CN102707091A - 基于悬臂梁的双光栅光纤矢量加速度计 - Google Patents

基于悬臂梁的双光栅光纤矢量加速度计 Download PDF

Info

Publication number
CN102707091A
CN102707091A CN2012101927947A CN201210192794A CN102707091A CN 102707091 A CN102707091 A CN 102707091A CN 2012101927947 A CN2012101927947 A CN 2012101927947A CN 201210192794 A CN201210192794 A CN 201210192794A CN 102707091 A CN102707091 A CN 102707091A
Authority
CN
China
Prior art keywords
optical fiber
grating
semi
fiber grating
girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101927947A
Other languages
English (en)
Inventor
张文涛
侯跃峰
李芳�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN2012101927947A priority Critical patent/CN102707091A/zh
Publication of CN102707091A publication Critical patent/CN102707091A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于悬臂梁的双光栅光纤矢量加速度计,包括外壳、第一小孔、第一光纤光栅、第二光纤光栅、第二小孔、质量块、悬臂梁和支座,其中外壳用于作为该光纤矢量加速度计的支撑结构,在该外壳相邻的两个侧壁上开有第一小孔和第二小孔,第一小孔用于固定第一光纤光栅并引出其尾纤,第二小孔用于固定第二光纤光栅并引出其尾纤;第一光纤光栅的一端与质量块固定连接,另一端与第一小孔固定连接;第二光纤光栅的一端与质量块固定连接,另一端与第二小孔固定连接;悬臂梁的一端通过支座固定于该外壳的一个侧壁,另一端与质量块固定连接。本发明在实现矢量探测的同时缩小了光纤矢量加速度计体积,并提高了光纤矢量加速度计整体带宽利用率。

Description

基于悬臂梁的双光栅光纤矢量加速度计
技术领域
本发明涉及光纤传感器技术领域,尤其涉及一种基于悬臂梁的双光栅光纤矢量加速度计。
背景技术
光纤传感器与对应的常规传感器相比,在灵敏度、动态范围、可靠性等方面具有明显的优势,在国防、军事应用领域显得尤为突出,被许多国家列为重点发展的国防技术。
光纤矢量加速度计是利用光纤的传光特性以及它与周围环境相互作用产生的种种调制效应,探测地面、空气或海底的矢量振动信号的仪器。它与传统的压电类矢量加速度计相比,有以下主要优势:频带宽、声压灵敏度高、不受电磁干扰、重量轻、可设计成任意形状,以及兼具信息传感及光信息传输于一身等优点。
鉴于光纤矢量加速度计的如上技术优势,可满足各发达国家在振动监测、石油勘探、军事装备等领域的要求,目前已经在此方面积极展开研究。
马睿等人报道的一种细长型矢量光纤激光水听器(Two-axis slim fiberlaser vector hydrophone.Photonics Technology Letters.2011,23(6):335-337),是采用加速度计矢量叠加的方法。分别延X轴向和Y轴向安装两个加速度计,将探测到的两轴向加速度进行矢量合成,从而得到加速度矢量信息。该技术方案一方面结构复杂,体积较大,使用不便,另一方面两个加速度计拥有各自的振动机构,探测到的并非同点信息,且两轴向带宽不等。
刘波等人报道的一种光纤光栅三维加速度传感器(光纤光栅三维加速度/振动传感器,中国专利,CN101210937A,2008-7-2),是采用在悬臂梁表面粘贴光纤光栅的方法。当悬臂梁发生振动时,其表面会有周期性的压拉应变,光纤通过检测悬臂梁表面的应变来实现振动的测量。该技术方案一方面由于光纤光栅的栅区直接被胶剂封装,容易使光纤光栅产生啁啾,另一方面为了是加速度和传感器的输出保持线性关系,悬臂梁的扰度不能过大,从而限制了传感器的灵敏度。
S.R.K.Morikawa等人报道的一种光纤光栅三分量加速度计(TriaxialBragg Grating Accelerometer.15th Optical Fiber Sensors ConferenceTechnical Digest,2002:95-98),是采用质量块中心悬挂的方法。当质量块振动时,促使X、Y、Z三个轴向的光纤光栅发生轴向应变,进而解调出三个轴向的加速度信息,再经矢量合成即可得到矢量加速度信息。该技术方案由于直接采用光纤作为弹性变形元件,一方面其共振频率较低,频带较窄,另一方面为了避免光纤由于外力过大而导致断裂,其质量块位移不易过大,从而限制了传感器的灵敏度。
因此,如何简化光纤矢量加速度计的结构形式以缩小体积,和如何改进光纤矢量加速度计的封装形式以提高灵敏度,是光纤矢量加速度计大规模应用必须要解决的重大技术问题。
发明内容
(一)要解决的技术问题
有鉴于此,本发明的主要目的在于提供一种基于悬臂梁的双光栅光纤矢量加速度计,以减小光纤矢量加速度计体积并改进光纤矢量加速度计封装工艺。
(二)技术方案
为达到上述目的,本发明提供了一种基于悬臂梁的双光栅光纤矢量加速度计,该光纤矢量加速度计包括外壳1、第一小孔2、第一光纤光栅3、第二光纤光栅4、第二小孔5、质量块6、悬臂梁7和支座8,其中:外壳1用于作为该光纤矢量加速度计的支撑结构,在该外壳1相邻的两个侧壁上开有第一小孔2和第二小孔5,第一小孔2用于固定第一光纤光栅3并引出其尾纤,第二小孔5用于固定第二光纤光栅4并引出其尾纤;第一光纤光栅3的一端与质量块6固定连接,另一端与第一小孔2固定连接;第二光纤光栅4的一端与质量块6固定连接,另一端与第二小孔5固定连接;悬臂梁7的一端通过支座8固定于该外壳1的一个侧壁,另一端与质量块6固定连接。
上述方案中,所述外壳1具有沿顺时针方向排列的第一侧壁m、第二侧壁n、第三侧壁p和第四侧壁q,所述第一小孔2位于所述第一侧壁m,所述第二小孔5位于所述第二侧壁n。
上述方案中,所述第一光纤光栅3平行于所述第二侧壁n和所述第四侧壁q,用于测量X轴向加速度。
上述方案中,所述第二光纤光栅4平行于所述第一侧壁m和所述第三侧壁p,用于测量Y轴向加速度。
上述方案中,所述支座8安装于所述第四侧板q上,用于固定悬臂梁7。
上述方案中,所述悬臂梁7的一端通过支座8固定于所述第四侧板q上,用于将振动信号传递给所述第一光纤光栅3和所述第二光纤光栅4。
上述方案中,所述质量块6安装于所述悬臂梁7另一端,用于调整光纤光栅加速度计的灵敏度和共振频率。
上述方案中,所述第一光纤光栅3的一端和所述第二光纤光栅4的一端固定于所述质量块6的同一点,并相互垂直,具有一定的初始应力。
上述方案中,所述悬臂梁7与所述第一光纤光栅3应保持一定角度而非垂直或共线。
(三)有益效果
从以上技术方案可以看出,本发明具有以下有益效果:
1、本发明提供的基于悬臂梁的双光栅光纤矢量加速度计,通过两根光纤与一根悬臂梁组成的振动系统,在实现矢量探测的同时通过简化光纤矢量加速度计的结构,缩小了光纤矢量加速度计体积,并通过缩小两轴向带宽的差值,提高了光纤矢量加速度计整体带宽利用率。
2、本发明提供的基于悬臂梁的双光栅光纤矢量加速度计,通过形成差动形式,可以将灵敏度提高一倍并消除温度影响。
3、本发明提供的基于悬臂梁的双光栅光纤矢量加速度计,通过在光纤光栅两端固定的方式,在避免光纤光栅产生啁啾的同时简化了封装工艺,使制作工艺简单。
4、本发明提供的基于悬臂梁的双光栅光纤矢量加速度计,质量块在振动过程中的位移转化为光纤光栅的轴向位移,相比于粘贴在悬臂梁表面通过应变传递的方式,对于同样大小的振动信号,光纤光栅中将产生更大的应变,使光纤矢量加速度计具有较高的灵敏度。
5、本发明提供的基于悬臂梁的双光栅光纤矢量加速度计,可方便地通过调节质量块的质量或改变悬臂梁的结构和材料参数来改变自身的灵敏度和共振频率,使得灵敏度和共振频率易于调节。
附图说明
图1为依照本发明第一个实施例的基于悬臂梁的双光栅光纤矢量加速度计的结构示意图;
图2为依照本发明第二个实施例的基于悬臂梁的双光栅光纤矢量加速度计的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
实施例1
如图1所示,图1为依照本发明第一个实施例的基于悬臂梁的双光栅光纤矢量加速度计的结构示意图。该光纤矢量加速度计包括:作为光纤矢量加速度计支撑结构的外壳1,其具有第一侧壁m、第二侧壁n、第三侧壁p和第四侧壁q;位于光纤矢量加速度计的第一侧壁m上的第一小孔2,用于固定和引出第一光纤光栅3的尾纤;位于光纤矢量加速度计的第二侧壁n上的第二小孔5,用于固定和引出第二光纤光栅4的尾纤;一端与质量块6固定连接,另一端平行于第四侧壁q并与所述光纤矢量加速度计第一侧壁m上的第一小孔2固定连接的第一光纤光栅3,用于测量X轴向加速度;一端与质量块6固定连接,另一端平行于第一侧壁m并与所述光纤矢量加速度计第二侧壁n上的第二小孔5固定连接的第二光纤光栅4,用于测量Y轴向加速度;安装于所述光纤矢量加速度计第四侧板q上的支座8,用于固定悬臂梁;一端安装于所述支座8上的悬臂梁7,用于将振动信号传递给所述第一光纤光栅3和第二光纤光栅4;安装于所述悬臂梁7另一端上的质量块6,用于调整光纤光栅加速度计的灵敏度和共振频率。
其中,第一光纤光栅3的一端和第二光纤光栅4的一端固定于所述质量块6的同一点,并相互垂直,具有一定的初始应力。悬臂梁7与第一光纤光栅3应保持一定角度而非垂直或共线。悬臂梁7为等截面梁或是等强度梁。由于悬臂梁7刚度可以决定加速度计的灵敏度和共振频率,故改变悬臂梁7的结构和材料参数可以改变加速度计的灵敏度和共振频率。质量块6的质量远大于悬臂梁7的质量,用于减小光纤矢量加速度计的非线性效应。由于质量块6会对加速度计的灵敏度和共振频率产生显著影响,故改变质量块的质量亦可以改变加速度计的灵敏度和共振频率。
当该光纤矢量加速度计受到振动激励时,悬臂梁7和质量块6构成一个弹簧-质量振动系统,质量块6的振动带动悬臂梁7产生一定挠度,悬臂梁7的振动使得第一光纤光栅3和第二光纤光栅4中分别产生与振动频率一致的周期性变化的轴向应力,通过后续采用相应的解调算法(例如相位产生载波算法)即可解调出每一轴向加速度信号,再经简单计算(例如加速度矢量合成计算)即可得到加速度矢量信息。
该光纤矢量加速度计使用同一个振动系统,具有如下两点优势:第一,克服了要探测加速度矢量信息必须增加传感器数目,从而导致矢量加速度计体积增大的缺点;第二,两轴向共振频率相似,故两轴向带宽相同,从而提高了光纤矢量加速度计整体带宽利用率。
实施例2
如图2所示,图2为依照本发明第二个实施例的基于悬臂梁的双光栅光纤矢量加速度计的结构示意图。该结构在如图1所示的本发明第一个实施例的基础上,进一步在所述质量块6与所述第三侧壁p上固定第三光纤光栅8,和在所述质量块6与所述第四侧壁q上固定第四光纤光栅9。从而使得该矢量加速度计形成差动结构,以进一步提高灵敏度并补偿温度影响。其中,第三光纤光栅8和第四光纤光栅9均具有一定预应力。
该光纤矢量加速度计的工作原理为,将加速度计外壳与待测物体固定,当有振动信号时,质量块6会带动悬臂梁7随着振动信号一起振动,从而引起X轴向第一光纤光栅3和第三光纤光栅8相反的轴向应变,并引起Y轴向第二光纤光栅4和第四光纤光栅9相反的轴向应变,进而在两轴向形成差动结构,在后续信号处理时将每一轴向的两个信号进行相减,故图2所示结构其灵敏度比图1所示结构提高一倍。同时,四只光纤光栅感受的温度基本相同,通过相减的方法可以消除温度变化的影响。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于悬臂梁的双光栅光纤矢量加速度计,其特征在于,该光纤矢量加速度计包括外壳(1)、第一小孔(2)、第一光纤光栅(3)、第二光纤光栅(4)、第二小孔(5)、质量块(6)、悬臂梁(7)和支座(8),其中:
外壳(1)用于作为该光纤矢量加速度计的支撑结构,在该外壳(1)相邻的两个侧壁上开有第一小孔(2)和第二小孔(5),第一小孔(2)用于固定第一光纤光栅(3)并引出其尾纤,第二小孔(5)用于固定第二光纤光栅(4)并引出其尾纤;
第一光纤光栅(3)的一端与质量块(6)固定连接,另一端与第一小孔(2)固定连接;第二光纤光栅(4)的一端与质量块(6)固定连接,另一端与第二小孔(5)固定连接;
悬臂梁(7)的一端通过支座(8)固定于该外壳(1)的一个侧壁,另一端与质量块(6)固定连接。
2.根据权利要求1所述的基于悬臂梁的双光栅光纤矢量加速度计,其特征在于,所述外壳(1)具有沿顺时针方向排列的第一侧壁(m)、第二侧壁(n)、第三侧壁(p)和第四侧壁(q),所述第一小孔(2)位于所述第一侧壁(m),所述第二小孔(5)位于所述第二侧壁(n)。
3.根据权利要求1所述的基于悬臂梁的双光栅光纤矢量加速度计,其特征在于,所述第一光纤光栅(3)平行于所述第二侧壁(n)和所述第四侧壁(q),用于测量X轴向加速度。
4.根据权利要求1所述的基于悬臂梁的双光栅光纤矢量加速度计,其特征在于,所述第二光纤光栅(4)平行于所述第一侧壁(m)和所述第三侧壁(p),用于测量Y轴向加速度。
5.根据权利要求1所述的基于悬臂梁的双光栅光纤矢量加速度计,其特征在于,所述支座(8)安装于所述第四侧板(q)上,用于固定悬臂梁(7)。
6.根据权利要求1所述的基于悬臂梁的双光栅光纤矢量加速度计,其特征在于,所述悬臂梁(7)的一端通过支座(8)固定于所述第四侧板(q)上,用于将振动信号传递给所述第一光纤光栅(3)和所述第二光纤光栅(4)。
7.根据权利要求1所述的基于悬臂梁的双光栅光纤矢量加速度计,其特征在于,所述质量块(6)安装于所述悬臂梁(7)另一端,用于调整光纤光栅加速度计的灵敏度和共振频率。
8.根据权利要求1所述的基于悬臂梁的双光栅光纤矢量加速度计,其特征在于,所述第一光纤光栅(3)的一端和所述第二光纤光栅(4)的一端固定于所述质量块(6)的同一点,并相互垂直,具有一定的初始应力。
9.根据权利要求1所述的基于悬臂梁的双光栅光纤矢量加速度计,其特征在于,所述悬臂梁(7)与所述第一光纤光栅(3)应保持一定角度而非垂直或共线。
CN2012101927947A 2012-06-12 2012-06-12 基于悬臂梁的双光栅光纤矢量加速度计 Pending CN102707091A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101927947A CN102707091A (zh) 2012-06-12 2012-06-12 基于悬臂梁的双光栅光纤矢量加速度计

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101927947A CN102707091A (zh) 2012-06-12 2012-06-12 基于悬臂梁的双光栅光纤矢量加速度计

Publications (1)

Publication Number Publication Date
CN102707091A true CN102707091A (zh) 2012-10-03

Family

ID=46900027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101927947A Pending CN102707091A (zh) 2012-06-12 2012-06-12 基于悬臂梁的双光栅光纤矢量加速度计

Country Status (1)

Country Link
CN (1) CN102707091A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323621A (zh) * 2013-06-09 2013-09-25 南京邮电大学 一种全方位悬臂梁光纤加速度传感器装置
RU2539681C1 (ru) * 2013-07-26 2015-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский авиационный институт (национальный исследовательский университет) (МАИ) Волоконно-оптический преобразователь линейного ускорения на основе оптического туннельного эффекта
CN104236471B (zh) * 2014-10-09 2016-11-16 中国石油化工股份有限公司 炼焦塔水力除焦在线监测的y型双fbg光纤振动传感器
CN107144705A (zh) * 2017-07-06 2017-09-08 山东省科学院激光研究所 一种光纤光栅加速度计
CN108240859A (zh) * 2016-12-26 2018-07-03 深圳太辰光通信股份有限公司 一种光纤光栅振动传感器的参数设计方法
CN109764857A (zh) * 2019-01-09 2019-05-17 蚌埠学院 一种光纤光栅倾斜仪惯性元件质量的选择方法
CN111174897A (zh) * 2020-01-16 2020-05-19 西安石油大学 悬臂梁式二维光纤光栅振动传感器
CN111879966A (zh) * 2020-06-24 2020-11-03 南京邮电大学 一种多方向检测的光纤光栅加速度传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285846A (zh) * 2007-04-11 2008-10-15 中国科学院半导体研究所 基于悬臂梁挠度的光纤光栅加速度计
GB2467068A (en) * 2005-03-31 2010-07-21 Pgs Americas Inc A gravity orientation sensor
CN101799555A (zh) * 2010-03-01 2010-08-11 中国科学院半导体研究所 光纤海底地震仪

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2467068A (en) * 2005-03-31 2010-07-21 Pgs Americas Inc A gravity orientation sensor
CN101285846A (zh) * 2007-04-11 2008-10-15 中国科学院半导体研究所 基于悬臂梁挠度的光纤光栅加速度计
CN101799555A (zh) * 2010-03-01 2010-08-11 中国科学院半导体研究所 光纤海底地震仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
侯跃峰等: "基于双悬臂梁结构的光纤加速度传感器", 《光电子.激光》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323621A (zh) * 2013-06-09 2013-09-25 南京邮电大学 一种全方位悬臂梁光纤加速度传感器装置
CN103323621B (zh) * 2013-06-09 2016-04-13 南京邮电大学 一种全方位悬臂梁光纤加速度传感器装置
RU2539681C1 (ru) * 2013-07-26 2015-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский авиационный институт (национальный исследовательский университет) (МАИ) Волоконно-оптический преобразователь линейного ускорения на основе оптического туннельного эффекта
CN104236471B (zh) * 2014-10-09 2016-11-16 中国石油化工股份有限公司 炼焦塔水力除焦在线监测的y型双fbg光纤振动传感器
CN108240859A (zh) * 2016-12-26 2018-07-03 深圳太辰光通信股份有限公司 一种光纤光栅振动传感器的参数设计方法
CN107144705A (zh) * 2017-07-06 2017-09-08 山东省科学院激光研究所 一种光纤光栅加速度计
CN107144705B (zh) * 2017-07-06 2023-11-10 山东省科学院激光研究所 一种光纤光栅加速度计
CN109764857A (zh) * 2019-01-09 2019-05-17 蚌埠学院 一种光纤光栅倾斜仪惯性元件质量的选择方法
CN111174897A (zh) * 2020-01-16 2020-05-19 西安石油大学 悬臂梁式二维光纤光栅振动传感器
CN111879966A (zh) * 2020-06-24 2020-11-03 南京邮电大学 一种多方向检测的光纤光栅加速度传感器

Similar Documents

Publication Publication Date Title
CN102707091A (zh) 基于悬臂梁的双光栅光纤矢量加速度计
CN101285845B (zh) 一种悬臂梁式光纤光栅加速度计
CN100585407C (zh) 基于悬臂梁挠度的光纤光栅加速度计
CN101726354B (zh) 光纤激光矢量水听器
CN206321660U (zh) 基于弹簧的双光栅光纤加速度传感器
CN101852643B (zh) 温度自补偿型双光栅对称推挽式光纤光栅振动传感器
US4893930A (en) Multiple axis, fiber optic interferometric seismic sensor
CN103471702A (zh) 一种温度不敏感的阻尼可调谐高精度光纤光栅振动传感器
CN102147422B (zh) 伺服式光纤布拉格光栅加速度传感器
CN106814216A (zh) 一体式直圆型柔性铰链光纤光栅加速度传感器
CN107884063A (zh) 一种组合式光纤矢量水听器
CN108663110A (zh) 基于双轴柔性铰链的光纤光栅加速度传感器及测量方法
CN105092016B (zh) 一种moems矢量水听器
CN101398440A (zh) 光纤激光加速度传感器
CN102495235A (zh) 三维加速度测量的光纤光栅传感器
Wang et al. A miniaturized FBG accelerometer based on a thin polyurethane shell
CN110261892A (zh) 基于弱光栅的单分量、三分量光纤光栅振动传感器及传感阵列
CN107884062A (zh) 一种具有自温补特性的三维微振光纤光栅传感器
CN102141575A (zh) 差分式红外位移传感伺服加速度计
CN110531109A (zh) 一种小型弹性板结构的光纤光栅加速度传感器及其测量方法
Zhang et al. A fiber-optic accelerometer based on extrinsic Fabry-Perot interference for low frequency micro-vibration measurement
CN111505340A (zh) 一种小型结构的光纤光栅二维加速度传感器
CN102353982B (zh) 推挽式光纤检波器
CN101344533A (zh) 基于纯弯梁的光纤光栅加速度计
CN103323621A (zh) 一种全方位悬臂梁光纤加速度传感器装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20121003