CN1828224A - 振动陀螺传感器和调节振动陀螺传感器的方法 - Google Patents

振动陀螺传感器和调节振动陀螺传感器的方法 Download PDF

Info

Publication number
CN1828224A
CN1828224A CNA2006100739682A CN200610073968A CN1828224A CN 1828224 A CN1828224 A CN 1828224A CN A2006100739682 A CNA2006100739682 A CN A2006100739682A CN 200610073968 A CN200610073968 A CN 200610073968A CN 1828224 A CN1828224 A CN 1828224A
Authority
CN
China
Prior art keywords
cantilever vibrator
vibrating gyrosensor
laser processing
vibrator
vib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100739682A
Other languages
English (en)
Other versions
CN1828224B (zh
Inventor
高桥和夫
稻熊辉往
相泽学
领木浩二
佐佐木伸
中盐荣治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1828224A publication Critical patent/CN1828224A/zh
Application granted granted Critical
Publication of CN1828224B publication Critical patent/CN1828224B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5642Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
    • G01C19/5663Manufacturing; Trimming; Mounting; Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5614Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5698Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using acoustic waves, e.g. surface acoustic wave gyros
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5726Signal processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Gyroscopes (AREA)

Abstract

本发明公开了一种包括振动陀螺传感器元件的振动陀螺传感器,该振动陀螺传感器元件包括悬臂振动器,该悬臂振动器在第一表面上包括压电膜、驱动电极和一对检测电极,以及在其上安装该振动陀螺传感器元件的支撑基底。将该振动陀螺传感器元件安装在该支撑基底上以使该悬臂振动器的第一表面面对该支撑基底。将除了该悬臂振动器的第一表面之外的区域界定为激光加工区域,在该激光加工区域中将形成用于调节该悬臂振动器的振动特性的凹陷。

Description

振动陀螺传感器和调节振动陀螺传感器的方法
技术领域
本发明涉及一种例如用于摄像机的抖动检测、虚拟现实设备中的运动检测或汽车导航系统中的方向检测的角速度传感器,以及,更具体而言涉及一种包括悬臂振动器的小型振动陀螺传感器及其调节方法。
背景技术
作为一种公知的商业角速度传感器,广泛使用振动陀螺传感器,该振动陀螺传感器被配置为通过使悬臂振动器以预定共振频率振动和使用压电装置检测由于该角速度而产生的科里奥利(Coriolis)力。
已知振动陀螺传感器的优点在于它具有简单的机构、短起动时间以及低制造成本。将这种已知振动陀螺传感器安装在诸如摄像机,虚拟现实设备或汽车导航系统的电子装置上,以分别起到抖动检测传感器、运动检测传感器或方向检测传感器的作用。
通过使用机械来切割压电材料从而构造具有预定形状的振动器来制造已知的振动陀螺传感器。由于安装在已知振动陀螺传感器上的部件的尺寸和重量被减小,且该部件的功能和性能被提高,所以需要该振动陀螺传感器具有更小的尺寸和更高的性能。然而,由于机械加工精度的限制,很难制造高精度的小型振动器。
因此,近来提出一种包括悬臂振动器的振动陀螺传感器,通过应用半导体加工中使用的薄膜技术而在硅基底上形成一对中间夹有压电薄膜的电极层(例如,参考日本未审查专利申请公开No.7-113643)。通过减小尺寸和厚度,这种振动陀螺传感器可以与用于其它目的的传感器结合而构成复杂而先进的系统。
振动陀螺传感器的振动器通常被形成为为棱形的形状,但是通过机械加工或薄膜形成工艺很难制造完全对称的振动器。因此,所制造的振动器相对于中心线是不对称的。当不对称的振动器振动时,该振动器的振动方向将相对于该振动器的中心线倾斜,并且不垂直于该支撑基底。当该振动器的振动方向倾斜时,在该振动器上对称提供的检测电极对所产生信号的幅度将会不一致。因此,该振动器的特性将是不稳定的。
因而,对于已知的振动陀螺传感器,使该不对称振动器的表面接地以调节该振动器的质量平衡(参见日本未审查专利申请公开No.2000-65579),或者在该振动器被固定到该支撑基底的位置调节该振动器的振动特性(参见日本未审查专利申请公开No.2001-330440)。
发明内容
然而,对于使用半导体工艺制造的精密的小型振动陀螺传感器,应用上述调节已知振动陀螺传感器的方法是非常困难的。
而且,还存在这种可能,即当调节精密的小型振动陀螺传感器的振动时,会破坏在振动器表面上提供的压电薄膜和各种电极薄膜,导致稳定的压电特性的丧失。还有这种可能,即在振动器表面上执行的、用于调节振动器振动特性的处理所引起的振动器强度减少会降低该振动器的耐用性。
本发明考虑到了上述问题,进而提供一种具有振动器的振动陀螺传感器,可以调节该振动器的振动特性,同时能保持稳定的特性和较高的强度,以及一种调节该振动陀螺传感器的方法。
为了解决上述问题,根据本发明一个实施例的振动陀螺传感器包括具有悬臂振动器的振动陀螺传感器元件和在其上安装该振动陀螺传感器元件的支撑基底,该悬臂振动器包括压电薄膜、驱动电极和在第一表面上的一对检测电极。将该振动陀螺传感器元件安装在该支撑基底上以使该悬臂振动器的第一表面面对该支撑基底,和将除了该悬臂振动器的第一表面之外的区域界定为激光加工区域,其中将形成用于调节该振动器的振动特性的凹陷。
根据本发明的一个实施例,一种调节振动陀螺传感器的方法,该振动陀螺传感器包括振动陀螺传感器元件和支撑基底,在该支撑基底上安装该具有悬臂振动器的振动陀螺传感器元件,该悬臂振动器具有压电薄膜、驱动电极和在第一表面上的一对检测电极,该方法包括的步骤为:将该振动陀螺传感器元件安装在该支撑基底上以使该悬臂振动器的第一表面面对该支撑基底,和通过在激光加工区域实施激光加工而调节该振动器的振动特性,该区域是除了该悬臂振动器的第一表面之外的区域。
如上所述,根据本发明的一个实施例,当将该振动陀螺传感器元件安装在该支撑基底上以使包含在该振动陀螺传感器中的该振动器的第一表面面对该支撑基底时,通过在激光加工区域对该振动器面对该振动陀螺传感器元件上表面的表面实施激光加工而形成用于调节该振动特性的凹陷。该凹陷在一个位置形成,从而可以以这种方式调节不对称振动器的振动特性而使该振动器在预定方向上振动。
该振动器上的激光加工区域面对安装在该支撑基底上的该振动陀螺传感器元件的上或侧表面,可以通过使用激光束照射该激光加工区域而容易地调节该振动器的振动特性。由于在该振动器安装到支撑基底上之后调节该振动特性,所以可以防止该振动特性在安装前后发生变化,并且可以通过在安装后观察该振动特性,而于安装后在工作范围内调节每个单独的振动陀螺传感器元件。
该激光加工区域是指与提供该压电薄膜等的该第一表面相对的表面,或者连接这些表面的脊线区域(ridge line area)。因此,由于该激光加工区域是距离该第一表面有一定距离的区域,所以必须尽可能地防止由于激光加工期间所产生的热量而导致的压电质量和/或极化状态的变化。
为了获得具有稳定质量的角速度传感器,需要将由于该振动器形状变化而引起的垂直和水平共振频率的频率差与共振时的左和右信号波形的幅度和相位相匹配。根据本发明的一个实施例,在调节之前监视该频率差和检测信号的波形差以确定要处理的部分。
更具体地,把从该振动器在垂直共振状态振动时产生的检测信号中读出的工作频率定义为垂直共振频率。把这对检测信号的差定义为差分信号。然后,把从该振动器在水平共振状态振动时产生的检测信号中读出的工作频率定义为水平共振频率。该水平共振频率和垂直共振频率之间的差被定义为失调(detuning)水平。重复上述过程直到该失调水平和差分信号到达目标值。
该调节效果取决于被激光加工部分的位置。由于随着该被激光加工的部分从振动器的底部向顶部移动时该频率差和检测信号平衡之间的变化量会变小,所以可以通过处理该底部而进行粗调和通过处理该顶部而进行细调。通过控制该被激光加工部分的位置和激光加工的深度,可以保持该振动器抵抗下落冲击(dropping impact)的强度和耐用性。
如上所述,对于根据本发明一个实施例的安装在支撑基底上的振动陀螺传感器元件的振动器,在除了该振动器的提供压电层等的表面之外的区域形成用于调节振动特性的凹陷。因而,能够在安装该振动器之后调节该振动器的振动特性,并且可以防止该压电薄膜在调节期间的变化。
因为该振动特性是通过在振动器的其上设置该压电薄膜等的表面上进行激光加工而调节的,所以通过半导体加工生产的该小型振动陀螺传感器元件能够保持抵抗外部冲击的稳定的检测性能和高耐用性,同时可以很容易地进行精密和准确的调节。
附图说明
图1A和1B示出了根据本发明第一实施例的振动陀螺传感器元件的示意性透视图;
图2示出了图1所示振动陀螺传感器元件的示意性底视图;
图3示出了安装在支撑基底上的图1所示振动陀螺传感器元件的示意性透视图;
图4A和4B示出了图1所示振动陀螺传感器元件的削边和熔化面(chamfering and melted face)的透视图;
图5示出了图1所示振动陀螺传感器元件的驱动检测器电路的框图;
图6示出了制造图1所示振动陀螺传感器元件的工艺中的主要步骤的流程图;
图7A和7B示出了图1所示振动陀螺传感器元件的制造工艺的示意图,其中图7A是单晶硅基底的平面图,图7B是沿图7A中的VIIB-VIIB线得到的横截面图;
图8A和8B示出了图7A和7B中所示基底去除热氧化膜后的示意图,其中图8A是平面图,图8B是沿图8A中的XIIIB-XIIIB线得到的横截面图;
图9A和9B示出了图7A和7B中所示基底去除热氧化膜后的示意图,其中图9A是平面图,图9B是沿图9A中的IXB-IXB线得到的横截面图;
图10A和10B示出了图7A和7B中所示基底执行各向异性腐蚀后的示意图,其中图10A是平面图,图10B是沿图10A中的XB-XB线得到的横截面图;
图11示出了图10B所示基底中的区域W的放大图;
图12A和12B示出了提供了下电极薄膜、压电薄膜和上电极薄膜的图10B所示基底的放大图,其中图12A是平面图,图12B是沿图12A中的XIIB-XIIB线得到的横截面图;
图13A和13B示出了提供了检测电极的图10B所示基底的放大图,其中图13A是平面图,图13B是沿图13A中的XIIIB-XIIIB线得到的横截面图;
图14A和14B示出了提供了压电薄膜的图10B所示基底的放大图,其中图14A是平面图,图14B是沿图14A中的XIVB-XIVB线得到的横截面图;
图15A和15B示出了提供了下电极薄膜的图10B所示基底的放大图,其中图15A是平面图,图15B是沿图15A中的XVB-XVB线得到的横截面图;
图16示出了提供了布线基膜的图10B所示基底的放大图;
图17示出了沿图16中的XVII-XVII线得到的横截面图;
图18示出了提供了压平的保护膜的图10B所示基底的放大图;
图19示出了沿图18中的XIX-XIX线得到的横截面图;
图20示出了提供了布线连接端的图10B所示基底的放大图;
图21示出了沿图20中的XXI-XXI线得到的横截面图;
图22示出了提供了极化轨(polarization rails)的图10B所示基底的放大图;
图23示出了提供了绝缘保护膜的图10B所示基底的放大图;
图24示出了沿图23中的XXIV-XXIV线得到的横截面图;
图25示出了图10B所示基底的放大图,其中提供了Cu引线;
图26示出了沿图25中的XXVI-XXVI线得到的横截面图;
图27示出了提供了Cu引线的图10B所示整个基底的放大图;
图28示出了当在该基底上提供背侧停止膜(backside stopper film)时该基底的横截面图;
图29示出了该基底的放大平面图,在其上通过去处该基底而形成的凹槽来界定振动器悬臂;
图30示出了沿图29中的XXX-XXX线得到的横截面图;
图31示出了沿图29中的XXXI-XXXI线得到的横截面图;
图32示出了当该背侧停止膜被去除时该基底的放大平面图;
图33示出了沿图32中的XXXIII-XXXIII线得到的横截面图;
图34示出了沿图32中的XXXIV-XXXIV线得到的横截面图;
图35A和35B示出了用于稳定该压电特性的极化化工艺,其中图35A示出了该整个基底的平面图,图35B是该基底的放大平面图;
图36A和36B示出了在该极化化工艺之后去除不需要的Cu引线的基底,其中图36A示出了该整个基底的平面图,图36B是该基底的放大平面图;
图37A和37B示出了用于可拆卸芯片(flit-chip)的金(Au)凸起,其中图37A示出了该整个基底的平面图,图37B是该基底的放大平面图;
图38A和38B示出了为了分离作为压电薄膜传感器工作的每个振动陀螺传感器元件而提供的分割线,其中图38A示出了该整个基底的平面图,图38B是该基底的放大平面图;
图39示出了作为压电薄膜传感器工作的振动陀螺传感器元件的平面图;
图40示出了安装在IC基底上的振动陀螺传感器元件的示意性透视图;
图41示出了包括被覆盖的振动陀螺传感器元件的角速度传感器的平面图;
图42A和42B示出了振动器的对称性和振动模式之间的关系,其中图42A示出了具有对称形状的振动器的振动模式,图42B示出了具有不对称形状的振动器的振动模式;
图43A、43B和43C示出了振动陀螺传感器的调节;
图44示出了在其上进行激光加工的示例激光加工区域的示意性平面图;
图45示出了在激光加工区域上进行的激光加工量和信号平衡的改变之间的关系;
图46示出了当通过基于该采样的初始条件确定激光加工区域和进行激光加工而将平衡调节到目标值时平衡的变化;
图47示出了在悬臂振动器的背表面中心提供的用于激光加工的激光加工区域的示意性平面图;
图48示出了在激光加工区域中的激光加工量和失调水平变化之间的关系;
图49示出了在激光加工区域中的激光加工量和平衡变化之间的关系;
图50示出了当通过基于该采样的初始条件确定激光加工区域和进行激光加工而将失调水平调节到目标值时失调水平的变化;
图51示出了用于确定当该被激光加工调节过的悬臂振动器以100μm的振幅振动时,该振动器是否在由激光加工所形成的点断裂的实验结果;
图52示出了一个柱状图,显示当包括未处理振动器的陀螺传感器被固定到200-g刚体上并下落时该振动器断裂的高度;
图53示出了一个柱状图,显示当包括利用激光加工过的悬臂振动器的陀螺传感器被固定到200-g的刚体上并下落时该振动器断裂的高度,其中是在包括图51所示的三角形点的范围内对该振动器进行激光加工;
图54示出了一个柱状图,显示当包括利用激光加工过的悬臂振动器的陀螺传感器被固定到200-g的刚体上并下落时该振动器断裂的高度,其中是在包括图51所示的圆形点的范围内对该振动器进行激光加工;
图55示出了具有阶梯形模式(step-like pattern)而互相不重叠的激光加工的点的悬臂振动器;
图56示出了一个柱状图,显示当包括未处理振动器的陀螺传感器被固定到200-g的刚体上并下落时,具有以阶梯形模式提供的激光加工点的悬臂振动器断裂的高度;
图57示出了在与悬臂振动器的后表面中心不重合的位置提供的用于激光加工的激光加工区域的示意性平面图;
图58示出了在激光加工区域中的激光加工量和失调水平变化之间的关系;
图59示出了在激光加工区域中的激光加工量和信号平衡变化之间的关系;
图60示出了由于激光加工而引起的失调水平和平衡的变化;
图61示出了由于激光加工而引起的失调水平和平衡的变化;
图62A和62B示出了根据本发明第二实施例的悬臂振动器的振动特性,其中图62A示出了该振动器的前视图,图62B示出了该频率特性;
图63A、63B和63C示出了图62A和62B中所示振动器的调节过程,其中图63A示出了该振动器的前视图,图63B示出了该频率特性,图63C示出了用于显示该被调节振动器中的问题的频率特性;
图64示出了配置成驱动悬臂振动器的驱动检测电路的功能框图;
图65A和65B示出了根据本发明第二实施例的悬臂振动器的操作,其中图65A示出了该振动器的前视图,图65B示出了该频率特性;
图66示出了根据本发明第三实施例的激光加工区域、共振频率和失调水平之间的关系;
图67示出了用于调节失调水平的激光加工区域和用于调节共振频率的激光加工区域的示意性平面图;
图68A和68B示出了悬臂振动器的对称性和振动模式之间的关系,其中图68A示出了具有对称形状的悬臂振动器的振动模式,图68B示出了具有不对称形状的悬臂振动器的振动模式;
图69A和69B示出了形成界定悬臂振动器外部形状的穿透(penetration)部分的工艺,其中图69A示出了从该振动器的纵轴方向观察的该主要部分的横截面图,图69B示出了从与该振动器纵轴方向正交的方向观察的该穿透部分的主要部分的横截面图;
图70A和70B示出了根据本发明第四实施例的悬臂振动器的操作,其中图70A示出了对称振动器的振动模式,图70B示出了不对称振动器的振动模式;
图71示出了振动陀螺传感器元件中的悬臂振动器的基部形状的示意性平面图;
图72A和72B示出了悬臂振动器底部形状的对称性和振动模式之间的关系,其中图72A示出了具有对称基部的悬臂振动器的振动模式,图72B示出了具有不对称基部的悬臂振动器的振动模式;
图73示出了根据本发明第五实施例的穿透部分的主要部分的平面图,其中显示了该穿透部分的形成工艺;
图74示出了根据本发明第五实施例的振动陀螺传感器元件的操作的示意性平面图;和
图75A、75B和75C示出了悬臂振动器基部形状的形成工艺。
具体实施方式
下面参照附图将描述本发明的实施例。下面的所述实施例没有限制本发明的范围,在本发明的范围内可以提供该实施例的各种变形。
第一实施例
图1A和1B示出了根据本发明一个实施例的振动陀螺传感器元件100。图1A是示出了该整个振动陀螺传感器元件100的外部透视图。图1B是示出了该振动陀螺传感器元件100的振动器110的放大透视图。如图1A和1B所示,从单晶硅基底上切割的振动陀螺传感器元件100包括作为悬臂提供的悬臂振动器110。该悬臂振动器110被成形为棱形的形状,从而,该悬臂振动器110的与悬臂振动器110的纵轴方向正交的横截面是正方形。
振动陀螺传感器元件100具有300μm的厚度t1,3mm的长度t2,和1mm的宽度t3。该实际振动的悬臂振动器110具有100μm的厚度t4,2.5mm的装饰板长度t5和100μm的宽度t6。该振动的悬臂振动器110的共振频率为大约40kHz。在这里,这些尺寸仅仅被提供作为例子,并且可以根据振动陀螺传感器元件100的使用频率和预期大小而设定为其他任何值。
振动陀螺传感器元件100被安装在支撑基底20上(参照图3)。该振动陀螺传感器元件100的安装表面是与该支撑基底20相对的表面,在图2中示出(底面)。
在悬臂振动器110的该表面上,参考电极104a和压电体105a依序堆叠。在压电体105a上,将驱动电极106a与一对检测电极106b和106c相互平行地设置在悬臂振动器110的纵轴方向上,从而使驱动电极106a与一对检测电极106b和106c不会互相接触。分别为驱动电极106a、检测电极106b、检测电极106c和参考电极104a提供布线连接端101A、101B、101C和101D。
压电体105a是一种压电薄膜,其例如由诸如钛锆酸铅(PZT)的压电陶瓷、或诸如石英或钽酸镧(LaTaO3)的压电单晶体组成。参考电极104a、驱动电极106a以及检测电极106b和106c由金属电极或导电氧化物电极构成。
图3示出了角速度传感器(振动陀螺传感器)150的主要部件的透视图,该角速度传感器150被配置为将振动陀螺传感器元件100安装在支撑基底20上。如图2所示,将该振动陀螺传感器元件100安装在支撑基底20上,面向下朝向该支撑基底20。根据本实施例,在振动陀螺传感器元件100的布线连接端101A、101B、101C和101D上提供金属凸起。该布线连接端101A、101B、101C和101D分别经金属凸起而连接到支撑基底20上的焊盘(lands)21A、21B、21C和21D。
参考电极104a、压电体105a、驱动电极106a以及检测电极106b和106c在悬臂振动器110的前表面(第一表面)上堆叠,该前表面面对支撑基底20。因此,与前表面相对的悬臂振动器110的表面,即其上没有设置压电体和各种电极薄膜的悬臂振动器110的后表面110b面朝上,如图3所示。在与悬臂振动器110相对的支撑基底20上,以正交于支撑基底20的方向形成具有预定大小和深度的凹陷(陷窝(flank))22。
如下所述,通过在硅基底上进行反射离子蚀刻(RIE)来限定悬臂振动器110的外形。此时,根据蚀刻条件和晶片的位置,悬臂振动器110的形状可以不关于振动方向对称。如果悬臂振动器110是不对称的,则悬臂振动器110的重心位置将被偏移到该悬臂振动器110的右侧或左侧,并且会失去悬臂振动器110的质量平衡。因此,悬臂振动器110将不会在垂直于支撑基底20的方向上振动,相反地,而是在向较小质量一侧倾斜的方向上振动。如果悬臂振动器110的振动方向被倾斜,则从左右检测电极106b和106c输出的检测信号将会有较大差异。因此,将不能进行精确的角速度检测。
因此,根据本实施例,在将振动陀螺传感器元件100安装到支撑基底20上之后,如图3所示,通过应用下述方法使用激光束照射悬臂振动器110的后表面110b以形成凹陷80,从而将振动陀螺传感器元件100的悬臂振动器110调节到垂直振动模式。以这种方式,可以调节悬臂振动器110的质量平衡以实现最优的振动模式。通过利用激光束照射悬臂振动器110的与前表面(后表面110b)相邻的侧面以形成上述凹陷80,从而获得相同的优点。
由于悬臂振动器110的后表面110b在该安装到支撑基底20上的振动陀螺传感器元件100的上侧露出,所以可以通过进行激光加工而很容易地调节悬臂振动器110的振动特性。此外,由于是在将振动陀螺传感器元件100安装到支撑基底20上之后调节该振动特性,所以可以防止该振动特性在安装振动陀螺传感器元件100前后发生变化。另外,可以在安装振动陀螺传感器元件100之后,在每个单独的振动陀螺传感器元件100的使用范围内调节该振动特性。
由于用于振动调节的激光加工区域被设置在与振动陀螺传感器元件100上提供压电体105a等的前表面分离设置的表面上,所以能够尽可能地防止由在激光加工期间所产生的热量引起的影响,诸如压电薄膜的质量变化和/或极化状态变化。因为悬臂振动器110的前表面与振动陀螺传感器元件100的底面齐平并且面对支撑基底20,所以悬臂振动器110受到诸如来自外部的光和热的干扰的影响较小,从而可以稳定地保持振动陀螺传感器元件100的检测性能。
在硅基底的表面上有非常细微的凸起和微裂纹。如上所述,通过在硅基底上执行反射离子蚀刻(RIE)来限定悬臂振动器110的外形。同时,由于等离子体在悬臂振动器110后表面110b和脊线区域上的流动而形成细微条纹,该脊线区域连接悬臂振动器110的后表面110b和侧面。这种细微凸起和微裂纹将被总称为“细微凸起127”,如图4A所示。在图4A中,该细微凸起127被放大。
当对振动陀螺传感器元件100施加较大冲击时,例如当振动时,压力集中在存在于悬臂振动器110后表面110b和脊线区域中的细微凸起127上。因此,在悬臂振动器110上可能产生损伤和裂缝。
根据本实施例,利用激光束照射悬臂振动器110的脊线区域、后表面110b和侧面以熔化该硅基底的表面和获得削边部分130或熔融表面134,如图4B所示。以这种方式,去除该细微凸起127。从而,即使当对悬臂振动器110施加外部载荷时,也可以防止集中在细微凸起127上的压力,从而增加悬臂振动器110的机械强度。
削边部分130和熔融表面134的形成是在调节悬臂振动器110的振动特性之前进行的。并且使用该用于调节工艺的同一激光设备进行该形成工艺。通过使用同一激光设备,可以容易地形成削边位置130和熔融表面134而无须进行机械加工,例如精度抛光。然而,用于形成削边位置130和熔融表面134的激光设备并不限于该用于调节工艺的同一激光设备,也可以使用不同的激光设备。
如图5所示,当工作且作为配置成用于检测根据角速度产生的科里奥利力的角速度传感器(振动陀螺传感器)时,具有上述结构的振动陀螺传感器元件100连接到集成电路(IC)40。IC 40包括与支撑基底20上的振动陀螺传感器元件100装配在一起的IC装置和其他电子元件(图3)。
IC 40包括加法器电路41、放大器电路42、移相电路43、自动增益控制器44、差分放大器电路45、同步检测电路46和平滑电路47。
振动陀螺传感器元件100的一对检测电极106b和106c连接到加法器电路41和差分放大器电路45。振动陀螺传感器元件100的驱动电极106a连接到自动增益控制器44的输出端。
该角速度传感器组成移相振荡器电路,该移相振荡器电路包括加法器电路41、放大器电路42、移相电路43、自动增益控制器44和振动陀螺传感器元件100。该移相自激励电路在振动陀螺传感器元件100的参考电极104a和驱动电极106a之间施加电压,以自激励悬臂振动器110的振动。悬臂振动器110的振动方向是悬臂振动器110的厚度方向。
在该角速度传感器中,该对检测电极106b和106c连接到加法器电路41和差分放大器电路45,差分放大器电路45的输出端连接到同步检测电路46,以及该同步检测电路46连接到平滑电路47。这些电路以及压电体105a作为检测单元工作,该检测单元被配置成用于检测悬臂振动器110的角速度。
更特别地,如果在悬臂振动器110的纵轴方向周围产生角速度,而该振动陀螺传感器元件100的悬臂振动器110由于上述移相振荡器电路的自激励而振动,则该悬臂振动器110的振动方向根据该科里奥利力而改变。在这种情况下,该检测电极106b和106c的输出中的之一增加,而另一输出减少。通过IC 40检测和测量该输出中的至少一个的变化量以确定该悬臂振动器110纵轴方向附近的输入角速度。
接下来,将说明具有上述结构的根据本实施例的振动陀螺传感器元件100的示例制造工艺。图6示出振动陀螺传感器元件100的制造过程中的主要步骤。
[基底制备]
首先,获得如图7A和7B所示的硅(Si)基底1。Si基底1的大小可以是取决于要使用的薄膜工艺线的任何大小。根据本示例的Si基底1是具有4英寸直径的晶片。Si基底1的厚度基于可用性和成本来确定,并且大于悬臂振动器110的厚度。根据本示例的Si基底1的厚度是300μm。
在各向异性湿法蚀刻期间作为保护掩模使用的热氧化膜(SiO2膜)2A和2B被设置在Si基底1的两侧。热氧化膜2A和2B的厚度并不受限制。根据本示例的热氧化膜2A和2B的厚度是大约0.3μm。根据本示例的Si基底1是N型基底。然而,该基底的类型不仅限于此。该基底被切割以使如图7A所示Si基底1的平面是(100)定向平面和使如图7B所示Si基底1的横截面是(110)定向平面。
[膜片形成]
下面,如图8A和8B所示,提供具有开口的抗蚀剂图案膜(resist patternfilm)3,该开口对应于将从设置在Si基底1后表面上的热氧化膜2B去除的区域。作为一种形成该抗蚀剂图案膜3的方法,应用在标准半导体薄膜生产过程中使用的光刻技术。根据本示例的该抗蚀剂材料是Tokyo Ohka KogyoCo.,Ltd生产的OFPR-8600。然而,该抗蚀剂材料的类型并不仅限于此。包括应用抗蚀剂、预烘干、曝光和显影的光刻工艺与标准薄膜工艺相同。在这里,不再描述该光刻工艺的细节。光刻技术也被应用于下述其它工艺中。在这种情况下,也不对该光刻工艺进行详细说明,除非对该光刻工艺应用了特殊的光刻技术。
在图8A所示的每个开口处形成振动陀螺传感器元件。该开口的形状基于设定以形成悬臂(悬臂振动器110)的该悬臂最终形状、Si基底1的厚度和蚀刻宽度t7(图30和31中所示)而确定。蚀刻宽度t7将在下面说明。根据本示例的蚀刻宽度t7是200μm。
该开口的所需宽度(膜片宽度t9)等于[振动悬臂宽度t6]+[蚀刻宽度t7]×2(对于左和右的裕量)。如果Si基底1的厚度是300μm,则振动悬臂的厚度是100μm,以及通过应用湿法蚀刻法将具有300μm厚度的Si基底减少到100μm以获得该振动悬臂的厚度,则膜片深度t10将是200μm,如图11所示。同时,将以θ1=55°的角度蚀刻Si基底1。因而,需要通过在宽度方向的左和右边缘增加t10×1/tan55°=140μm的厚度来补偿该角度。因此,在在本示例中,[膜片宽度t9]=t6+t7×2+140×2=100+200×2+140×2=780μm。类似地,[膜片长度t8]=[振动悬臂长度t5]+[蚀刻宽度t7]+140×2=2,500+200+140×2=2,980μm。
下面,如图9A和9B所示,去除热氧化膜2B上与该开口对应的区域。去除方法可以是诸如离子蚀刻或湿法蚀刻之类的物理蚀刻。然而,当考虑到Si基底1表面的平滑度时,理想的是应用仅去除该热氧化膜2B的湿法蚀刻。在本示例中,用于湿法蚀刻的化学溶剂是氟化铵。当湿法蚀刻进行了较长时间后,侧面蚀刻即在开口侧面的蚀刻进程会变得非常显著。因此,需要在该热氧化膜2B与开口对应的区域被去除时结束该蚀刻工艺。
接下来,如图10A、10B和11所示,在从该开口露出的Si基底1上进行湿法蚀刻以在该开口处将Si基底1的厚度减少到预定振动悬臂厚度t4。在本示例中,将20%的四甲基铵(TMAH)溶液用于蚀刻Si基底1。该溶液的温度被维持在80℃,并且进行浸泡蚀刻。
图11示出了图10B所示区域W的放大图。在上述条件下,进行六小时的蚀刻以蚀刻200μm的Si基底1,即把膜片深度t10减少到200μm。作为进行蚀刻的结果,Si基底1中开口的两侧形成为具有湿法蚀刻角度θ1(=55°),如图11所示。作为用于湿法蚀刻的化学溶剂,可以使用氢氧化钾(KOH)溶液或乙二胺邻苯二酚水(EDP,ethylenediamine-pyrocatechol-water)溶液代替TMAH。在本示例中,由于对于热氧化膜2A和2B的蚀刻灵敏度较大,所以使用TMAH。
在本示例中应用湿法蚀刻以便将Si基底的厚度减少到相应于振动悬臂110的厚度。然而,该减少Si基底1的厚度的方法并不仅限于此。
通过执行上述方法在每个开口内部形成膜片。通过执行湿法蚀刻而得到的最终膜片厚度t11等于振动悬臂厚度t4。
在下面的图中,图10A和10B中所示区域W中包含的元件之一被放大。为了简化起见,该放大元件的尺寸可以与实际尺寸不同。此后,将通过面朝下的如上所述提供的该膜片的开口和热氧化膜2B来说明该元件,如图12A和12B所示。
[电极膜形成]
接下来,如图12A和12B所示,提供下电极膜4、压电膜5和上电极膜6。为了提高压电膜5的质量,使用包含钛(Ti)基膜(膜厚度小于50nm,例如20nm)和堆叠在该Ti基膜上的铂(Pt)膜(膜厚度是100nm)的膜层叠作为下电极膜4。可以使用其他金属例如金(Au)、铑(Rh)或铼(Re)代替铂,并且可以使用钽代替钛。
在形成下电极膜4的步骤中,首先使用磁控管溅射设备形成Ti膜,然后形成Pt膜。在本示例中,在0.5Pa气压下,以0.5kW的射频(RF)功率形成具有20nm厚度的Ti膜和具有100nm厚度的Pt膜。该Pt膜被提供作为用于PZT的基膜,而Ti膜被提供以增加Pt和Ti膜的粘附性。
接下来,形成压电膜5。在形成压电膜5的步骤中,形成压电膜5。在本示例中,在0.2到3Pa的氧气气压和室温下,在0.1到5kW的RF功率下,采用Pb1.02(Zr0.53Ti0.47)O3氧化物靶使用磁控管溅射设备形成具有1.4μm厚度的压电膜5。下面说明形成压电膜5的方法的细节。
在随后的形成上电极膜6的步骤中,将Pt膜堆叠在如上所述提供的压电膜5的表面上。在本示例中,在0.5Pa的气压下和0.5kW的RF功率下,使用磁控管溅射设备形成具有200nm厚度的Pt膜。
[电极膜加工]
接下来,如图13A和13B所示,将上电极膜6加工成预定形状。如图13A所示,将上电极膜6分为三个部分。中间部分是驱动电极6a,其被配置成产生用于驱动该振动悬臂的功率。在驱动电极6a的左边和右边,提供配置成检测科里奥利力的检测电极6b和6c。在宽度方向上驱动电极6a的中心与该振动悬臂的中心匹配,并且设置该检测电极6b和6c关于驱动电极6a对称。在上电极膜6的直线边缘提供用于与布线连接的连接部分。
在本示例中,该驱动电极宽度t13是50μm,检测电极宽度t14是10μm,上电极长度t12是2mm,而驱动电极6a与检测电极6b和6c之间的每个距离是5μm。这些尺寸都不被限制。然而,上电极膜6的总大小必须小于该振动悬臂的最终大小。具有布线图案的连接部分的形状如下所述,也不是限制性的。在本示例中,该连接部分宽度t16是50μm,连接部分长度t15是50μm。
作为一种加工该上电极膜6的方法,首先应用光刻技术以形成具有预定图案的抗蚀膜。然后,通过离子蚀刻去除上电极膜6的非必要区域。该加工上电极膜6的方法不仅限于此。
接下来,如图14A和14B所示,加工该压电膜5以形成预定形状。压电膜5的形状是不受限制的,只要压电膜5完全覆盖上电极膜6。在本示例中,压电膜长度t17是2.2mm,压电膜宽度t18是90μm。压电膜在宽度方向上的中心与振动悬臂的中心相匹配。压电膜宽度t18必须小于振动悬臂宽度t4。在本示例中,加工压电膜5以便在上电极膜6的外周边附近提供5μm的裕量。该裕量是基于该整个元件的形状而确定的。
作为一种加工压电膜5的方法,首先应用光刻技术以形成具有与要得到的压电膜5相同形状的抗蚀剂图案膜。然后,去除压电膜5的非必要部分。在本示例中,使用氢氟酸和硝酸的混合物通过湿法蚀刻去除压电膜5。该去除方法并不限于此,也可以应用其他方法例如利用离子蚀刻的物理去除或利用RIE的化学去除。
接下来,如图15A和15B所示,加工下电极膜4以形成预定形状。下电极膜4的形状不被限制,只要下电极膜4完全覆盖压电膜5。在本示例中,下电极膜长度t19是2.3mm,下电极膜宽度t20是94μm。下电极膜在宽度方向上的中心与振动悬臂的中心相匹配。下电极膜宽度t20必须小于振动悬臂宽度t4。在本示例中,加工下电极膜4以便在压电膜5的外周边附近提供5um的裕量。该裕量是基于该整个元件的形状而确定的。为了电连接下电极膜4和外部元件,提供下电极接合部分4A,如图15A所示。该下电极接合部分4A必须具有足够大的区域以提供引线。在本示例中,下电极接合部分长度t21是200μm,下电极接合部分宽度t22是100μm。
作为一种加工下电极膜4的方法,首先应用光刻技术以形成具有与下电极部分相同形状的抗蚀剂图案膜。然后,通过离子蚀刻去除下电极膜4的非必要部分。该去除方法并不限于此,也可以应用除了离子蚀刻之外的方法。
[布线膜形成]
接下来,如图16和17所示,提供布线基膜7。如下所述,提供布线基膜7以保持布线膜9的粘附性。布线基膜7由绝缘材料构成。布线基膜7的形状不被限制,只要该振动器、驱动电极6a与检测电极6b和6c的电极连接部分、和该振动器附近的蚀刻区域不被覆盖即可。在本示例中,布线基膜7与上电极膜6和下电极膜4重叠5μm,以提高该电极膜的粘附性。
作为一种形成布线基膜7的方法,首先应用光刻技术以形成具有预定形状开口的抗蚀剂图案膜。然后,通过溅射形成该布线电极膜,并且通过剥离蚀刻(liftoff etching)去除下电极膜4的非必要部分。在本示例中,选择氧化铝作为布线基膜7的材料并且沉积为75nm的厚度。然而,该布线基膜7的材料和形成方法不仅限于此。
接下来,如图18和19所示,在驱动电极6a与检测电极6b和6c的电极连接部分上提供压平抗蚀剂膜8。提供压平抗蚀剂膜8以允许如下所述的布线膜9和上电极膜6之间的平滑电连接。当布线膜9和上电极膜6物理连接时,线路必须穿过压电膜5和下电极膜4的边缘。因为根据本示例,压电膜5是通过湿法蚀刻形成的,所以压电膜5的边缘是倒锥形或基本上垂直的。因此,如果提供布线而不提供压平抗蚀剂膜8,则该线路会在这些边缘处断开。另外,由于下电极膜4是露出的,如果不提供用于绝缘的压平抗蚀剂膜8,就会发生电短路。基于这些原因,提供压平抗蚀剂膜8。
压平抗蚀剂膜8的形状是不受限制的,只要该压平抗蚀剂膜8能够覆盖布线膜9,如下所述。在本示例中,压平抗蚀剂膜宽度t23是200μm,压平抗蚀剂膜长度t24是50μm。
作为一种形成压平抗蚀剂膜8的方法,首先应用光刻技术以在抗蚀剂膜上形成预定图案。然后,通过将该抗蚀剂膜加热到280℃-300℃而固化该图形抗蚀剂膜。在本示例中,该抗蚀剂膜的厚度是大约2μm。期望改变抗蚀剂膜的厚度以使其大于压电膜5和下电极膜4的总厚度。
在本示例中,使用光敏抗蚀剂膜作为压平抗蚀剂膜8。然而,压平抗蚀剂膜8的材料并不仅限于此。可以应用任何不导电材料及其形成方法。
接下来,如图20和21所示,提供布线膜9以连接上电极膜6与外部元件。提供布线膜9以有利于与外部元件的电连接。布线膜9穿过压平抗蚀剂膜8的上表面并且连接到布线膜9的连接部分。上电极膜6(驱动电极6a与检测电极6b和6c)的形状是不受限制的。然而,期望它们大于5μm2以减少电阻抗。在本示例中,通过具有Au凸起的倒装片建立与外部元件的电连接。如图20所示,通过提供电焊盘101A、101B、101C和101D来限定Au凸起区域。
电焊盘101A、101B、101C和101D的大小必须足够大以形成Au凸起。在本示例中,电焊盘长度t25是120μm,电焊盘宽度t26是120μm。因为该被包含在上电极膜6中的驱动电极6a、检测电极6b和6c以及该下电极膜4中的每个都需要与外部元件的电连接,所以需要为提供驱动电极6a、检测电极6b和6c以及下电极膜4提供单独的布线膜9。电焊盘101A、101B、101C和101D被设置在元件区域AR中。
在这个骤中,还提供极化轨(polarizing rail)111和112。极化根据本实施例的振动器以稳定压电特性。通过在Si基底1上的同一行中极化振动陀螺传感器元件100而有效地进行极化工艺。为了同时极化这些振动陀螺传感器元件100,必须预先提供用于施加电压的电线和接地(GND)线。在本示例中,如图22所示,以线性方式提供该电线作为极化轨111和112。这工艺的此刻,振动陀螺传感器元件100与极化轨111和112是电独立的(electricallyindependent)。然而,如下所述,通过提供铜(Cu)引线11来连接用于施加电压的电线和GND线。
作为形成布线膜9的一种方法,首先应用光刻技术以形成具有预定形状开口的抗蚀剂图案膜。然后,通过溅射形成布线膜9,并且通过剥离蚀刻去除非必要部分。为了形成布线膜9,沉积20nm的厚度的提高粘附力的钛(Ti)。然后,在该Ti层上,沉积300nm的厚度的具有低电阻并且廉价的铜(Cu)。最后,在该Cu层上,沉积500nm的厚度的改善与Au凸起的连接的金(Au)。该布线膜9的材料和形成方法并不仅限于此。
[绝缘保护膜形成]
接下来,如图23和24所示,在振动悬臂和电线上提供绝缘保护膜10。提供该绝缘保护膜10以防止由于诸如潮湿之类的外部因素导致的电极之间的漏电,以及防止电极膜的氧化。振动器110上的保护膜宽度t27大于下电极宽度t20并且小于振动悬臂宽度t6。在本示例中,保护膜宽度t27是98μm。振动器110上的保护膜长度t28大于下电极长度t19并且小于振动器长度t5。在本示例中,振动器保护膜长度t28是1.95mm。绝缘保护膜10覆盖所有布线膜9。然而,绝缘保护膜10必须不能覆盖形成Au凸起的四个电极焊盘和用于Cu引线11的四个连接部分。
作为一种形成绝缘保护膜10的方法,首先应用光刻技术以形成具有预定形状开口的抗蚀剂图案膜。然后,通过溅射形成绝缘保护膜10,并且通过剥离蚀刻去除绝缘保护膜10的非必要区域。在本示例中,为了形成布线膜9,将用于提高粘附性的Al2O3沉积到50nm的厚度。然后,在该Al2O3层上,将具有高电阻的SiO2沉积到750nm的厚度。最后,作为顶层,将用于在振动悬臂形成期间提高该抗蚀剂膜的粘附性的Al2O3沉积到50nm的厚度。起到绝缘保护膜作用的沉积SiO2层必须具有至少两倍于上电极膜6的厚度。然而,因为如果该厚度超过1μm,则在剥离期间就很容易形成毛边(burrs),所以在本示例中将该厚度设定为750nm。而且,在本示例中,在0.4Pa的氩(Ar)气压下形成SiO2层以提高该层的密度,其中0.4Pa是放电的下限。
接下来,如图25和26所示提供Cu引线11。Cu引线11中的之一被提供以将上电极膜6的驱动电极6a和检测电极6b及6c连接到极化轨111,用于施加电压,并且提供另一Cu引线11以将下电极膜4连接到与GND相连接的极化轨112。在Si基底1上的每个振动陀螺传感器元件100中建立Cu引线11的连接,如图27所示。使用铜作为引线是因为当在极化后进行湿法蚀刻时铜容易熔化,从而,可以将振动陀螺传感器元件100再次断开电连接而不造成损伤。该引线的材料并不仅限于铜,只要该材料是导电的并且容易去除而不破坏该振动陀螺传感器元件100即可。期望将该引线宽度t29(图29)设定为30μm或更大以便在极化期间保持导电性。
作为一种形成Cu引线11的方法,首先应用光刻技术以形成具有预定形状开口的抗蚀剂图案膜。然后,通过溅射形成Cu引线11,并且通过剥离蚀刻去除Cu引线11的非必要部分以及抗蚀剂膜。在本示例中,将Cu层的厚度设定为400nm以便在极化期间保持导电性。用于形成该Cu引线11的方法并不仅限于此。
接下来,如图28所示,形成背侧停止膜12。如下所述,提供背侧停止膜12以防止当在振动悬臂形成期间执行贯穿蚀刻(through-etching)时,由于等离子体在底面集中而导致的该振动悬臂边缘区域的变形。在本示例中,通过溅射将SiO2在整个背部上沉积到500nm的厚度。
[振动悬臂形成]
接下来,如图29、30和31所示,通过去除薄膜以在悬臂周围形成凹槽而形成该振动悬臂。图30示出了沿图29中的XXX-XXX线得到的横截面图。图31示出了沿图29中的XXXI-XXXI线得到的横截面图。
作为一种形成界定该悬臂的凹槽的方法,首先通过应用光刻技术形成具有与穿透部分13相同形状的开口的抗蚀剂图案膜。然后,进行离子蚀刻以去除热氧化膜2A。随后,蚀刻Si基底1直到穿透Si基底1。可以应用湿法蚀刻来去除热氧化膜2A。然而,当考虑到由于侧面蚀刻而导致的尺寸误差时,理想的是使用离子蚀刻。
在本示例中,将振动悬臂厚度t14(膜片厚度t11)设定为100μm。因而,根据本示例,为了穿透Si基底1,必须通过蚀刻去除100μm的厚度。标准离子蚀刻不具有匹配抗蚀剂膜的选择性。此外,当应用离子蚀刻时,所得到的侧壁是不垂直的。因此,在本示例中,将使用感应耦合等离子体(ICP)的设备用于执行Bosch(博施)工艺(在蚀刻期间使用SF6气体而在膜形成期间使用C4F8气体),其中重复侧壁保护膜的蚀刻和形成。以这种方式,形成具有垂直侧壁的振动悬臂。蚀刻硅材料以使所得到侧壁垂直的技术已经沿用已久。在本示例中使用了一种可商业获得的设备。然而,产生界定驱动悬臂的凹槽的方法并不仅限于此。蚀刻宽度t7必须足够大以便能够使用ICP进行蚀刻。在本示例中,该蚀刻宽度t7被设定为200μm。不应该穿透Cu引线11。
在使用ICP完成蚀刻后,去除背侧停止膜12。去除该背侧停止膜12的方法是不受限制的。然而,在本示例中,应用了使用氟化铵的湿法蚀刻。如果在去除背侧停止膜12之前去除界定穿透图案的抗蚀剂膜,则绝缘保护膜10也会被去除。因此,在去除该抗蚀剂膜之前去除背侧停止膜12。图32-34中示出了去除背侧停止膜12和抗蚀剂膜之后的Si基底1。
[极化]
接下来,在图35A和35B中所示的振动陀螺传感器元件100上进行极化以稳定压电特性。为了在同一行中极化所有的振动陀螺传感器元件100,通过作用焊盘(application pads)和GND焊盘将该振动陀螺传感器元件100连接到外部电源。该连接和极化方法是不受限制的。然而,在本示例中,通过引线键合(wire bonding)将该振动陀螺传感器元件100连接到外部电源,然后执行极化。
接下来,在图36A和36B中,去除掉极化后不再需要的Cu引线11。如果分离元件而不去除Cu引线11,则Cu引线11和Si基底1将会在切割表面处发生漏电。因此,期望化学去除Cu引线11。在本示例中,使用Enstrip溶液(Meltex Inc.的产品)通过湿法蚀刻溶解Cu引线11,从而不会损伤该振动陀螺传感器元件100。
通过应用薄膜形成工艺来形成振动陀螺传感器元件100和通过在薄膜形成工艺中提供的电线来极化振动陀螺传感器元件100,可以以低成本稳定地生产大量振动陀螺传感器元件100。
去除Cu引线11的方法不限于如上所述通过湿法蚀刻溶解。在下述分离振动陀螺传感器元件100的步骤中,沿Cu引线11切割振动陀螺传感器元件100。因而当利用切片机(dicer)分割该元件时,可以将Cu引线11磨掉。在这种情况下,Cu引线11的引线宽度t29必须小于磨石(grinding stone)的宽度。在本示例中,由于是通过使用具有40μm磨石宽度的切片机来分割该振动陀螺传感器元件100,所以Cu引线11的引线宽度t29必须被设定在20μm和40μm之间。如果Cu引线11的宽度小于20μm,那么Cu引线11会因为对施加的极化电压的阻抗所产生的热量而断裂。如果Cu引线11的宽度大于40μm,即大于磨石的宽度,那么可以在分离该振动陀螺传感器元件100后留下Cu引线11。
[金凸起形成]
接下来,如图37A和37B所示,为倒装片提供Au凸起14。Au凸起14是在四个电极焊盘上提供。
[切割]
接下来,如图38A和38B所示,在Si基底1上形成15个振动陀螺传感器元件100并且从彼此分离,其中每个振动陀螺传感器元件100都能够作为压电薄膜传感器工作。当分割振动陀螺传感器元件100时,使用具有大于Cu引线11的桥部分宽度的宽度的磨石。在本示例中,Cu引线11的桥部分的宽度是32μm。因而,使用具有40μm宽度的切石来切割Si基底1。如图38B所示,根据每个振动陀螺传感器元件100的大小沿L1至L3的切割线解理Si基底1。提供切割线L1和L2以切割Cu引线11的桥部分。以这种方式,通过穿透部分13和切割面勾勒了能够作为压电薄膜传感器工作的振动陀螺传感器元件100的轮廓,如图39所示。因此,图38B中所示Si基底1的区域C被作为不想要的部分而保留。
[安装]
例如,如图40所示,通过倒装片技术将每个振动陀螺传感器元件100安装在诸如IC基底之类的支撑基底上。IC基底被预先设计以使可以根据要设置振动陀螺传感器元件100的位置来建立电连接。在图40所示示例中,在X方向和Y方向安装两个振动陀螺传感器元件100A和100B。以这种方式,配置包括两个振动陀螺传感器元件100A和100B的双轴角速度传感器150。
如图41所示,通过覆盖材料15来使角速度传感器150保持气密性和保护角速度传感器150,该覆盖材料15防止振动陀螺传感器元件100A和100B和电路与外部元件相接触。覆盖材料15的材料是不受限制的。然而,期望考虑到外部噪声的效应而使用具有屏蔽效应的材料,诸如金属。覆盖材料15被形成为以使不干扰该振动悬臂的振动的形状。
[调节]
对于根据本实施例的振动陀螺传感器元件100,如上所述,使用ICP通过RIE来界定悬臂振动器110的外形。然而,不总是所有的包含在Si基底1中的振动陀螺传感器元件100都被制造成具有关于悬臂振动器110中线的完全对称。
因而,例如如图42A和42B中所示,如果悬臂振动器110的横横截面形状为梯形,该振动方向将会关于该振动中线向具有较小质量的一侧倾斜,尽管悬臂振动器110的预期垂直振动方向是垂直于提供压电膜的表面的方向。如果当振动方向倾斜时,悬臂振动器110以垂直共振频率振动,则来自相对于该悬臂振动器110的中线对称提供的检测电极106b和106c的输出检测信号的振幅将会不同。这种差异是由于来自向悬臂振动器110倾斜方向提供的检测电极的检测信号将会较强而来自相对侧检测电极的检测信号将会较弱而导致的。
根据本实施例,为了补偿这种差异,进行调节以实现垂直振动。为了调节该振动,对每个分离的振动陀螺传感器元件100进行激光加工,以实现从相对于该中线具有较大质量的任一侧削减该悬臂振动器110的一些部分。以这种方式,平衡悬臂振动器110左侧的质量和右侧的质量,并且获得垂直振动。
虽然难于确定悬臂振动器110的横截面的实际形状,但是可以比较当悬臂振动器110以垂直共振频率振动时从左和右检测电极输出的检测信号的振幅。以这种方式,能够通过进行激光加工以形成凹陷而进行调节,其中该激光加工是通过在具有输出较弱检测信号的检测电极的任一侧对该悬臂振动器110进行削减而完成的。
在实际进行调节之前,将来自振荡电路71的振荡输出G0施加至驱动电极106a,以在垂直共振状态驱动振动陀螺传感器元件100,如图43A所示。通过在加法器电路72加入来自检测电极对106b和106c的检测信号Ga和Gb而执行调节。加入的信号被返回到振荡电路71。然后,基于来自检测电极106b和106c的检测信号Ga和Gb,检测测振荡电路71的振荡频率作为垂直共振频率f0,并且将检测信号Ga和Gb之间的差作为差分信号输出。
通过将来自振荡电路71的振荡输出G1施加至驱动电极106a以在水平共振状态驱动振动陀螺传感器元件100,从而执行调节,如图43B所示。来自检测电极106b的检测信号Gb-1被返回到振荡电路71。基于检测信号Gb-1,检测作为水平共振频率f1的振荡电路71的振荡频率。通过将来自振荡电路71的振荡输出G2施加至驱动电极106a以在水平共振状态驱动振动陀螺传感器元件100,从而执行调节,如图43C所示。来自检测电极106b的检测信号Ga-2被返回到振荡电路71。基于检测信号Ga-2,检测振荡电路71的振荡频率作为水平共振频率f2。
由于从检测信号Gb-1检测的水平共振频率f1等于从检测信号Ga-2检测的水平共振频率f2,所以只要检测电极106b和106c的任意之一被连接,就可以执行检测。
上面得到的垂直共振频率f0与水平共振频率f1和f2之间的频率差被定义为失调水平。为了调节,确定该失调水平是否在预定范围内。此外,为了调节,确定当悬臂振动器110以垂直共振频率振动时,从来自检测电极106b和106c的信号得到的差分信号是否在预定范围内。通过基于与失调水平和差分信号相关的确定结果确定悬臂振动器110上的激光加工区域,和利用激光束照射该激光加工区域以削减该悬臂振动器110的一部分,从而进行调节。为了调节,重复测量和激光加工直到获得该失调水平和差分信号的目标值为止。
通过在悬臂振动器110上进行激光加工而形成凹陷80的加工区域是除了提供压电膜和其他电极膜的悬臂振动器110的前表面之外的区域。加工区域可以是悬臂振动器110的后表面110b或侧面,如图3所示的悬臂振动器110的端面,或如图44所示的作为悬臂振动器110的后表面110b和侧面之间的边界的脊线区域。连接悬臂振动器110的前表面和悬臂振动器110的侧面的脊线区域可以被包含在该加工区域中。然而,在这种情况下,应当采取措施,诸如提供在压电膜和悬臂振动器110的前表面的脊线区域之间的预定距离,从而在悬臂振动器110的前表面上提供的压电膜将不会受形成凹陷80的该激光加工的影响。可以形成任意数量的用于调节失调水平和差分信号(即平衡)的凹陷。当形成多个凹陷80时,可以在确认对于振动的影响的同时,选择凹陷的数量和凹陷80的位置。以这种方式,可以逐渐进行调节直到最终获得目标值。
通过要加工的位置和范围来确定有激光加工进行的调节的效果。如图44所示,可以从尖端到底部在该悬臂振动器110的脊线区域上界定形成凹陷80的激光加工区域A、B和C。由于失调水平和检测信号的平衡的变化量从该悬臂振动器110的底部到尖端逐渐变小,所以可以通过在较接近悬臂振动器110底部的激光加工区域形成凹陷80来执行粗调,和通过在较接近悬臂振动器110尖端的激光加工区域形成凹陷80来执行细调。这里,在悬臂振动器110的深度方向和纵轴方向进行的加工总量被定义为“激光加工量”。因此,如果加工大而浅的区域,则激光加工量会较大。类似地,如果加工小而深的区域,激光加工量也会较大。
图45示出了在用于形成凹陷80而执行的激光量与激光加工区域A、B和C处的平衡变化[(Ga/Gb)db]之间的关系。图46示出了当基于样品1、2和3的初始条件来选择激光加工区域A、B和C之一并且执行激光加工以形成凹陷80从而将该平衡调节到目标值时的平衡变化[(Ga/Gb)db]。
最有效的是选择激光加工区域以用于通过在悬臂振动器110的固定端附近进行激光加工而在悬臂振动器110上形成凹陷80。然而,该激光加工区域的形状是不受限制的。被激光加工去除的悬臂振动器110的部分的形状和质量可以通过比较左和右检测信号而逐渐调节。
接下来,如图47所示,沿着悬臂振动器110后表面110b的中心(即沿该中轴线)从悬臂振动器110的顶部到底部定义形成凹陷80的激光加工区域A0、B0和C0。图48中示出了在每个激光加工区域A0、B0和C0的激光加工量和失调水平[Hz]变化之间的关系。该激光加工区域距离悬臂振动器110的底部越近,失调水平变化就越大。图49中示出了在每个激光加工区域A0、B0和C0的激光加工量和平衡变化[(Ga/Gb)=1]之间的关系。无论激光加工区域如何,该平衡[(Ga/Gb)db]不变化。图50示出了当基于样品1、2和3的初始条件来选择激光加工区域A0、B0和C0之一并进行激光加工而将该平衡调节到目标值时的变化。
图51示出了用于确定当以100μm振动幅度驱动悬臂振动器110时悬臂振动器110是否会在已经被激光束加工的激光加工区域断裂的实验结果。
在图51中,在曲线上绘出的三角点,当以小于100μm的振动幅度驱动时悬臂振动器110在激光加工区域断裂。图51所示的结果表示当在悬臂振动器110底部附近进行深加工时悬臂振动器110更容易断裂。
图52、53和54示出了显示当其上固定有包含悬臂振动器110的陀螺传感器的200g的刚体下落时悬臂振动器110断裂高度的柱状图,该柱状图分别是对于未加工的振动器,在包括图51中三角点的范围内进行激光加工的振动器,和在包括图51中圆点的范围内进行激光加工的振动器。
如图52所示,对于没有用激光束加工的悬臂振动器,当从大约150cm高度下落时断裂。换句话说,构成悬臂振动器的100μm的硅棱柱具有图52所示的强度。对于在包括图51中三角点的范围内用激光束进行加工的悬臂振动器,当从大约50cm高度下落时该悬臂振动器断裂。换句话说,与未加工的悬臂振动器相比,该悬臂振动器抵抗外部冲击的强度被减小了一半。该断裂源自于该悬臂振动器的激光加工区域。
对于在包括图51中三角点的范围内用激光束加工的悬臂振动器,该悬臂振动器直到到达大约150cm的高度才断裂,并且保持了与未加工的悬臂振动器相同的强度。
在这种情况下,悬臂振动器110不在激光加工区域断裂,而是从集中最大压力的悬臂振动器110的底部断裂。换句话说,图54显示,只要使用了具有根据本示例的大小的悬臂振动器110,就会在预期不再增加强度的区域发生断裂。
如图55所示,当该激光加工的点不重叠并且以步进状图案提供,那么当以100μm或更少的振动幅度驱动时,该悬臂振动器110断裂的区域将会变得更小,如图56所示。与图51中所示情况不同,即使当增加该激光加工的深度时,悬臂振动器110也不会在图51所示的位置断裂。换句话说,通过以步进状图案加工悬臂振动器110来增加悬臂振动器110的强度。
然而,即使以步进状图案加工悬臂振动器110,当加工距离悬臂振动器110底部100μm内的区域时,悬臂振动器110抗断裂的强度也不会改变。假定距离该底部100μm内的区域具有非常低的对于激光加工的容限。因此,期望在距离悬臂振动器110底部100μm内的区域中不进行激光加工。
根据上述结果,期望在距离悬臂振动器110底部100μm内的区域中不进行激光加工,且期望随着该激光加工区域被提供得距离该悬臂振动器110底部更远,进行更深的激光加工。如果以这种方式进行激光加工,悬臂振动器110的强度将会与未加工悬臂振动器的强度基本相同。当悬臂振动器110的振动幅度是100μm时,对于该悬臂振动器110的底部施加大约0.5Gpa的应力。
由于该激光加工区域和激光加工深度取决于悬臂振动器的大小,所以对具有与要使用的悬臂振动器相同形状的悬臂振动器进行测试。然后,基于表示可以执行而不会导致悬臂振动器断裂的激光加工位置和深度的测试结果,对于要使用的实际悬臂振动器进行激光加工。
接下来,如图57所示,从悬臂振动器110后表面110b的中心向外(沿中轴线)定义激光加工区域A1、B1和C1。图58中示出了在该激光加工区域A1、B1和C1的激光工艺量和失调水平变化[Hz]之间的关系。无论激光加工区域如何,失调水平不变。然而,当在悬臂振动器110的纵轴方向上进行相当长度的激光加工时,失调水平会变化。在这种情况下,激光加工区域的失调水平变化在任何激光加工区域A1、B1和C1之间都是相同的。图59示出了在每个激光加工区域A1、B1和C1的激光加工量和平衡变化[(Ga/Gb)db]之间的关系。该平衡变化从悬臂振动器110的中心向外变大。
图60示出了由于在每个激光加工区域A1、B1和C1上进行激光加工而导致的失调水平和平衡变化。图61示出了由于在激光加工区域B1上进行激光加工而导致的失调水平和平衡变化。图61所示的情况表示,可以利用公共凹陷(common depressions)同时进行该左和右检测信号之间的失调水平调节和平衡调节。尤其是,可以通过利用公共凹陷形成用于调节失调水平的第一凹陷和用于调节平衡的第二凹陷,来同时进行该左和右检测信号之间的失调水平调节和平衡调节。根据本方法,由于可以同时进行该左和右检测信号之间的失调水平调节和平衡调节,所以可以减少调节所需的时间,并且也可以减少凹陷数量,防止悬臂振动器110的机械强度的降低。
用于调节该失调水平和平衡的凹陷80的形状不限于如图57所示的直线。而是,凹陷80可以被提供为步进状图案的多个激光加工点,如图55所示。通过以步进状图案提供凹陷80,由于可以增加该激光加工区域和激光加工量,所以可以增加上述振动器的机械强度,并且能够实现高精度的调节。通过在悬臂振动器110的侧面上为凹陷80提供激光加工区域,不仅平衡调节而且失调水平调节也可以同时进行。该加工区域不限于该悬臂振动器110的一个侧面,例如可以在后表面、侧面和脊线区域中的至少一个上形成一个凹陷80以调节该振动器。当将多个凹陷80提供为步进状图案的点时,凹陷80不必为失调水平调节和平衡调节所共用,如上所述。相反地,可以形成仅用于调节失调水平或仅用于调节平衡的多个凹陷80。
根据本实施例,即使当悬臂振动器110以倾斜的角度振动时,也可以调节该振动以获得预期的垂直振动,并且可以控制和调节在垂直共振频率处的左和右检测信号的幅度以使其彼此相等。更具体而言,通过调节由于悬臂振动器110的形状缺损而导致的、左和右检测信号在垂直共振频率上的频率差和幅度差,可以很容易地获得具有稳定检测性能的振动陀螺传感器元件100。通过改变激光加工区域而进行调节,可以减少进行激光加工的次数和调节所需的时间。通过减少激光加工的次数,可以制造出用于角速度传感器的高可靠性悬臂振动器。通过应用一种调节工艺的算法,可以制造出自动调节设备以提高产率。
第二实施例
如上所述,为了调节根据本发明一个实施例的振动陀螺传感器元件,在悬臂振动器110后表面110b上进行激光加工直到能够获得目标振动特性,该悬臂振动器110被包含在安装到支撑基底20上的振动陀螺传感器元件100上,如图3所示。
悬臂振动器110主要有两项需要调节:垂直共振频率和水平共振频率之间的频率差,以及左和右检测信号的幅度差。通过调节该频率差,可以提高传感器的灵敏度,同时通过调节左和右检测信号的幅度差,可以减少传感器的噪声。
在上述第一实施例中,当悬臂振动器110在垂直共振频率振动时,比较左和右检测信号的幅度,并且通过激光加工在悬臂振动器110的一部分上形成凹陷,该部分包括输出具有较小幅度的检测信号的检测电极。以这种方式,将悬臂振动器110调节为垂直方向上的振动模式。换句话说,根据第一实施例,仅基于工作频率(垂直共振频率)来匹配左和右检测信号的幅度和相位。当左和右检测信号匹配时,就认为悬臂振动器110被调节为垂直方向上的振动模式。
如图62A所示,当悬臂振动器110以一个倾斜角度振动时,在左和右检测信号之间存在差异(Ga<Gb)。图62B示出了差分信号的频率特性(Ga-Gb)[dbm]。在这种情况下,一个明显的峰出现在水平共振频率Fh处。垂直共振频率Fv是悬臂振动器110的工作频率。根据上述第一实施例,仅考虑了工作频率(垂直共振频率Fv),且在悬臂振动器110的后表面110b上选择用于减少峰值水平的激光加工区域,用激光束照射该区域以形成凹陷(在下文中该工艺被称为“激光修饰”)。如图63A所示,以这种方式,将悬臂振动器110的振动调节为垂直方向上的振动模式,从而减少左和右检测信号的幅度差。如图63B所示,对于两点Fv和Fh最小化左和右检测信号的幅度差。
然而,如图63B所示,当从在垂直方向上振动的悬臂振动器110出的左和右检测信号的幅度初始相同时,可以通过将该振动调节为垂直方向上的振动模式而减小该左和右检测信号的幅度差。换句话说,因为用于输出该检测信号的检测电极被堆叠在位于悬臂振动器110前表面上的压电膜上,所以在一些情况下,由于在生产悬臂振动器110期间产生的一些原因而导致以不对称的形式提供该压电膜。这种不对称的主要原因是根据晶片(基底)的位置而发生的压电膜厚度和/或成分的改变,因为从一个硅基底一次生产多个悬臂振动器110。
因此,如上所述,对于左和右检测信号有差异的悬臂振动器110,即使进行了基于工作频率(垂直共振频率Fv)的激光修饰,通常也不能减少该水平共振频率Fh的峰值水平,如图63C所示。如果使用这种悬臂振动器110来构造振动陀螺传感器,该传感器将会很容易收到外部噪声的影响,因而会衰减该传感器的输出。以下将说明该传感器输出的衰减机制。
如图64所示,IC 40的G0端连接到悬臂振动器110的驱动电极106a,以将具有频率F0的驱动信号施加到根据本实施例的振动陀螺传感器。第一检测电极106b连接到IC 40的Ga端以输出检测信号Vga,同时第二检测电极106c连接到IC 40的Gb端以输出检测信号Vgb。在IC 40,自激励振荡电路30包括加法器电路41、放大器电路42、移相电路43和自动增益控制器44,这些都参照图5说明。在图64中,第一计算电路31相当于图5中的差分放大器电路45,而第二计算电路32相当于图5中的同步检测电路46和平滑电路47。
当悬臂振动器110接收到输入信号Vg0以及分别来自检测电极106b和106c的输出检测信号Vga和Vgb时开始振动。对该检测信号进行幅度调制以生成差分信号(Vga-Vgb)。该差分信号在第二计算电路32被转换为直流并输出以检测施加至悬臂振动器110的角速度。此刻,如果具有频率Fa的干扰噪声影响悬臂振动器110的输出信号,则该悬臂振动器110在包括该噪声频率Fa的输入信号的频率(F0±Fa)振动。因此,频率成分F0±Fa将被包含在用于该检测信号的差分信号中(Vga-Vgb)。结果,包括叠加噪声信号Fa的输出信号将从第二计算电路32输出。
如上所述,如果悬臂振动器110的振动处于很容易产生频率成分F0±Fa的状态,那么该传感器的输出将会受到噪声的严重影响,并且会减少该角速度的检测精度(即,会衰减该抑制比)。使该悬臂振动器110的振动处于很容易成生频率成分F0±Fa的状态是一种在其中在工作频率(垂直共振频率Fv)附近大约200-300Hz之间的频带中观察到的峰值的状态,其中该峰值不在工作频率上。一般地,为了保持角速度传感器中使用的悬臂振动器的振动特性,将水平共振频率Fh设定在该垂直共振频率Fv附近。垂直共振频率Fv和水平共振频率Fh的差是失调水平。该传感器输出很容易受到具有对应于该失调水平的频率附近的频率的干扰噪声的影响。
根据本实施例,调节悬臂振动器110的振动特性以使从左和右检测信号得到的差分信号从该悬臂振动器110输出,同时在水平共振频率Fh驱动该悬臂振动器110。换句话说,当调节该悬臂振动器110的振动特性时,如图65A和65B所示,考虑了水平共振频率Fh的峰值水平,以及在悬臂振动器110上进行激光修饰以最小化该水平共振频率Fh的峰值水平。更具体而言,确定当悬臂振动器110在水平共振频率Fh振动时从该检测电极106b和106c得到的差分信号是否在预定范围内。基于从该结果得到的差分信号的幅度,选择悬臂振动器110上用于调节的激光加工区域,并且通过激光加工进行修饰。重复该测量和激光加工步骤直到获得目标值为止。
如上所述,根据本实施例,调节悬臂振动器110的振动特性,以使悬臂振动器110不在除了引起该悬臂振动器110在正常振动方向(垂直方向)振动的频率之外的频率振动。因此,即使具有对应于该失调水平的频率(例如根据本示例为50Hz或100Hz)附近的频率的干扰噪声影响该输入信号,也可以减小对于该检测信号的影响并且增加了该传感器输出对噪声的信号比(信噪(SN)比)。以这种方式,实现不易受干扰噪声影响的振动陀螺传感器。
当由于该压电膜的不对称而导致在以垂直振动模式振动的悬臂振动器110的左和右检测信号中存在差异时,能够同时进行失调水平调节和对该左右检测信号的调节,并且针对干扰采取措施。以这种方式,可以提高产率、产量和质量。
第三实施例
如上所述,根据本发明的一个实施例的振动陀螺传感器包括振动陀螺传感器元件100A和100B,该振动陀螺传感器元件100A和100B具有相同结构并且以不同轴向安装在同一支撑基底上。以这种方式,该振动陀螺传感器能够以两个轴向检测角速度(参照图40)。该振动陀螺传感器在同一支撑基底上包括电子元件,例如IC芯片。此外,将该振动陀螺传感器设置在包括各种传感器元件和电子装置的主体(main body)内部。因此,需要通过防止一对振动陀螺传感器元件之间、支撑基底上的元件例如IC元件之间以及包含在主体中的电子装置之间的串扰而提高该传感器输出的精度。
为了调节失调水平和调节安装在根据本发明一个实施例的振动陀螺传感器的支撑基底20上的振动陀螺传感器元件100的检测信号,在悬臂振动器110的后表面110b上进行激光修饰。在该调节工艺中,能够防止该振动陀螺传感器之间和其他电子元件和电子装置之间的串扰。
在根据本实施例的悬臂振动器110的振动特性的调节中,调节各种振动特性例如失调水平以及该悬臂振动器110的检测信号的平衡。随后,进行激光修饰以调节该垂直和水平共振频率。
因为悬臂振动器110被成形为悬臂,所以该振动频率与该悬臂长度的平方成反比,以如下公式表示,其中fn表示该悬臂的共振频率,E表示Young的模,I表示该悬臂的横截面副力矩,ρ表示密度,A表示悬臂的横截面面积,L表示该悬臂的长度,λ表示比例系数。基于该公式在该悬臂振动器110的尖端进行激光修饰以减少该悬臂的刚性和实际长度,结果,增加了该悬臂的共振频率。
f n = λ 2 2 π EI ρ AL 4 = λ 2 2 π EI ρA 1 L 2 - - - ( 1 )
当调节该共振频率时,必须防止已经被调节的失调水平发生改变。图66示出了表示当该激光加工深度是11μm而悬臂长度是1.9mm时,通过测量该悬臂上的激光加工区域以及该共振频率和失调水平的变化而得到的数据点的曲线图。通过在距离该悬臂底部(即该振动器的后座(rear anchor))超过1.6mm的区域(大于该振动器总长度的五分之四)进行激光加工,可以增加该共振频率而不改变失调水平(对应于94Hz)。
因此,如图67所示,在悬臂振动器110的后表面110b上距离悬臂振动器110的底部大于该振动器总长度五分之四的距离处的区域,是用于形成激光加工凹陷90以调节共振频率的区域,而除了这一区域之外的悬臂振动器110上的区域是是用于形成激光加工凹陷80以调节该失调水平以及左右检测信号的平衡的区域。以这种方式,可以将悬臂振动器110的共振频率调节到预定频带而不改变失调水平,该预定频带较少地受到该主体中串扰的影响。要形成的凹陷90的数量是不受限制的,并且可以是单个凹陷或多个凹陷。形成凹陷90的激光加工区域不限于与悬臂振动器110的轴线对齐的位置。而且,形成凹陷90的该激光加工区域不限于悬臂振动器110的后表面110b,而是可以在悬臂振动器110的尖端。除了通过形成凹陷90来调节共振频率,也能够通过在悬臂振动器110中轴线的左和右侧的不对称位置形成凹陷90,从而根据激光加工区域的位置来调节左和右检测信号的平衡。
为了防止在一对振动陀螺传感器元件之间的串扰,期望将振动陀螺传感器元件的共振频率设定为相隔至少1kHz。
第四实施例
在根据第一实施例的形成用于从Si基底1上切割悬臂振动器110的外形的穿透部分13的工艺中(图29至31),应用了感应耦合等离子体活性离子蚀刻(ICP-RIE)。在以高纵横比(aspect ratio)形成具有垂直于Si基底1的侧壁的凹槽方面,ICP-RIE是非常有优势的。
当Si基底1的大小(即晶片直径)增加时,以预定垂直角度在Si基底1上形成所有悬臂振动器110的侧壁变得很难,如图68A中的示意图所示,并且由于等离子体工艺室中的气流分布和等离子体分布,振动器110会形成为不对称形状,特别是在Si基底1的外周边区域中,如图68B图例的示意图所示。
如果悬臂振动器110是对称的,该振动模式将是垂直的,这是期望的振动方向(图68A),并且从在悬臂振动器110前表面上提供的左和右检测电极106b和106c输出的检测信号将是平衡的而不具有差异。然而,当悬臂振动器110不对称时,从左和右检测电极106b和106c输出的检测信号将是不平衡的(图68B)。当左和右检测信号不同时,所检测的悬臂振动器110的旋转方向中的角速度将不同,或者对于顺时针和逆时针旋转速度的灵敏度将不同。
如上所述,为了调节左和右检测信号的平衡,通过在形成振动陀螺传感器元件100之后发射激光束来修饰悬臂振动器110的预定区域。然而,当仅使用这种方法来平衡该检测信号时,调节所需的时间较多。而且,因为通过使用激光加工可调节的左和右检测信号的最大差异大约是30%,所以如果差异大于30%,则悬臂振动器110不能被接受为产品,导致产率降低。
根据本实施例,为了缩短调节所需的时间和增加无缺陷产品的生产率,过度执行用于勾勒悬臂振动器110外形的蚀刻,直到在穿透部分13底部露出的悬臂振动器110的脊线被弯曲为止。
当从顶部观察时,图69A所示的穿透部分13是U形。穿透部分13是通过应用蚀刻工艺沿悬臂振动器110的外形切割被热氧化膜2A掩蔽的Si基底1来形成的。当蚀刻深度到达对应于要生产的悬臂振动器110的厚度的点时,完成该蚀刻工艺。此时,在Si基底1背面提供的背侧停止膜12限制该蚀刻深度。
在根据本实施例形成穿透部分13的工艺中,即使在该蚀刻形成的凹槽底部到达背侧停止膜12之后仍然继续蚀刻(即执行过蚀刻(over-etching))。如图69B的示意图所示,当进行过蚀刻时,在背侧停止膜12上的电荷或蚀刻剂存储层(在图69B中用参考字符E表示)引起针对穿透部分13的侧壁的蚀刻效应。因而,悬臂振动器110的较低脊线区域被修饰为锥形或弧形结构,如图69B所示。
这种现象被称为“切口(notching)”,并且通常控制该蚀刻条件以在标准工艺中防止切口。严重的切口发生在脊线区域,在这里随着穿透部分13越倾斜,背侧停止膜12的角度和穿透部分13的侧壁会变得越来越尖锐。图69A是示出了从纵轴方向观察的悬臂振动器110的横截面图。图69B是示出了从与悬臂振动器110的纵轴方向正交的角度观察的主要部件的横截面图。
在本实施例中,在穿透部分13形成期间,由过蚀刻导致的切口被用于减少因悬臂振动器110形状的不对称而导致的悬臂振动器110振动方向的倾斜。
当悬臂振动器110具有不对称形状时,与如图68B所示的常规蚀刻(即没有使用过蚀刻)所产生的悬臂振动器110的振动方向相比,如图70B所示的过蚀刻所产生的悬臂振动器110的振动方向更接近垂直方向。这是因为对于悬臂振动器110的左和右脊线110VL和110VR,无论哪一个具有更尖锐的角度,都会在蚀刻工艺期间受到切口更多的影响,并且在该脊线区域的悬臂振动器110的更大的质量被去除。因此,更好地平衡了悬臂振动器110的左和右平分的重量,并且将振动调节到垂直方向上的振动模式。
如图68A所示,对于具有对称形状的悬臂振动器110,当通过使用过蚀刻形成穿透部分13时,左和右脊线110VL和110VR都会因切口而弯曲,如图70A所示。然而,在这种情况下,通过蚀刻去除的质量对于左和右脊线110VL和110VR基本相同,并且保持悬臂振动器110形状的对称性。因此,与没有应用过蚀刻时相似,悬臂振动器110在垂直方向上振动。
图68和70所示的悬臂振动器110被倒置显示,以使容易理解该描述。当实际的振动器110面对前表面时振动,在这里向下的提供检测电极106b和106c以及驱动电极106a。
可以通过控制常规的蚀刻时间而执行过蚀刻,即把加工时间设定为比常规蚀刻设定的时间要长。根据各种规格例如悬臂振动器110的大小和形状以及驱动频率,而将被切口加工的该悬臂振动器110的左和右脊线110VL和110VR的区域的长度设定为预定长度。根据按照第一实施例的振动陀螺传感器元件100的形状,被加工的区域的长度是5μm或更长。而且,因为如果加工的区域太大就要减少悬臂振动器110的强度,所以加工的区域的期望长度是20μm或更少。
如上所述,根据本实施例,即使在发生切口以形成该悬臂振动器110的锥形或弧形脊线之后,原本具有对称形状的悬臂振动器的振动模式仍然保持在期望的方向。而且,如果是由于原本的不对称形状而在倾斜角度振动的悬臂振动器110,在悬臂振动器110的较低脊线处发生的切口也可以减少悬臂振动器110的不对称,并且将振动调节到接近垂直方向的振动模式。因此,可以通过激光加工对由于不充分调节而导致振动模式不平衡的悬臂振动器进行调节。以这种方式,可以提高产率和产量。
发明人确认,对于从一个Si基底上生产的多个已知振动陀螺传感器元件,在执行调节之前左和右检测信号差别小于30%的无缺陷元件的产量是大约43%,而对于根据本实施例从一个Si基底上生产的多个振动陀螺传感器元件,无缺陷元件的产量是大约87%,这大约是已知的振动陀螺传感器元件的产量的两倍。
第五实施例
在根据第一实施例形成用于从Si基底1切割出悬臂振动器110的外形的穿透部分13的工艺中,应用了感应耦合等离子体活性离子蚀刻(ICP-RIE)。在以高纵横比(aspect ratio)形成具有垂直于Si基底1的侧壁的凹槽方面,ICP-RIE是非常有优势的。
通常,当通过蚀刻形成线性凹槽时,该凹槽的壁没有形成精确的直角(即该凹槽宽度方向上的边和该凹槽纵轴方向上的边没有构成直角),并且相反的是弯曲的。因此,当形成穿透部分13时,悬臂振动器110对应于悬臂振动器110两侧面和振动陀螺传感器元件100的底部之间的边界区域的底部区域110R1和110R2具有从顶部观察为弯曲的形状,如图71所示。
然而,悬臂振动器110的底部区域110R1和110R2很容易变得不对称。如图72A所示,如果悬臂振动器110的形状是对称的,悬臂振动器110的振动模式将是垂直方向的,并且来自在悬臂振动器110的表面上提供的检测电极106b和106c的检测信号将是平衡的。相反的,如上所述,如果悬臂振动器110的底部区域110R1和110R2是不对称的,那么悬臂振动器110的振动模式就会倾斜,如图72B所示。
当该振动模式是倾斜角度时,来自左和右检测电极106b和106c的检测信号将是不平衡的。当左和右检测电极106b和106c是不平衡时,在悬臂振动器110的旋转方向上检测的角速度会不同,或者对于顺时针和逆时针旋转速度的灵敏度将会不同。
如上所述,为了调节左右检测信号之间的平衡,通过在形成振动陀螺传感器元件100之后发射激光束而修饰悬臂振动器110的预定区域。然而,当仅应用该方法来平衡该检测信号时,调节所需的时间较多。而且,因为通过使用激光束可调节的左和右检测信号的最大差异是大约30%,所以如果该差异大于30%,则悬臂振动器110就不能被接受为产品,导致产率降低。
根据本实施例,为了缩短调节所需的时间和增加无缺陷产品的生产率,执行用于勾勒悬臂振动器110外形轮廓的蚀刻,以使穿透部分13的两端部部分13A和13B向外成锥形或弯曲(参照图73)。
图73示出了在形成外部凹槽工艺中的Si基底1的示意图。穿透部分13被形成为U形,围绕悬臂振动器110的外部。穿透部分13的端部13A和13B向悬臂振动器110的外部弯曲。穿透部分13被形成以蚀刻被热氧化膜2A掩蔽的Si基底1(此时,压电膜、上电极膜以及包括端子和引线的布线图案被保护膜覆盖)。当构图热氧化膜2A时,与穿透部分13弯曲的区域对应的U形的开口的两边被弯曲,如图73所示。
因此,穿透部分13的端部13A和13B沿热氧化膜2A的开口形状弯曲。如图74所示,将悬臂振动器110的底部区域110R1和110R2形状的对称性提高到该形状基本相同的程度。以这种方式,将把悬臂振动器110的振动保持在垂直方向上的振动模式,并且提高检测信号之间的平衡。
图75A至75C示出了悬臂振动器110的底部区域110R2(110R1)。图75A示出了形成为圆形和具有预定曲率的椭圆形的悬臂振动器110的底部区域110R2。图75B示出了以具有不同倾角的锥形形成的悬臂振动器110的底部区域110R2。图75C示出了在角度相对于振动陀螺传感器元件100的底部逐渐变小的多个连接的斜面上形成的悬臂振动器110的底部区域110R2。
悬臂振动器110的底部区域110R1和110R2不限于上述形状,只要底部区域110R1和110R2是锥形或弧形以使该底部区域110R1和110R2的宽度向着悬臂振动器110外侧逐渐变大即可。底部区域110R1和110R2的曲率半径可以设置为任何值,诸如5μm。
如上所述,根据本实施例,由于从一开始就通过将穿透部分13的端部13A和13B形成为弧形而弯曲底部区域110R1和110R2,所以悬臂振动器110的形状是基本对称的。以这种方式,可以将悬臂振动器110的振动保持在垂直方向上的振动模式。因而,可以通过激光加工而调节由于不充分调节而以不平衡振动模式振动的悬臂振动器。以这种方式,可以提高产率和产量。
本发明人确认,对于从一个Si基底上生产的多个已知振动陀螺传感器元件,在进行调节之前,左右检测信号差别小于30%的无缺陷元件的产量是大约38%,然而,对于根据本实施例从一个Si基底上生产的多个振动陀螺传感器元件,无缺陷元件的产量被显著提高到大约82%。这里该振动器的底部曲率半径被设定为20μm。
根据本发明的振动陀螺传感器元件及其制造方法还包括以下结构:
(1)一种包括悬臂振动器的振动陀螺传感器元件,其中该振动器具有至少一个用于调节该振动器的垂直共振频率和水平共振频率之间的频率差的第一凹陷和至少一个用于调节从设置在该振动器上的一对检测电极输出的信号差的第二凹陷;
(2)根据(1)的振动陀螺传感器元件,其中将该第一和第二凹陷设置为至少一个公共凹陷;
(3)根据(1)的振动陀螺传感器元件,其中在该振动器的第一表面上设置压电膜、驱动电极和该检测电极对,并且在除了该第一表面之外的区域设置第一和第二凹陷;
(4)根据(1)的振动陀螺传感器元件,其中在振动器的尖端区域设置用于调节该振动器的共振频率的至少一个第三凹陷;
(5)根据(4)的振动陀螺传感器元件,其中在距离该振动器超过该振动器总长度的五分之四的位置设置该第三凹陷;
(6)一种包括悬臂振动器的振动陀螺传感器元件,其中在该振动器上设置至少一个用于调节该振动器的垂直共振频率和水平共振频率之间的频率差以及从该振动器上设置的一对检测电极输出的信号差的凹陷;
(7)根据(6)的振动陀螺传感器元件,其中在该振动器的第一表面上设置压电膜、驱动电极和该检测电极对,并且在除了该第一表面之外的区域设置该凹陷;
(8)根据(6)的振动陀螺传感器元件,其中在振动器的尖端区域设置用于调节该振动器的共振频率的至少一个凹陷;
(9)根据(8)的振动陀螺传感器元件,其中在距离该振动器超过该振动器总长度的五分之四的位置设置该凹陷;
(10)一种包括悬臂振动器的振动陀螺传感器元件,其中该振动器具有至少一个用于调节该振动器的垂直共振频率和水平共振频率之间的频率差的第一凹陷和至少一个用于调节从该振动器上设置的一对检测电极输出的信号差的第二凹陷,并且当该振动器在水平共振频率振动时,在最小化该信号差的位置形成该第二凹陷;
(11)根据(10)的振动陀螺传感器元件,其中该第一和第二凹陷被设置作为至少一个公共凹陷;
(12)根据(10)的振动陀螺传感器元件,其中在该振动器的第一表面上设置压电膜、驱动电极和该检测电极对,并且在除了该第一表面之外的区域设置第一和第二凹陷;
(13)根据(10)的振动陀螺传感器元件,其中在振动器的尖端区域设置用于调节该振动器的共振频率的至少一个第三凹陷;
(14)根据(13)的振动陀螺传感器元件,其中在距离该振动器超过该振动器总长度的五分之四的位置设置该第三凹陷;
(15)一种包括悬臂振动器的振动陀螺传感器元件,其中在该振动器上设置至少一个用于调节该振动器的垂直共振频率和水平共振频率之间的频率差以及从该振动器上设置的一对检测电极输出的信号差的凹陷,并且当该振动器在水平共振频率振动时,在最小化该信号差的位置形成该凹陷;
(16)根据(15)的振动陀螺传感器元件,其中在该振动器的第一表面上设置压电膜、驱动电极和该检测电极对,并且在除了该第一表面之外的区域设置该凹陷;
(17)根据(15)的振动陀螺传感器元件,其中在振动器的尖端区域设置用于调节该振动器的共振频率的至少一个凹陷;
(18)根据(17)的振动陀螺传感器元件,其中在距离该振动器超过该振动器总长度的五分之四的位置设置该凹陷;
(19)一种包括悬臂振动器的振动陀螺传感器元件,其中在该振动器上设置用于调节该振动器的共振频率的至少一个凹陷;
(20)根据(19)的振动陀螺传感器元件,其中在该振动器上设置至少一个用于调节从该振动器上设置的一对检测电极输出的信号差的凹陷;
(21)根据(19)的振动陀螺传感器元件,其中在该振动器上设置至少一个用于调节该振动器的垂直共振频率和水平共振频率之间的频率差的凹陷;
(22)根据(19)的振动陀螺传感器元件,其中在该振动器上设置至少一个用于调节该振动器的垂直共振频率和水平共振频率之间的频率差以及从该振动器上设置的一对检测电极输出的信号差的凹陷;
(23)一种制造包括悬臂振动器的振动陀螺传感器元件的方法,包括步骤:在该振动器上形成至少一个用于调节该振动器的垂直共振频率和水平共振频率之间的频率差的第一凹陷,和在该振动器上形成至少一个用于调节从该振动器上设置的一对检测电极输出的信号差的第二凹陷,其中当该振动器在垂直共振频率振动时,在最小化该信号差的位置形成该第二凹陷;
(24)根据(23)的制造振动陀螺传感器元件的方法,其中在测量该频率差和信号差之后多次重复该形成第一和第二凹陷的步骤;
(25)根据(23)的制造振动陀螺传感器元件的方法,其中将该第一和第二凹陷设置为至少一个公共凹陷;
(26)根据(23)的制造振动陀螺传感器元件的方法,还包括在该振动器的尖端区域形成用于调节该振动器的共振频率的至少一个第三凹陷的步骤;
(27)根据(26)的制造振动陀螺传感器元件的方法,其中在距离该振动器超过该振动器总长度的五分之四的位置设置该第三凹陷;
(28)一种制造包括悬臂振动器的振动陀螺传感器元件的方法,包括步骤:在该振动器上形成至少一个用于调节该振动器的垂直共振频率和水平共振频率之间的频率差以及从该振动器上设置的一对检测电极输出的信号差的凹陷,其中当该振动器在垂直共振频率振动时,在最小化该信号差的位置形成该凹陷;
(29)根据(28)的制造振动陀螺传感器元件的方法,其中在测量该频率差和信号差之后多次重复该形成凹陷的步骤;
(30)根据(28)的制造振动陀螺传感器元件的方法,还包括在该振动器上形成用于调节该振动器的共振频率的至少一个凹陷的步骤;
(31)根据(30)的制造振动陀螺传感器元件的方法,其中在距离该振动器超过该振动器总长度的五分之四的位置设置该凹陷;
(32)一种制造包括悬臂振动器的振动陀螺传感器元件的方法,包括步骤:在该振动器上形成至少一个用于调节该振动器的垂直共振频率和水平共振频率之间的频率差的第一凹陷,和在该振动器上形成至少一个用于调节从该振动器上设置的一对检测电极输出的信号差的第二凹陷,其中当该振动器在水平共振频率振动时,在最小化该信号差的位置形成该第二凹陷;
(33)根据(32)的制造振动陀螺传感器元件的方法,其中在测量该频率差和信号差之后多次重复该形成第一和第二凹陷的步骤;
(34)根据(32)的制造振动陀螺传感器元件的方法,其中将该第一和第二凹陷设置为至少一个公共凹陷;
(35)根据(32)的制造振动陀螺传感器元件的方法,还包括在该振动器的尖端区域形成用于调节该振动器的共振频率的至少一个第三凹陷的步骤;
(36)根据(35)的制造振动陀螺传感器元件的方法,其中在距离该振动器超过该振动器总长度的五分之四的位置设置该第三凹陷;
(37)一种制造包括悬臂振动器的振动陀螺传感器元件的方法,包括步骤:在该振动器上形成至少一个用于调节该振动器的垂直共振频率和水平共振频率之间的频率差以及从该振动器上设置的一对检测电极输出的信号差的凹陷,其中当该振动器在水平共振频率振动时,在最小化该信号差的位置形成该凹陷;
(38)根据(37)的制造振动陀螺传感器元件的方法,其中在测量该频率差和信号差之后多次重复该形成凹陷的步骤;
(39)根据(37)的制造振动陀螺传感器元件的方法,还包括在该振动器的尖端区域形成用于调节该振动器的共振频率的至少一个凹陷的步骤;
(40)根据(39)的制造振动陀螺传感器元件的方法,其中在距离该振动器超过该振动器总长度的五分之四的位置设置该凹陷;
(41)一种包括悬臂振动器的振动陀螺传感器元件,其中该振动器具有至少一个用于调节该振动器的垂直共振频率和水平共振频率之间的频率差的第一凹陷和至少一个用于调节从该振动器上设置的一对检测电极输出的信号差的第二凹陷,并且当该振动器在垂直共振频率振动时,在最小化该信号差的位置形成该第二凹陷;
(42)根据(41)的振动陀螺传感器元件,其中将该第一和第二凹陷设置为至少一个公共凹陷;
(43)根据(41)的振动陀螺传感器元件,其中在该振动器的第一表面上设置压电膜、驱动电极和该检测电极对,并且在除了该第一表面之外的区域设置第一和第二凹陷;
(44)根据(41)的振动陀螺传感器元件,其中在振动器的顶端区域设置用于调节该振动器的共振频率的至少一个第三凹陷;
(45)根据(44)的振动陀螺传感器元件,其中在距离该振动器超过该振动器总长度的五分之四的位置设置该第三凹陷;
(46)一种包括悬臂振动器的振动陀螺传感器元件,其中在该振动器上设置至少一个用于调节该振动器的垂直共振频率和水平共振频率之间的频率差以及从该振动器上设置的一对检测电极输出的信号差的凹陷,并且当该振动器在垂直共振频率振动时,在最小化该信号差的位置形成该凹陷;
(47)根据(46)的振动陀螺传感器元件,其中在该振动器的第一表面上设置压电膜、驱动电极和该一对检测电极,并且在除了该第一表面之外的区域设置该凹陷;
(48)根据(46)的振动陀螺传感器元件,其中在振动器的尖端区域设置用于调节该振动器的共振频率的至少一个凹陷;和
(49)根据(48)的振动陀螺传感器元件,其中在距离该振动器超过该振动器总长度的五分之四的位置设置该凹陷。
本领域技术人员应当理解,根据设计需求和其他因素可以作出各种修改、组合、子组合和替换,因它们均被包括在权利要求或其等同物的范围内。
本发明包含分别于在2005年3月4日、2005年6月16日、2005年6月16日和2005年12月28日向日本专利特许厅提交的日本专利申请JP2005-106717、JP 2005-176871、JP 2005-176870和JP2005-380330相关的主题,这里通过引用结合其全部内容。

Claims (27)

1、一种振动陀螺传感器,包括:
包括悬臂振动器的振动陀螺传感器元件,所述悬臂振动器包括在第一表面上的压电膜、驱动电极和一对检测电极;以及
在其上安装所述振动陀螺传感器元件的支撑基底,其中,
将所述振动陀螺传感器元件安装在所述支撑基底上以使所述悬臂振动器的第一表面面对所述支撑基底,以及
将除了所述悬臂振动器的第一表面之外的区域界定为激光加工区域,在所述激光加工区域中将形成用于调节所述悬臂振动器的振动特性的凹陷。
2、根据权利要求1的振动陀螺传感器,其中所述凹陷被形成以调节所述悬臂振动器的垂直共振频率和水平共振频率之间的频率差。
3、根据权利要求1的振动陀螺传感器,其中所述凹陷被形成以调节从所述一对检测电极输出的信号之间的差。
4、根据权利要求1的振动陀螺传感器,其中所述凹陷被形成以调节所述悬臂振动器的垂直共振频率和水平共振频率之间的频率差以及从所述一对检测电极输出的信号之间的差。
5、根据权利要求1的振动陀螺传感器,其中所述激光加工区域是与所述第一表面相对的表面。
6、根据权利要求1的振动陀螺传感器,其中所述激光加工区域是连接与所述第一表面相对的表面和与所述第一表面相邻的侧面的脊线区域。
7、根据权利要求1的振动陀螺传感器,其中所述激光加工区域是与所述第一表面相邻的侧面。
8、根据权利要求1的振动陀螺传感器,其中所述凹陷是在不同位置形成的多个凹陷。
9、根据权利要求1的振动陀螺传感器,其中所述凹陷位于距离所述悬臂振动器底部超过100μm的位置。
10、根据权利要求1的振动陀螺传感器,其中所述凹陷是以步进状图案提供的多个凹陷。
11、根据权利要求1的振动陀螺传感器,其中提供所述凹陷以调节所述悬臂振动器的共振频率。
12、根据权利要求11的振动陀螺传感器,其中所述凹陷位于距离所述悬臂振动器底部超过所述悬臂振动器总长度五分之四的位置。
13、根据权利要求1的振动陀螺传感器,其中熔化所述激光加工区域的至少一部分以形成平滑表面。
14、根据权利要求1的振动陀螺传感器,其中连接与所述第一表面相对的表面和与所述第一表面相邻的侧面的所述脊线区域是弯曲的。
15、根据权利要求1的振动陀螺传感器,其中所述悬臂振动器的底部两侧是弯曲的。
16、一种调节振动陀螺传感器的方法,所述振动陀螺传感器包括振动陀螺传感器元件和在其上安装所述振动陀螺传感器元件的支撑基底,所述振动陀螺传感器元件包括悬臂振动器,所述悬臂振动器在第一表面上具有压电膜、驱动电极和一对检测电极,所述方法包括步骤:
在所述支撑基底上安装所述振动陀螺传感器元件以使所述悬臂振动器的第一表面面对所述支撑基底;以及
通过在激光加工区域上实施激光加工而调节所述悬臂振动器的振动特性,所述激光加工区域是除了所述悬臂振动器第一表面之外的区域。
17、根据权利要求16的调节振动陀螺传感器的方法,其中在调节步骤中,将所述悬臂振动器的振动方向调节为垂直于所述支撑基底的方向。
18、根据权利要求16的调节振动陀螺传感器的方法,其中,
测量所述悬臂振动器的垂直和水平初始共振频率的频率差,和
基于所述测量的频率差确定所述悬臂振动器的激光加工区域。
19、根据权利要求16的调节振动陀螺传感器的方法,其中基于从所述一对检测电极输出的左和右初始检测信号来确定所述悬臂振动器的激光加工区域。
20、根据权利要求16的调节振动陀螺传感器的方法,其中通过基于所述悬臂振动器的垂直和水平初始共振频率的频率差以及从所述一对检测电极输出的左和右初始检测信号来确定所述悬臂振动器的激光加工区域,同时实施频率调节以及左和右检测信号的调节。
21、根据权利要求20的调节振动陀螺传感器的方法,还包括步骤:
测量在当垂直振动所述悬臂振动器时通过从检测信号读出工作频率而得到的垂直共振频率和在水平振动所述悬臂振动器时通过从检测信号读出工作频率而得到的水平共振频率之间的频率差,从而得到失调水平,并且测量当垂直振动所述悬臂振动器时一对检测信号之间的差以获得差分信号;以及
加工基于在测量步骤得到的所述失调水平和差分信号而确定的所述悬臂振动器的激光加工区域,
其中重复所述测量步骤和加工步骤直到在测量步骤中得到的失调水平和差分信号达到目标值。
22、根据权利要求21的调节振动陀螺传感器的方法,其中,
通过加工所述悬臂振动器底部的区域而进行粗调,和
通过加工所述悬臂振动器尖部的区域而进行细调。
23、根据权利要求16的调节振动陀螺传感器的方法,其中通过确定所述激光加工区域而将所述振动特性调节到垂直方向,从而当所述悬臂振动器在水平共振频率振动时使从所述一对检测电极输出的信号之间的差为最小。
24、根据权利要求16的调节振动陀螺传感器的方法,还包括步骤:
通过在距离所述悬臂振动器底部超过所述悬臂振动器总长度五分之四的位置实施激光加工来调节所述悬臂振动器的共振频率。
25、根据权利要求16的调节振动陀螺传感器的方法,还包括步骤:
在调节所述悬臂振动器的振动特性之前利用激光束照射所述激光加工区域来熔化和平滑所述悬臂振动器的激光加工区域。
26、根据权利要求16的调节振动陀螺传感器的方法,其中,
通过在硅基底上蚀刻U形凹槽来形成所述悬臂振动器的外部形状,和
通过实施过度蚀刻而弯曲脊线区域,所述脊线区域是连接与所述悬臂振动器第一表面相对的表面和与所述第一表面相邻的侧面的区域。
27、根据权利要求16的调节振动陀螺传感器的方法,其中,
通过在硅基底上蚀刻U形凹槽而形成所述悬臂振动器的外部形状,和
从所述悬臂振动器相应的侧面向外弯曲所述U形凹槽的每个边。
CN2006100739682A 2005-03-04 2006-03-06 振动陀螺传感器和调节振动陀螺传感器的方法 Expired - Fee Related CN1828224B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005106717 2005-03-04
JP106717/05 2005-03-04
JP176871/05 2005-06-16
JP2005176871 2005-06-16
JP2005176870 2005-06-16
JP176870/05 2005-06-16
JP380330/05 2005-12-28
JP2005380330A JP5145637B2 (ja) 2005-03-04 2005-12-28 振動型ジャイロセンサ

Publications (2)

Publication Number Publication Date
CN1828224A true CN1828224A (zh) 2006-09-06
CN1828224B CN1828224B (zh) 2010-07-28

Family

ID=36579243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006100739682A Expired - Fee Related CN1828224B (zh) 2005-03-04 2006-03-06 振动陀螺传感器和调节振动陀螺传感器的方法

Country Status (6)

Country Link
US (2) US7325452B2 (zh)
EP (1) EP1698858B1 (zh)
JP (1) JP5145637B2 (zh)
KR (1) KR20060096359A (zh)
CN (1) CN1828224B (zh)
DE (1) DE602006010125D1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246003A (zh) * 2008-12-09 2011-11-16 株式会社村田制作所 振动陀螺仪元件及其制造方法
CN107990885A (zh) * 2016-10-26 2018-05-04 精工爱普生株式会社 陀螺传感器、陀螺传感器的制造方法、电子设备及移动体
CN108613686A (zh) * 2018-04-28 2018-10-02 中南大学 一种振动陀螺自动化修调方法
CN110683286A (zh) * 2019-10-11 2020-01-14 青岛大学 一种带式输送机自动绞车式拉紧位移感知与保护装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5145637B2 (ja) * 2005-03-04 2013-02-20 ソニー株式会社 振動型ジャイロセンサ
US7928861B2 (en) * 2006-04-19 2011-04-19 Xact Downhole Telemetry Inc. Telemetry wave detection apparatus and method
JP2008157701A (ja) * 2006-12-22 2008-07-10 Sony Corp 圧電素子、振動型ジャイロセンサ、電子機器及び圧電素子の製造方法
JP5088540B2 (ja) * 2007-05-16 2012-12-05 ソニー株式会社 検出装置、検出方法及び電子機器
TW200913175A (en) * 2007-09-05 2009-03-16 Long-Sun Huang Package structure for micro-sensor
JP4640459B2 (ja) * 2008-07-04 2011-03-02 ソニー株式会社 角速度センサ
JP2010060398A (ja) * 2008-09-03 2010-03-18 Alps Electric Co Ltd ジャイロセンサ及びその製造方法
JP5506035B2 (ja) * 2010-02-23 2014-05-28 富士フイルム株式会社 アクチュエータの製造方法
JP5506552B2 (ja) 2010-06-07 2014-05-28 キヤノン株式会社 振動型アクチュエータの制御装置及び振動型アクチュエータの制御方法
JP5327279B2 (ja) * 2011-06-13 2013-10-30 株式会社デンソー 超音波センサ装置
JP5874995B2 (ja) * 2011-09-06 2016-03-02 株式会社日立ハイテクサイエンス カンチレバーのバネ定数特定方法およびその方法を採用した走査型プローブ顕微鏡
JP6365690B2 (ja) * 2015-01-13 2018-08-01 株式会社村田製作所 圧電デバイスの製造方法
WO2016201413A1 (en) * 2015-06-11 2016-12-15 Georgia Tech Research Corporation Mems inertial measurement apparatus having slanted electrodes for quadrature tuning
JP6764126B2 (ja) * 2016-02-02 2020-09-30 セイコーエプソン株式会社 圧電デバイスの製造方法
FR3052916A1 (fr) * 2016-06-17 2017-12-22 Commissariat Energie Atomique Actionneur electromecanique
JP2019176413A (ja) * 2018-03-29 2019-10-10 セイコーエプソン株式会社 振動素子の周波数調整方法、振動素子の製造方法、振動素子、物理量センサー、慣性計測装置、電子機器および移動体
KR102483780B1 (ko) * 2020-12-08 2022-12-30 주식회사 한화방산 주파수 변경이 가능한 진동기와 이를 포함하는 관성항법장치용 링 레이저 자이로스코프 구조체

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315056A (ja) * 1991-04-12 1992-11-06 Tokai Rika Co Ltd 加速度センサ
EP0563761B1 (en) * 1992-03-30 1997-05-21 Murata Manufacturing Co., Ltd. Vibrator with trimmed ledge-line portions
JP3218813B2 (ja) * 1993-02-03 2001-10-15 松下電器産業株式会社 角速度センサおよびその製造方法
JPH07113643A (ja) * 1993-10-15 1995-05-02 Nikon Corp 圧電振動角速度計
US5802684A (en) 1993-09-14 1998-09-08 Nikon Corporation Process for producing a vibration angular-velocity sensor
JP3326989B2 (ja) * 1994-08-25 2002-09-24 株式会社豊田中央研究所 振動子とその調整方法および角速度センサ
US5765046A (en) 1994-08-31 1998-06-09 Nikon Corporation Piezoelectric vibration angular velocity meter and camera using the same
JPH0989571A (ja) * 1995-09-26 1997-04-04 Alps Electric Co Ltd 振動型ジャイロスコープの調整方法
JP3682664B2 (ja) * 1995-10-27 2005-08-10 Necトーキン株式会社 圧電振動ジャイロ
JPH1019574A (ja) * 1996-06-27 1998-01-23 Nikon Corp 圧電振動角速度計の製造方法
JPH10153430A (ja) * 1996-11-25 1998-06-09 Toyota Motor Corp 角速度検出装置およびその製造方法
US6578420B1 (en) 1997-01-28 2003-06-17 Microsensors, Inc. Multi-axis micro gyro structure
JPH1194557A (ja) * 1997-09-12 1999-04-09 Murata Mfg Co Ltd 振動ジャイロ
JP2000055666A (ja) * 1998-08-03 2000-02-25 Nippon Soken Inc 角速度センサ及びその製造方法
GB9828478D0 (en) * 1998-12-24 1999-02-17 British Aerospace Method of manufacturing a vibrating structure gyroscope
JP2000292175A (ja) * 1999-04-12 2000-10-20 Denso Corp 角速度センサおよびその製造方法
JP3553418B2 (ja) * 1999-05-25 2004-08-11 シャープ株式会社 振動型ジャイロスコープ、振動型ジャイロスコープの形成方法および調整方法
KR100398364B1 (ko) * 2001-05-24 2003-09-19 삼성전기주식회사 수정진동자의 제조방법 및 그로부터 제조된 수정진동자
US6944931B2 (en) * 2002-08-12 2005-09-20 The Boeing Company Method of producing an integral resonator sensor and case
JP5145637B2 (ja) * 2005-03-04 2013-02-20 ソニー株式会社 振動型ジャイロセンサ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246003A (zh) * 2008-12-09 2011-11-16 株式会社村田制作所 振动陀螺仪元件及其制造方法
US8756994B2 (en) 2008-12-09 2014-06-24 Murata Manufacturing Co., Ltd. Vibrating gyro device and manufacturing method therefor
CN102246003B (zh) * 2008-12-09 2015-09-09 株式会社村田制作所 振动陀螺仪元件及其制造方法
CN107990885A (zh) * 2016-10-26 2018-05-04 精工爱普生株式会社 陀螺传感器、陀螺传感器的制造方法、电子设备及移动体
CN108613686A (zh) * 2018-04-28 2018-10-02 中南大学 一种振动陀螺自动化修调方法
CN108613686B (zh) * 2018-04-28 2021-10-08 中南大学 一种振动陀螺自动化修调方法
CN110683286A (zh) * 2019-10-11 2020-01-14 青岛大学 一种带式输送机自动绞车式拉紧位移感知与保护装置

Also Published As

Publication number Publication date
JP5145637B2 (ja) 2013-02-20
US20060196267A1 (en) 2006-09-07
DE602006010125D1 (de) 2009-12-17
KR20060096359A (ko) 2006-09-11
US7578187B2 (en) 2009-08-25
US20080083278A1 (en) 2008-04-10
US7325452B2 (en) 2008-02-05
JP2007024862A (ja) 2007-02-01
CN1828224B (zh) 2010-07-28
EP1698858A1 (en) 2006-09-06
EP1698858B1 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
CN1828224A (zh) 振动陀螺传感器和调节振动陀螺传感器的方法
CN1831478A (zh) 用于制造振动陀螺传感器和振动元件的方法
CN1837751A (zh) 振动陀螺传感器
CN1969168A (zh) 振动型陀螺传感器
CN1200793C (zh) 利用激光加工被加工物的方法
CN1101541C (zh) 振子、振动型回转仪及振子的调整方法
CN1480710A (zh) 音叉型振动元件及其制作方法,振动回转部件及电子装置
CN1133268C (zh) 表面声波滤波器及其制造方法
CN1293364C (zh) 振子、振动式陀螺仪、线加速计及旋转角速度测定方法
CN1279538C (zh) 磁头的引线导体部件、万向架组件及其测试和制造方法
CN1274083C (zh) 腐蚀方法和腐蚀成形品、压电振动器件及其制造方法
CN2634485Y (zh) 探头部件
CN1192214C (zh) 测量质量流量的方法以及相应的检测器
CN1612322A (zh) 半导体集成电路器件的制造方法
CN1819294A (zh) 压电振动体、压电振动体的调节方法、压电致动器、钟表、电子设备
CN1618124A (zh) 测试电子装置用电接触元件的制造方法及所制得的电接触元件
CN1531721A (zh) 薄膜音响共振器及其制造方法
CN1318837A (zh) 致动器,信息记录/重现设备和生产致动器的方法
CN1471181A (zh) 压电元件、喷墨头、角速度传感器及其制法、喷墨式记录装置
CN1933326A (zh) 腐蚀方法和腐蚀成形品、压电振动器件及其制造方法
CN1866490A (zh) 检查用探测器及检查用探测器的制造方法
CN1574242A (zh) 处理方法和处理系统
CN1314246A (zh) 喷墨头及其制造方法
CN1976012A (zh) 具有岛状分布结构的半导体芯片及其制造方法
CN1771191A (zh) 微型结构体的制造方法以及微型结构体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100728

CF01 Termination of patent right due to non-payment of annual fee