CN1774113A - 一种用于无线市话网络中的盲区查找方法 - Google Patents

一种用于无线市话网络中的盲区查找方法 Download PDF

Info

Publication number
CN1774113A
CN1774113A CN 200410090779 CN200410090779A CN1774113A CN 1774113 A CN1774113 A CN 1774113A CN 200410090779 CN200410090779 CN 200410090779 CN 200410090779 A CN200410090779 A CN 200410090779A CN 1774113 A CN1774113 A CN 1774113A
Authority
CN
China
Prior art keywords
blind
base station
blind area
seeking method
local telephone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410090779
Other languages
English (en)
Other versions
CN100372416C (zh
Inventor
温向明
李莉
金辉
魏亮
刘月丛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CNB2004100907797A priority Critical patent/CN100372416C/zh
Publication of CN1774113A publication Critical patent/CN1774113A/zh
Application granted granted Critical
Publication of CN100372416C publication Critical patent/CN100372416C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种用于无线市话网络中的盲区查找方法,包括,对所要分析的无线市话系统中的基站进行定位;获取所述基站的相关数据和地形参数;利用无线市话系统中无线接入侧接收功率的计算方法,以及所述已获得的数据和参数计算所述基站附近某一点的场强值;根据所计算的场强值进行判断,是否存在盲区,并对盲区采取不同的补盲方案。采用这种方法可以减少路测的盲目性和被动性,从而提高工作效率。

Description

一种用于无线市话网络中的盲区查找方法
技术领域
本发明涉及一种实现盲区查找的方法,尤其涉及一种在无线市话系统(Personal Handyphone System简称PHS)中盲区查找的方法。
背景技术
无线市话网络从结构上可分为两大部分:核心网络和无线网络。核心网络负责与上层网络或其他业务网络联系,而无线网络则负责业务覆盖。相对核心网络而言,由于无线网络承担业务覆盖的重任,与用户关系密切,其覆盖状况直接影响到用户的使用效果。因此,无线网络如何最大程度地发挥出其业务覆盖效益,一直是网络运营商关注的焦点。
从技术角度上分析,PHS网络具有无线通信网络的基本特性,即信号易衰减、易受干扰,从而导致信号不稳定;此外信道的传输特性又取决于无线电波传播环境,即从简单的视距传播,到遭遇各种复杂的地物,到变化多样的传播环境都是制约发射机有效覆盖范围的重要因素,因而客观上使得盲区查找具有很强的不确定性。
无线市话网络的空中接口标准RCR-STD28规定PHS占用的频段范围为1893.5MHz到1919.6MHz,工作波长约在16cm,其基站的最大发射功率仅为500毫瓦.在这种情况下,相对GSM和CDMA网络而言,PHS信道更易遭受周围环境的干扰,信号功率小,穿透能力弱,盲区数目多,尤其是在城市商业区、街道走向不规则及楼宇相互遮挡等区域,盲区查找的难度更大,已经严重影响到了用户的通信质量。
目前网络维护人员主要使用路测工具查找盲区,这种方法不但效率低,而且存在很大的局限性。这主要表现在(1)不能准确反映信号覆盖的情况,无法及时发现信号质量较差的地方如建筑物内部或远端的角落等区域,只能等待用户投诉后才能发现盲区;(2)更不能反映信道的可用情况和使用质量,这是由于一般PHS的单个基站所能提供的信道都比较少,当实际话务量超过该地区基站所能提供的信道数时就会发生无可用信道的情况,即使路测到的信号电平足够强,也会存在拨打不通的情况。而这种现象在路测工具记录的覆盖图上是根本反映不出来的。
发明内容
针对上述现有技术中存在的缺陷,本发明提供了一种在无线市话网络中查找盲区的方法,这种方法能够实现网络中盲区的自动查找和标注,从而提高了补盲工作的效率。
本发明基于COST一231/Walfish/Ikegami无线链路传播损耗模型,通过研究电磁波的传播理论,分析无线市话网络的实际覆盖状况,构建了无线市话网络的链路传播损耗模型。该模型可对任意接收点的场强值进行计算、分析和判断,从而实现盲区的查找。
具体方法通过以下步骤来完成:
(1)对所要分析的基站通过地理信息系统来获取经纬度坐标,完成其定位;
(2)通过读取网管系统中的数据库获取所述基站的相关数据和地形参数;
(3)利用下面公式以及已获得的数据和参数计算所述基站附近某一点的场强值;
无线市话系统中无线接入侧接收功率的计算方法:
当路径为可视传播时:
Pr=Pt+A+G-42.6-26lgd-20lgf
当路径为非可视传播时:
Pr=Pt+A+G-32.4-20lgd-20lgf-(Lrts+Lmsd)
接收点位于室内时:
Figure A20041009077900061
其中各个参数表示:Pt是基站的发射功率、Pr和Rr‘是接收点的场强值、A是功率转换差值、d是发射点与接收点的距离、f是工作频段、G是收发端天线增益、Lrst是屋顶至街道的绕涉及散射损耗、Lmsd是多重屏障的绕射损耗、L是建筑物材料的吸收损耗、n为衰减指数,约取为4、k是穿过的楼层数、Lf是每层楼的衰减。
判定标准:
Pr≥32dBuv         保证正常通话,通信质量良好,无盲区;
24dBuv≤Pr≤32dBuv 信号质量较差,会有盲区,借助路测工具分析;
Pr<24dBuv         信号质量非常差,存在盲区,易造成用户拨打困难,掉话率高。
确定盲区后,实施具体补盲方案,如果实际地理位置合适,选用10毫瓦基站补盲,反之通过调整盲区附近发射天线的倾角或是改换定向天线实现补盲.或在信号微弱区域附近放置直放站补盲,当盲区在室内时,采用由功分器、耦合器组成的室内补盲系统进行补盲。
该方法同地理信息系统(Geographical Information System简称GIS)结合起来,进行无线市话网络优化工作,可方便的实现盲区的查找和分析。优化系统从网管数据库中读取基站的各项数据,通过经纬度坐标定位在电子地图上将基站直观的显示出来,借助于数学工具可进行各项指标的分析和优化。工作人员只需要输入数据,设定相应的判定值,优化系统根据盲区查找的方法自动地计算出某点的场强值,粗略找出室内或室外存在的盲区,在电子地图上用醒目的符号方式标注,告知维护人员需要补盲的区域,这样进行有目标的测试和分析,减少了路测的盲目性和被动性,节省补盲的工作时间。
具体实施方式
为描述无线链路传播损耗模型,首先分析PHS的无线传播环境,因此需要综合考虑空间效应、多径效应和多普勒频移扩展的影响。其中多径效应又包括瑞利衰落和莱斯衰落,这两种衰落属于快衰落,其变化规律与时间有着密切关系。瑞利衰落是多条反射路径叠加的结果,可用瑞利分布来描述;莱斯衰落是一条主导传播路径(如视距路径)和多条反射路径叠加的结果,可以用莱斯分布来描述。由于在瑞利衰落信道中所有多径分支都是独立的,没有一个占优势的分支路径,所以瑞利衰落信道是衰落最严重的移动无线信道。由电磁波传播理论可知,接收信号的强度是多种效应的综合体现,是在变化缓慢的局部平均功率之上叠加快衰落瞬间功率,其中用对数正态分布表示的慢衰落平均功率;用莱斯或瑞利分布表示快衰落瞬间功率。
(1)1.9GHz电波传播特性
根据无线信道中的信号传播形式,可以得出接收机中信号功率系数随机变量X得一般数学表达式:
X ( t ) = ( λ 4 πd ) n | Σ i = 1 M α e - j φ i t + α 0 e - j φ 0 t |
其中,M为电波多径传播信道中每个菲涅耳区内等效反射体的数目;α和φi(t)分别为第I个等效反射路径传播系数的模和附加相移;α0和φ0(t)分别为直达路径或强反射路径传播系数的模和附加相移,当发射天线的功率为Pt时,则接收天线功率
P r = P t * X ( t ) = P t * ( λ 4 πd ) n | Σ i = 1 M α - j φ i + α 0 e - j φ 0 t |
因此,接收功率的传播损耗数学模型为:
L(dB)=10lg(Pt/Pr)=-10lgx(t)
接收功率的场强值为:Pr=Pt+A-10lg(t)+G    式(2-1)
A:表示电平转换差值
d:传播距离(m)
λ:波长(m),λ=c/f
n:传播系数,在自由空间中(或理想条件下)取n=2,电波传播环境阻挡越严重n值越大。实际工程中n取值为3。
G:链路的天线增益包括以下部分
天线处理增益6dB    基站天线增益10dB    手机天线增益4dB   基站发射分集增益13dB
(2)电波衰减因素
在上式的基础之上,还需要综合考虑影响电波衰减的其它因素
A自由空间衰减主要指信号在扩散过程中引起的球面波扩散损耗。
Ls=10log(4πS/λ)2=20logf+20logS-27.55其中f单位为MHz,S单位为米。
B绕射衰减
菲涅尔绕射参数:v=h[2(d1+d2)/(λ*d1*d2)]1/2其中h表示菲涅尔余隙,即障碍物到两天线连线的缝隙高度,d1和d2表示发射台接收机各自到障碍物的距离。电波可以绕过障碍物,但信号将被衰减。当v为正时且>0.5,绕射几乎没有衰减;当v=0时,即电波刚好擦过障碍物,衰减为6dB;当v<0时衰减会急剧增加。
C反射衰减
反射衰减公式:RL(dB)=40logd-(10logG1+10logG2+20logHt+20logHr)
其中d表示发射机到接收机的距离,Ht为发射天线高度,Hr为接收机天线高度。反射波也是PHS系统无线电波传播的一种重要方式,信号反射一次衰减约为3dB。
D散射衰减
表面平整度的参考高度h为:h=λ/(8*sinθ)
其中λ表示波长,θ表示入射波与表面的夹角。当信号垂直入射并且有h在λ/8以上时,认为表面为粗糙,信号在该表面会发生漫反射;对无线市话网络而言,当信号垂直入射时,平面凸凹度大于2cm才将表面看作粗糙。当信号斜射时,对h的要求放宽。
E多普勒频移扩展衰落
多普勒频移公式:fd=(v*cos)/λ
其中v表示物体移动速度,表示入射波与物体运动方向的夹角。与多普勒频移相关的因素有PS运动速度和环境物体运动速度。
F建筑物穿透衰减
底层约为20dB;随楼层升高,每层损耗减小2dB;无窗部分穿透损耗比有窗部分高出约为6dB。
综上所述,根据式(2-1)以及综合电波各项衰减因素,并结合COST-231/Walfish/Ikegami模型,推导出无线市话系统中无线信道接收功率的计算方法:
可视传播路径:Pr=Pt+A+G-42.6-26lgd-20lgf    式(2-2)
非可视传播路径:Pr=Pt+A+G-32.4-20lgd-20lgf-(Lrts+Lmsd)    式(2-3)
室内某接收点的场强值:       式(2-4)
式中各项参数的含义在发明内容已有描述。
下面描述了如何利用该理论预测模型来计算某点场强值,实现盲区的查找。假设基站发射功率为500mw,天线的总增益为33dB(包括收发天线),基站台天线高度25米,移动台天线高度1米,房屋高度15米,街道宽度10米,入射角度为90度,工作频段1900MHz,估算在距离基站150米处的场强值。
将各项参数根据相关的判断条件代入预测模型,因该预测区域属于大城市商业密集区,信号遭受的无线传播环境较复杂,所以为非可视传播路径,采用公式(2-3)。
Pr=Pt+A+G-32.4-20lgd-20lgf-(Lrts+Lmsd)
根据相应条件将公式具体化如下:
A:表示将dBmW转换为dBuV时的差值,该值为113dB,其物理意义表示电磁功率与场强在数值上相差的倍数。其转换过程如下:
EV(V)=EV*106(uV)=EuV(uV),故
EdB=20logEuV(dBuV)=20log(EV*106)(dBuV)=(20logEV+120)(dBuV)
P(W)=P*103(mW),故
PdB=(10logP+30)(dBmW)=10logP(dBmW)+30dB
对于接收机端输入功率Pr=EV 2/4R(W)(接收机输入功率的最大值,保证信号后期处理的信噪比),PHS接收天线的输出阻抗R=50Ω,所以
PrdB(dBmW)=[10log(EV 2/4R)+30](dBmW)=[20logEV-10logR+24](dBmW)
     =(20logEuV-120)-10logR+24=20logEuV-120-17+24
     =EdB(dBuV)-113(dB)
因此A=113(dB)。该值与天线阻抗R有关。根据无线市话系统的采用的三种不同功率基站,得到转换后的功率值:
500mw~139dBuv  200mw~136dBuv l0mw~123dBuv
屋顶至街道的绕射及散射损耗(基于Ikegami模型)
L rst = - 16.9 - 10 lgw + 101 gf + 201 g &Delta;h m + L ori h roof > h m 0 L rts < 0
式中:w为街道宽度(m);Δhm=hroof-hm为建筑物高度hroof与移动台天线高度hm之差(m);Lori是考虑到街道方向的实验修正值。
式中是入射电波与街道走向之间的夹角。
②多重屏障的绕射损耗(基于Walfish模型)
L msd = L bsh + K a + K d lgd + K f lgf - 91 gb 0 L msd < 0
式中,b为沿传播路径建筑物之间的距离(m),若缺乏详细数据时,推荐缺省值为20-50米;Lbsh和Ka表示由于基站天线高度降低而增加的路径损耗;Kd和Kf为Lmsd与距离d和频率f相关的修正因子,与传播环境有关。
L bsh = - 18 lg ( 1 + &Delta;h b ) h b > h roof 0 h b &le; h roof
K d = 18 h b > h roof 18 - 5 &times; &Delta;h b h roof h b &le; h roof
Figure A20041009077900123
上式中的hb和hroof分别为基站天线和建筑物屋顶的高度(m)。Δhb为两者之差:
Δhb=hb-hroof
综上可得:
Pr=26+113+33-32.4-20lgd-20lgf-(Lrts+Lmsd)
Pr=26+113+33-32.4-20lg0.15-20lg1900-(Lrts+Lmsd)
Pr=90.503-(Lrts+Lmsd)
由于Lrst和Lmsd的表达式比较繁琐,将分开计算:
Lrst=-16.9-10lg10+10lg1900+20lg14+4-0.114(90-55)=28.81
Lmsd=-18lg(1+10)+54+18lg0.15-4+0.15(1900/925-1)lg1900-9lg15=4.876
Pr=90.503-28.81-4.876=56.82dBuv
Pr=56.82dBuv与门限值比较、判定后认为信号质量较好,可以保障正常的通话,不存存盲区。
在上例的基础之上,计算在150米处,采用混凝土结构的楼内,楼层数为8层的室内信号的接收电平值。
采用室内场强值的计算公式(2-4)
Figure A20041009077900131
建筑物的吸收损耗与所使用的材料有关,具体经验值在电信工程手册里有描述,下表列举出部分常用的经验值:
 建筑物种类   损耗(近似值)
 砖(60mm)   3-6dB
 混凝土(100mm)   12-15dB
 木板(15mm)石灰板(7mm)   3-5dB
 玻璃   0dB
 普通墙壁反射   5dB左右
 特殊金属框架   27db
查上表得到混凝土结构的吸收损耗为12dB。实际工程测试表明,建筑物穿透损耗从地面直到第10层,每层约2dB的比率减小,在1,2层的拐角信号损耗最大,然而在第十层附近开始增加。较高楼层处穿透损耗中的增加主要归因于相邻建筑物的阴影效应。此例中穿过的楼层数为7,总的穿透损耗值为7*2=14dB。最后利用上例中室外场强值的计算结果得出室内场强值为:
Pr=56.82-12-8*2=28.82dBuv
通过与门限值比较、判定后认为该处信号质量较差,会有盲区,借助路测工具分析
在基站与移动台可视的情况下,基站发射功率为10mw工作频段1893.5MHz,估算在距离基站1km的地方,接收点的场强值。选用可视传播路径的传播公式Pr=Pt+A+G-42.6-26lgd-20lgf来计算,将各个参数的具体数值代入得:
Pr=123+33-42.6-26lg1-20lg1893.5=47.85dBuv
通过与门限值比较、判定后认为信号质量较好,可以保障正常的通话,不存在盲区。
虽然参照本发明的特定优选实施方案已经表示并描述了本发明,但是本领域的普通技术人员应该理解,任何形式和细节上的改变都不会脱离如所附权利要求中所定义的本发明的精神和范围。

Claims (8)

1.一种在无线市话网络中实现盲区查找的方法,包括以下步骤:
(1)对所要分析的无线市话系统中的基站进行定位;
(2)获取所述基站的相关数据和地形参数;
(3)利用无线市话系统中无线接入侧接收功率的计算方法,以及所述已获得的数据和参数计算所述基站附近某一点的场强值,即:
当路径为可视传播时:
Pr=Pt+A+G-42.6-26lgd-20lgf
当路径为非可视传播时:
Pr=Pt+A+G-32.4-20lgd-20lgf-(Lrts+Lmsd)
当接收点位于室内时:
Pr=Pr-L-k*Lf
(4)根据所计算的场强值进行判断:
如果Pr≥32dBuv,则保证正常通话,不存在盲区;
如果24dBuv≤Pr≤32dBuv,则表示信号质量差,存在盲区,需借助于路测工具进行分析;
其中,Pt是基站发射功率、Pr和Pr‘是接收点的场强值、A是功率转换差值、d是发射点与接收点的距离、f是工作频段、G是收发端天线增益、Lrst是屋顶至街道的绕涉及散射损耗、Lmsd是多重屏障的绕射损耗、L是建筑物材料的吸收损耗、n为衰减指数,约取为4、k是穿过的楼层数、Lf是每层楼的衰减。
2.根据权利要求1的盲区查找方法,其中步骤(1)中对基站定位是通过地理信息系统技术来完成的。
3.根据权利要求1的盲区查找方法,其中在步骤(2)中,通过读取网管系统中的数据库来获得所述基站的相关数据和地形参数。
4.根据权利要求1的盲区查找方法,其中在步骤(4)中,当Pr<24dBuv时,表示信号质量非常差,存在盲区,易造成用户拨打电话困难,掉话和切换频繁等现象。
5.根据权利要求1或2的盲区查找方法,确定盲区后,实施具体补盲方案,如果实际地理位置合适,则选用10毫瓦基站补盲。
6.根据权利要求1或2的盲区查找方法,确定盲区后,通过调整盲区附近发射天线的倾角或是改换定向天线实现补盲。
7.根据权利要求1或2的盲区查找方法,确定盲区后,放置直放站进行补盲。
8.根据权利要求1或2的盲区查找方法,确定盲区后,当盲区在室内时,采用由功分器、耦合器组成的室内补盲系统进行补盲。
CNB2004100907797A 2004-11-11 2004-11-11 一种用于无线市话网络中的盲区查找方法 Expired - Fee Related CN100372416C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100907797A CN100372416C (zh) 2004-11-11 2004-11-11 一种用于无线市话网络中的盲区查找方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100907797A CN100372416C (zh) 2004-11-11 2004-11-11 一种用于无线市话网络中的盲区查找方法

Publications (2)

Publication Number Publication Date
CN1774113A true CN1774113A (zh) 2006-05-17
CN100372416C CN100372416C (zh) 2008-02-27

Family

ID=36760830

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100907797A Expired - Fee Related CN100372416C (zh) 2004-11-11 2004-11-11 一种用于无线市话网络中的盲区查找方法

Country Status (1)

Country Link
CN (1) CN100372416C (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104129A1 (fr) * 2007-03-01 2008-09-04 Huawei Technologies Co., Ltd. Bs, réseau de diffusion, terminal multimode et procédé pour localiser la zone aveugle dans le réseau de diffusion
CN102404755A (zh) * 2010-09-19 2012-04-04 中兴通讯股份有限公司 室内无线信道模型确定方法及装置
CN102546046A (zh) * 2010-12-29 2012-07-04 中国联合网络通信集团有限公司 室外无线网络对室内无线网络的干扰预测方法及装置
CN102571389A (zh) * 2010-12-16 2012-07-11 中国移动通信集团河北有限公司 通信盲点确定方法及gis系统
CN102651872A (zh) * 2012-05-08 2012-08-29 中国联合网络通信集团有限公司 干扰无线信号的预测方法及装置
CN102685783A (zh) * 2011-03-15 2012-09-19 工业和信息化部电信研究院 用于在移动通信网络中查找网络覆盖盲区的方法及设备
CN104185190A (zh) * 2013-05-28 2014-12-03 中兴通讯股份有限公司 一种提示有信号区域的方法及系统
CN108990095A (zh) * 2018-07-28 2018-12-11 华中科技大学 一种无线网络覆盖盲区检测方法
CN116828509A (zh) * 2023-08-31 2023-09-29 联通在线信息科技有限公司 一种网络盲区的检测方法及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3349477B2 (ja) * 1999-09-08 2002-11-25 三洋電機株式会社 移動体通信機、移動体通信システムおよび通話チャネル割当要求方法
JP2001156709A (ja) * 1999-11-22 2001-06-08 Matsushita Electric Ind Co Ltd 送信出力制御方法及び送信出力制御システム
JP2002291022A (ja) * 2001-03-23 2002-10-04 Toshiba Corp 位置情報センター、携帯端末、位置情報システム、および通話方法
FR2828619B1 (fr) * 2001-08-10 2004-01-02 Radiotelephone Sfr Procede et dispositif de determination d'un plan de frequences
JP2003152617A (ja) * 2001-11-08 2003-05-23 Casio Comput Co Ltd 通信装置及びサーバ装置
JP3653034B2 (ja) * 2001-11-20 2005-05-25 埼玉日本電気株式会社 携帯型通信装置及び電界強度測定装置
CN1266959C (zh) * 2002-10-11 2006-07-26 中兴通讯股份有限公司 一种phs系统中基站控制时隙和业务频点的分配方法
CN100393143C (zh) * 2002-12-10 2008-06-04 中兴通讯股份有限公司 移动通信网络规划中增强的干扰预测方法
CN1286328C (zh) * 2002-12-31 2006-11-22 中兴通讯股份有限公司 一种phs系统频点分配方法
CN1208982C (zh) * 2003-08-14 2005-06-29 张通 用于小灵通基站的放大器

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104129A1 (fr) * 2007-03-01 2008-09-04 Huawei Technologies Co., Ltd. Bs, réseau de diffusion, terminal multimode et procédé pour localiser la zone aveugle dans le réseau de diffusion
CN102404755A (zh) * 2010-09-19 2012-04-04 中兴通讯股份有限公司 室内无线信道模型确定方法及装置
CN102404755B (zh) * 2010-09-19 2015-06-03 中兴通讯股份有限公司 室内无线信道模型确定方法及装置
CN102571389A (zh) * 2010-12-16 2012-07-11 中国移动通信集团河北有限公司 通信盲点确定方法及gis系统
CN102571389B (zh) * 2010-12-16 2015-07-01 中国移动通信集团河北有限公司 通信盲点确定方法及gis系统
CN102546046A (zh) * 2010-12-29 2012-07-04 中国联合网络通信集团有限公司 室外无线网络对室内无线网络的干扰预测方法及装置
CN102685783A (zh) * 2011-03-15 2012-09-19 工业和信息化部电信研究院 用于在移动通信网络中查找网络覆盖盲区的方法及设备
CN102685783B (zh) * 2011-03-15 2014-09-10 工业和信息化部电信研究院 用于在移动通信网络中查找网络覆盖盲区的方法及设备
CN102651872A (zh) * 2012-05-08 2012-08-29 中国联合网络通信集团有限公司 干扰无线信号的预测方法及装置
CN102651872B (zh) * 2012-05-08 2014-12-03 中国联合网络通信集团有限公司 干扰无线信号的预测方法及装置
CN104185190A (zh) * 2013-05-28 2014-12-03 中兴通讯股份有限公司 一种提示有信号区域的方法及系统
CN108990095A (zh) * 2018-07-28 2018-12-11 华中科技大学 一种无线网络覆盖盲区检测方法
CN116828509A (zh) * 2023-08-31 2023-09-29 联通在线信息科技有限公司 一种网络盲区的检测方法及系统
CN116828509B (zh) * 2023-08-31 2024-01-19 联通在线信息科技有限公司 一种网络盲区的检测方法及系统

Also Published As

Publication number Publication date
CN100372416C (zh) 2008-02-27

Similar Documents

Publication Publication Date Title
US6477376B1 (en) Method for designing wireless communications cell sites using uplink parameters
Joseph et al. Urban area path loss propagation prediction and optimisation using hata model at 800mhz
Xia A simplified analytical model for predicting path loss in urban and suburban environments
Har et al. Path-loss prediction model for microcells
Obot et al. Comparative analysis of path loss prediction models for urban macrocellular environments
CN1271238A (zh) 用于固定无线应用的码分多址频率分配
CN101039493A (zh) 无线通信系统、基站、测定装置和无线参数控制方法
Martijn et al. Characterization of radio wave propagation into buildings at 1800 MHz
CN1440211A (zh) 基站和通信方法
CN1774113A (zh) 一种用于无线市话网络中的盲区查找方法
Akinwole et al. Comparative analysis of empirical path loss model for cellular transmission in rivers state
Xia An analytical model for predicting path loss in urban and suburban environments
CN101141184A (zh) 一种蜂窝小区前向可达速率的预测方法、装置及系统
Tahcfulloh et al. Optimized suitable propagation model for GSM 900 path loss prediction
Montenegro-Villacieros et al. Clutter loss measurements and simulations at 26 GHz and 40 GHz
Mardeni et al. Path loss model optimization for urban outdoor coverage using Code Division Multiple Access (CDMA) system at 822MHZ
Akinbolati et al. Assessment of error bounds for path loss prediction models for TV white space usage in Ekiti State, Nigeria
CN103249128B (zh) 一种femto基站自适应调整功率的方法及装置
Akpado et al. Investigating the Impacts of Base Station Antenna Height, Tilt and Transmitter Power on Network Coverage
Mardeni et al. Path loss model development for urban outdoor coverage of code division multiple access (CDMA) system in Malaysia
CN114423016A (zh) 一种基站规划参数的确定方法及装置
Akinwole et al. Adjustment of Cost 231 Hata Path Model For Cellular Transmission in Rivers State
Dalela Propagation Path Loss Modeling for Deployed WiMAX Network
Elechi et al. Empirical Analysis of Global System for Mobile Communication Signal Loss in Buildings
Owen et al. In-building propagation at 900 MHz and 1650 MHz for digital cordless telephones

Legal Events

Date Code Title Description
C57 Notification of unclear or unknown address
DD01 Delivery of document by public notice

Addressee: Li Li

Document name: Written notice of preliminary examination of application for patent for invention

C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080227

Termination date: 20091211