CN1841071A - 光学加速计、光学倾斜计以及地震传感器系统 - Google Patents

光学加速计、光学倾斜计以及地震传感器系统 Download PDF

Info

Publication number
CN1841071A
CN1841071A CNA2006100733489A CN200610073348A CN1841071A CN 1841071 A CN1841071 A CN 1841071A CN A2006100733489 A CNA2006100733489 A CN A2006100733489A CN 200610073348 A CN200610073348 A CN 200610073348A CN 1841071 A CN1841071 A CN 1841071A
Authority
CN
China
Prior art keywords
optical fiber
crossbeam
accelerometer
bragg grating
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006100733489A
Other languages
English (en)
Inventor
S·J·马斯
D·R·梅茨鲍尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PGS Americas Inc
Original Assignee
PGS Americas Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PGS Americas Inc filed Critical PGS Americas Inc
Publication of CN1841071A publication Critical patent/CN1841071A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • G01V1/181Geophones
    • G01V1/184Multi-component geophones
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism
    • E21B47/0228Determining slope or direction of the borehole, e.g. using geomagnetism using electromagnetic energy or detectors therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/093Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/008Transducers other than those covered by groups H04R9/00 - H04R21/00 using optical signals for detecting or generating sound

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mining & Mineral Resources (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Optical Transform (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

光学加速计包含横梁和被固定到横梁一侧的至少一条光纤以使横梁的偏斜改变光纤的长度。用于感测光纤长度变化的部件被功能性地耦合至至少一条光纤。地震传感器系统包括至少两个加速计,所述加速计被定向成以使它们的敏感轴至少部分地对准沿相互垂直的方向。每个加速计包含横梁和被固定到横梁一侧的至少一条光纤以使横梁的偏斜改变至少一条光纤的长度。用于感测光纤长度变化的部件被功能性地耦合至每个加速计的至少一条光纤。

Description

光学加速计、光学倾斜计以及地震传感器系统
相关申请的交叉引用
无适用。
关于联合发起的研究或开发的声明
无适用。
发明背景
技术领域
本发明通常涉及光学加速度和倾斜传感装置的领域。更具体地说,涉及用于(但不限于)感测地震能量的光学加速计和倾斜计。
技术背景
用于感测参数(比如加速度、运动和/或压力)的光学装置被用于其他许多目的之外还用来感测来自地球地表下的地震能量。地震能量可能是正在自然发生的,或者可能是出于实施反射地震勘探目的而由地震能量源传递过来的。探测地震能量可包括探测水体中的压力、或压力变化。用来测量这种压力变化的传感器被称为水中地震检波器。探测地震能量还包括探测地球表面之上或近地表面的运动。可以使用被称为地震检波器的装置来探测运动。地震检波器信号与运动的速度有关。产生与运动速度的时间导数(加速度)有关的信号的加速计也被用来探测地震能量。产生与相对于地心引力的装置的相对取向有关的信号的倾斜计被用来生成相对于水平面或系统中其他传感器的装置的位置的数据。本领域已知的、对前述物理参数产生响应的传感器根据探测的物理参数生成光学信号。光学信号可以是比如反射的波长的变化、相位的变化或者是响应物理参数变化的干涉图案。
通常,本领域已知的光学传感器包括被固定到响应被探测的物理参数变化而改变形状的装置上的选定长度的光纤。装置形状的改变被转换成光纤长度的变化。光纤长度的变化可通过多种不同光学测量技术中的一种来探测。这样的技术包括作为在光纤中形成的布拉格光栅的波长变化的结果的反射的光波长的变化,或者是通过光纤传输的光束和通过被称为“基准光纤”的另一条光纤传输的光束的光耦合。基准光纤可被设置成以使其长度保持基本不变而不用考虑物理参数的值。来自被固定到装置上的光纤以及基准光纤的光束在光学干涉仪中耦合。在光学干涉仪中生成的光束的干涉图案或相位变化与耦合至装置的光纤长度变化有关,并因此与正被测量的物理参数有关。一般地,干涉仪的输出被耦合至光电探测器,光电探测器生成与被施加于光电探测器的光幅度有关的电信号。
纤维光学水中地震检波器在比如颁发给Frederick等人的美国专利No.5,625,724中被公开。在专利‘724中公开的水中地震检波器包括围绕刚性内圆柱缠绕的基准光纤。柔性材料的固体层被施于基准光纤上。在被施于基准光纤上的材料层上,缠绕干涉仪的传感臂。外层材料是足够柔顺的以此提供可与背面有气孔的水中地震检波器的灵敏度相比拟的声学灵敏度。另一个纤维光学水中地震检波器在颁发给Maas等人并转让给本发明受让人的美国专利No.6,549,488中被公开。按照Maas等人的‘488专利的水中地震检波器包括柔性传感芯轴,它与刚性基准芯轴共轴并邻接。第一光纤被绕在柔性传感芯轴上。第二光纤被绕在基准传感芯轴上。第一和第二光纤包含干涉仪的不同臂。挠性封闭构件(如O-形环)使柔性传感芯轴与刚性基准芯轴密封。在一个实施例中,一个O-形环被设置于靠近传感芯轴的每个末端。圆柱支撑构件被设置于传感芯轴内部。至少部分支撑构件是与传感芯轴隔开的,以便在传感芯轴与支撑构件之间提供密封的空腔。密封的空腔被填充了空气或类似的柔性物质。
颁发给Hofler等人的美国专利NO.5,369,485公开了光学加速计,其中弹性盘和预定的块被主体所支撑,由于在盘的轴向方向上的加速度、震动、振动和位移而引起的盘的挠曲。这样一个盘或多个这样的盘被一对光纤的平螺旋线缠绕,每个螺旋线被固定地附加在相应盘的侧面,以使盘的挠曲延长在一个盘侧面上的螺旋线而缩短在另一个盘侧面上的螺旋线。在相对面对的盘侧面上的这样的螺旋线被连接成纤维光学干涉仪的相对的支腿,以使干涉仪提供与挠曲幅度相对应的输出。一对推挽式螺旋线可相对地设置于热传导盘以此将推挽式螺旋线对之间的温差减至最小。按照Hofler等人的专利所公开的加速计,由具有围绕盘外围所分布的块的中心支撑的盘构造成。这样的构造据说对于隔离安装应力以及对于提供多个用于增加灵敏度的共轴安装的盘来说是有利的。
颁发给Tweedy等人的美国专利No.6,650,418所公开的纤维光学传感器包括具有一对纤维光学线圈的挠曲盘,所述的一对纤维光学线圈被安装在挠曲盘的相对侧并且光耦合在一起以此形成干涉仪,干涉仪根据挠曲盘的加速度而产生输出信号。加速计包括具有第一和第二端面板的外壳,其侧壁在端面板之间延伸。侧壁具有面向内的凹槽,挠曲盘的外边缘部分被安装在其中。压缩阻尼器被安装在外壳内并被布置成可将压缩力施加于挠曲盘,以此根据挠曲盘沿传感轴的加速度来控制其中的运动并因此控制输出信号。
颁发给Knudsen等人的美国专利No.6,575,033公开了高度敏感的加速计,该加速计包括位于外壳内、通过相对的支撑构件被悬置的块。支撑构件以推挽式布置被交替地绕在一对固定芯轴和块上。至少支撑构件之一的一部分包含了作为支撑构件的光纤线圈,用于干涉传感处理。
当前,多向敏感(“多元”)的运动传感器连同基本上并置的水中地震检波器(“双重传感器OBC”)已经被用在水体底部来勘测海洋地震。例如,参见颁发给Monk的美国专利No.6,314,371,该专利公开了双重传感器OBC数据的处理方法,其可校正能量入射角、校正估计的反射率、以及利用最佳分集缩放技术来组合校正的地震传感器扫迹。在一个实施例中,公开的方法从地震检波器和水中地震检波器中取出地震扫迹、校正入射角的地震检波器扫迹、确定用于最佳组合地震检波器和水中地震检波器扫迹的分集滤波器、应用分集滤波器、估计海洋底部的反射率系数(潜在地针对不同的反射角)、按照反射率缩放地震检波器数据、以及重新应用分集滤波器以获得组合的扫迹。组合的扫迹被预期消除了各种伪迹(包括幻影和混响),并且预期具有最佳确定的信噪比。
重要的是,运动传感器通常、以及特别地是那些在双重传感器OBC中使用的传感器具有良好的灵敏度、对噪声相对不敏感、并且对侧向分量信号具有良好的抑制(这意味着运动传感器基本上对沿着除敏感轴向之外的任何方向的运动都是不敏感的)。因此,对于具有改进的灵敏度、减少的噪音和减少的侧向分量灵敏度的运动和/或加速度传感器存在有持续的需求。
发明内容
本发明的一个方面是光学加速计。按照本发明这个方面的加速计包括横梁和被固定到横梁一侧的至少一条光纤,以使横梁的偏斜改变光纤的长度。用于感测光纤长度变化的部件被功能性地耦合到至少一条光纤。
本发明的另一方面是地震传感器系统。按照本发明这个方面的系统包括至少两个加速计。每个加速计包含横梁和被固定到横梁一侧的至少一条光纤以使横梁的偏斜改变光纤的长度。所述至少两个加速计被定向成以使其对至少部分沿着相互垂直方向上的加速度是敏感的。用于感测每个加速计中光纤长度变化的部件被功能性地耦合至每条光纤。
本发明的另一方面是引力定向系统。按照本发明这个方面的系统包括三个加速计,每个加速计具有横梁和被固定到横梁一侧的至少一条光纤以使横梁的偏斜改变光纤的长度。所述至少三个加速计的每一个被定向成以使其对至少部分沿着相互垂直方向上的加速度是敏感的。每个加速计中的至少一条光纤其上包含布拉格光栅,以使每个横梁的偏斜轴向相对于地心引力的取向由被布拉格光栅反射的光的波长变化的测量来确定。通过如此测量布拉格光栅的长度的变化,每个加速计相对于地心引力的取向以及因此该系统相对于地心引力的取向是可确定的。
根据下面的描述以及所附权利要求,本发明的其他方面和优点将是显而易见的。
附图说明
图1示出的是按照本发明的加速计的一个实施例的侧视图。
图2示出的是图1所示加速计的顶视图。
图3示出的是加速计的另一个实施例的侧视图。
图4示出的是按照本发明另一方面的多元地震传感器系统的斜视图。
图5示出的是在各种加速计实施例中用来确定光纤长度变化的干涉仪的一个实施例。
图5A是出的是干涉仪的可选用的布置。
图6示出的是在两个纵向末端被支撑的加速计横梁。
图7示出的是加速计横梁的一个特定实施例。
图8示出的是用来确定加速计的引力取向(倾斜计)的光学探测系统的一个实施例。
图9示出的是倾斜计的可选用实施例。
图10示出的是在被装在按照图4的传感器系统时,图9所示倾斜计的实施例。
图11示出的是倾斜计的可选用实施例。
图11A示出的是以图11所示的装置类似的原理工作的倾斜计的可选用实施例。
图12示出的是包括如图11所示倾斜计的示范的多元地震传感器系统。
具体实施方式
通常,按照本发明各个方面的加速计根据偏斜横梁的原理工作,其中横梁通常在其纵向末端被支撑。在其纵向末端支撑横梁基本上防止了在与横梁平面横着的任何方向上的横梁挠曲。图1示出的是加速计横梁组件10的一个实施例,加速计横梁组件10包括横梁12,横梁12可由塑料或者是在加速过程中服从弹性应变的其他适当的材料制成。横梁12具有图1所示的尺寸,12X是长度或纵向尺寸,12Z是厚度尺寸。横梁12的平面是在与厚度尺寸12Z横着的方向上。尺寸12X和12Z的应当选择成使得厚度12Z方向上的挠曲相对自由,同时基本上防止了横梁沿着纵向尺寸12X的任何挠曲。图1所示的实施例包括被固定到横梁12的一面或一侧的光纤14。将光纤14固定到横梁12可通过附着粘合或类似的技术来实施。
在图1的实施例中,所示的第二光纤16被固定到横梁12的相对一面。当横梁12在加速过程中沿着厚度12Z的方向偏斜时,根据横梁12偏斜的方向,光纤14、16被伸展或压缩。一条光纤14的伸展和压缩与另一条光纤16的伸展和压缩是极性相反的,这是因为它们位于横梁12的相对侧。这样的布置被称为光纤的“推挽式”连接。
来自与施于其上的加速度有关的加速计的信号通过确定光纤14(如果只有一条光纤被使用的话)或两条光纤14、16的长度变化而生成。在实际的实施例中,光纤长度变化的测量可通过光学干涉仪来实施。作为干涉仪的一部分以此生成加速度响应信号的光纤14、16的光学连接和使用将在下面参考图5和图5A进行说明。应当理解,按照本发明的加速计只需要一条被固定到横梁的一面或另一面的光纤,如光纤14或16。与单光纤实施例所期望的灵敏度相比,图1和2的双重光纤实施例的目的是为了具有增加的灵敏度。
图2示出的是加速计横梁组件10的顶视图。横梁12具有宽度尺寸12Y。如图2所示,光纤16以一般的椭圆形状被布置在横梁12的表面周围以此使得沿纵向尺寸(图1的12X)设置的光纤的量最大,同时使得光纤16内的弯曲度最小以便使光纤16中的光损失最小。宽度尺寸12Y应当被选择成使横梁12沿宽度方向具有足够的刚性以此抵抗挠曲,但是其刚性不能太大以便促使在斜加速过程中横梁12内任何明显程度的弯曲或扭曲。
如图3所示,加速计横梁组件的另一个实施例可包括被贴在横梁12的一面或两面、并且通常位于其中心的反应块(reactionmass)18、20。在任何给定的加速度的量的条件下,块18、20增加了横梁12的偏斜量,并且因此增加了加速计的总灵敏度。
实际的多元地震传感器系统可由多个加速计制成,如参考图1至3所作的描述。图4示出的是这样一个多元地震传感器系统的一个实施例。系统包括三个光学加速计10X、10Y、10Z,每一个被定向成以使其敏感方向与另两个加速计的敏感方向相互垂直。使加速计相互垂直便于确定被探测的地震能量是来源于哪一个加速计的方向,然而,应当理解,加速计的互相垂直性在地震传感器系统的设计中是一件便利的事情。加速计的敏感轴的其他布置被用于不同的实施例,同时维持确定地震能量起源的方向的能力。
加速计10X、10Y、10Z可被封装进防水抗压的外壳22中,这使得系统可被浸没在液体中。当该系统被用于海洋地震勘测系统或用于永久性传感器安装(如将在海底或井筒上使用时)时,则将是这种情况。
在图5的29处示出的是用来根据横梁偏斜而生成加速度响应信号的光学干涉仪以及相关部件的一个实施例。附加到横梁(图1的12)相对两侧的光纤14、16的各示出为一端光耦合至分束器26而在另一端耦合至组合器28。光源(如激光二极管24)耦合至分束器26的输入端并向每条光纤14、16提供激光。光电探测器30耦合至干涉仪29的输出端并产生与在干涉仪中产生的光信号相对应的电信号。因此,在加速过程中沿厚度方向(图1中的12Z)的横梁12(图1的12)的偏斜被转换成电信号。根据地震传感器系统的特定布置,激光二极管24和光电探测器30可被设置于地球表面或水面,并且分束器26和组合器28被设置于加速计(图1中的12)附近。然而,其他实施例可将激光二极管和分束器放置于干涉仪附近,例如放进外壳(图4中的22)中。图5所示的光学干涉仪系统通常被称为马赫-曾德干涉仪。
另外,如图5A所示,可使用迈克耳孙干涉仪。迈克耳孙干涉仪29A通过在每条光纤14、16的远端使用反射镜31A和31B代替组合器(图5中的28)而制成。通过光纤14、16的光束被反射镜31A、31B反射回来。反射回来的光束在分束器26A中重组,以使相移和/或干涉图案被光电探测器30所探测。
可与加速计的各种实施例一起使用的干涉仪的其他类型包括法布里-珀罗和沙哥纳克干涉仪。在使用法布里-珀罗干涉仪的实施例中,被固定到横梁一面或相对面的光纤(图1中的14或16)可被除去。余下的光纤(图1中的16或14)其上可包括布拉格光栅,其中光纤被连接至横梁(图1中的12)以使能够利用测量穿过光纤反射回来的光的波长变化来确定光纤长度的变化。因此,用于各种实施例的特定的干涉仪系统不是对本发明范围的限制。布拉格光栅在一条或两条光纤14、16上的特定应用在下面将参考图8进行解释。
图6示出的是横梁12以及在横梁12的纵向末端的支撑体32的侧面图。通过在其纵向末端支撑横梁12并通过适当的尺寸(图1中的12X、12Z以及图2中的12Y),横梁12的挠曲基本上受厚度尺寸(图1中的12Z)的限制。因此,限制横梁12的挠曲为加速计横梁组件(图1中的10)提供了高度的侧向分量抑制或不敏感性。如图1所示,加速计的初始估计表示了大于30dB的侧向分量抑制。
如易于意识到的,在两个纵向末端刚性地、固定地支撑横梁12可提供高度的侧向分量抑制,但是可限制在厚度方向上的横梁偏斜量(以及因此限制了灵敏度)。在这个情形中,横梁偏斜可被限制,因为如果横梁在两端是被刚性地、固定地支撑,横梁必须沿纵向方向(图1中的12X)延长。为了增加偏斜量同时维持高的侧向分量抑制,如图7所示的布置可用来在其纵向末端支撑横梁12。在一端的安装孔12可配上有头螺钉或类似物。另一端可包括延长的开口15以使在挠曲过程中,当纵向尺寸按一定的比例量被减小时,横梁12的另一端可以自由地在纵向上移动,但是基本上不会是在与纵向横着的方向上移动。
图8示出的是特定实施例,该实施例可用来确定加速计相对于地心引力的取向并进行加速度测量。光纤14A包括其上的布拉格光栅14B。光纤14A可被固定到基本如参考图1说明的横梁上。光源24A(如激光二极管)通过分束器25光耦合至光纤14A的一端。光纤14A可包括在其另一端的反射镜17。光电探测器30耦合至分束器25的另一输出端。光电探测器30的输出端耦合至光谱分析器31。因此,被布拉格光栅14B反射的光的波长与布拉格光栅14B的伸长度有关。加速计通过校准在零引力和完整(unity)(100%引力)引力下布拉格光栅反射的波长,可确定其中的取向。通过公知的三角关系,反射的光波长的测量可与加速计相对于引力的取向有关。
在本实施例中,加速计可通过定向横梁(图1中的12)而被校准至零引力,以使横梁(图1中的12)的厚度尺寸(图1中的12Z)或偏斜以横着地心引力的方向被定向。被布拉格光栅14B反射的光的波长通过光谱分析器31而被测量。接着,横梁被定向以使其偏斜方向(图1中的12Z)直接沿着地心引力的方向,并且被布拉格光栅14B反射的光的波长再次被测量。当光纤14A被横梁的偏斜延长时,被布拉格光栅14B反射的光的波长将改变,并且作为结果而使布拉格光栅14B延长。加速计相对于地心引力的相对取向将因此与被布拉格光栅14B反射的光的波长有关。参考图8描述的光学部件可作为独立的光纤被包括在任何特定的加速计内,或者如图8所示,可被包括在用于加速计传感器的同一光纤内。
如图4所示,在多元传感器系统中,三个互相垂直的加速计的每一个可包括其上具有布拉格光栅的光纤。如图9所示,可使用相关的光学部件能够确定光栅长度变化。在图9的实施例中,单光纤33可包括在其上的三个独立的布拉格光栅35、37、39。正如将参考图10所解释的,每个布拉格光栅35、37、39被固定到三个加速计横梁的其中一个上。在光纤末端的反射镜17A可用来反射光。根据相应的加速计横梁相对于地心引力的取向,每个布拉格光栅35、37、39将被延长,并因此反射光的特定波长。因此,传感器系统的取向可通过三个布拉格光栅35、37、39中的每一个的布拉格光栅输出的波长的测量而被推断出,并因此推断出每个加速计相对于引力的取向。整个传感器系统相对于引力的取向可利用公知的三角关系根据三个独立的加速计引力分量测量而确定。如图3所示,按照图9的实施例的加速计横梁的某些实施例可包括一个或多个耦合其上的反应块。
图10示出的是图9的倾斜计的单光纤实施例,其中光纤33内的每个布拉格光栅35、37、39被固定到加速计横梁12Y、12Z、12X中相对应的一个上。每个横梁12Y、12Z、12X的偏斜与每个横梁相对于地心引力的取向有关。如果特定横梁相对于引力是横着的,则其相对于引力的偏斜将基本上为零。当加速计横梁的偏斜方向基本上与地心引力一致时,最大偏斜以及相关布拉格光栅的长度的相应变化将发生。通过公知的公式利用地心引力的垂直分量的测量可推断取向。在图10的实施例中,加速计横梁可基本垂直地定向。正如参考图1-4所解释的,其他实施例可包括每个布拉格光栅的独立光纤,或者可包括用于感测地震能量的一种或多种类型的干涉仪的同一感测光纤上的布拉格光栅。
如图11所示,通过块直接地加载光纤布拉格光栅,倾斜计50的另一个实施例可提供光纤布拉格光栅中相对于地心引力的增加的应变。这种直接的块加载可增加倾斜测量的精度。如图11所示,作为由地心引力产生的力的结果,直线轴承或某些其它高精度约束装置47使块42、43沿着框架或杆40滑动。将其上具有布拉格光栅的光纤44耦合至轴承47、并因此操作地耦合至块42和43、以及将前档块或减震器41添加到允许块行进的杆40部分的每一端,可使布拉格光栅45被块43、42的其中一个拉紧,而不用考虑装置相对于引力的取向。例如,在图11所示的取向中,上部的块42被减震器41阻止,而下部的块43在引力牵引下可移动以便拉紧光纤44。如果加速计被旋转以使下部的块43位于上部的块42的上方,则下部的块43将被减震器41阻止,并且上部的块42在被引力加载时将移动。如图11所示,直接拉光纤44可导致布拉格光栅45中更多的应变、产生更大的波长移动。因为块42、43沿直线轴承上的杆40行进,所以除了沿杆40之外,块42、43的移动基本上被阻止了。通过限制块42、43沿杆40的移动,倾斜计50基本上只对沿杆40的长度所产生的加速度分量(即地球引力)是敏感的,并因此具有较高的侧向分量抑制。如上面参考图9所解释的,图11所示的倾斜计50可被基本校准。
通常以如图11所示装置的相同的原理工作的倾斜计的可选布置在图11A中被示意性地示出。块42A可沿杆40A的方向移动,但是在任何其他方向上的移动基本上被制止了。其上具有布拉格光栅45A的光纤44A耦合至块42A,以使块42A沿光纤44A被设置于两个光纤悬点44B之间。光纤44A也被固定在悬点44B之间。当引力作用于块42A上时,它会拉光纤44A并使其长度改变,这个长度变化通过布拉格光栅45A的光反射波长的变化是可探测的。按照操作和校准原理,图11A中所示的装置基本上类似于图11中所示的装置进行操作。图11A所示的实施例具有如图11所示装置那样只利用单个块并且无需减震器就可在相对于引力的任何取向上都可操作的优点。
图12示出的是包括三个相互垂直的倾斜计50X、50Y、50Z以及三个互相垂直的加速计10X、10Y、10Z的多元地震传感器系统的实施例。图12系统的操作原理与图10所示系统的操作原理相似,然而,倾斜计50X、50Y、50Z是参考图11所解释的类型的倾斜计。标记X、Y和Z与传感器系统的单个敏感轴有关,这些标记按照惯例标记以使通常水平设置的轴为X和Y,垂直设置的轴为Z。如同其他实施例那样,例如参考图4和10所作的解释那样,系统可被放置在不漏水的外壳22内。
按照本发明的光学加速计、光学倾斜计、以及用这种加速计制成的传感器系统可为本领域已知的电学和光学加速计提供改进的灵敏度、改进的侧向分量抑制以及改进的可靠性。
虽然已经就有限数量的实施例对本发明进行了描述,但是本领域的那些从这个公开内容中获益的技术人员将会了解,可设计其他的、没有背离如这里所公开的本发明范围的实施例。因此,本发明的范围应当只受限于所附的权利要求。

Claims (30)

1.一种加速计,包含:
横梁;
至少一条光纤,被固定到所述横梁一侧以使所述横梁的偏斜改变所述光纤的长度;以及
用于感测所述光纤的长度变化的部件。
2.如权利要求1所述的加速计,还包含附加的光纤,所述附加的光纤被固定到所述横梁的另一侧以使所述横梁的偏斜改变所述附加的光纤的长度,所述附加的光纤长度的变化与被固定到所述横梁的一侧的所述至少一条光纤的长度变化极性相反。
3.如权利要求1所述的加速计,还包含被固定到所述横梁的块,以使所述横梁的偏斜的大小关于施加在所述横梁上的加速度的大小而增加。
4.如权利要求1所述的加速计,其中用于感测的所述部件包含迈克耳孙干涉仪。
5.如权利要求1所述的加速计,其中用于感测的所述部件包含法布里-珀罗干涉仪。
6.如权利要求1所述的加速计,其中用于感测的所述部件包含马赫-曾德干涉仪。
7.如权利要求1所述的加速计,还包含光波长传感器,所述光波长传感器光耦合至所述至少一条光纤,并且其中所述至少一条光纤其上包含布拉格光栅,以使所述横梁的偏斜轴相对于地心引力的取向通过由所述布拉格光栅反射的光的波长变化的测量而是可确定的。
8.如权利要求1所述的加速计,还包含第二光纤,所述第二光纤被固定到所述横梁以使所述横梁的偏斜改变所述第二光纤的长度,所述第二光纤其上具有布拉格光栅,所述第二光纤光耦合至波长探测器以使所述加速计相对于地心引力的取向通过由所述布拉格光栅反射的光的波长变化的测量而是可确定的。
9.如权利要求1所述的加速计,其中所述横梁在其至少一个纵向末端被支撑。
10.如权利要求1所述的加速计,其中所述横梁在其两个纵向末端被支撑,至少一个纵向末端被支撑以便在所述横梁被偏斜时能够纵向移动。
11.一种多元地震传感器系统,包含:
至少两个加速计,每个加速计包含横梁和被固定到所述横梁一侧的至少一条光纤以使所述横梁的偏斜改变所述光纤的长度,所述至少两个加速计被定向成以使其对至少部分沿着相互垂直方向的加速度是敏感的;以及
用于感测每个所述加速计中所述光纤长度变化的部件。
12.如权利要求11所述的系统,其中每个加速计还包含:
附加的光纤,被固定到所述横梁的另一侧以使所述横梁的偏斜改变所述附加光纤的长度,所述附加光纤的长度的变化与被固定到所述横梁的一侧的所述至少一条光纤的长度的变化极性相反。
13.如权利要求11所述的系统,还包含被固定到每个横梁的块,以使每个横梁的所述偏斜的大小关于施加在每个横梁上的加速度的大小而增加。
14.如权利要求11所述的系统,其中用于感测的所述部件包含迈克耳孙干涉仪。
15.如权利要求11所述的系统,其中用于感测的所述部件包含法布里-珀罗干涉仪。
16.如权利要求11所述的系统,其中用于感测的所述部件包含马赫-曾德干涉仪。
17.如权利要求11所述的系统,还包含光波长传感器,所述光波长传感器光耦合至每个加速计中的所述至少一条光纤,并且其中每个加速计中的所述至少一条光纤其上包含布拉格光栅,以使每个横梁的偏斜轴相对于地心引力的取向通过由所述布拉格光栅反射的光的波长变化的测量而是可确定。
18.如权利要求11所述的系统,还包含:
三个加速计,每个加速计包含横梁和被固定到所述横梁一侧的至少一条光纤以使所述横梁的偏斜改变所述光纤的长度,所述至少三个加速计被定向成以使其对至少部分沿着相互垂直方向的加速度是敏感的;
用于感测每个所述加速计中所述光纤长度的变化的部件;以及
其中每个加速计中的所述至少一条光纤其上包含布拉格光栅,以使每个横梁的偏斜轴相对于地心引力的取向通过由所述布拉格光栅反射的光的波长变化的测量而是可确定,以使所述系统相对于地心引力的取向是可确定的。
19.如权利要求18所述的系统,其中每个加速计中的所述光纤是相同的光纤,所述相同的光纤其上具有布拉格光栅,其中所述相同的光纤被固定到每个横梁,每个布拉格光栅反射选择的光的波长。
20.如权利要求11所述的系统,其中每个横梁在其两个纵向末端被支撑,至少一个纵向末端被支撑以便使每个横梁被偏斜时能够纵向移动。
21.一种引力定向系统,包含:
三个加速计,每个加速计包含横梁和被固定到所述横梁一侧的至少一条光纤以使所述横梁的偏斜改变所述光纤的长度,所述三个加速计被定向成以使其对至少部分沿着相互垂直方向的加速度是敏感的;以及
位于在每个加速计中的所述至少一条光纤上的布拉格光栅;以及
用于测量由每个布拉格光栅反射的光的波长的部件,以使每个横梁的偏斜轴相对于地心引力的取向通过由所述布拉格光栅反射的光的波长变化的测量而是可确定,以使所述系统相对于地心引力的取向可确定。
22.如权利要求21所述的系统,其中三个加速计是相互垂直的。
23.如权利要求21所述的系统,其中每个加速计横梁其上包含反应块。
24.如权利要求21所述的系统,其中每个横梁在其两个纵向末端被支撑,至少一个纵向末端被支撑以便使每个横梁被偏斜时能够纵向移动。
25.一种引力定向传感器,包含:
至少一条光纤,其上具有布拉格光栅,所述光纤操作地耦合至块,所述块被安装在框架中以便所述框架相对于地心引力的取向使地心引力在所述块上相应地起作用,所述光纤与所述块的操作耦合被布置成以使由所述光纤上的所述光栅反射的波长变化与地心引力在所述块上的作用相对应;以及
用于测量波长变化或所述布拉格光栅的周期的部件。
26.如权利要求25所述的传感器,其中所述块被直线轴承悬挂在所述框架上。
27.如权利要求25所述的传感器,还包含减震器,所述减震器被设置于所述框架上以使地心引力的作用将导致所述布拉格光栅的长度的变化,而不用考虑所述框架相对于引力的取向。
28.如权利要求25所述的传感器,还包含:
取向基本垂直的三个框架;
每个都操作地耦合至各自的框架之一的三个块,以使地心引力作用于每个块与相应的框架相对于引力的取向有关,所述块被布置成可沿相应的框架基本上直线移动;
操作耦合至每个块的布拉格光栅;以及
用于测量每个布拉格光栅的长度变化的部件。
29.如权利要求28所述的传感器,其中在单个光纤上形成所述三个布拉格光栅。
30.一种多元地震传感器系统,包含:
三个加速计,每个加速计包含横梁和被固定到所述横梁一侧的至少一条光纤以使所述横梁的偏斜改变所述光纤的长度,所述三个加速计被定向成以使其对至少部分沿着相互垂直方向的加速度是敏感的;
用于感测每个所述加速计中的所述光纤的长度变化的部件;
三个框架,每个框架具有与所述加速计之一的敏感方向基本对准的方向;
三个块,每个块被操作地耦合至各自的框架之一,以使地心引力作用于每个块与相应框架相对于引力的取向有关,所述块被布置成可沿相应框架基本上直线移动。
操作地耦合至每个块的布拉格光栅;以及
用于测量每个布拉格光栅的长度变化的部件。
CNA2006100733489A 2005-03-31 2006-03-31 光学加速计、光学倾斜计以及地震传感器系统 Pending CN1841071A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/095,860 US7222534B2 (en) 2005-03-31 2005-03-31 Optical accelerometer, optical inclinometer and seismic sensor system using such accelerometer and inclinometer
US11/095860 2005-03-31

Publications (1)

Publication Number Publication Date
CN1841071A true CN1841071A (zh) 2006-10-04

Family

ID=36119730

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006100733489A Pending CN1841071A (zh) 2005-03-31 2006-03-31 光学加速计、光学倾斜计以及地震传感器系统

Country Status (9)

Country Link
US (1) US7222534B2 (zh)
CN (1) CN1841071A (zh)
AU (1) AU2006201171B2 (zh)
BR (1) BRPI0601039B1 (zh)
CA (1) CA2535057C (zh)
EG (1) EG24977A (zh)
GB (3) GB2467068B (zh)
MX (1) MXPA06003577A (zh)
NO (2) NO338426B1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713528A (zh) * 2009-05-27 2012-10-03 希里克萨有限公司 光学感测的方法及装置
CN105388322A (zh) * 2009-12-01 2016-03-09 原相科技股份有限公司 光学式侦测方法、光学式微机电侦测计及其制法
CN106768295A (zh) * 2016-12-12 2017-05-31 山东大学 一种光纤光栅微震传感器及制作方法
CN107949792A (zh) * 2015-09-11 2018-04-20 西门子公司 光纤式加速度传感器

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0401053D0 (en) * 2004-01-17 2004-02-18 Qinetiq Ltd Improvements in and relating to accelerometers
CN100449317C (zh) * 2006-11-08 2009-01-07 浙江大学 高分辨率亚纳量级光学三维加速度计
US7793543B2 (en) * 2007-05-04 2010-09-14 Baker Hughes Incorporated Method of measuring borehole gravitational acceleration
US7707883B2 (en) * 2007-11-06 2010-05-04 Baker Hughes Incorporated Apparatus and method for improved light source and light detector for gravimeter
US7808618B1 (en) 2008-01-09 2010-10-05 The Charles Stark Draper Laboratory, Inc. Methods and apparatus for providing a semiconductor optical flexured mass accelerometer
US7622706B2 (en) 2008-01-18 2009-11-24 Pgs Geophysical As Sensor cable and multiplexed telemetry system for seismic cables having redundant/reversible optical connections
US8387456B2 (en) * 2008-03-18 2013-03-05 Symphony Acoustics, Inc. Gravity gradient sensor
US7751657B2 (en) * 2008-09-17 2010-07-06 Geum Suk Lee Inclinometer system
CA2744255C (en) * 2008-11-19 2017-07-11 The Australian National University A system, device and method for detecting seismic acceleration
US9110181B2 (en) * 2010-03-19 2015-08-18 Washington University Rotational seismometer for near-field measurements
GB2506794B (en) * 2011-08-09 2016-08-17 Shell Int Research Method and apparatus for measuring seismic parameters of a seismic vibrator
WO2013134193A2 (en) 2012-03-08 2013-09-12 Shell Oil Company Integrated seismic monitoring system and method
WO2013134196A2 (en) 2012-03-08 2013-09-12 Shell Oil Company Seismic cable handling system and method
JP5926456B2 (ja) * 2012-06-06 2016-05-25 ノースロップ グルマン システムズ コーポレーションNorthrop Grumman Systems Corporation 光学式加速度計システム
CN102707091A (zh) * 2012-06-12 2012-10-03 中国科学院半导体研究所 基于悬臂梁的双光栅光纤矢量加速度计
CN103076465A (zh) * 2013-01-15 2013-05-01 西北大学 双半孔梁差动式光纤布拉格光栅加速度传感器
US9207339B2 (en) * 2013-01-23 2015-12-08 Magi-Q Technologies, Inc. Optical seismic sensor systems and methods
US10175437B2 (en) 2014-02-18 2019-01-08 Pgs Geophysical As Subsea cable having floodable optical fiber conduit
US9395465B2 (en) 2014-07-31 2016-07-19 Baker Hughes Incorporated Gravity and/or acceleration measurements using dual interferometer configurations
US9829503B2 (en) 2014-10-03 2017-11-28 Pgs Geophysical As Apparatuses, systems, and methods for accelerometers
US9746633B2 (en) 2014-10-03 2017-08-29 Pgs Geophysical As Clamp and bending strain relief apparatus and methods
US9927221B2 (en) 2014-10-03 2018-03-27 Pgs Geophysical As Pressure-balanced seismic sensor package
US10101481B2 (en) 2014-10-03 2018-10-16 Pgs Geophysical As Floodable optical apparatus, methods and systems
GB2531817B (en) 2014-11-03 2019-12-04 Westerngeco Seismic Holdings Ltd Accelerometer
GB2569245B (en) * 2014-11-03 2019-12-04 Westerngeco Seismic Holdings Ltd Optical fiber accelerometer
US9928705B2 (en) 2015-06-16 2018-03-27 Utc Fire & Security Corporation Threat detection system
AU2016344004A1 (en) 2015-10-30 2018-06-14 Ion Geophysical Corporation Multi-axis, single mass accelerometer
PL240132B1 (pl) * 2017-04-28 2022-02-21 Inphotech Spolka Z Ograniczona Odpowiedzialnoscia Sposób pomiaru drgań oraz urządzenie do pomiaru drgań
CN108225602A (zh) * 2017-12-26 2018-06-29 北京信息科技大学 基于fp-mz结构的温度应变同时测量的干涉型全光纤传感器
WO2020056216A1 (en) 2018-09-13 2020-03-19 Ion Geophysical Corporation Multi-axis, single mass accelerometer
CN109828123B (zh) * 2019-03-04 2021-01-19 武汉理工大学 一种基于长周期光纤光栅弯曲特性的二维加速度传感器及测量方法
US11079230B2 (en) 2019-05-10 2021-08-03 Northrop Grumman Systems Corporation Fiber-optic gyroscope (FOG) assembly
US10852132B1 (en) * 2019-05-17 2020-12-01 Chunwei Zhang Fiber bragg grating inclination sensor
CN111308569B (zh) * 2020-02-24 2021-03-12 北京大学 一种光纤重力梯度仪及重力梯度测量方法
CN113624990A (zh) * 2021-08-06 2021-11-09 西北大学 一种基于超短光纤光栅光纤的加速度传感器
CN113884703B (zh) * 2021-10-22 2024-01-09 欧梯恩智能科技(苏州)有限公司 一种三轴光纤加速度计
CN114001814B (zh) * 2021-11-18 2023-08-15 湖北工业大学 基于f-p干涉的复合式mems矢量水听器
CN114966105B (zh) * 2022-04-18 2023-07-14 北京华卓精科科技股份有限公司 一种加速度计

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4403144A (en) 1978-07-26 1983-09-06 Rockwell International Corporation Fiber optic accelerometer
SE413555B (sv) 1978-09-15 1980-06-02 Asea Ab Fiberoptiskt metdon
US4191470A (en) 1978-09-18 1980-03-04 Honeywell Inc. Laser-fiber optic interferometric strain gauge
US4322829A (en) 1980-09-11 1982-03-30 Dynamic Systems, Inc. Fiber optic accelerometer and method of measuring inertial force
US4466295A (en) 1982-09-20 1984-08-21 Trw Inc. Photoelastic sensing means
US4671113A (en) 1983-02-17 1987-06-09 Carome Edward F Fiber optic accelerometer
US4593385A (en) 1983-05-19 1986-06-03 The Charles Stark Draper Laboratory Fiber optic sensor lead fiber noise cancellation
US4567771A (en) 1983-06-10 1986-02-04 Adc Fiber Optics Corporation Optical accelerometer
US4592235A (en) 1983-11-18 1986-06-03 Fink Lawrence E Optical accelerometer
DE3404692A1 (de) 1984-02-10 1985-08-14 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Elektrode fuer ein widerstandspressschweissgeraet
US4678905A (en) 1984-05-18 1987-07-07 Luxtron Corporation Optical sensors for detecting physical parameters utilizing vibrating piezoelectric elements
US4897541A (en) 1984-05-18 1990-01-30 Luxtron Corporation Sensors for detecting electromagnetic parameters utilizing resonating elements
US4710760A (en) 1985-03-07 1987-12-01 American Telephone And Telegraph Company, At&T Information Systems Inc. Photoelastic touch-sensitive screen
CA1258786A (en) 1985-04-11 1989-08-29 Omur M. Sezerman Tilt adjustable optical fibre connectors
US4889406A (en) 1985-04-11 1989-12-26 Sezerman Omur M Tilt adjustable optical fibre connectors
US4648274A (en) 1985-08-07 1987-03-10 General Signal Corporation Photoelastic measuring transducer and accelerometer based thereon
US4726650A (en) 1985-09-27 1988-02-23 Western Atlas International, Inc. Optical accelerometer
US4743116A (en) 1985-10-07 1988-05-10 Eric Udd Microbending optical fiber accelerometer and gyroscope
US4755051A (en) 1985-10-07 1988-07-05 Mcdonnell Douglas Corporation Vibrating optical fiber accelerometer and gyroscope
US4637255A (en) 1985-12-30 1987-01-20 Litton Systems, Inc. Non-planar ring laser accelerometer
US4751690A (en) 1986-05-12 1988-06-14 Gould Inc. Fiber optic interferometric hydrophone
US4739661A (en) 1987-04-10 1988-04-26 United States Of America As Represented By The Secretary Of The Navy Fiber-optic accelerometer having cantilevered acceleration-sensitive mass
US4800267A (en) 1987-07-06 1989-01-24 Freal James B Optical fiber microbend horizontal accelerometer
US4900918A (en) 1987-08-06 1990-02-13 Allied-Signal Inc. Resonant fiber optic accelerometer with noise reduction using a closed loop feedback to vary pathlength
US4876447A (en) 1987-08-06 1989-10-24 Allied-Signal Inc. Fiber optic accelerometer using closed feedback relation to vary pathlength
US4799752A (en) 1987-09-21 1989-01-24 Litton Systems, Inc. Fiber optic gradient hydrophone and method of using same
US5195162A (en) 1987-12-16 1993-03-16 General Motors Corporation Planar polymer light guide methods and apparatus
US4930862A (en) 1988-01-20 1990-06-05 The Babcock & Wilcox Company Fiberoptic microbend accelerometer
US4860586A (en) 1988-01-20 1989-08-29 The Babcock & Wilcox Company Fiberoptic microbend accelerometer
DE3810638C1 (zh) 1988-03-29 1989-08-10 Boge Ag, 5208 Eitorf, De
US4900919A (en) 1988-06-20 1990-02-13 Westinghouse Electric Corp. Wide bandwidth fiber optic accelerometer
US5251728A (en) 1989-07-05 1993-10-12 Boge Ag Hydraulic vibration damper or shock absorber with electrical control connections and connector therefor
US5099690A (en) 1989-07-31 1992-03-31 Allied-Signal Inc. Fiber-optic gyroscope accelerometer
US5061069A (en) * 1989-07-31 1991-10-29 Allied-Signal Inc. Fiber-optic bender beam interferometer accelerometer
GB8921370D0 (en) 1989-09-21 1989-11-08 Smiths Industries Plc Accelerometers
US5155548A (en) 1990-05-22 1992-10-13 Litton Systems, Inc. Passive fiber optic sensor with omnidirectional acoustic sensor and accelerometer
US5276322A (en) 1990-10-17 1994-01-04 Edjewise Sensor Products, Inc. Fiber optic accelerometer
US5317929A (en) 1991-02-07 1994-06-07 Brown David A Fiber optic flexural disk accelerometer
JPH05215764A (ja) 1992-01-31 1993-08-24 Canon Inc 光学式加速度計及び光学式角加速度計
US5420688A (en) 1992-12-14 1995-05-30 Farah; John Interferometric fiber optic displacement sensor
DE4337772A1 (de) 1993-11-05 1995-05-11 Fichtel & Sachs Ag Verfahren zum Erkennen einer Kurvenfahrt
US5473459A (en) 1993-12-03 1995-12-05 Optimux Systems Corporation Optical telecommunications system using phase compensation interferometry
DE19514844A1 (de) 1994-05-02 1995-11-09 Fichtel & Sachs Ag Anordnung zur Steuerung einer Fahrwerk-Einrichtung
FR2729031A1 (fr) 1994-12-28 1996-07-05 Alcatel Business Systems Agencement de chainage entre modules intermediaires, notamment de type repeteur, d'une installation dotee de terminaux communiquant par une liaison de transmission de paquets et installation ainsi equipee
SE9500512L (sv) * 1995-02-13 1996-07-22 Reflex Instr Ab Apparat för bestämning av krökningen för en långsträckt kanal såsom ett borrhål i berg
DE19514852C2 (de) 1995-04-26 1997-07-03 Deutsche Forsch Luft Raumfahrt Verfahren und Anordnung zur Beschleunigungs- und Vibrationsmessung
US5611731A (en) 1995-09-08 1997-03-18 Thrustmaster, Inc. Video pinball machine controller having an optical accelerometer for detecting slide and tilt
US5705809A (en) 1996-01-02 1998-01-06 Kershaw; Charles H. Optical transducer for measuring acceleration or vibration using a curved light reflector
US5625724A (en) 1996-03-06 1997-04-29 Litton Systems, Inc Fiber optic hydrophone having rigid mandrel
US5936294A (en) 1996-05-28 1999-08-10 Motorola, Inc. Optical semiconductor component and method of fabrication
US5837998A (en) 1996-06-24 1998-11-17 Dinev; Petko D. Two-dimensional fiber optic acceleration and vibration sensor
US5903349A (en) 1997-04-21 1999-05-11 The United States Of America As Represented By The Secretary Of The Navy Fiber optic accelerometer sensor and a method of constructing same
US5883308A (en) 1997-06-09 1999-03-16 Litton Systems, Inc. Fiber optic twist ring accelerometer
JPH1183894A (ja) * 1997-09-10 1999-03-26 Japan Aviation Electron Ind Ltd 光学式加速度計
US6018390A (en) 1998-01-27 2000-01-25 Rice Systems, Inc. Integrated optics waveguide accelerometer with a proof mass adapted to exert force against the optical waveguide during acceleration
US6175108B1 (en) * 1998-01-30 2001-01-16 Cidra Corporation Accelerometer featuring fiber optic bragg grating sensor for providing multiplexed multi-axis acceleration sensing
US6563998B1 (en) 1999-04-15 2003-05-13 John Farah Polished polymide substrate
US6807328B2 (en) 1998-04-17 2004-10-19 John Farah Polished polyimide substrate
US6426947B1 (en) 1998-10-21 2002-07-30 Kim K. Banker Apparatus and method for unilateral topology discovery in network management
US6160762A (en) * 1998-06-17 2000-12-12 Geosensor Corporation Optical sensor
US6314371B1 (en) 1999-06-25 2001-11-06 Input/Output, Inc. Dual sensor signal processing method for on-bottom cable seismic wave detection
US6575033B1 (en) 1999-10-01 2003-06-10 Weatherford/Lamb, Inc. Highly sensitive accelerometer
US7243543B2 (en) * 1999-10-01 2007-07-17 Optoplan As Highly sensitive accelerometer
US6346985B1 (en) 1999-10-29 2002-02-12 Litton Systems, Inc. Optical method for the transduction of remote arrays of electromechanical sensors
US6384919B1 (en) 1999-10-29 2002-05-07 Northrop Grumman Corporation Fiber optic seismic sensor
FR2807512B1 (fr) * 2000-04-11 2002-05-24 Commissariat Energie Atomique Inclinometre a reseau de bragg
US6671055B1 (en) 2000-04-13 2003-12-30 Luna Innovations, Inc. Interferometric sensors utilizing bulk sensing mediums extrinsic to the input/output optical fiber
US6832023B1 (en) 2000-05-19 2004-12-14 Georgia Tech Research Corporation Optical fiber gratings with azimuthal refractive index perturbation, method of fabrication, and devices for tuning, attenuating, switching, and modulating optical signals
US6867411B2 (en) 2000-10-30 2005-03-15 The Charles Stark Draper Laboratory, Inc. Optically rebalanced accelerometer
JP2004528538A (ja) 2001-02-06 2004-09-16 ウェザーフォード/ラム インコーポレーテッド 高感度交差軸加速度計
US6567174B1 (en) 2001-02-28 2003-05-20 Raytheon Company Optical accelerometer and its use to measure acceleration
US6763718B1 (en) 2001-06-26 2004-07-20 The United States Of America As Represented By The Secretary Of The Navy Micro-electro-mechanical systems ultra-sensitive accelerometer with independent sensitivity adjustment
US6581465B1 (en) 2001-03-14 2003-06-24 The United States Of America As Represented By The Secretary Of The Navy Micro-electro-mechanical systems ultra-sensitive accelerometer
US6550330B1 (en) 2001-03-14 2003-04-22 The United States Of America As Represented By The Secretary Of The Navy Differential amplification for micro-electro-mechanical ultra-sensitive accelerometer
US6549488B2 (en) 2001-07-10 2003-04-15 Pgs Americas, Inc. Fiber-optic hydrophone
US6650418B2 (en) 2001-07-27 2003-11-18 Litton Systems, Inc. High performance fiber optic accelerometer
US6774354B2 (en) * 2001-10-15 2004-08-10 The United States Of America As Represented By The Secretary Of The Navy Fiber optic pitch or roll sensor
US6853934B2 (en) 2002-01-02 2005-02-08 General Electric Company System and method for remote data acquisition, monitoring and control
US6901176B2 (en) 2002-10-15 2005-05-31 University Of Maryland Fiber tip based sensor system for acoustic measurements
US6779402B2 (en) 2002-10-18 2004-08-24 Northrop Grumman Corporation Method and apparatus for measuring acceleration using a fiber optic accelerometer
US6886404B2 (en) 2003-02-05 2005-05-03 Fibersonde Corporation Fiber optic accelerometer
US6955085B2 (en) * 2003-06-02 2005-10-18 Weatherford/Lamb, Inc. Optical accelerometer or displacement device using a flexure system
US6898970B2 (en) 2003-06-05 2005-05-31 International Business Machines Corporation Inertial navigation device for ion propulsion driven spacecraft

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713528A (zh) * 2009-05-27 2012-10-03 希里克萨有限公司 光学感测的方法及装置
US9140582B2 (en) 2009-05-27 2015-09-22 Silixa Limited Optical sensor and method of use
CN102713528B (zh) * 2009-05-27 2016-05-04 希里克萨有限公司 光学感测的方法及装置
US9541426B2 (en) 2009-05-27 2017-01-10 Silica Limited Optical sensor and method of use
US9541425B2 (en) 2009-05-27 2017-01-10 Silixa Limited Method and apparatus for optical sensing
US11079269B2 (en) 2009-05-27 2021-08-03 Silixa Limited Method and apparatus for optical sensing
US11802789B2 (en) 2009-05-27 2023-10-31 Silixa Ltd. Method and apparatus for optical sensing
CN105388322A (zh) * 2009-12-01 2016-03-09 原相科技股份有限公司 光学式侦测方法、光学式微机电侦测计及其制法
CN107949792A (zh) * 2015-09-11 2018-04-20 西门子公司 光纤式加速度传感器
CN106768295A (zh) * 2016-12-12 2017-05-31 山东大学 一种光纤光栅微震传感器及制作方法

Also Published As

Publication number Publication date
GB2424700A (en) 2006-10-04
BRPI0601039A (pt) 2006-12-05
GB2467068B (en) 2010-10-27
NO339563B1 (no) 2017-01-02
GB2467068A (en) 2010-07-21
AU2006201171B2 (en) 2011-04-28
NO20061377L (no) 2006-10-02
GB201007608D0 (en) 2010-06-23
GB2467069B (en) 2010-09-08
GB2424700B (en) 2010-09-08
US7222534B2 (en) 2007-05-29
US20060219009A1 (en) 2006-10-05
GB0602549D0 (en) 2006-03-22
EG24977A (en) 2011-03-28
CA2535057A1 (en) 2006-09-30
GB2467069A (en) 2010-07-21
CA2535057C (en) 2013-08-13
NO338426B1 (no) 2016-08-15
MXPA06003577A (es) 2006-09-29
NO20161062A1 (no) 2016-06-24
AU2006201171A1 (en) 2006-10-19
BRPI0601039B1 (pt) 2018-06-05
GB201007610D0 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
CN1841071A (zh) 光学加速计、光学倾斜计以及地震传感器系统
CN101038297B (zh) 压力补偿的光学加速计、光学倾斜计和地震传感器系统
US7714271B1 (en) Simple fiber optic seismometer for harsh environments
AU2017346318B2 (en) Probe for determining soil properties
Bao et al. Temperature-insensitive FBG tilt sensor with a large measurement range
Ni et al. Temperature-independent fiber Bragg grating tilt sensor
KR100685186B1 (ko) 광섬유 기반의 가속도계/경사계
NO20140263A1 (no) Optisk bevegelsessensor
US20070008544A1 (en) Fiber-optic seismic sensor
JP2002538426A (ja) 機械的力を測定するブラッグ格子装置、ブラッグ格子装置の使用法、およびブラッグ格子装置を駆動する方法
CN1693899A (zh) 加速度传感器
RU2716867C1 (ru) Система измерения трёхмерного линейного и углового ускорения и перемещения объекта в пространстве с использованием волоконных брэгговских решеток
RU2749641C1 (ru) Универсальный инерциальный волоконно-оптический акселерометр
CN2651754Y (zh) 光纤光栅式加速度计
KR102493100B1 (ko) 광섬유격자 기반 지진감지장치
Masek et al. Fibre optic based 3-D accelerometer design
KR101427810B1 (ko) 지진계용 3축 광학 가속도 센서
RU101848U1 (ru) Сейсмограф
Sun et al. FBG sensors for the measurement of the dynamic response of offshore oil platform model
Abushagur et al. Novel three-axes figer Bragg grating accelerometer
Wang et al. A new fiber Bragg grating based accelerometer
Ni et al. Temperature-insensitive fiber Bragg grating tilt sensor
Zhang et al. Fiber laser hydrophone for low frequency signal detection

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20061004