CN1862856A - 气体扩散电极及其制造方法 - Google Patents

气体扩散电极及其制造方法 Download PDF

Info

Publication number
CN1862856A
CN1862856A CNA2005100346829A CN200510034682A CN1862856A CN 1862856 A CN1862856 A CN 1862856A CN A2005100346829 A CNA2005100346829 A CN A2005100346829A CN 200510034682 A CN200510034682 A CN 200510034682A CN 1862856 A CN1862856 A CN 1862856A
Authority
CN
China
Prior art keywords
gas
layer
gas diffusion
diffusion electrode
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005100346829A
Other languages
English (en)
Other versions
CN100463260C (zh
Inventor
黄全德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd, Hon Hai Precision Industry Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Priority to CNB2005100346829A priority Critical patent/CN100463260C/zh
Priority to US11/287,127 priority patent/US20060257717A1/en
Publication of CN1862856A publication Critical patent/CN1862856A/zh
Application granted granted Critical
Publication of CN100463260C publication Critical patent/CN100463260C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • H01M4/8821Wet proofing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8867Vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明涉及一气体扩散电极,其包括一气体扩散层和一触媒层,一中间层设置于该气体扩散层和触媒层之间。另,本发明还提供该气体扩散电极的制造方法,其包括以下步骤:提供一气体扩散层;于该气体扩散层上形成一中间层;于该中间层上形成一触媒层,从而得到气体扩散电极。本发明的气体扩散电极,气体扩散层和触媒层之间设置有一中间层作为触媒晶种,使得触媒层与气体扩散层之间能够较好结合,以免影响电极的导电性。另,该气体扩散电极的制造过程中,采用气相沉积法沉积一与气体扩散层结合力较好的中间层,再以液相沉积法沉积所需厚度的触媒层,可有效降低成本;优选脉冲式电解可得到结晶精细、无孔隙且理化性能好的触媒层。

Description

气体扩散电极及其制造方法
【技术领域】
本发明涉及燃料电池技术领域,尤其涉及一种燃料电池用气体扩散电极及其制造方法。
【背景技术】
燃料电池是利用电化学反应来发电的电池装置,其自开发以来一直广受瞩目,目前,美国、日本、加拿大等经济发达国家政府已制定相关政策发展燃料电池。燃料电池工作时,燃料气体(如氢气)与助燃剂(如氧气)分别输送至电池的阳极与阴极,发生氧化与还原反应,将化学能转变为电能输出。
燃料电池电化学反应的核心部分是膜电极组(Membrane ElectrodeAssembly,MEA),其构造类似三明治,阴极与阳极中间以质子交换膜连结而形成。阴极与阳极均可采用触媒电极,两触媒电极通常为气体扩散电极。通常情况下,气体扩散电极包括气体扩散层和触媒层,气体扩散层的主要功能是使反应气体到达触媒层、防止电解液或水的逆渗透、用作电流收集板,此外,还可用来加强电极机械强度,使电极于处理加工或电池组装时不易损坏触媒层。
燃料电池触媒层性能、电极材料等直接影响电池的工作效能。已有专利及期刊文献中关于燃料电池触媒的制备方法主要有两种,即沉淀法及浸渍法。如美国专利第4,004,193号公开用沉淀法制备Pt/C触媒的方法,该方法以铂的亚硫酸盐为原料,通过与双氧水反应沉淀为PtOx胶体,然后再将这种PtOx胶体负载到碳黑上,从而得到Pt/C触媒。浸渍法研究较多,该方法是将铂以氯铂酸根或铂氨络合离子的形式吸附到碳载体上。如美国第3,857,737号专利公开一种以碳黑为载体,采用铂氨络合离子浸渍法制备Pt/C触媒。
但是,通过上述制法获得的Pt/C触媒是先使铂以氧化态或离子态分散到碳黑载体中,再通过还原或加热等手段将其转化为金属态,在转化为金属态的过程中,铂容易发生再凝聚现象而导致分散性降低,无法达到预期的高分散度,且上述制程较为复杂。
有鉴于此,提供一触媒分散性好、结晶精细、无孔隙且触媒层和气体扩散层结合力好的气体扩散电极是非常必要的。
【发明内容】
以下,将以实施例说明气体扩散电极及其制造方法。
为实现上述内容,提供一气体扩散电极,其包括一气体扩散层,一触媒层,一中间层设置于该气体扩散层和触媒层之间。
上述气体扩散层是一固态、透气的导电载体。
上述中间层材料为催化性金属。
上述中间层材料和触媒层材料相同。
上述中间层材料包括Ni、Pd、Pt、Ru或Au。
另,提供一气体扩散电极的制造方法,其包括以下步骤:提供一气体扩散层;于该气体扩散层上形成一中间层;于该中间层上形成一触媒层,从而得到气体扩散电极。
上述气体扩散层上形成中间层前要预先进行疏水处理。
上述气体扩散层上形成一中间层采用气相沉积法,该气相沉积法包括蒸镀、溅镀、离子镀。
上述中间层上形成一触媒层采用液相沉积法,该液相沉积法为脉冲式电解制程。
本技术方案的气体扩散电极,气体扩散层和触媒层之间设置有一中间层作为触媒晶种,使得触媒层和气体扩散层之间能够较好结合,以免影响电极的导电性。另外,该气体扩散电极的制造过程中,采用气相沈积法沉积一与气体扩散层结合力较好的中间层,再以液相沈积法沉积所需厚度的触媒层,可有效降低成本;优选脉冲式电解可得到结晶精细、无孔隙且理化性能好的触媒层。
【附图说明】
图1是本发明实施例的燃料电池单元结构示意图。
【具体实施方式】
下面将结合附图及实施例对气体扩散电极及其制造方法作进一步详细说明。
图1是本实施例燃料电池单元结构示意图,该燃料电池单元1包括:一电解质膜10,一阳极气体扩散电极20与一阴极气体扩散电极30分别位于该电解质膜10的两侧。
该阳极气体扩散电极20包括一阳极气体扩散层210,一阳极触媒层220,一阳极中间层200设置于该阳极气体扩散层210与阳极触媒层220之间。该阴极气体扩散电极30包括一阴极气体扩散层310,一阴极触媒层320,一阴极中间层300设置于该阴极气体扩散层310与阴极触媒层320之间。阳极气体扩散层210与阴极气体扩散层310的材质通常使用固态、透气、导电的碳纤维织物、碳纤维纸等。阳极触媒层220与阴极触媒层320的材质可包括Ni(镍)、Pd(钯)、Pt(铂)、Ru(钌)、Au(金)等。阳极中间层200与阴极中间层300的材质均为催化性金属,如Ni、Pd、Pt、Ru、Au;其最好与触媒层220、320材质相同,但中间层200、300的形成方法和触媒层220、320不同,所以中间层和触媒层结构不同。
阳极中间层200与阳极气体扩散层210及阳极触媒层220之间结合性较好,且阳极中间层200与阳极触媒层220的厚度成一定比例;同理,阴极中间层300也与阴极触媒层320的厚度成一定比例。
本实施例制造气体扩散电极的方法,包括以下步骤:提供一气体扩散层;对该气体扩散层进行疏水处理;利用气相沉积法于该气体扩散层上形成一中间层,利用液相沉积法于该中间层上形成一触媒层,从而制得气体扩散电极。
以下以阳极气体扩电极20的制造过程为例进行具体说明:
首先,提供一阳极气体扩散层210。阳极气体扩散层210通常为一固态、透气的导电载体,如碳纤维织物、碳纤维纸等,通常厚度约0.3~0.35mm,该种材料作为气体扩散层时,要进行高温石墨化处理,使其具有导电性并增加抗蚀性,因电池工作时,电极上发生化学反应产生的水容易腐蚀电极。
其次,对该阳极气体扩散层210进行疏水处理。
为避免微孔径被液态水分子占据,阻碍反应气体的传导,阳极气体扩散层210要预先经过疏水处理,使反应气体与水分子蒸气能够顺利传导到触媒层。阳极气体扩散层210进行疏水处理,其优选采用一种聚合物进行疏水处理,该聚合物通常为聚四氟乙烯,将其分散于气体扩散层内,聚四氟乙烯不亲水,进出电极模块的水气不会凝聚于气体扩散层内,可避免凝聚的水滴造成气体扩散层的阻塞,从而避免电池工作时效能之降低。
再次,于疏水处理后的气体扩散层210上形成一阳极中间层200。
材料表面形成膜层通常采用原子沉积法,其可分为液相沉积法与气相沉积法。液相沉积法包括电解、电镀、无电镀、电泳等;气相沉积法包括物理气相沉积法、化学气相沉积法等。物理气相沉积法包括蒸发、溅镀、离子镀等,其中,溅镀因其具有极佳的沉积效率、大面积沉积厚度的可控性、精确的成分控制等优点而被广泛采用。液相沉积法包括电解、电镀、无电镀等。该方法操作简单,成本低。实际应用中,可将气相沉积与液相沉积法相结合使用。
由于阳极气体扩散层210的材质为碳材,后续待形成的阳极触媒层220材质为金属,若采用液相沉积法直接将阳极触媒层220形成于阳极气体扩散层210上,其两者的结合力较差,势必影响电极的导电性;若采用气相沉积法形成一定厚度的阳极触媒层220,造价又太高。因此,采用气相沉积技术形成一阳极中间层200作为触媒晶种,使后续待形成的阳极触媒层220与阳极气体扩散层210较好结合。本实施例优选采用溅镀法于阳极气体扩散层210上形成阳极中间层200,该阳极中间层200的材质为催化性金属。
最后,于阳极中间层200上形成阳极触媒层220。
上述阳极中间层200的材质选用催化性金属,待形成的阳极触媒层220的材质也为催化性金属,如Ni、Pd、Pt、Ru、Au等,两者材质相近最好相同,利用液相沉积法将阳极触媒层220形成于阳极中间层200上,两者可达到较好结合。这样,阳极气体扩散层210与阳极触媒层220通过阳极中间层200良好的结合,形成性能良好的阳极气体扩散电极20。
阳极触媒层220具体形成过程为:将溅镀有阳极中间层200的阳极气体扩散层210作为阴极,惰性电极作为阳极,将阳极与阴极插入电解质溶液中,并将其与一电源连接,电解质溶液可选自氯化钌(RuCl3)、氯化铂金(H2PtCl6)溶液等。通电后,电解质溶液中的钌离子或铂离子将会与阴极发生还原反应,钌离子或铂离子将被还原为金属钌或铂并沉积于阳极中间层200上形成阳极触媒层220,如金属钌或铂,从而制得包括阳极气体扩散层210、阳极中间层200、阳极触媒层220的阳极气体扩散电极20。
该电解制程优选采用脉冲式电解,即,在阳极与阴极之间加脉冲电源,通电后会产生脉冲电流,这样,阳极触媒层220具有结晶精细、结合力高、无孔隙且理化性能好等优点。
与上述阳极气体扩散电极的制造过程相同,以阴极气体扩散层310为基体制造阴极气体扩散电极30。
本技术方案的气体扩散电极,气体扩散层和触媒层之间设置有一中间层作为触媒晶种,使得触媒层与气体扩散层之间能够较好结合,以免影响电极的导电性。另外,该气体扩散电极的制造过程中,采用气相沈积法沉积一与气体扩散层结合力较好的中间层,再以液相沈积法沉积所需厚度的触媒层,可有效降低成本;优选脉冲式电解可得到结晶精细、无孔隙且理化性能好的触媒层。

Claims (15)

1.一气体扩散电极,其包括一气体扩散层,一触媒层,其特征在于,一中间层设置于该气体扩散层和触媒层之间。
2.如权利要求1所述的气体扩散电极,其特征在于,该气体扩散层为一固态、透气的导电载体。
3.如权利要求1所述的气体扩散电极,其特征在于,该中间层的材料为催化性金属。
4.如权利要求1所述的气体扩散电极,其特征在于,该中间层的材料和触媒层材料相同。
5.如权利要求1所述的气体扩散电极,其特征在于,该中间层的材料包括Ni、Pd、Pt、Ru或Au。
6.一种气体扩散电极的制造方法,其包括以下步骤:
提供一气体扩散层;
于该气体扩散层上形成一中间层;
于该中间层上形成一触媒层,从而得到气体扩散电极。
7.如权利要求6所述的气体扩散电极的制造方法,其特征在于,该气体扩散层为一固态、透气的导电载体。
8.如权利要求6所述的气体扩散电极的制造方法,其特征在于,该中间层的材料为催化性金属。
9.如权利要求6所述的气体扩散电极的制造方法,其特征在于,该中间层的材料和触媒层材料相同。
10.如权利要求6所述的气体扩散电极的制造方法,其特征在于,该中间层的材料包括Ni、Pd、Pt、Ru或Au。
11.如权利要求6所述的气体扩散电极的制造方法,其特征在于,该气体扩散层上形成中间层之前预先进行疏水处理。
12.如权利要求6所述的气体扩散电极的制造方法,其特征在于,该气体扩散层上形成一中间层采用气相沉积法。
13.如权利要求12所述的气体扩散电极的制造方法,其特征在于,该气相沉积法包括蒸镀、溅镀、离子镀。
14.如权利要求6所述的气体扩散电极的制造方法,其特征在于,该中间层上形成一触媒层采用液相沉积法。
15.如权利要求14所述的气体扩散电极的制造方法,其特征在于,所述液相沉积法为脉冲式电解制程。
CNB2005100346829A 2005-05-14 2005-05-14 气体扩散电极及其制造方法 Expired - Fee Related CN100463260C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB2005100346829A CN100463260C (zh) 2005-05-14 2005-05-14 气体扩散电极及其制造方法
US11/287,127 US20060257717A1 (en) 2005-05-14 2005-11-23 Gas diffusion electrode and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100346829A CN100463260C (zh) 2005-05-14 2005-05-14 气体扩散电极及其制造方法

Publications (2)

Publication Number Publication Date
CN1862856A true CN1862856A (zh) 2006-11-15
CN100463260C CN100463260C (zh) 2009-02-18

Family

ID=37390223

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100346829A Expired - Fee Related CN100463260C (zh) 2005-05-14 2005-05-14 气体扩散电极及其制造方法

Country Status (2)

Country Link
US (1) US20060257717A1 (zh)
CN (1) CN100463260C (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062754A (zh) * 2009-11-18 2011-05-18 中国科学院电子学研究所 一种氧化钴气体扩散电极的制备方法
CN103456971A (zh) * 2012-05-30 2013-12-18 通用汽车环球科技运作有限责任公司 扩散介质及其制备方法
CN106471655A (zh) * 2014-06-24 2017-03-01 松下电器产业株式会社 气体扩散电极、电化学装置以及燃料电池
CN108893740A (zh) * 2018-07-12 2018-11-27 大连理工大学 一种液气相交替沉积制备高温绝缘薄膜的方法
WO2022124802A1 (ko) * 2020-12-08 2022-06-16 주식회사 엘지에너지솔루션 이차전지 및 이를 포함하는 전지 모듈

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0617806D0 (en) * 2006-09-11 2006-10-18 Johnson Matthey Plc Fuel cell assembly
SG144005A1 (en) * 2007-01-03 2008-07-29 Agni Inc Pte Ltd Electro-deposition of catalyst on electrodes
US8951696B2 (en) * 2008-03-28 2015-02-10 Jx Nippon Oil & Energy Corporation Fuel electrode catalyst for fuel cell, electrode/membrane assembly, and fuel cell and fuel cell system provided with the electrode/membrane assembly
US20100047662A1 (en) * 2008-08-22 2010-02-25 Ford Global Technologies, Llc Catalyst Layers Having Thin Film Mesh Catalyst (TFMC) Supported on a Mesh Substrate and Methods of Making the Same
US9570760B2 (en) * 2010-04-29 2017-02-14 Ford Global Technologies, Llc Fuel cell electrode assembly and method of making the same
US20110143263A1 (en) * 2010-04-29 2011-06-16 Ford Global Technologies, Llc Catalyst Layer Having Thin Film Nanowire Catalyst and Electrode Assembly Employing the Same
US8623779B2 (en) 2011-02-04 2014-01-07 Ford Global Technologies, Llc Catalyst layer supported on substrate hairs of metal oxides
CN112873930B (zh) * 2021-01-11 2022-07-29 华迪钢业集团有限公司 一种不锈钢无缝钢管及其加工工艺

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857737A (en) * 1973-09-18 1974-12-31 United Aircraft Corp Sequential catalyzation of fuel cell supported platinum catalyst
IT1130955B (it) * 1980-03-11 1986-06-18 Oronzio De Nora Impianti Procedimento per la formazione di elettroci sulle superficie di membrane semipermeabili e sistemi elettrodo-membrana cosi' prodotti
US5277996A (en) * 1992-07-02 1994-01-11 Marchetti George A Fuel cell electrode and method for producing same
DE4327254A1 (de) * 1993-08-13 1995-02-16 Mannesmann Ag Verfahren zur Herstellung katalytisch wirksamer Gasdiffusionselektroden
WO1999016137A1 (en) * 1997-09-22 1999-04-01 California Institute Of Technology Sputter-deposited fuel cell membranes and electrodes
US5879828A (en) * 1997-10-10 1999-03-09 Minnesota Mining And Manufacturing Company Membrane electrode assembly
TW515129B (en) * 2000-09-29 2002-12-21 Sony Corp Method for manufacturing gas diffusion electrode and method for manufacturing electrochemical device
TW558833B (en) * 2002-09-09 2003-10-21 Ind Tech Res Inst Gas diffusion electrode and the method for making the same
CN1209836C (zh) * 2003-04-28 2005-07-06 重庆大学 质子交换膜燃料电池电极制备方法
CN1553535A (zh) * 2003-12-19 2004-12-08 南京双登科技发展研究院有限公司 直接甲醇型燃料电池的膜电极及制作方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062754A (zh) * 2009-11-18 2011-05-18 中国科学院电子学研究所 一种氧化钴气体扩散电极的制备方法
CN103456971A (zh) * 2012-05-30 2013-12-18 通用汽车环球科技运作有限责任公司 扩散介质及其制备方法
US9698431B2 (en) 2012-05-30 2017-07-04 GM Global Technology Operations LLC Diffusion media and method of preparation
CN106471655A (zh) * 2014-06-24 2017-03-01 松下电器产业株式会社 气体扩散电极、电化学装置以及燃料电池
CN108893740A (zh) * 2018-07-12 2018-11-27 大连理工大学 一种液气相交替沉积制备高温绝缘薄膜的方法
CN108893740B (zh) * 2018-07-12 2020-02-18 大连理工大学 一种液气相交替沉积制备高温绝缘薄膜的方法
WO2022124802A1 (ko) * 2020-12-08 2022-06-16 주식회사 엘지에너지솔루션 이차전지 및 이를 포함하는 전지 모듈
US11916240B2 (en) 2020-12-08 2024-02-27 Lg Energy Solution, Ltd. Secondary battery and battery module including the same

Also Published As

Publication number Publication date
CN100463260C (zh) 2009-02-18
US20060257717A1 (en) 2006-11-16

Similar Documents

Publication Publication Date Title
CN100463260C (zh) 气体扩散电极及其制造方法
Arshad et al. Recent advances in electrocatalysts toward alcohol-assisted, energy-saving hydrogen production
US8173324B2 (en) Catalyst
JP6797685B2 (ja) グラフェンで覆われた電極を含む電気化学セル
JP6282321B2 (ja) 触媒
CN1237636C (zh) 用于燃料电池的双极板
US6841289B2 (en) Electrochemical device and method for preparation thereof
Lux et al. Template synthesis of arrays of nano fuel cells
Shinagawa et al. Electrolyte engineering toward efficient hydrogen production electrocatalysis with oxygen-crossover regulation under densely buffered near-neutral pH conditions
Zhang et al. Highly active ag nanoparticle electrocatalysts toward v2+/v3+ redox reaction
JP2007213859A (ja) 酸化物複合材料、その製造方法および酸化還元電極
CN105556720B (zh) 燃料电池隔片、燃料电池、和燃料电池隔片的制造方法
CN101578726A (zh) 燃料电池触媒、燃料电池阴极与包含该阴极的高分子电解质燃料电池
Xu et al. ZIF-8-derived three-dimensional nitrogen-doped porous carbon as a Pt catalyst support for electrocatalytic oxidation of glucose in a glucose fuel cell
Cha et al. Effects of the anode diffusion layer on the performance of a nonenzymatic electrochemical glucose fuel cell with a proton exchange membrane
US9252431B2 (en) Fuel cell catalyst with metal oxide/phosphate support structure and method of manufacturing same
Ao et al. Hierarchical Structures Composed of Cu (OH) 2 Nanograss within Directional Microporous Cu for Glucose Sensing
Cai et al. Investigation of an anode catalyst for a direct dimethyl ether fuel cell
Anand et al. Copper nanowires/reduced graphene oxide nanocomposite based non-enzymatic glucose sensor
Jin et al. Virtual special issue of research highlights on sustainable energy and clean fuels at state key laboratory of materials-oriented chemical engineering (SKL-MCE), China
Qiu et al. Anode Engineering for Proton Exchange Membrane Water Electrolyzers
US20100081031A1 (en) Polymer electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell
Bauer et al. Liquid crystalline phase templated platinum catalyst for oxygen reduction
CN1560946A (zh) 一种亚锡酸法制备直接甲醇燃料电池阳极催化剂的方法
Shi et al. Tuning the In-Plane Electrical Conductivity and Performance of the Low Ir Anode in a Proton Exchange Membrane Water Electrolyzer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090218

Termination date: 20150514

EXPY Termination of patent right or utility model