部984把R1(f1)、A1(f1)、B1(f2)输出给电路参数取得部988。
经由测定部30提供输入信号(频率为f2)。经由切换器982把此时的接收机(Rch)18的测定结果、接收机(Ach)28的测定结果和接收机(Bch)38的测定结果提供给逆向路经测定数据取得部986。逆向路经测定数据取得部986把R2(f2)、A2(f1)、B2(f2)输出给电路参数取得部988。
然后,电路参数取得部988决定DUT2的M参数M11m、M12m、M21m以及M22m(S204)。
最后,真实值电路参数取得部989接收由电路参数取得部988所取得的DUT2的M参数M11m、M12m、M21m、M22m和由测定系统误差因子读出部980读出的Ed1、Er1、Es1、EL2、Ed2、Er2、Es2、EL1和由误差因子取得部90所取得的传送跟踪Et21、Et12,来取得DUT2的真实的M参数M11、M12、M21、M22(S206)。
根据本发明的实施方式,为了求出传送跟踪Et21、Et12,进行(1)将校正用具6与端口4a连接,并将校正用具6与端口4b连接;(2)直接连接端口4a和端口4b;(3)将校正用混频器8与端口4a以及端口4b连接的、可以取得相位的过程,所以可以取得传送跟踪误差的相位,可以修正测定系统的误差。
此外,在本发明的实施方式中,说明了网络分析器1对输入信号进行输出,用于接收来自DUT2的被测定物信号的端口为两个端口(端口4a、4b)的情况。但这样的端口也可以为3个以上。
例如如图16所示,除端口4a、4b之外,还可以是端口4d、4e。图16所示的变形例(之一)是在网络分析器1中新加进了端口4d、4e、开关14的端子14d、14e、电桥123、133、内部混频器126、136、接收机(Dch)128(被测定物信号测定单元)、接收机(Cch)138(被测定物信号测定单元)。其它部分与前面所说明的相同。此外,为了图示的方便,在图16中,省略了DUT用本地信号振荡器40、切换器52、54、56、正向路径误差因子取得部60、逆向路径误差因子取得部70、测定系统误差因子记录部80、误差因子取得部90和电路参数测定部98。
开关14的端子14d、14e与电桥133、123相连接。
电桥123、133向端口4e、4d输出由信号源10提供的信号。而且,经由端口4e、4d接收从被测定物反射回来的信号和通过了被测定物的信号,并提供给内部混频器126、136。
内部混频器126、136把由电桥123、133提供的信号与内部本地信号混合后输出。
接收机(Dch)128、接收机(Cch)138测定内部混频器126、136所输出的信号的S参数。
例如如图17所示,除端口4a、4b之外,还可以是端口4d、4e。图17所示的变形例(之二)是从图16所示的变形例(之一)中去除了电桥13、内部混频器16和接收机(Rch)18,取而代之,具有电桥13b、13c、13d、13e、内部混频器16b、16c、16d、16e、接收机(Rch)18b、18c、18d、18e。此外,为了图示的方便,在图17中省略了DUT用本地信号振荡器40、切换器52、54、56、正向路径误差因子取得部60、逆向路径误差因子取得部70、测定系统误差因子记录部80、误差因子取得部90和电路参数测定部98。
开关14的端子14b、14c、14d、14e与电桥13b、13c、13d、13e相连接。
电桥13b、13c、13d、13e经由电桥23、33、133、123向端口4a、4b、4d、4e输出由信号源10提供的信号。而且,经由端口4a、4b、4d、4e接收从被测定物反射回来的信号和通过了被测定物的信号,并提供给内部混频器16b、16c、16d、16e。
内部混频器16b、16c、16d、16e把由电桥13b、13c、13d、13e提供的信号与内部本地信号混合后输出。
接收机(Rch)18b、18c、18d、18e测定内部混频器16b、16c、16d、16e所输出的信号的S参数。
根据图17所示的变形例(之二),由于Es1=EL1、Es2=EL2、…成立,所以容易计量或运算。
此外,上述的实施方式可以如下地实现。即:在具备CPU、硬盘、媒体(软盘(注册商标)、CD-ROM等)读取装置的计算机的媒体读取装置上,读取对实现上述各部分(例如正向路径误差因子取得部60、逆向路径误差因子取得部70、测定系统误差因子记录部80以及误差因子取得部90)的程序进行了记录的媒体,并安装在硬盘中。通过这样的方法也可以实现上述的实施方式。
[公式1的证明]
如图18所示,把从SG1到Port1的路径分成为A、B、C三个方框。当把SW切换到1:FWD一侧(输出信号时)和切换到2:RWV一侧(不输出信号时)时,状态变化的仅是C方框。
这里,在设A方框的反射系数和传输系数分别为Ax,Ay;B方框的S参数为Bij(i,j=1,2,3);SW在1:FWD一侧时的C方框的反射系数和传输系数分别为Cx,Cy;SW在2:RWV一侧时的C方框的反射系数为Cz时,FWD系统由图19所示的信号流向图表示,RWV系统由图20所示的信号流向图表示。
这里,为了仅着眼于接收机的检波值和Port1的信号,即R1(f1),A1(f1),A2(f1),a1(f1),b1(f1),a1″(f1),b1″(f1)的依存关系,当对变量进行概括时,图19所示的信号流向图可以像图21那样变形,图20所示的信号流向图可以像图22那样变形。
P11,P21,P12,P22,Qx,Qy分别是Bij(i,j=1,2,3),Ax,Ay的函数,但因为在以后的计算中不使用描述该函数的公式,所以未明确进行记述。
图21所示的信号流向图对应于图23所示的测定系统的误差因子。图22所示的信号流向图对应于图24所示的测定系统的误差因子。
所以,用方程式表示如下的对应关系。
【10式】
FWD:
Ed 1 = Cy 1 1 - P 11 Cx Qx
Es 1 = P 22 + P 12 Cx 1 - P 11 Cx P 21
Ei 1 = Cy 1 1 - P 11 Cx P 21
Eo 1 = Qy + P 12 Cx 1 - P 11 Cx Qx
REV:
El 1 = P 22 + P 12 Cz 1 - p 11 Cz P 21
Eg 1 = Qy + P 12 Cz 1 - P 11 Cz Qx
因此计算如下。
【11式】
Ed 1 Es 1 - El 1 Ei 1 = Λ = P 12 Qx Cx - Cz ( 1 - P 11 Cx ) ( 1 - P 11 Cz )
Eo 1 - Eg 1 = Λ = P 12 Qx Cx - Cz ( 1 - P 11 Cx ) ( 1 - P 11 Cz )
Ed 1 Es 1 - El 1 Ei 1 = Eo 1 - Eg 1
Eg 1 = Eo 1 - Ed 1 E s 1 - El 1 Ei 1 = ( 1 - Ed 1 Es 1 - El 1 Ei 1 Eo 1 ) Eo 1 = ( 1 - Ed 1 Es 1 - El 1 Er 1 ) Eo 1
Eg 1 = ( 1 - E d 1 Es 1 - El 1 Er 1 ) Eo 1
[公式1的证明结束]

Claims (9)

1.一种网络分析器,其特征在于,
具备:测定系统误差因子记录单元,其记录与被测定物引起的频率变换无关地产生的测定系统误差因子;
校正用系数输出单元,其把从某端子输出的信号表示为输入到该端子的信号乘以第一系数的积与输入到另一端子的信号乘以第二系数的积的和,输出所测定的第二系数大小的比为恒定的校正用频率变换元件的所述第一系数以及所述第二系数;和
传送跟踪取得单元,其根据记录在所述测定系统误差因子记录单元内的所述测定系统误差因子和所述校正用系数输出单元所输出的所述第一系数和所述第二系数,取得因频率变换而产生的传送跟踪。
2.根据权利要求1所述的网络分析器,其特征在于,
在把所述校正用频率变换元件的所述第一系数设为M11′、M22′,把所述第二系数设为M12′、M21′,把输入到第一端子的信号设为a1,把从第一端子输出的信号设为b1,把输入到第二端子的信号设为a2,把从第二端子输出的信号设为b2时,
b1=M11′×a1+M12′×a2
b2=M21′×a1+M22′×a2
|M12′|M21′|为恒定。
3.根据权利要求1或2所述的网络分析器,其特征在于,对于任何端子所述第二系数的大小都相同。
4.根据权利要求1至3的任一项所述的网络分析器,其特征在于,
具备:输入信号测定单元,其在所述测定系统误差因子产生之前测定与输入给所述被测定物的输入信号有关的输入信号参数;
多个端口,其与所述被测定物的端子连接,对所述输入信号进行输出;和
被测定物信号测定单元,其测定与所述被测定物的端子输入给所述端口的被测定物信号有关的被测定物信号参数。
5.根据权利要求4所述的网络分析器,其特征在于,
所述校正用系数输出单元根据由所述输入信号测定单元测定到的所述输入信号参数与所述被测定物信号测定单元测定到的所述被测定物信号参数的比,来求出所述校正用频率变换元件的所述第一系数和所述第二系数。
6.根据权利要求4所述的网络分析器,其特征在于,
所述传送跟踪取得单元根据从被测定物信号不伴随频率变换地从所述被测定物的端子输出开始直到由所述被测定物信号测定单元接收为止所产生的误差因子的比,来取得所述传送跟踪。
7.一种网络分析方法,其特征在于,
包含:测定系统误差因子记录单元记录与被测定物引起的频率变换无关地产生的测定系统误差因子的测定系统误差因子记录过程;
校正用系数输出单元把从某端子输出的信号表示为输入到该端子的信号乘以第一系数的积与输入到另一端子的信号乘以第二系数的积的和,输出所测定的第二系数大小的比为恒定的校正用频率变换元件的所述第一系数以及所述第二系数的校正用系数输出过程;和
传送跟踪取得单元根据记录在所述测定系统误差因子记录单元内的所述测定系统误差因子和所述校正用系数输出单元输出的所述第一系数以及所述第二系数,来取得因频率变换而产生的传送跟踪的传送跟踪取得过程。
8.一种程序,其特征在于,
用于使计算机执行如下的处理:记录与被测定物引起的频率变换无关地产生的测定系统误差因子的测定系统误差因子记录处理;
把从某端子输出的信号表示为输入到该端子的信号乘以第一系数的积与输入到另一端子的信号乘以第二系数的积的和,输出所测定的第二系数大小的比为恒定的校正用频率变换元件的所述第一系数以及所述第二系数的校正用系数输出处理;和
根据通过所述测定系统误差因子记录处理所记录的所述测定系统误差因子和通过所述校正用系数输出处理输出的所述第一系数和所述第二系数来取得因频率变换而产生的传送跟踪的传送跟踪取得处理。
9.一种记录媒体,其特征在于,
可由计算机读取,并记录了用于使计算机执行如下处理的程序:记录与被测定物引起的频率变换无关地产生的测定系统误差因子的测定系统误差因子记录处理;
把从某端子输出的信号表示为输入到该端子的信号乘以第一系数的积与输入到另一端子的信号乘以第二系数的积的和,输出所测定的第二系数大小的比为恒定的校正用频率变换元件的所述第一系数以及所述第二系数的校正用系数输出处理;
根据通过所述测定系统误差因子记录处理所记录的所述测定系统误差因子和通过所述校正用系数输出处理输出的所述第一系数和所述第二系数来取得因频率变换而产生的传送跟踪的传送跟踪取得处理。
CNB2005800056487A 2004-02-23 2005-02-10 网络分析器、网络分析方法 Active CN100439928C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP046084/2004 2004-02-23
JP2004046084A JP5242881B2 (ja) 2004-02-23 2004-02-23 ネットワークアナライザ、ネットワーク解析方法、プログラムおよび記録媒体

Publications (2)

Publication Number Publication Date
CN1922499A true CN1922499A (zh) 2007-02-28
CN100439928C CN100439928C (zh) 2008-12-03

Family

ID=34879430

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800056487A Active CN100439928C (zh) 2004-02-23 2005-02-10 网络分析器、网络分析方法

Country Status (7)

Country Link
US (2) US7561987B2 (zh)
JP (1) JP5242881B2 (zh)
KR (1) KR100809944B1 (zh)
CN (1) CN100439928C (zh)
DE (1) DE112005000430B4 (zh)
TW (1) TWI279554B (zh)
WO (1) WO2005080999A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101755389B (zh) * 2007-07-20 2013-05-01 富士通株式会社 信号传输装置以及方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200817688A (en) * 2006-08-30 2008-04-16 Advantest Corp Element judging device, method, program, recording medium and measuring device
JP4188396B2 (ja) * 2006-08-31 2008-11-26 株式会社アドバンテスト 誤差要因判定装置、方法、プログラム、記録媒体および該装置を備えた出力補正装置、反射係数測定装置
JP2008058326A (ja) * 2007-10-22 2008-03-13 Advantest Corp 誤差要因判定装置、方法、プログラム、記録媒体および該装置を備えた出力補正装置、反射係数測定装置
JP2010011336A (ja) * 2008-06-30 2010-01-14 Advantest Corp 信号出力装置、信号出力制御方法、プログラム、記録媒体
US9841449B2 (en) * 2015-11-30 2017-12-12 Keysight Technologies, Inc. Apparatus and method for cable phase correction for vector analyzer remote heads
US10684317B2 (en) 2017-09-04 2020-06-16 Rohde & Schwarz Gmbh & Co. Kg Vector network analyzer and measuring method for frequency-converting measurements
US10962587B2 (en) * 2018-11-28 2021-03-30 Fermi Research Alliance, Llc Method and system for microwave mixer phase response measurement
US10996264B2 (en) 2018-12-03 2021-05-04 Rohde & Schwarz Gmbh & Co. Kg Measurement method and device with compensation for a shifting frequency
US10659177B1 (en) 2019-07-16 2020-05-19 Rohde & Schwarz Gmbh & Co. Kg Method of determining a relative phase change of a local oscillator signal and method of determining a relative phase change of a radio frequency signal
US11054450B2 (en) 2019-07-17 2021-07-06 Rohde & Schwarz Gmbh & Co. Kg Method of calibrating a measurement and analyzing device as well as method of measuring a frequency-converting device under test
US10897316B1 (en) * 2019-09-24 2021-01-19 Rohde & Schwarz Gmbh & Co. Kg Test system and method for determining a response of a transmission channel
US11509404B2 (en) 2021-03-26 2022-11-22 Rohde & Schwarz Gmbh & Co. Kg Automated calibration unit, frequency conversion circuit and method of performing calibration of a test and measurement instrument

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4124841B2 (ja) 1997-07-18 2008-07-23 株式会社アドバンテスト ネットワーク・アナライザ、高周波周波数特性測定装置および誤差要因測定方法
US6188968B1 (en) * 1998-05-18 2001-02-13 Agilent Technologies Inc. Removing effects of adapters present during vector network analyzer calibration
JP2001153904A (ja) * 1999-11-25 2001-06-08 Advantest Corp ネットワークアナライザ、ネットワーク解析方法および記録媒体
US6448786B1 (en) 2000-11-09 2002-09-10 Agilent Technologies, Inc. Stimulus/response system and method for vector characterization of frequency translation devices
US6701265B2 (en) * 2002-03-05 2004-03-02 Tektronix, Inc. Calibration for vector network analyzer
JP2003294820A (ja) 2002-03-29 2003-10-15 Agilent Technologies Japan Ltd 測定装置、測定装置の校正方法および記録媒体
WO2003087856A1 (fr) 2002-04-17 2003-10-23 Advantest Corporation Analyseur de reseau, procede d'analyse de reseau, correcteur automatique, procede de correction, programme, et support d'enregistrement
WO2004049564A1 (ja) * 2002-11-27 2004-06-10 Advantest Corporation 電力供給装置、方法、プログラム、記録媒体、ネットワークアナライザおよびスペクトラムアナライザ
JP4274462B2 (ja) * 2003-09-18 2009-06-10 株式会社アドバンテスト 誤差要因取得用装置、方法、プログラムおよび記録媒体
JP4462979B2 (ja) * 2004-03-26 2010-05-12 株式会社アドバンテスト ネットワークアナライザ、伝送トラッキング測定方法、ネットワーク解析方法、プログラムおよび記録媒体
US7511508B2 (en) * 2004-06-28 2009-03-31 Advantest Corporation Fixture characteristic measuring device, method, program, recording medium, network analyzer, and semiconductor test device
US6995571B1 (en) 2005-01-03 2006-02-07 Agilent Technologies, Inc. Vector network analyzer mixer calibration using the unknown thru calibration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101755389B (zh) * 2007-07-20 2013-05-01 富士通株式会社 信号传输装置以及方法

Also Published As

Publication number Publication date
TWI279554B (en) 2007-04-21
US20090276177A1 (en) 2009-11-05
JP5242881B2 (ja) 2013-07-24
US20070143051A1 (en) 2007-06-21
CN100439928C (zh) 2008-12-03
KR20070029149A (ko) 2007-03-13
DE112005000430B4 (de) 2021-06-17
US7996184B2 (en) 2011-08-09
US7561987B2 (en) 2009-07-14
KR100809944B1 (ko) 2008-03-06
WO2005080999A1 (ja) 2005-09-01
TW200533931A (en) 2005-10-16
DE112005000430T5 (de) 2006-12-14
JP2005233883A (ja) 2005-09-02

Similar Documents

Publication Publication Date Title
CN1922499A (zh) 网络分析器、网络分析方法、程序和记录媒体
CN1267831C (zh) 体动检测装置、节拍计、手表型信息处理装置、及其控制方法
CN1885273A (zh) 一种逻辑测试的功能覆盖率分析方法
CN1022138C (zh) 信号频率和相位的数字化测定法及其装置
CN1898526A (zh) 方位角计测装置
CN1922465A (zh) 角速度传感器
CN1781335A (zh) 具有二次指向图形的麦克风阵列
CN1307943C (zh) 逆投影方法和x射线计算机化断层摄影装置
CN1636516A (zh) 散射测量方法、散射校正方法、和x射线ct设备
CN1409577A (zh) 台词分量强调装置
CN101047915A (zh) 第三代时分同步码分多址移动终端自动校准的方法和装置
CN100347561C (zh) 监视信号输出电路、电池组、电池电压监视电路及方法
CN1257639A (zh) 音频信道混合
CN101074987A (zh) 高压电能计量装置综合误差实时在线监测方法及监测设备
CN1462153A (zh) 功率放大器
CN1833175A (zh) 时序比较器、数据取样装置、以及测试装置
CN1657004A (zh) 磁共振数据获取方法和图像构成方法及磁共振成像系统
CN1196261C (zh) 滤波器及获得滤波器系数的方法
CN1222926C (zh) 语音编码方法及其装置
CN1207538C (zh) 设定流率系数的方法及利用该方法的流率计
CN1551498A (zh) 声表面波装置和通信装置
CN1308670C (zh) 使用图像传感器的测定方法及装置
CN1905404A (zh) 低噪声分组变换器
CN1203617C (zh) 高频信号接收装置
CN1723690A (zh) 像素插值电路、像素插值方法及图像读取装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: LUODESHIWAZI JOINT LIMITED PARTNERSHIP

Free format text: FORMER OWNER: ADVANTEST CORP.

Effective date: 20090731

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20090731

Address after: Munich, Germany

Patentee after: Rohde & Schwarz GmbH & Co., KG

Address before: Tokyo, Japan, Japan

Patentee before: Advantest K. K.