CN1879565A - 用于消融脂肪垫的微创方法 - Google Patents

用于消融脂肪垫的微创方法 Download PDF

Info

Publication number
CN1879565A
CN1879565A CNA2006100928152A CN200610092815A CN1879565A CN 1879565 A CN1879565 A CN 1879565A CN A2006100928152 A CNA2006100928152 A CN A2006100928152A CN 200610092815 A CN200610092815 A CN 200610092815A CN 1879565 A CN1879565 A CN 1879565A
Authority
CN
China
Prior art keywords
energy
probe
target tissue
heart
far
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006100928152A
Other languages
English (en)
Inventor
Y·施沃茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biosense Webster Inc
Original Assignee
Biosense Webster Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosense Webster Inc filed Critical Biosense Webster Inc
Publication of CN1879565A publication Critical patent/CN1879565A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/295Forceps for use in minimally invasive surgery combined with cutting implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • A61N7/022Localised ultrasound hyperthermia intracavitary
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B17/2202Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00363Epicardium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Robotics (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Laser Surgery Devices (AREA)

Abstract

使用通过胸壁插入的导管、使用超声消融、或者使用配备有定向超声换能器并且能够与心外膜对准的导管来进行心外膜脂肪垫的消融。使用无创成像方法、或者使用电图来确定心外膜脂肪垫位置。这些位置然后被显示在心脏的图或图像上,因此被靶定以用于微创或无创治疗。本发明的方法比常规的消融方法创伤更小,并且允许挠性地充分接近心外膜上的任何点。

Description

用于消融脂肪垫的微创方法
技术领域
本发明涉及心律失常的控制。更具体而言,本发明涉及通过心外膜脂肪垫的去神经支配来改变自主神经系统对心脏的影响的微创方法。
背景技术
副交感神经系统对心脏的神经支配在心律方面具有显著影响,尤其对心房颤动具有显著影响。近来的研究已经证实副交感神经节位于离散心外膜脂肪垫中。
位于右心房(RA)和右肺静脉(RPV)连接处的RPV脂肪垫提供了窦房(SA)结的直接迷走神经抑制。
位于下腔静脉(IVC)和下左心房(ILA)连接处的IVC-ILA脂肪垫选择性地神经支配房室(AV)结区和调节AV传导。
位于内侧上腔静脉(SVC)和在右肺动脉之上的主动脉根之间的SVC-AO脂肪垫与突出到心房以及IVC-ILA和PV脂肪垫的迷走神经纤维连接。
已知的是,具有高水平迷走紧张的个体易患室上性心律失常,尤其是心房颤动。已发现心外膜脂肪垫的消融影响迷走神经介导的心房颤动。例如,在Jackman等人的文献“Catheter Ablation of CardiacAutonomic Nerves for Prevention of Vagal Atrial Fibrillation(为了防止迷走神经性心房颤动的心脏自主神经的导管消融)”,Circulation2000;102:2774-2780中,描述了为了防止狗体内的迷走神经性心房颤动的心脏自主神经的经血管(transvascular)射频(RF)消融,其在右肺动脉和上或下腔静脉中使用消融导管。可以用于该目的的导管在共同转让的Webster等人的美国专利No.6,292,695中被描述,该专利被结合于此以作参考。
还描述了脂肪垫的手术去神经支配。
在文献中描述的副交感神经去神经支配的方法通常包括手术或经血管方法。为了预防和治疗室上性心律失常,仍然需要改进的去神经支配心外膜心脏脂肪垫的微创方法。
发明内容
本发明基于这样的认识,即由于包含许多副交感神经节的脂肪垫位于心外膜上,因此它们可按照微创消融技术来处理。
在本发明的实施例中,使用通过胸壁插入的导管进行心外膜消融。所述导管具有用于朝着靶组织引导激光能量、微波能量或超声能量的换能器。
心外膜脂肪垫位置是使用无创成像方法即心脏CT或MR成像、使用SPECT和PET的心脏神经传递成像来确定的,或者可以使用心外膜电图来发现。这些位置然后显示在心脏的图或图像上,因此被靶定以用于微创或无创治疗。本发明的方法比常规的消融方法创伤更小,并且允许挠性地充分接近心外膜上的任何点。
本发明提供了一种用于消融对象身体内的心外膜组织的方法,该方法是通过下述来实现的:将探头插入到心包腔中,定位在心包腔中用于其消融的心外膜靶组织,将探头布置在靶组织附近,以及从探头优选地朝着靶组织引导足够的能量以消融其中的神经结构。
所述方法的一个方面包括相对于靶组织定向探头,以便使从探头到靶组织的能量传递最大化。
根据所述方法的又一方面,定向探头包括检测探头的位置和取向信息,并且响应于所述信息来移动探头。
根据所述方法的另一方面,所述能量包括超声能量。所述超声能量可以聚焦在靶组织上。
根据所述方法的另一方面,所述能量是激光能量。
根据所述方法的又一方面,所述能量是微波能量。
根据所述方法的再一方面,所述靶组织是心外膜脂肪垫。
根据所述方法另外的方面,所述靶组织包括在心外膜脂肪垫外部的心外膜神经节。
在所述方法的又一方面中,所述探头包括谐振电路,以及所述方法进一步通过下述来实现:在远离所述谐振电路的地点以所述电路的谐振频率产生射频能量,导致所述谐振电路朝着靶组织再辐射能量。
本发明提供了一种用于微创地消融活体心脏的心外膜组织的系统,该系统包括探头,该探头具有被配置成插入到身体的心包腔中的远端。所述探头具有暴露的前表面和后表面,并且包括接近所述远端的至少一个位置检测设备和一个换能器,所述换能器被布置以便从所述前表面向心外膜靶组织定向地传输能量。
根据所述系统另外的方面,所述探头包括谐振电路,所述系统进一步包括多个射频发射器,其可操作地用于在远离所述谐振电路的地点以所述电路的谐振频率产生射频能量,导致所述谐振电路朝着靶组织再辐射能量。
本发明提供了一种用于微创地消融活体心脏的心外膜组织的系统,该系统包括第一探头,所述第一探头具有被配置成插入到身体的心包腔中的第一远端,所述第一探头包括接近所述第一远端的至少一个位置检测设备。所述系统包括第二探头,所述第二探头具有第二远端并且具有用于将能量输送到心脏的心外膜表面上的靶组织的换能器。第二探头可与第一探头互换。所述系统进一步包括能量源、处理器,所述能量源被耦合到所述换能器,所述处理器可选择地被耦合到第一探头以使用所述位置检测设备来确定所述第一远端相对于心外膜表面的位置坐标,以及被耦合到第二探头。所述处理器进一步适于控制所述能量源。所述系统包括显示器,该显示器由所述处理器控制,以用于显示第一探头和第二探头相对于心脏的心外膜表面的位置。
附图说明
为了更好地理解本发明,参考作为本发明的例子的详细描述,所述详细描述应当结合后面的附图来阅读,其中相同的元件用相同的参考数字来给出,并且其中:
图1是根据本发明的公开实施例所构造和操作的消融系统的示意图;
图2是用于图1所示的系统中的导管的远端的透视图;
图3是根据本发明的可选实施例所构造和操作的消融系统的示意图;以及
图4是根据本发明的公开实施例的心外膜神经结构的消融方法的流程图。
具体实施方式
在以下描述中,为了提供本发明的完全理解而阐述了许多特定细节。然而对于本领域的技术人员来说显而易见的是,可以实施本发明而没有这些特定细节。在其它情况下,为了不使本发明不必要地变得模糊,没有详细示出公知的电路、控制逻辑、以及用于常规算法和过程的计算机程序指令的细节。
实施例1
现在转向附图,首先参考图1,该图是根据本发明的公开实施例所构造和操作的系统20的图示。系统20用于确定探头的位置,以用于采集解剖和电数据以及用于使用导管22进行组织消融,所述导管经皮肤插入到包括对象26的心脏24的心包腔中。导管22的远尖端包括一个或多个电极,并且在一些实施例中包括一个或多个消融换能器,例如超声换能器。所述电极和换能器由通过导管22的插入管的导线连接到控制单元28。控制单元28确定导管22相对于心脏24的心外膜表面的位置坐标。控制单元驱动显示器40,该显示器显示身体内部的导管位置。控制单元28也驱动消融换能器,所述消融换能器通常位于导管22的尖端。导管22用于产生解剖图像或者甚至电图,其中导管上的电极交替地用于位置检测和用于消融。
系统20可以是Carto导航系统,该系统可以从Biosense Webster,Inc.,3333Diamond Canyon Road,Diamond Bar,CA 91765获得,其被配置成供合适的心外膜定位和/或消融导管使用。使用该系统,可以在单个会话中执行整个过程而不从系统断开对象26。
现在参考图2,该图是导管的尖端50的透视图,所述导管适合用作导管22(图1)。在共同转让的申请日为2003年7月17日的申请No.10/621,988中描述了所述导管,该申请被结合于此以作参考。然而,简要描述将有助于理解本发明。在尖端50的暴露部分52在长度上具有从约2mm至约4mm的范围,并且包括超声换能器54。暴露部分52具有弯曲的外部后表面56和包括切除区58的平坦前表面64,换能器54安装在所述切除区上。导线60使换能器54与超声致动器(未示出)连接。换能器54的能量输出是定向的,如箭头62所示,离开并且大体垂直于换能器54的暴露表面进行传输。在操作中,尖端50被布置成使得当携带换能器54的表面64平放在心外膜上时,超声能量优选地从换能器54沿着并列的心外膜的方向传输。导管配备有用于检测尖端50相对于心外膜表面的位置和取向的位置传感器66以及可用于估计消融操作的进度的温度传感器68。控制单元28(图1)能够响应于来自位置传感器66的信号而检测和显示尖端50的取向及其位置。
偏转导线70被设置在导管中以用于偏转其远端部分。偏转导线70固定地锚在尖端50附近,并且被连接到控制手柄72。偏转导线70用于操纵导管,以便相对于能量发射的理想方向对准暴露部分52。
实施例2
在系统20的可选实施例中,首先作为图或图像来准备位置信息。典型地在与对象26的单个会话期间使用可互换的导管在不同的时间执行所述位置信息和消融。在这样的实施例中,第一导管包含位置传感器,以及第二导管包含至少一个用于组织消融的换能器、以及能够识别其位置的位置和映射系统的部件。
加以必要的变更,系统20可以适于利用作为导管22的导管来映射心脏的表面,所述导管在共同转让的美国专利No.6,716,166或美国专利No.6,773,402中被公开,所述专利被结合于此以作参考。
再次参考图1,在识别心外膜脂肪垫之后,在共同待审的申请No.10/245,613中公开的导管可以作为导管22来用于消融,所述申请被结合于此以作参考。该导管利用激光能量,并且激光源(未示出)由控制单元28控制。
实施例3
除了非定向超声导管被用作导管22(图1)之外,实施例3类似于实施例2。这可以是在共同待审的申请No.10/304,500中公开的导管,所述申请被结合于此以作参考。微波消融导管也是有效的。
实施例4
在该实施例中,利用微波能量作为消融源的探头被用作导管22(图1)。合适的探头和微波发生器、FLEX 4TM系统可从GuidantCorporation,111 Monument Circle,#2900,Indianapolis,IN 46204-5129获得。
实施例5
在该实施例中,利用高强度聚焦超声能量(HIFU)的探头被用作导管22(图1),如在美国专利申请公布No.2004/0162507和2004/0162550中所述,所述申请的受让人与此相同,并且所述申请被结合于此以作参考。合适的探头和控制器可作为EpicorTM心脏消融系统从市场上买到,其可以从St.Jude Medical,One Lillehei Plaza St PaulMN 55117-9913获得。使用该系统,可以如上所述地执行简化的Cox迷宫过程来根除靶组织。值得注意的是,没有必要停止心脏跳动,也没有必要采用心肺旁路。
实施例6
该实施例类似于实施例5。使用已知的方法将导管22(图1)布置在心脏中,并且使用高频刺激和观察即时迷走神经响应来将组成靶组织的神经节丛定位在心内膜。
实施例7
除了导管22(图1)是布置在食管腔内的治疗性经食管探头之外,该实施例类似于实施例6。然后在连续超声成像引导下从食管朝着靶组织引导HIFU能量。
实施例8
现在参考图3,该图是根据本发明的公开实施例所构造和操作的系统45的图示。除了RF发射器47被布置在对象26的外部,并且朝着探头49引导RF能量之外,系统45类似于系统20(图1)。在该实施例中,其中包含谐振电路(未示出)的探头49被用作导管22(图1)。当以所述电路的谐振频率产生外部RF场时,由探头49朝着靶组织再辐射RF能量。探头49和发射器47在共同转让的美国专利申请公布No.2005/0101946中被更全面地描述,所述专利被结合于此以作参考。
继续涉及图1,现在参考图4,该图是根据本发明的公开实施例典型地在心外膜脂肪垫内消融心外膜神经结构的方法的流程图。将会理解,在此公开的方法可以可选择地利用上述其它实施例中的任何一个来实施。在初始步骤80使用已知的导入技术将导管22导入到对象26中并且将其远端布置在心包腔中。导管22例如可以使用PerDUCER进入设备来放置,所述进入设备可从Comedicus INC.,3989 CentralAvenue N.E.,Suite 610,Columbia Heights,MN 55421获得。
接着,在步骤82,精确地确定心外膜脂肪垫的位置。典型地,操作者将导管导航到脂肪垫通常所处的已知区域之一,然后通过使用高频刺激来精确地定位它。脂肪垫位置由观察即时迷走神经响应来确认,所述迷走神经响应被定义为在心房颤动期间R-R间期增加至少50%。Nakagawa等人在Heart Rhythm 2005;2(5)AB 6-1中描述了该定位技术。可选择地,如果患者已经经受了事先的成像研究,例如心脏CT或MR,则预采集的3维图像数据可以被输入到CARTO映射系统。使用可从Biosense-Webster获得的CartoMergeTM模块,于是数据被分段以单独代表所有四个心腔以及大血管。在映射期间,由以下策略的一个或所有实现3维模块的配准:手动对准;标志(landmark)对匹配;以及表面配准。一旦被配准,则操作者将导管直接引导到预定脂肪垫靶,或者基于准确的解剖结构引导到脂肪垫的期望位置。可选择地,可以在每个脂肪垫的消融之后逐一确定脂肪垫的位置。
接着,在步骤84将导管尖端布置在待靶向的心外膜脂肪垫。如果来自导管尖端的能量输出是定向的,则调节导管尖端的取向,以便在脂肪垫处引导能量输出。使到脂肪垫的能量输送最大化减小了对除了脂肪垫之外的组织的无意伤害。可能期望的是,通过附属端口(未示出)将冷却剂导入到导管22中以便防止组织被烧焦。
接着,在步骤86进行到脂肪垫的能量输送。如上所述,可以在步骤86中利用许多不同类型的消融能量。例如,使用在上面实施例1中所述的定向超声导管,并且导管尖端被布置成离组织大约1-3mm,使用40W的功率持续120秒和10ml/min的灌洗可以获得大约8mm深度的灼伤。通常,在10-45W和0-30ml/min的灌洗下利用该导管可获得满意的结果。
现在控制进入到决定步骤88,在该步骤确定是否更多的心外膜脂肪垫尚待消融。如果在决定步骤88的决定是肯定的,则控制返回到步骤84。
如果在确定步骤88的决定是否定的,则控制进入到最终步骤90。导管22被取回,并且对象从系统20断开。该过程结束。
附加应用
近年来大量的研究表明了自主神经系统(交感神经和副交感神经)对心脏的神经支配在各种类型的心律失常的原因和治疗方面的重要性。本发明的方法可以类似地应用于执行以心外膜上的其它神经节为目标的微创和无创消融过程。
可以将患者分类为交感神经支配或副交感神经支配。例如,可以由神经生理测试例如翻转测试期间的晕厥激发来识别副交感神经支配个体。副交感神经支配个体尤其易患由副交感神经影响导致的心律失常。为了在冠状动脉旁路移植术(CABG)之后治疗心房颤动或减小其发生,可以明确地为这些个体指定脂肪垫消融。
本领域的技术人员将会理解,本发明并不限于在上文特别示出和描述的内容。而是,本发明的范围包括在上文描述的各种特征的组合和子组合及其未在现有技术中的变化和改进,本领域的技术人员通过阅读前面的描述可以想到所述变化和改进。

Claims (21)

1.一种用于消融对象身体内的心外膜组织的方法,包括以下步骤:
将探头插入到所述身体的心包腔中;
定位在所述心包腔中用于其消融的心外膜靶组织;
将所述探头布置在所述靶组织附近;以及
从所述探头优选地朝着所述靶组织引导足够的能量以消融其中的神经结构。
2.根据权利要求1所述的方法,进一步包括当执行所述引导步骤时相对于所述靶组织定向所述探头的步骤,以便最大化从所述探头至所述靶组织的能量传递。
3.根据权利要求2所述的方法,其中定向所述探头包括检测探头的位置和取向信息,并且响应于所述信息来移动所述探头。
4.根据权利要求1所述的方法,其中所述能量包括超声能量。
5.根据权利要求4所述的方法,进一步包括将所述超声能量聚焦到所述靶组织上的步骤。
6.根据权利要求1所述的方法,其中所述能量包括激光能量。
7.根据权利要求1所述的方法,其中所述能量包括微波能量。
8.根据权利要求1所述的方法,其中所述靶组织包括心外膜脂肪垫。
9.根据权利要求1所述的方法,其中所述靶组织包括在心外膜脂肪垫外部的心外膜神经节。
10.根据权利要求1所述的方法,其中所述探头包括具有谐振频率的谐振电路;进一步包括以下步骤:
在远离所述谐振电路的地点以所述谐振频率产生射频能量,导致所述谐振电路朝着所述靶组织再辐射能量。
11.一种用于微创地消融活体心脏的心外膜组织的系统,包括:
探头,其具有被配置成插入到所述身体的心包腔中的远端,所述探头具有暴露的前表面和后表面,所述探头包括接近所述远端的至少一个位置检测设备和一个换能器,所述换能器被布置以便从所述前表面向所述心脏的心外膜表面上的靶组织定向地传输能量。
12.根据权利要求11所述的系统,其中所述能量包括超声能量。
13.根据权利要求12所述的系统,进一步包括用于将所述超声能量聚焦到所述靶组织上的聚焦元件。
14.根据权利要求11所述的系统,其中所述能量包括激光能量。
15.根据权利要求11所述的系统,其中所述能量包括微波能量。
16.根据权利要求11所述的系统,其中所述探头包括具有谐振频率的谐振电路;进一步包括:
多个射频发射器,其可操作地用于在远离所述谐振电路的地点以所述谐振频率产生射频能量,导致所述谐振电路朝着所述靶组织再辐射能量。
17.一种用于微创地消融活体心脏的心外膜组织的系统,包括:
第一探头,其具有被配置成插入到所述身体的心包腔中的第一远端,所述第一探头包括接近所述第一远端的至少一个位置检测设备;
第二探头,其具有第二远端并且具有用于将能量输送到所述心脏的心外膜表面上的靶组织的换能器,所述第二探头可与所述第一探头互换;
所述能量的源,其被耦合到所述换能器;
处理器,其可选择地被耦合到所述第一探头以使用所述位置检测设备来确定所述第一远端相对于所述心外膜表面的位置坐标,以及被耦合到第二探头,所述处理器进一步适于控制所述能量的所述源;以及
显示器,其由所述处理器控制,以用于显示所述第一探头和所述第二探头相对于所述心脏的所述心外膜表面的位置。
18.根据权利要求17所述的系统,其中所述能量包括超声能量。
19.根据权利要求18所述的系统,进一步包括用于将所述超声能量聚焦到所述靶组织上的聚焦元件。
20.根据权利要求17所述的系统,其中所述能量包括激光能量。
21.根据权利要求17所述的系统,其中所述能量包括微波能量。
CNA2006100928152A 2005-06-16 2006-06-16 用于消融脂肪垫的微创方法 Pending CN1879565A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/154,367 US9861836B2 (en) 2005-06-16 2005-06-16 Less invasive methods for ablation of fat pads
US11/154367 2005-06-16

Publications (1)

Publication Number Publication Date
CN1879565A true CN1879565A (zh) 2006-12-20

Family

ID=37054541

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006100928152A Pending CN1879565A (zh) 2005-06-16 2006-06-16 用于消融脂肪垫的微创方法

Country Status (9)

Country Link
US (1) US9861836B2 (zh)
EP (1) EP1733692A1 (zh)
JP (1) JP5191637B2 (zh)
KR (1) KR20060131665A (zh)
CN (1) CN1879565A (zh)
AU (1) AU2006202551B2 (zh)
BR (1) BRPI0602310A (zh)
CA (1) CA2550174C (zh)
IL (1) IL175607A0 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102106753A (zh) * 2009-12-23 2011-06-29 韦伯斯特生物官能(以色列)有限公司 消融体积的预测与标测
CN101801275B (zh) * 2007-08-15 2013-04-24 皇家飞利浦电子股份有限公司 用于产生组织部分附近的加热尖头的图像的方法和设备
CN103687550A (zh) * 2011-07-22 2014-03-26 皇家飞利浦有限公司 消融装置
CN103796604A (zh) * 2011-08-26 2014-05-14 苏州信迈医疗器械有限公司 用于标测动脉壁内功能性神经的导管、系统和方法

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7591818B2 (en) * 2001-12-04 2009-09-22 Endoscopic Technologies, Inc. Cardiac ablation devices and methods
US7399300B2 (en) 2001-12-04 2008-07-15 Endoscopic Technologies, Inc. Cardiac ablation devices and methods
US9861836B2 (en) * 2005-06-16 2018-01-09 Biosense Webster, Inc. Less invasive methods for ablation of fat pads
US20080161705A1 (en) * 2006-12-29 2008-07-03 Podmore Jonathan L Devices and methods for ablating near AV groove
US20080221448A1 (en) * 2007-03-07 2008-09-11 Khuri-Yakub Butrus T Image-guided delivery of therapeutic tools duing minimally invasive surgeries and interventions
US8359092B2 (en) * 2007-11-29 2013-01-22 Biosense Webster, Inc. Determining locations of ganglia and plexi in the heart using complex fractionated atrial electrogram
US8287532B2 (en) * 2009-04-13 2012-10-16 Biosense Webster, Inc. Epicardial mapping and ablation catheter
US20110257563A1 (en) * 2009-10-26 2011-10-20 Vytronus, Inc. Methods and systems for ablating tissue
US9962217B2 (en) 2009-12-23 2018-05-08 Biosense Webster (Israel) Ltd. Estimation and mapping of ablation volume
US9101333B2 (en) 2011-11-14 2015-08-11 Biosense Webster (Israel) Ltd. Integrative atrial fibrillation ablation
CA2881462C (en) 2012-08-09 2020-07-14 University Of Iowa Research Foundation Catheters, catheter systems, and methods for puncturing through a tissue structure
US9770593B2 (en) 2012-11-05 2017-09-26 Pythagoras Medical Ltd. Patient selection using a transluminally-applied electric current
EP2914192B1 (en) 2012-11-05 2019-05-01 Pythagoras Medical Ltd. Controlled tissue ablation
JP6389193B2 (ja) 2013-01-24 2018-09-12 タイラートン インターナショナル ホールディングス インコーポレイテッドTylerton International Holdings Inc. 身体構造イメージング
US20140276201A1 (en) * 2013-03-15 2014-09-18 Arthrocare Corporation System and method for detecting tissue state and infection during electrosurgical treatment of wound tissue
US10052495B2 (en) 2013-09-08 2018-08-21 Tylerton International Inc. Detection of reduced-control cardiac zones
EP3091921B1 (en) 2014-01-06 2019-06-19 Farapulse, Inc. Apparatus for renal denervation ablation
WO2015104672A2 (en) 2014-01-10 2015-07-16 Tylerton International Holdings Inc. Detection of scar and fibrous cardiac zones
CN106659531A (zh) 2014-05-07 2017-05-10 毕达哥拉斯医疗有限公司 受控组织消融技术
EP3139997B1 (en) 2014-05-07 2018-09-19 Farapulse, Inc. Apparatus for selective tissue ablation
EP3154463B1 (en) 2014-06-12 2019-03-27 Farapulse, Inc. Apparatus for rapid and selective transurethral tissue ablation
WO2015192018A1 (en) 2014-06-12 2015-12-17 Iowa Approach Inc. Method and apparatus for rapid and selective tissue ablation with cooling
US10672152B2 (en) 2014-07-30 2020-06-02 Navis International Limited Probe localization
WO2016060983A1 (en) 2014-10-14 2016-04-21 Iowa Approach Inc. Method and apparatus for rapid and safe pulmonary vein cardiac ablation
US10383685B2 (en) 2015-05-07 2019-08-20 Pythagoras Medical Ltd. Techniques for use with nerve tissue
US10172673B2 (en) 2016-01-05 2019-01-08 Farapulse, Inc. Systems devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US10130423B1 (en) 2017-07-06 2018-11-20 Farapulse, Inc. Systems, devices, and methods for focal ablation
US20170189097A1 (en) 2016-01-05 2017-07-06 Iowa Approach Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US10660702B2 (en) 2016-01-05 2020-05-26 Farapulse, Inc. Systems, devices, and methods for focal ablation
EP3457975A2 (en) 2016-05-18 2019-03-27 Pythagoras Medical Ltd. Helical catheter
EP3251654A1 (de) 2016-05-30 2017-12-06 Chemische Fabrik Kreussler & Co. Gmbh Nichtionische tenside zur reduktion von fettgewebe
WO2017218734A1 (en) 2016-06-16 2017-12-21 Iowa Approach, Inc. Systems, apparatuses, and methods for guide wire delivery
WO2018105105A1 (ja) * 2016-12-09 2018-06-14 オリンパス株式会社 超音波手術システム及び超音波手術システムの作動方法
US9987081B1 (en) 2017-04-27 2018-06-05 Iowa Approach, Inc. Systems, devices, and methods for signal generation
US10617867B2 (en) 2017-04-28 2020-04-14 Farapulse, Inc. Systems, devices, and methods for delivery of pulsed electric field ablative energy to esophageal tissue
CN115844523A (zh) 2017-09-12 2023-03-28 波士顿科学医学有限公司 用于心室局灶性消融的系统、设备和方法
CN111989061A (zh) 2018-04-13 2020-11-24 卡尔史托斯两合公司 引导系统、方法及其装置
JP7399881B2 (ja) 2018-05-07 2023-12-18 ファラパルス,インコーポレイテッド 心外膜アブレーションカテーテル
EP3790483A1 (en) 2018-05-07 2021-03-17 Farapulse, Inc. Systems, apparatuses, and methods for filtering high voltage noise induced by pulsed electric field ablation
WO2019217433A1 (en) 2018-05-07 2019-11-14 Farapulse, Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US10687892B2 (en) 2018-09-20 2020-06-23 Farapulse, Inc. Systems, apparatuses, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US10625080B1 (en) 2019-09-17 2020-04-21 Farapulse, Inc. Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation
US11065047B2 (en) 2019-11-20 2021-07-20 Farapulse, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US11497541B2 (en) 2019-11-20 2022-11-15 Boston Scientific Scimed, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US10842572B1 (en) 2019-11-25 2020-11-24 Farapulse, Inc. Methods, systems, and apparatuses for tracking ablation devices and generating lesion lines

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693954B1 (de) * 1993-04-15 1999-07-07 Siemens Aktiengesellschaft Therapieeinrichtung zur behandlung von leiden des herzens und herznaher gefässe
US5391199A (en) * 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US6530922B2 (en) * 1993-12-15 2003-03-11 Sherwood Services Ag Cluster ablation electrode system
JPH07231894A (ja) * 1994-02-22 1995-09-05 Olympus Optical Co Ltd 超音波診断治療システム
US7052493B2 (en) * 1996-10-22 2006-05-30 Epicor Medical, Inc. Methods and devices for ablation
US6311692B1 (en) * 1996-10-22 2001-11-06 Epicor, Inc. Apparatus and method for diagnosis and therapy of electrophysiological disease
ES2208963T3 (es) * 1997-01-03 2004-06-16 Biosense, Inc. Endoprotesis vascular sensible a la presion.
US6200310B1 (en) * 1997-01-08 2001-03-13 Biosense, Inc. Monitoring of myocardial revascularization
WO1999065561A1 (en) * 1998-06-19 1999-12-23 Cordis Webster, Inc. Method and apparatus for transvascular treatment of tachycardia and fibrillation
US6692450B1 (en) * 2000-01-19 2004-02-17 Medtronic Xomed, Inc. Focused ultrasound ablation devices having selectively actuatable ultrasound emitting elements and methods of using the same
US6511500B1 (en) 2000-06-06 2003-01-28 Marc Mounir Rahme Use of autonomic nervous system neurotransmitters inhibition and atrial parasympathetic fibers ablation for the treatment of atrial arrhythmias and to preserve drug effects
US6716166B2 (en) * 2000-08-18 2004-04-06 Biosense, Inc. Three-dimensional reconstruction using ultrasound
US6802857B1 (en) * 2000-10-11 2004-10-12 Uab Research Foundation MRI stent
US6564096B2 (en) * 2001-02-28 2003-05-13 Robert A. Mest Method and system for treatment of tachycardia and fibrillation
US6773402B2 (en) * 2001-07-10 2004-08-10 Biosense, Inc. Location sensing with real-time ultrasound imaging
US7778711B2 (en) * 2001-08-31 2010-08-17 Bio Control Medical (B.C.M.) Ltd. Reduction of heart rate variability by parasympathetic stimulation
US7974693B2 (en) * 2001-08-31 2011-07-05 Bio Control Medical (B.C.M.) Ltd. Techniques for applying, configuring, and coordinating nerve fiber stimulation
US6939350B2 (en) * 2001-10-22 2005-09-06 Boston Scientific Scimed, Inc. Apparatus for supporting diagnostic and therapeutic elements in contact with tissue including electrode cooling device
US7591818B2 (en) * 2001-12-04 2009-09-22 Endoscopic Technologies, Inc. Cardiac ablation devices and methods
US8204591B2 (en) * 2002-05-23 2012-06-19 Bio Control Medical (B.C.M.) Ltd. Techniques for prevention of atrial fibrillation
US7245967B1 (en) * 2002-06-12 2007-07-17 Pacesetter, Inc. Parasympathetic nerve stimulation for termination of supraventricular arrhythmias
US6997924B2 (en) 2002-09-17 2006-02-14 Biosense Inc. Laser pulmonary vein isolation
US20050033137A1 (en) * 2002-10-25 2005-02-10 The Regents Of The University Of Michigan Ablation catheters and methods for their use
US7156816B2 (en) 2002-11-26 2007-01-02 Biosense, Inc. Ultrasound pulmonary vein isolation
US20040162507A1 (en) * 2003-02-19 2004-08-19 Assaf Govari Externally-applied high intensity focused ultrasound (HIFU) for therapeutic treatment
US7201749B2 (en) * 2003-02-19 2007-04-10 Biosense, Inc. Externally-applied high intensity focused ultrasound (HIFU) for pulmonary vein isolation
US8060197B2 (en) * 2003-05-23 2011-11-15 Bio Control Medical (B.C.M.) Ltd. Parasympathetic stimulation for termination of non-sinus atrial tachycardia
US7813785B2 (en) * 2003-07-01 2010-10-12 General Electric Company Cardiac imaging system and method for planning minimally invasive direct coronary artery bypass surgery
US7678104B2 (en) * 2003-07-17 2010-03-16 Biosense Webster, Inc. Ultrasound ablation catheter and method for its use
WO2005039689A2 (en) * 2003-10-24 2005-05-06 Sinus Rhythm Technologies, Inc. Methods and devices for creating cardiac electrical blocks
US7308297B2 (en) * 2003-11-05 2007-12-11 Ge Medical Systems Global Technology Company, Llc Cardiac imaging system and method for quantification of desynchrony of ventricles for biventricular pacing
US7367970B2 (en) * 2003-11-11 2008-05-06 Biosense Webster Inc. Externally applied RF for pulmonary vein isolation
JP2007511291A (ja) * 2003-11-13 2007-05-10 シンフォニー メディカル, インコーポレイテッド 心臓の脂肪パッド内の神経伝達の改変による不整脈の制御
US8073538B2 (en) * 2003-11-13 2011-12-06 Cardio Polymers, Inc. Treatment of cardiac arrhythmia by modification of neuronal signaling through fat pads of the heart
US20050261672A1 (en) * 2004-05-18 2005-11-24 Mark Deem Systems and methods for selective denervation of heart dysrhythmias
EP1858580A4 (en) * 2005-02-28 2011-08-03 A I Medical Semiconductor ADAPTIVE CARDIAC RESYNCHRONIZATION THERAPY AND VAGAL STIMULATION SYSTEM
US20060200219A1 (en) * 2005-03-01 2006-09-07 Ndi Medical, Llc Systems and methods for differentiating and/or identifying tissue regions innervated by targeted nerves for diagnostic and/or therapeutic purposes
US7769446B2 (en) * 2005-03-11 2010-08-03 Cardiac Pacemakers, Inc. Neural stimulation system for cardiac fat pads
US7555341B2 (en) * 2005-04-05 2009-06-30 Cardiac Pacemakers, Inc. System to treat AV-conducted ventricular tachyarrhythmia
US9861836B2 (en) * 2005-06-16 2018-01-09 Biosense Webster, Inc. Less invasive methods for ablation of fat pads
US7819862B2 (en) * 2005-08-11 2010-10-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Method for arrhythmias treatment based on spectral mapping during sinus rhythm
US7715915B1 (en) * 2006-12-22 2010-05-11 Pacesetter, Inc. Neurostimulation and neurosensing techniques to optimize atrial anti-tachycardia pacing for prevention of atrial tachyarrhythmias
US7826899B1 (en) * 2006-12-22 2010-11-02 Pacesetter, Inc. Neurostimulation and neurosensing techniques to optimize atrial anti-tachycardia pacing for termination of atrial tachyarrhythmias
US8386038B2 (en) * 2009-07-01 2013-02-26 Stefano Bianchi Vagal stimulation during atrial tachyarrhythmia to facilitate cardiac resynchronization therapy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801275B (zh) * 2007-08-15 2013-04-24 皇家飞利浦电子股份有限公司 用于产生组织部分附近的加热尖头的图像的方法和设备
CN102106753A (zh) * 2009-12-23 2011-06-29 韦伯斯特生物官能(以色列)有限公司 消融体积的预测与标测
US8926604B2 (en) 2009-12-23 2015-01-06 Biosense Webster (Israel) Ltd. Estimation and mapping of ablation volume
CN102106753B (zh) * 2009-12-23 2015-12-09 韦伯斯特生物官能(以色列)有限公司 消融体积的预测与标测
CN103687550A (zh) * 2011-07-22 2014-03-26 皇家飞利浦有限公司 消融装置
CN103687550B (zh) * 2011-07-22 2016-08-17 皇家飞利浦有限公司 消融装置
CN103796604A (zh) * 2011-08-26 2014-05-14 苏州信迈医疗器械有限公司 用于标测动脉壁内功能性神经的导管、系统和方法
CN103796604B (zh) * 2011-08-26 2017-03-01 苏州信迈医疗器械有限公司 用于标测动脉壁内功能性神经的导管、系统和方法

Also Published As

Publication number Publication date
AU2006202551B2 (en) 2011-03-17
CA2550174A1 (en) 2006-12-16
JP2006346464A (ja) 2006-12-28
JP5191637B2 (ja) 2013-05-08
AU2006202551A1 (en) 2007-01-11
US20060287648A1 (en) 2006-12-21
BRPI0602310A (pt) 2007-02-21
KR20060131665A (ko) 2006-12-20
EP1733692A1 (en) 2006-12-20
CA2550174C (en) 2017-08-29
US9861836B2 (en) 2018-01-09
IL175607A0 (en) 2006-09-05

Similar Documents

Publication Publication Date Title
CN1879565A (zh) 用于消融脂肪垫的微创方法
US20220249851A1 (en) Endoscopic sympathectomy systems and methods
US11154239B2 (en) Controlled and precise treatment of cardiac tissues
EP3382714B1 (en) Method to project a two dimensional image/photo onto a 3d reconstruction, such as an epicardial view of heart
US20180235692A1 (en) High resolution multi-function and conformal electronics device for diagnosis and treatment of cardiac arrhythmias
CN1155333C (zh) 处理无分散目标的心律失常的装置
US20180263651A1 (en) Methods of Using High Intensity Focused Ultrasound to Form an Ablated Tissue Area Containing a Plurality of Lesions
US6641579B1 (en) Apparatus and method for ablating cardiac tissue
JP2021526401A (ja) 高周波アブレーション及び直流電気穿孔カテーテル
US20080015670A1 (en) Methods and devices for cardiac ablation
US20050267453A1 (en) High intensity focused ultrasound for imaging and treatment of arrhythmias
US20090030469A1 (en) Cardiac Resynchronization Therapy Systems and Methods
JP2010514516A5 (zh)
US20050149008A1 (en) Treatment of cardiac arrhythmia utilizing ultrasound
US20130211436A1 (en) Treatment of cardiac arrhythmia utilizing ultrasound
KR20210149591A (ko) 전극 어레이를 갖는 카테터를 사용한 비가역적 전기천공(ire) 절제의 적용
JP2022024987A (ja) 接触力センサ及び温度センサを有する焦点カテーテルを用いた不可逆的エレクトロポレーションアブレーションの制御
JP7083833B2 (ja) 心臓組織マッピングのための装置および方法
Kotb et al. Recent advances in the tools available for atrial fibrillation ablation
CN1820803A (zh) 超声治疗心律失常
Kautzner et al. Electro-anatomical Mapping of the Heart: An Illustrated Guide to the Use of the CARTO System
MXPA06006784A (en) Less invasive methods for ablation of fat pads
US20240216714A1 (en) Facilitating ablative radiotherapy using an intrabody catheter
Ahmed et al. High Density Mapping With the Multielectrode Star-Shaped OCTARAY Catheter.
WO2023164001A1 (en) High density catheter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20061220