CN1898803A - 包括pn异质结的半导体器件 - Google Patents

包括pn异质结的半导体器件 Download PDF

Info

Publication number
CN1898803A
CN1898803A CNA2004800386143A CN200480038614A CN1898803A CN 1898803 A CN1898803 A CN 1898803A CN A2004800386143 A CNA2004800386143 A CN A2004800386143A CN 200480038614 A CN200480038614 A CN 200480038614A CN 1898803 A CN1898803 A CN 1898803A
Authority
CN
China
Prior art keywords
nano wire
family
semiconductor body
iii
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004800386143A
Other languages
English (en)
Inventor
戈德弗里德斯·A.·M.·胡克斯
普拉巴特·阿加瓦尔
亚伯拉罕·R.·巴尔肯那德
彼德鲁斯·H.·C.·马格内
梅拉妮·M.·H.·瓦格曼丝
埃里克·P.·A.·M.·巴可斯
埃尔温·A.·海曾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1898803A publication Critical patent/CN1898803A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

公开一种电器件,其包括通过由III-V族半导体材料构成的纳米线(3)和包括IV族半导体材料的半导体主体(1)形成的pn异质结(4)。将纳米线(3)设置成与半导体主体(1)的表面(2)直接接触并且具有第一导电类型,半导体主体(1)具有与第一导电类型相反的第二导电类型,纳米线(3)与半导体主体(1)形成pn异质结(4)。由III-V族半导体材料构成的纳米线可以用作进入到半导体主体中的掺杂剂原子的扩散源(5)。从III-V族材料扩散的III族原子和/或V族原子是在半导体主体中形成与纳米线(3)直接接触的区域(6)的掺杂剂原子。

Description

包括PN异质结的半导体器件
本发明涉及一种电器件,其包括:
半导体主体,其包括具有表面的IV族半导体材料,
由III-V族半导体材料构成的纳米结构。
本发明还涉及一种形成pn异质结的方法,该方法包括以下步骤:
在由第一半导体材料构成的半导体主体的表面上形成由第二半导体材料构成的纳米结构,
第一半导体材料包括至少一种来自周期系IV族的元素,而第二半导体材料是III-V族材料。
在本申请中,纳米线是主体,其具有至少一个在0.5和100nm之间的横向尺寸,更为具体地,在1和50nm之间。优选地,纳米线具有在上述范围内的两个横向尺寸。
虽然在IC小型化的推动下,非常希望得到这些尺寸,但是无法利用光刻来形成这些尺寸,或者至少不容易利用光刻形成这些尺寸。
根据三种最实用的半导体技术:硅(Si)、砷化镓(GaAs)和磷化铟(InP),可以将半导体工业划分成三个主要的分支工业。在应用和成熟度方面,硅技术是最占优势的技术,然而硅的物理特性限制其在高频率应用领域和光学应用领域中的应用,而在这些应用中砷化镓和磷化铟是最适合的材料。作为IV族半导体材料的硅与均为III-V族材料的砷化镓和磷化铟之间的晶格失配和热失配使得难以针对这三种材料进行在单个芯片上的集成。
由于使诸如光电子器件和高频器件的互补III-V族器件的技术和性能与诸如CMOS技术的硅技术相结合的潜力,而使III-V族半导体在硅衬底上的集成受到了极大的关注。
可以通过利用一层或更多的缓冲层而在IV族半导体材料上提供III-V族半导体材料或使III-V族半导体材料与IV族半导体材料集成。
在美国专利申请2003/0038299中,可以通过使用两个连续的缓冲层,例如氧化硅和钛酸锶,将单晶GaAs层生长在硅衬底上。这些缓冲层用于调节这些层之间的一些晶格失配。
如在上述现有技术中所做的那样,施加缓冲层的缺点可包括:在上层与衬底之间不存在电接触,为了形成缓冲层的不同工艺步骤的数量使得生长缓冲层非常昂贵,等等。
除了晶格失配之外,还存在反相畴的问题。在B.J.Ohlsson等人于2002年6月17日的Applied physics letters的第80卷第24号第4546-4548页中发表的文章“Anti-domain-free GaP,grown in atomicallyflat(001)Si sub-um-sized openings”中,公开了一种用于在Si(001)上生长GaP纳米晶体的方法。在该方法中,在遮掩的开口中,在原子平坦的Si上施加GaP的选择区域外延。在700℃下在化学束外延室中生长单晶GaP纳米晶体。
采用该化学束外延方法的问题是在非极性IV族材料上异质生长极性III-V族材料期间形成了反相畴(APD)。在(001)表面上,两个可能的相位在平面旋转上相差90°。在两个APD之间的边界,产生反相边界(APB)。APB可以是电性活化的(electrically active)并且用作非辐射复合中心。
当施加在pn结中时,这种复合中心产生泄漏。
此外,将纳米晶体掩埋在GaP层中,使得不能形成与单独纳米晶体的电接触。因此,很难制造半导体元件的集成电路,其中半导体元件包括单个纳米晶体。
本发明的目的是提供一种在开篇段落中所提及的类型的电器件,其具有增加的功能性。
可以实现本发明的目的是因为:纳米结构是被设置成与表面直接接触并且具有第一导电类型的纳米线,半导体主体具有与第一导电类型相反的第二导电类型,纳米线与半导体主体形成pn异质结。
由III-V族半导体材料构成的纳米线具有吸引人的新的电特性和光电特性。由于纳米线的小尺寸,所以会发生量子局限(quantumconfinement)现象。通过恰当地选择材料和尺寸,可以设计这种量子线的电传输特性和光学特性。特别是,由具有直接带隙的III-V族半导体材料构成的纳米线具有吸引人的光学和电光特性。由诸如GaAs、GaP、GaAsP、InAs、InP、InAsP的化合物半导体构成的纳米线在带隙和迁移率方面涵盖很宽的范围。此外,纳米线允许超高的速度和集成密度。
根据本发明,在由III-V族材料构成的纳米线与包含诸如Si或Ge的IV族元素的半导体之间形成pn异质结。纳米线形成为pn异质结的一部分,其为n型或p型。分别通过p型或n型半导体主体来形成pn异质结的另一部分。纳米线的电特性是很重要的。特别是对于高速应用,电阻率应该低,使得高n型或p型掺杂剂浓度是有利的。III-V族纳米线允许将具有微调波长的光与便宜的用于逻辑和存储器的采用硅的VLSI技术结合。与常规电子器件连接的纳米线允许集成电路功能性的增加。Pn异质结是用于诸如光电器件和异质结双极性晶体管的几种器件的重要组成部件,其中所述光电器件例如为发光二极管。
在有利的实施例中,由III-V族材料构成的纳米线是进入到半导体主体中的掺杂剂原子的扩散源。III-V族材料可以包括两种以上的来自周期系的元素,即它可以是二元、三元、或四元化合物,或可以是包含五种以上元素的化合物。
半导体主体例如可以是IV族半导体材料,如硅或硅锗(SiGe)。半导体主体不必是体材料(bulk material)的衬底。半导体主体可以是由相同或不同材料的体材料支撑的顶层。
本发明基于这样的理解:来自III-V族材料的III族和/或V族原子是IV族半导体材料中的掺杂剂原子以及III族和V族原子在IV族半导体材料中具有不同的扩散系数和固溶度。
III族原子(例如镓)是IV族半导体材料中的p型掺杂剂原子,而V族原子(例如P)是IV族半导体材料(例如Si或Ge)中的n型掺杂剂原子。将III族和/或V族原子从III-V族材料扩散到IV族半导体材料中。III族或V族原子可以源自于III-V族材料中的断开的化学键,这会在将III-V族材料加热到临界温度以上时发生。在IV族半导体中具有最高扩散系数的原子与半导体主体形成pn结,该半导体主体具有与所扩散的掺杂剂原子相反的导电类型的n型或p型掺杂剂原子。
如果具有较低扩散系数的原子的固溶度高于具有较高扩散系数的原子的固溶度,则在p型或n型半导体主体内形成pn结。这意味着形成pnp或npn掺杂分布,这可以有利地用于双极性晶体管的制造。
优选地,在半导体主体中存在与纳米线直接接触的区域,其具有与纳米线相同的导电类型。这可以是横向尺寸非常小的的超浅结,例如在低于20nm的范围内。不能可靠地利用光刻技术形成这种小的尺寸。pn结现在位于半导体主体内。纳米线与半导体之间的界面不再是冶金结(metallurgical junction)的位置,从而可以改善pn结的电特性。
可以在形成浅结之后除去纳米线。代替地,金属接触可以用于进一步减小接触电阻。为了将金属接触设置在小的结上,希望在将III-V族纳米线从半导体主体选择性地除去之前在纳米线周围形成隔离物。
由于结的面积小,所以耗尽电容可以非常小,这允许制造超高速器件。因为尺寸为布洛赫波长的量级,所以量子尺寸效应可以非常有利地用于器件的设计。
III-V族材料可以包括例如在外延生长过程中形成的纳米线中的过量III族原子和/或V族原子。
可以利用汽相-液相-固相(VLS)生长法,例如激光辅助催化生长法,直接在半导体主体的表面上外延生长纳米线。二元和三元III-V族纳米线的范围广阔的合成主要由目标组成物和生长温度来确定。
在该方法的有利实施例中,在半导体主体的表面上提供金属的局部区域。使金属熔化,形成可以用作催化剂以利用诸如激光烧蚀的汽相液相固相生长法来生长纳米线的小液滴。在半导体主体的表面上在金属小液滴之下形成纳米线。含有金属和要生长的半导体材料的液态合金小滴位于线的顶端并随同线的生长端移动。该方法与现有的IC技术兼容。还可以借助于金属的胶态溶液(化合物)来获得金属小液滴。
虽然三元和四元III-V族材料给予更多的自由度以使晶格常数适合于半导体主体,但是本发明是基于这样的理解:通过提供由III-V族材料构成的纳米线来代替由III-V族材料构成的覆盖层,可以减小诸如两种材料之间的晶格失配的问题。可能的晶格失配不一定使应变在纳米线中增大。可以在纳米结构的表面上减轻应变,由此使纳米结构具有非常少的缺陷,或者甚至有可能没有缺陷,并且还使纳米结构和衬底之间的外延关系成为可能。
本发明还基于这样的理解:不能在某些衬底的顶部上生长由某些材料构成的超过一定厚度的外延覆盖层。例如,由于晶格失配引起的应变,而不能在IV族例如SiGe衬底上生长厚度大于约20nm的InP外延覆盖层。通过提供与衬底有外延关系的纳米线,能够生长厚度大于利用相同材料构成的覆盖层所获得的厚度的线。可以使纵向尺寸大于20nm的InP纳米线结构与SiGe有外延关系,这是因为由于有限的横向尺寸,而使应变相对较小,并且可以在纳米线的表面上使应变减轻。
纳米线可以是从衬底向外突出的细长结构。细长的纳米线可以具有特定的纵横比,即特定的长度对直径的比。纵横比可以大于10,如大于25,如大于50、如大于100、如大于250。可以垂直于纳米线的纵向来获得直径。
纳米线可以与衬底电接触。电接触可以是所谓的欧姆接触,这是在本领域中用于低电阻接触的表述方式。纳米线与衬底之间的电阻在室温下Ohm低于10-5Ohm cm2,如低于10-6Ohm cm2,如低于10-7Ohmcm2,如低于10-8Ohm cm2,如低于10-9Ohm cm2,或者甚至更低。获得尽可能低的电阻以便减少例如接触区中的热耗散是有利的。
衬底与纳米结构之间的晶格失配可以小于10%,如小于8%,如小于6%,如小于4%,如小于2%。晶格失配可以大于0.1%,大于1%,和/或大于2%。作为III-V族和IV族半导体材料之间的晶格失配的例子,在InP与Ge和Si之间的晶格失配分别是3.7%和8.1%。能够在具有这种相对较大的晶格失配的两种材料之间提供外延关系是有利的。预期晶格失配越大,纳米线必须越薄,以便获得与衬底的外延关系。
纳米线可以基本上是单晶的纳米线。例如对于穿过纳米线的电流传输的理论阐述,或者其他类型的理论支持或对纳米线特性的理解,提供单晶的纳米线是有利的。此外,基本上为单晶的纳米线的其他优点包括:与基于非单晶纳米线的器件相比,可以实现操作限定得更好的器件,例如可以获得具有限定得更好的电压阈值、具有较少漏电流、具有较好导电性等的晶体管器件。
纳米线可以是选自由声子带隙器件、量子点器件、热电器件、光子器件、纳米机电致动器、纳米机电传感器、场效应晶体管、红外检测器、谐振隧穿二极管、单电子晶体管、红外检测器、磁性传感器、发光器件、光学调制器、光学检测器、光学波导、光学耦合器、光学开关和激光器所组成的组的器件的功能部件。
可以将多个纳米线设置成阵列。通过将纳米线设置成阵列,可以提供包括大量单个电子元件例如大量晶体管元件的集成电路器件。可以与用于寻址单独的纳米线或一组纳米线的选择线或选择栅相结合来提供纳米线阵列。
根据本发明的第二方案,提供一种形成异质结的方法,该方法包括以下步骤:
在由第一半导体材料构成的半导体主体(2、42、50)的表面上形成由第二半导体材料构成的纳米结构(1、44、51),
第一半导体材料包括来自周期系IV族的至少一种元素,而第二半导体材料为III-V族材料,
其中纳米结构是生长在半导体主体表面上并接收第一导电类型的纳米线,半导体主体具有与第一导电类型相反的第二导电类型,纳米线与半导体形成pn异质结。
可以根据汽相-液相-固相(VLS)生长机理来生长纳米线。在VLS生长中,将金属颗粒设置在衬底上的将要生长纳米线的位置上。金属颗粒可以是金属或合金,其包括选自由Fe、Ru、Co、Rh、Ni、Pd、Pt、Cu、Ag、Au、Ti所组成的组的金属。
然而,还可以利用不同的生长方法来生长纳米线。例如,可以由汽相或液相在接触孔、即覆盖除了纳米线的位置以外的衬底的电介质层中的孔中外延生长纳米线。
参考纳米线、该纳米线以及一个纳米线等并不表示只参考单一的纳米线。这种参考也涵盖一个以上的纳米线,如多个纳米线。。
通过参考下文中所述的实施例,本发明的这些和其他方案、特征和/或优点将变得显而易见,并且对其进行说明。
仅以示例的方式,参考附图来说明本发明的实施例,其中:
图1示出根据本发明的由形成pn异质结的p型半导体主体上的III-V族半导体材料构成的n型纳米线的示意图;
图2示出通过从III-V族材料向外扩散所形成的纳米线下面的n型区;
图3a-c示出在Ge(111)上生长的InP纳米结构的SEM图像;
图4示出在与Ge(111)接触的InP纳米结构之间的界面的HRTEM图像;
图5示出在Ge(111)上生长的InP纳米结构的XRD极图。
在图1中,电阻率为3-5Ohmcm的p型(100)半导体主体(1)设有由III-V族材料构成的纳米线。在本实施例中,纳米线(3)为InP。本发明同样可以很好地应用于GaAs、GaP、GaAsP、InAs、和InAsPGaP以及GaAs纳米线。在p型半导体主体(1)的表面(2)上,淀积由氧化硅构成的电介质层。在氧化硅层的顶部,提供诸如PMMA的光刻胶层。借助于光刻或电子束光刻(e-beam lithography)来曝光光刻胶层。
在光刻胶显影之后,优选通过在HF溶液中的湿法化学蚀刻而在光刻胶层的开口区域中除去氧化硅层。现在在氧化硅中的开口中可看到半导体主体。
在被构图的光刻胶层上,蒸镀金属层。在本例中,金属层为10nm厚的金层,但金属层还可以是薄的Ni或Ti层。对于薄金属层的要求是其不应该与光刻胶层反应或者对光刻胶加热太多使得以后再也不能除去光刻胶。优选地,金属的熔点相对较低。
在提升工艺(lift-off process)中,将光刻胶层与存在于光刻胶层上的金属层一起除去。在提升工艺之后,使Si主体具有小的金属区。
在下一步骤中,在高温下加热金属区,在该情况下为Au,从而形成Au液滴。在本例中,将一些Si溶解在Au中。
随后,通过汽相-液相-固相工艺在Si半导体主体上形成InP纳米线。将衬底保持在处于450至495℃范围内的温度下,同时利用激光烧蚀来确立In和P的浓度,并在纳米线生长期间保持该浓度。
在生长期间,包含Au和Si的液态合金小滴位于线的顶端,并随着线的生长端移动。线沿着Si[100]的方向生长。在生长期间,Si原子扩散到InP纳米线中。Si在InP中为n-型掺杂剂原子,从而InP纳米线在生长工艺之后为n-型。这样,形成pn异质结(4)。在纳米线生长期间,In和/或P原子从InP到Si中的扩散很小可以忽略不计。
InP纳米线可以用作进入到Si中的掺杂剂原子的扩散源(5)。
为了避免P可能从纳米线的表面挥发,将纳米线掩埋在电介质中,如在所淀积的PECVD TEOS层中。在随后的退火步骤中,将P原子从InP扩散到Si半导体主体中。在600℃以上的温度范围内进行退火。在本例中,在900℃的温度下在1秒钟内使用快速热退火(RTP)。P在Si中的扩散系数(2×10-15cm2/s)和P在Si中的固溶度(7×1020at/cm3)远远大于In在Si中的扩散系数和固溶度,从而P原子在p型Si半导体主体中在纳米线下方形成n型区(6)。在退火步骤中,Si原子扩散到纳米线中,从而对纳米线进行重n型掺杂,通常为Si在InP中的固溶度的数量级。这样,获得具有极好电特性(例如低电阻率、无缺陷的单晶材料)的重掺杂n型纳米线。
现在pn结位于Si半导体主体中。pn结不再位于纳米线与半导体主体之间的界面处,该界面难以控制并且不能总是很干净。通过将pn结定位在半导体主体中,显著地减小了泄漏电流,因为pn结的耗尽层现在位于半导体主体中。
在结形成和隔离物形成之后可以除去纳米线。对于隔离物的形成,可以使用淀积的TEOS层。在诸如CF4的含氟气体的等离子蚀刻中,各向异性地蚀刻TEOS层并形成隔离物。例如可以通过湿法化学蚀刻来从IV族半导体材料中选择性除去纳米线的III-V族材料。纳米线可以由诸如Ni的金属来代替,从而形成金属接触的超浅重掺杂结,其可以为双极性晶体管的发射极。
在另一实施例中,纳米线(3)的III-V族半导体材料为GaAs,而半导体主体(1)为n型硅。与As相比,Ga原子在Si中的扩散系数较高,而固溶度较低。在950℃以上的温度范围内,Ga原子在n型Si半导体主体中形成p型区(6)。如果温度上升到1000℃以上,则As也扩散到Si中,过掺杂Ga原子。Ga原子比As原子扩散得更快,从而在n型Si半导体主体中形成np结。
还可以在纳米线的外延生长期间将掺杂剂原子混合在GaAs中,如具有B的GaAs、或具有P的GaAs。
这些掺杂剂原子从GaAs扩散源(5)扩散到IV族半导体主体中,形成浅的重掺杂p型或n型区。在B从硼掺杂的GaAs扩散源扩散之后,在硅(或者例如锗或这些元素的化合物)中形成p型区。或者,在从磷掺杂的GaAs扩散源的扩散之后,在硅(或者例如锗或这些元素的化合物)中形成n型区。B或P从GaAs扩散源向外扩散的温度范围通常在600℃以上的温度范围内。
在图3至5中,示出在Ge(111)(IV族)上生长的InP纳米线(III-V族)的各种方案。
利用VLS生长法来生长纳米线。在清洗过的Ge(111)衬底上淀积2埃()金层的等价物。在金的淀积之前,通过将衬底浸入在缓冲HF溶液中来对其进行清洗。将衬底保持在450至495℃范围内的温度下,同时利用激光烧蚀来确立In和P的浓度,并且在纳米线生长期间保持不变。
图3(a)是扫描电子显微镜(SEM)图像的顶视图。纳米线明亮地成像,并且可以清楚地看出纳米线具有晶体的三重对称取向。在图3(b)中,提供侧视图,并且可以看出大部分纳米线垂直地生长在衬底上,即使有些纳米线相对于衬底成35°角。在图3(c)中,示出单个线3的图像。
在图4中,示出Ge(111)衬底1上的InP线3的高分辨率透射电子显微镜(HRTEM)图像。容易识别线与衬底之间的在原子上明显的(sharp)界面2。存在一些堆垛层错8(3至5个双晶面),然而堆垛层错在20nm之后生长出来。此外,可以观察到Ge晶格(方向)在InP晶格中延伸,意味着这些线实际上在外延生长。
结合图5进一步说明纳米线与衬底之间的外延关系。在图5中,示出在Ge(111)上生长的InP纳米结构的X-射线衍射(XRD)极图。
在该图中示出五组斑点(spot),针对InP 30、31、32示出(111)、(220)和(200)斑点,而针对Ge 33、34仅示出(111)和(220)斑点。InP晶体的反射出现在与Ge反射相同的取向上。因此,这些线实际上在外延生长。除了相同的取向外,还可以观察到180度面内旋转。这是由于InP晶体由两种原子构成而Ge由一种原子构成,并且这些线可以在Ge上在两个取向上生长的事实,或者是由于存在[111]方向上的旋转双晶的事实。
提供生长在Ge(111)上的InP纳米线作为例子,在本发明的范围内可以在相同或不同的衬底上生长不同类型的纳米线。作为一个具体的例子,还可以在Si(100)或Ge(100)的工艺的重要表面上生长纳米线。在这种情况下,纳米线则沿着[100]方向生长。
应该注意的是,上述实施例只是进行举例说明而不是限制本发明,并且本领域技术人员能够在不脱离所附权利要求书范围的情况下将设计出很多可选实施例。在权利要求书中,不应该认为括号中的任何参考标记是对权利要求的限制。词“包括”不排除在权利要求中所列举的那些元件或步骤以外的其他元件或步骤的存在。元件前面的词“一个”不排除多个这种元件的存在。

Claims (21)

1、一种电器件,包括:
半导体主体(1),其包括具有表面(2)的IV族半导体材料,
由III-V族半导体材料构成的纳米结构(3),
其特征在于:所述纳米结构是被设置成与所述表面(2)直接接触并且具有第一导电类型的纳米线(3),所述半导体主体(1)具有与所述第一导电类型相反的第二导电类型,所述纳米线(3)与所述半导体主体形成pn异质结(4)。
2、如权利要求1所述的电器件,其特征在于:所述III-V族材料是进入到所述半导体主体中的掺杂剂原子的扩散源(5)。
3、如权利要求2所述的电器件,其特征在于:所述扩散源(5)包含来自所述III-V族材料的III族原子和/或V族原子。
4、如权利要求1或3所述的电器件,其特征在于:在所述半导体主体中存在与所述纳米线(3)直接接触的区域(6),该区域具有与所述纳米线相同的导电类型。
5、如权利要求2所述的电器件,其特征在于:所述III-V族材料包括所述III-V族材料中的过量的III族原子和/或V族原子,所述过量原子在所述半导体主体中形成所述掺杂剂原子。
6、如权利要求1所述的器件,其特征在于:所述纳米线与所述半导体主体有外延关系,并且所述材料具有相互的晶格失配。
7、如权利要求2所述的器件,其特征在于:所述纳米线(3)与所述半导体主体(1)之间的电阻小于10-5Ohm cm2
8、如权利要求1所述的器件,其特征在于:所述半导体主体(1)与所述纳米线(3)之间的晶格失配小于10%。
9、如权利要求1所述的器件,其特征在于:所述纳米线(3)基本上是单晶纳米线。
10、如权利要求1所述的器件,其特征在于:将多个纳米线布置成阵列(7)。
11、一种形成pn异质结的方法,该方法包括以下步骤:
在由第一半导体材料构成的半导体主体(1)的表面(2)上形成由第二半导体材料构成的纳米结构(3),
所述第一半导体材料包括来自周期系IV族的至少一种元素,而所述第二半导体材料为III-V族材料,
其特征在于:所述纳米结构是生长在所述半导体主体(1)的所述表面(2)上并接收第一导电类型的纳米线(3),所述半导体主体具有与所述第一导电类型相反的第二导电类型,所述纳米线(3)与所述半导体主体(1)形成pn异质结(4)。
12、如权利要求11所述的方法,其特征在于:由III-V族半导体材料构成的所述纳米线用作进入到所述半导体主体中的掺杂剂原子的扩散源(5)。
13、如权利要求12所述的方法,其特征在于:来自所述III-V族材料的III族原子和/或V族原子是所述掺杂剂原子。
14、如权利要求11所述的方法,其特征在于:使所述纳米线与所述半导体主体成外延关系地生长。
15、如权利要求14所述的方法,其特征在于:根据汽相-液相-固相(VLS)生长法来生长所述纳米线。
16、如权利要求14或15所述的方法,其特征在于:在所述III-V族半导体材料中生长过量的所述III族原子和/或所述V族原子,将所述过量原子扩散到所述半导体主体中。
17、如权利要求14或15所述的方法,其特征在于:将周期系中的至少一种元素混合在所述纳米线的所述III-V族半导体材料中,将该元素扩散到所述IV族半导体材料中,形成n型或p型掺杂剂原子。
18、如权利要求11至17所述的方法,其特征在于:所述掺杂剂原子在所述半导体主体中形成与所述纳米线(3)直接接触的区域(6)。
19、如权利要求11或12所述的方法,其特征在于:将所述纳米线的所述III-V族半导体材料加热到600℃以上。
20、如权利要求19所述的方法,其特征在于:在加热之前将所述纳米线掩埋在电介质中。
21、如权利要求12或19所述的方法,其特征在于:在所述纳米线用作扩散源(5)之后将其选择性地除去。
CNA2004800386143A 2003-12-23 2004-12-20 包括pn异质结的半导体器件 Pending CN1898803A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03104933 2003-12-23
EP03104933.1 2003-12-23
EP04103461.2 2004-07-20

Publications (1)

Publication Number Publication Date
CN1898803A true CN1898803A (zh) 2007-01-17

Family

ID=34717243

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2004800386124A Pending CN1898784A (zh) 2003-12-23 2004-12-13 包括异质结的半导体器件
CNA2004800386143A Pending CN1898803A (zh) 2003-12-23 2004-12-20 包括pn异质结的半导体器件

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA2004800386124A Pending CN1898784A (zh) 2003-12-23 2004-12-13 包括异质结的半导体器件

Country Status (7)

Country Link
US (1) US20080230802A1 (zh)
EP (1) EP1700336A1 (zh)
JP (1) JP2007520877A (zh)
KR (1) KR20060109956A (zh)
CN (2) CN1898784A (zh)
TW (1) TW200527669A (zh)
WO (1) WO2005064664A1 (zh)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5255437B2 (ja) * 2005-06-16 2013-08-07 クナノ アーベー 半導体ナノワイヤトランジスタ
FR2897204B1 (fr) * 2006-02-07 2008-05-30 Ecole Polytechnique Etablissem Structure de transistor vertical et procede de fabrication
TW200816369A (en) * 2006-08-16 2008-04-01 Koninkl Philips Electronics Nv Method of manufacturing a semiconductor device and semiconductor device obtained with such a method
EP2064745A1 (en) * 2006-09-18 2009-06-03 QuNano AB Method of producing precision vertical and horizontal layers in a vertical semiconductor structure
WO2008068721A1 (en) * 2006-12-08 2008-06-12 Koninklijke Philips Electronics N.V. Semiconductor sensor device, diagnostic instrument comprising such a device and method of manufacturing such a device
KR101361129B1 (ko) * 2007-07-03 2014-02-13 삼성전자주식회사 발광소자 및 그 제조방법
KR20100056478A (ko) 2007-08-21 2010-05-27 더 리전트 오브 더 유니버시티 오브 캘리포니아 고성능 열전 속성을 갖는 나노구조체
FR2922685B1 (fr) * 2007-10-22 2011-02-25 Commissariat Energie Atomique Dispositif optoelectronique a base de nanofils et procedes correspondants
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US8299472B2 (en) * 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US8835831B2 (en) 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US20100148221A1 (en) * 2008-11-13 2010-06-17 Zena Technologies, Inc. Vertical photogate (vpg) pixel structure with nanowires
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
KR20110063773A (ko) * 2008-09-24 2011-06-14 에스.오.아이. 테크 실리콘 온 인슐레이터 테크놀로지스 릴랙싱된 반도체 재료층들을 형성하는 방법들, 반도체 구조들, 디바이스들 및 그를 포함하는 엔지니어링된 기판들
US8637383B2 (en) 2010-12-23 2014-01-28 Soitec Strain relaxation using metal materials and related structures
US8278193B2 (en) * 2008-10-30 2012-10-02 Soitec Methods of forming layers of semiconductor material having reduced lattice strain, semiconductor structures, devices and engineered substrates including same
WO2010099216A2 (en) * 2009-02-25 2010-09-02 California Institute Of Technology Methods for fabrication of high aspect ratio micropillars and nanopillars
JP4530098B1 (ja) * 2009-05-29 2010-08-25 日本ユニサンティスエレクトロニクス株式会社 半導体装置
WO2010151604A2 (en) 2009-06-26 2010-12-29 California Institute Of Technology Methods for fabricating passivated silicon nanowires and devices thus obtained
EP2502264A4 (en) * 2009-11-19 2015-09-16 California Inst Of Techn METHOD FOR PRODUCING SELF-ORIENTAL ARRANGEMENTS ON SEMICONDUCTORS
US9018684B2 (en) 2009-11-23 2015-04-28 California Institute Of Technology Chemical sensing and/or measuring devices and methods
US9240328B2 (en) 2010-11-19 2016-01-19 Alphabet Energy, Inc. Arrays of long nanostructures in semiconductor materials and methods thereof
FR2968125B1 (fr) * 2010-11-26 2013-11-29 Centre Nat Rech Scient Procédé de fabrication d'un dispositif de transistor a effet de champ implémenté sur un réseau de nanofils verticaux, dispositif de transistor résultant, dispositif électronique comprenant de tels dispositifs de transistors, et processeur comprenant au moins un tel dispositif électronique
US8736011B2 (en) 2010-12-03 2014-05-27 Alphabet Energy, Inc. Low thermal conductivity matrices with embedded nanostructures and methods thereof
CN102259833B (zh) * 2011-05-24 2014-11-05 黄辉 一种基于纳米线交叉互联的纳米线器件制备方法
US9051175B2 (en) 2012-03-07 2015-06-09 Alphabet Energy, Inc. Bulk nano-ribbon and/or nano-porous structures for thermoelectric devices and methods for making the same
US9142400B1 (en) 2012-07-17 2015-09-22 Stc.Unm Method of making a heteroepitaxial layer on a seed area
US9257627B2 (en) 2012-07-23 2016-02-09 Alphabet Energy, Inc. Method and structure for thermoelectric unicouple assembly
US9082930B1 (en) * 2012-10-25 2015-07-14 Alphabet Energy, Inc. Nanostructured thermolectric elements and methods of making the same
US9136343B2 (en) * 2013-01-24 2015-09-15 Intel Corporation Deep gate-all-around semiconductor device having germanium or group III-V active layer
WO2015157501A1 (en) 2014-04-10 2015-10-15 Alphabet Energy, Inc. Ultra-long silicon nanostructures, and methods of forming and transferring the same
EP2947045B1 (en) 2014-05-19 2019-08-28 IMEC vzw Low defect-density vertical nanowire semiconductor structures and method for making such structures
DE102014108913B4 (de) 2014-06-25 2021-09-30 Infineon Technologies Ag Bipolartransistorvorrichtung mit isoliertem Gate und Halbleitervorrichtung
US9515179B2 (en) 2015-04-20 2016-12-06 Semiconductor Components Industries, Llc Electronic devices including a III-V transistor having a homostructure and a process of forming the same
WO2016181391A1 (en) * 2015-05-11 2016-11-17 Technion Research & Development Foundation Limited Image sensor and method of fabricating the same
SE1530097A1 (en) * 2015-06-22 2016-12-23 Method for Vertical Gate-Last Process
KR102456121B1 (ko) * 2015-12-15 2022-10-17 엘지디스플레이 주식회사 광 제어 장치, 그를 포함한 투명표시장치, 및 그의 제조방법
US9917171B2 (en) * 2016-07-21 2018-03-13 International Business Machines Corporation Low-resistive, CMOS-compatible, Au-free ohmic contact to N—InP
JP7039857B2 (ja) 2017-04-24 2022-03-23 セイコーエプソン株式会社 発光装置およびプロジェクター
CN109473398B (zh) * 2017-09-07 2022-06-07 联华电子股份有限公司 半导体元件及其制造方法
CN111146320A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 硅基衬底、衬底基板及其制造方法、光电器件
CN110400862B (zh) * 2019-07-29 2021-04-02 中国科学院长春光学精密机械与物理研究所 一种红外热辐射光源及红外传感器
CN110379846A (zh) * 2019-07-29 2019-10-25 上海科技大学 一种氮化镓增强型垂直型晶体管组件及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360476B1 (ko) * 2000-06-27 2002-11-08 삼성전자 주식회사 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법
DE10036897C1 (de) * 2000-07-28 2002-01-03 Infineon Technologies Ag Feldeffekttransistor, Schaltungsanordnung und Verfahren zum Herstellen eines Feldeffekttransistors
US6656573B2 (en) * 2001-06-26 2003-12-02 Hewlett-Packard Development Company, L.P. Method to grow self-assembled epitaxial nanowires
US6773616B1 (en) * 2001-11-13 2004-08-10 Hewlett-Packard Development Company, L.P. Formation of nanoscale wires
TWI224079B (en) * 2002-10-25 2004-11-21 Ind Tech Res Inst Material with nanometric functional structure on its surface and method for producing such a material
DE10250984A1 (de) * 2002-10-29 2004-05-19 Hahn-Meitner-Institut Berlin Gmbh Feldeffekttransistor sowie Verfahren zu seiner Herstellung
DE10250830B4 (de) * 2002-10-31 2015-02-26 Qimonda Ag Verfahren zum Herstellung eines Schaltkreis-Arrays

Also Published As

Publication number Publication date
EP1700336A1 (en) 2006-09-13
TW200527669A (en) 2005-08-16
CN1898784A (zh) 2007-01-17
KR20060109956A (ko) 2006-10-23
US20080230802A1 (en) 2008-09-25
JP2007520877A (ja) 2007-07-26
WO2005064664A1 (en) 2005-07-14

Similar Documents

Publication Publication Date Title
CN1898803A (zh) 包括pn异质结的半导体器件
US9287443B2 (en) Nanostructured device
US20070120254A1 (en) Semiconductor device comprising a pn-heterojunction
CN100459181C (zh) 纳米结构、具有这种纳米结构的电子器件和纳米结构的制造方法
Nikoobakht et al. Formation of planar arrays of one-dimensional p− n heterojunctions using surface-directed growth of nanowires and nanowalls
US8183566B2 (en) Hetero-crystalline semiconductor device and method of making same
KR102395778B1 (ko) 나노구조체 형성방법과 이를 적용한 반도체소자의 제조방법 및 나노구조체를 포함하는 반도체소자
CN101142658A (zh) 制造包括纳米结构的pn结的发光二极管的方法及这样获得的二极管
CN1868030A (zh) 包含延长纳米级元件的器件及制造方法
KR20120003463A (ko) 쇼트키 장치
JP2013508966A (ja) ナノワイヤトンネルダイオードおよびその製造方法
CN104600070B (zh) 衬底结构、cmos器件和制造cmos器件的方法
Hong et al. GaN nanowire/thin film vertical structure p–n junction light-emitting diodes
CN103022135B (zh) 一种iii-v族半导体纳米线晶体管器件及其制作方法
CN102259833B (zh) 一种基于纳米线交叉互联的纳米线器件制备方法
EP2973756A1 (en) Nanowire led structure with decreased leakage and method of making same
KR100462468B1 (ko) 나노선과 이를 이용한 나노소자
Zwiller et al. Optics with single nanowires
KR100808202B1 (ko) 공명 터널링 다이오드 및 그 제조방법
Nikoobakht Surface-directed Growth of Nanowires: A Scalable Platform for Nanodevice Fabrication
KR20120073508A (ko) 탄소 웨이퍼를 사용한 접촉식 발광다이오드 및 그 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication