CN1715413A - Corynebacterium glutamicum genes encoding metabolic pathway proteins - Google Patents

Corynebacterium glutamicum genes encoding metabolic pathway proteins Download PDF

Info

Publication number
CN1715413A
CN1715413A CNA2005100759145A CN200510075914A CN1715413A CN 1715413 A CN1715413 A CN 1715413A CN A2005100759145 A CNA2005100759145 A CN A2005100759145A CN 200510075914 A CN200510075914 A CN 200510075914A CN 1715413 A CN1715413 A CN 1715413A
Authority
CN
China
Prior art keywords
nucleic acid
sequence
protein
acid molecule
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005100759145A
Other languages
Chinese (zh)
Inventor
M·波姆佩朱斯
B·克雷格尔
H·施雷德
O·策尔德
G·哈贝豪尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN1715413A publication Critical patent/CN1715413A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention describes the MP protein nuclei acid molecular of new strain corynebacterium of separated code. The molecular is called MP nucleic acid molecular. The invention also provides an anti sense nucleic acid molecular, a recombinant expression vector containing the MP nucleic acid molecular and a host cell that has been introduced into the vector. The invention further provides the separated MP protein, MP mutant protein, fusion protein and antigen peptide and a method for manufacturing a required compound, which is processed by an organism base on the improvement of MP gene genetic engineering of the nuclei acid molecular.

Description

Encoding metabolic pathway gene protein of Corynebacterium glutamicum
This application is filed on June 23, 2000 the Chinese Patent Application 00811981.3 "Program Code metabolic pathways of Corynebacterium glutamicum protein gene "divisional application.
RELATED APPLICATION
This application claims the priority of the following apply: prior filed U.S. Provisional Application Serial No. 60/141 031, filing date June 25, 1999, U.S. Provisional Application Serial No. 60/142101, the applicant Please date July 2, 1999, U.S. Provisional Application Serial No. 60/148613, the filing date of August 1999 On 12 May, and U.S. Provisional Application Serial No. 60/187970, filing date March 9, 2000. This application requires the following priority application: filed earlier German Patent Application No. 19930476.9, filing date July 1,1999, German Patent Application No. 19931415.2, filing date July 8, 1999, the German Patent Application No. 19931418.7, filing date July 8, 1999, German Patent Application No. 19931419.5, filing date July 8, 1999, the German Patent Application No. 19931420.9, filing date July 8, 1999, the German Patent Application No. 19931424.1, apply Day 8 July 1999, the German Patent Application No. 19931428.4, filing date July 8, 1999 , The German Patent Application No. 19931434.9, filing date July 8, 1999, the German Patent Application Please No. 19931435.7, filing date July 8, 1999, the German Patent Application No. 19931443.8, Filing date July 8, 1999, the German Patent Application No. 19931453.5, filing date July 1999 On 8 May, the German Patent Application No. 19931457.8, filing date July 8, 1999, the German expert Patent Application No. 19931465.9, filing date July 8, 1999, the German Patent Application No. 19931478.0, filing date July 8, 1999, the German Patent Application No. 19931510.8, apply Day 8 July 1999, the German Patent Application No. 19931541.8, filing date July 8, 1999 , The German Patent Application No. 19931573.6, filing date July 8, 1999, the German Patent Application Please No. 19931592.2, filing date July 8, 1999, the German Patent Application No. 19931632.5, Filing date July 8, 1999, the German Patent Application No. 19931634.1, filing date July 1999 On 8 May, the German Patent Application No. 19931636.8, filing date July 8, 1999, the German expert Patent Application No. 19932125.6, filing date July 9, 1999, the German Patent Application No. 19932126.4, filing date July 9, 1999, the German Patent Application No. 19932130.2, apply Day 9 July 1999, the German Patent Application No. 19932186.8, filing date July 9, 1999 , The German Patent Application No. 19932206.6, filing date July 9, 1999, the German Patent Application Please No. 19932227.9, filing date July 9, 1999, the German Patent Application No. 19932228.7, Filing date July 9, 1999, the German Patent Application No. 19932229.5, filing date July 1999 On 9 May, German Patent Application No. 19932230.9, filing date July 9, 1999, the German expert Patent Application No. 19932922.2, filing date July 14, 1999 German Patent Application No. 19932926.5, filing date July 14, 1999, German Patent Application No. 19932928.1, Shen Please date July 14,1999, German Patent Application No. 19933004.2, filing date July 14, 1999 , The German Patent Application No. 19933005.0, filing date July 14, 1999, the German Patent Application Please No. 19933006.9, filing date July 14, 1999, German Patent Application No. 19940764.9, Filing Date August 27, 1999, German Patent Application No. 19940765.7, filing date August 1999 On 27 May, the German Patent Application No. 19940766.5, filing date August 27, 1999, Germany Patent Application No. 19940832.7, filing date August 27, 1999, German Patent Application No. 19941378.9, filing date August 31, 1999, German Patent Application No. 19941379.7, Shen Please date August 31, 1999, German Patent Application No. 19941380.0, filing date August 1999 On 31 May, the German Patent Application No. 19941394.0, filing date August 31, 1999, Germany Patent Application No. 19941396.7, filing date August 31, 1999, German Patent Application No. 19942076.9, filing date September 3, 1999, the German Patent Application No. 19942077.7, apply Day 3 September 1999, the German Patent Application No. 19942079.3, filing date September 03, 1999 , The German Patent Application No. 19942086.6, filing date September 3, 1999, the German Patent Application Please No. 19942087.4, filing date September 3, 1999, the German Patent Application No. 19942088.2, Filing date September 3, 1999, the German Patent Application No. 19942095.5, filing date September 1999 On 3 May, German Patent Application No. 19942124.2, filing date September 3, 1999, and Germany Patent Application No. 19942129.3, filing date September 3, 1999. Entire contents of the above application Incorporated herein by reference. ...
This application claims the priority of the following apply: prior filed U.S. Provisional Application Serial No. 60/141 031, filing date June 25, 1999, U.S. Provisional Application Serial No. 60/142101, the applicant Please date July 2, 1999, U.S. Provisional Application Serial No. 60/148613, the filing date of August 1999 On 12 May, and U.S. Provisional Application Serial No. 60/187970, filing date March 9, 2000. This application requires the following priority application: filed earlier German Patent Application No. 19930476.9, filing date July 1,1999, German Patent Application No. 19931415.2, filing date July 8, 1999, the German Patent Application No. 19931418.7, filing date July 8, 1999, German Patent Application No. 19931419.5, filing date July 8, 1999, the German Patent Application No. 19931420.9, filing date July 8, 1999, the German Patent Application No. 19931424.1, apply Day 8 July 1999, the German Patent Application No. 19931428.4, filing date July 8, 1999 , The German Patent Application No. 19931434.9, filing date July 8, 1999, the German Patent Application Please No. 19931435.7, filing date July 8, 1999, the German Patent Application No. 19931443.8, Filing date July 8, 1999, the German Patent Application No. 19931453.5, filing date July 1999 On 8 May, the German Patent Application No. 19931457.8, filing date July 8, 1999, the German expert Patent Application No. 19931465.9, filing date July 8, 1999, the German Patent Application No. 19931478.0, filing date July 8, 1999, the German Patent Application No. 19931510.8, apply Day 8 July 1999, the German Patent Application No. 19931541.8, filing date July 8, 1999 , The German Patent Application No. 19931573.6, filing date July 8, 1999, the German Patent Application Please No. 19931592.2, filing date July 8, 1999, the German Patent Application No. 19931632.5, Filing date July 8, 1999, the German Patent Application No. 19931634.1, filing date July 1999 On 8 May, the German Patent Application No. 19931636.8, filing date July 8, 1999, the German expert Patent Application No. 19932125.6, filing date July 9, 1999, the German Patent Application No. 19932126.4, filing date July 9, 1999, the German Patent Application No. 19932130.2, apply Day 9 July 1999, the German Patent Application No. 19932186.8, filing date July 9, 1999 , The German Patent Application No. 19932206.6, filing date July 9, 1999, the German Patent Application Please No. 19932227.9, filing date July 9, 1999, the German Patent Application No. 19932228.7, Filing date July 9, 1999, the German Patent Application No. 19932229.5, filing date July 1999 On 9 May, German Patent Application No. 19932230.9, filing date July 9, 1999, the German expert Patent Application No. 19932922.2, filing date July 14, 1999 German Patent Application No. 19932926.5, filing date July 14, 1999, German Patent Application No. 19932928.1, Shen Please date July 14,1999, German Patent Application No. 19933004.2, filing date July 14, 1999 , The German Patent Application No. 19933005.0, filing date July 14, 1999, the German Patent Application Please No. 19933006.9, filing date July 14, 1999, German Patent Application No. 19940764.9, Filing Date August 27, 1999, German Patent Application No. 19940765.7, filing date August 1999 On 27 May, the German Patent Application No. 19940766.5, filing date August 27, 1999, Germany Patent Application No. 19940832.7, filing date August 27, 1999, German Patent Application No. 19941378.9, filing date August 31, 1999, German Patent Application No. 19941379.7, Shen Please date August 31, 1999, German Patent Application No. 19941380.0, filing date August 1999 On 31 May, the German Patent Application No. 19941394.0, filing date August 31, 1999, Germany Patent Application No. 19941396.7, filing date August 31, 1999, German Patent Application No. 19942076.9, filing date September 3, 1999, the German Patent Application No. 19942077.7, apply Day 3 September 1999, the German Patent Application No. 19942079.3, filing date September 03, 1999 , The German Patent Application No. 19942086.6, filing date September 3, 1999, the German Patent Application Please No. 19942087.4, filing date September 3, 1999, the German Patent Application No. 19942088.2, Filing date September 3, 1999, the German Patent Application No. 19942095.5, filing date September 1999 On 3 May, German Patent Application No. 19942124.2, filing date September 3, 1999, and Germany Patent Application No. 19942129.3, filing date September 3, 1999. Entire contents of the above application Incorporated herein by reference. ...
The present invention relates to an isolated Corynebacterium glutamicum coding for a novel protein nucleic acid molecule MP, the MP nucleic acid molecule molecule is known. The present invention also relates to an antisense nucleic acid molecule comprising a nucleic MP The recombinant expression vector molecule, and has been introduced into an expression vector host cells. The present invention also further MP step relates to an isolated protein, MP muteins, fusion proteins, antigenic peptides, and on the Corynebacterium glutamicum MP genetic engineering to improve the organism by the production of the desired compound Approach.
BACKGROUND
Naturally present in cell metabolism of the specific products and by-products in many industries With uses including food, feed, cosmetics and pharmaceutical industries. These molecules are referred to as "fine Fine chemical ", include an organic acid, a source of protein and non-protein sources of amino acids, nucleotides and Nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic compounds, vitamins and cofactors in And enzymes. Can produce and secrete a large number of large-scale cultivation required specific molecules of bacteria, most parties The preparation of these products will be. For this purpose is a particularly useful organisms glutamate Corynebacterium (Corynebacterium glutamicum), a Gram-positive non-pathogenic bacteria. Through Strains over, a number of generating a large number of mutants of the desired compound. However, to improve the Particular molecule carried Strains production, is a time-consuming and difficult process. ...
Naturally present in cell metabolism of the specific products and by-products in many industries With uses including food, feed, cosmetics and pharmaceutical industries. These molecules are referred to as "fine Fine chemical ", include an organic acid, a source of protein and non-protein sources of amino acids, nucleotides and Nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic compounds, vitamins and cofactors in And enzymes. Can produce and secrete a large number of large-scale cultivation required specific molecules of bacteria, most parties The preparation of these products will be. For this purpose is a particularly useful organisms glutamate Corynebacterium (Corynebacterium glutamicum), a Gram-positive non-pathogenic bacteria. Through Strains over, a number of generating a large number of mutants of the desired compound. However, to improve the Particular molecule carried Strains production, is a time-consuming and difficult process. ...
The present invention provides a new bacterial nucleic acid molecules that have a variety of uses. These use Uses include identification can produce fine chemicals microorganisms, regulation or pro Corynebacterium glutamicum Edge in bacteria fine chemical substances, Corynebacterium glutamicum or genetic typing of bacteria and Identified as Corynebacterium glutamicum drawing reference point genome. These new nucleic acid molecules Encoding a protein, referred to herein as metabolic pathway (MP) proteins.
The present invention provides a new bacterial nucleic acid molecules that have a variety of uses. These use Uses include identification can produce fine chemicals microorganisms, regulation or pro Corynebacterium glutamicum Edge in bacteria fine chemical substances, Corynebacterium glutamicum or genetic typing of bacteria and Identified as Corynebacterium glutamicum drawing reference point genome. These new nucleic acid molecules Encoding a protein, referred to herein as metabolic pathway (MP) proteins....
MP nucleic acid molecule of the present invention is a microorganism that can be used to identify whether or Corynebacterium glutamicum By its genetic strains, or identification of mixed microbial populations glutamicum bacteria or their relatives Strain exists. The present invention provides a number of the gene of Corynebacterium glutamicum nucleic acid sequence; the stringency Conditions, the probe with a probe from a single group of microorganisms, or mixed microbial culture of the base was extracted Genomic DNA, this probe covers a Corynebacterium glutamicum Ji Yinte some regions can be determined Whether the organism exists. Although Corynebacterium glutamicum itself is non-pathogenic, but it Pathogens in humans related species, such as Corynebacterium diphtheria (Corynebacterium diphtheriae) (Diphtheria pathogen); detect this microorganism has significant clinical utility. ...
MP nucleic acid molecule of the present invention can be used as draw Corynebacterium glutamicum genome parameters According to point, or draw its genetic strain genome reference point. Similarly, these molecules, Or a variant or portion thereof, can be used as genetic engineering of Corynebacterium or Brevibacterium genetic markers Remember. For example, the present invention is a novel nucleic acid molecule encoding the protein can be certain MP Fine Chemicals Qualitative enzymatic metabolism step, said fine chemicals including amino acids, vitamins, cofactors, Nutritional factors (nutraceutical), nucleotides, nucleosides, and trehalose. Taking into account that in C. glutamicum Coli cloning vector used in practicality, for example, in Sinskey et al., U.S. Patent No. 4,649,119 in the open, and taking into account genetic Corynebacterium glutamicum and Brevibacterium species (eg Brevibacterium lactofermentum) genetic manipulation techniques (Yashihama et al, J.Bacteriol.162: 591 - 597 (1985); Katsumata et al., J.Bacteriol.159 :306-311 (1984); and Santamaria et al., J.Gen.Microbiol.130 :2237-2246 (1984)), the present invention is a nuclear Acid molecules can be used for the genetic engineering of living organisms, to make it one or more fine chemicals Better quality, or more efficient producers. ...
Fine chemicals can be produced to improve or effective operation of the present invention, the direct effect of gene Operation or indirect effect of this gene. Specifically, Corynebacterium glutamicum amino acids, vitamins, Cofactors, nucleotide changes in metabolic pathways and trehalose biological production of such one or more of these These compounds have a direct effect desired. For example, optimizing the lysine biosynthetic pathway protein Activity Or lower lysine breakdown pathway protein activity can lead to the production of this bio-engineered Lysine yield or efficiency. These changes in metabolic pathway proteins will also need refinement Chemicals production or efficiency have an indirect effect. For example, to produce the desired intermediate molecular competition The reaction may be eliminated contention, or to produce the desired intermediate compound of specific ways to Be optimized. In addition, amino acids, vitamins, or nucleotide biosynthesis or degradation can be increased regulation Increase the production and the ability to divide, thereby increasing the number of microorganisms in the culture and / or production capacity, And increase the possibility of the desired fine chemical production. ...
The nucleic acid and protein of the present invention can be used to directly improve the molecule Corynebacterium glutamicum of one or More desired fine chemicals production or productivity. Using recombinant techniques known in the art Surgery, one or more of the present invention, amino acids, vitamins, cofactors, nutritional factors, nucleotides, Nucleosides or trehalose biosynthetic enzyme may be changed or degradation, thereby regulating their functions. For example, Biosynthetic enzymes can increase the efficiency or destruction of its allosteric control region so as to prevent production of the compound Feedback inhibition. Similarly, a degradative enzyme can be substitution, deletion or increases are deleted or modified, The desired compound thus the degradation of its activity decreased, without affecting cell viability. In a variety of intelligence State, the desired fine chemical production, or production rate is increased. ...
Protein of the invention and changes in the nucleotide molecule may also increase the ammonia by indirect mechanisms Amino acids, vitamins, cofactors, nutritional factors, nucleotides, nucleosides, or other than trehalose Fine chemicals production. Metabolism of any one compound bound to the intracellular synthesis of other biological And associated degradation pathways, in a way necessary cofactors, intermediates, or the substrate may be provided by other Supply or subject to restrictions similar way. Therefore, by adjusting one or more of the activities of the protein of the invention Resistance, another fine chemical biosynthetic pathway or degradation activity or efficiency of production may be Affected. For example, amino acids may be used as structural units of all proteins, but in the cell The level of the presence of protein synthesis may be restricted; Thus, by increasing the intracellular one or more Productivity of amino acids or rate of production, such as protein biosynthesis or degradation proteins easier Easy synthesis. Similarly, the metabolic pathway enzymes specific adverse change makes more favorable or unfavorable when Result of one or more substances for the production of the desired fine chemical intermediates or compounds over a substrate Volume production or insufficient production. ...
The present invention provides a new nucleic acid molecule encoding the protein, a protein referred to herein as the Metabolic pathway (MP) protein, they are able to complete the normal function of cells important molecules such as Amino acids, vitamins, cofactors, nucleotides and nucleotide metabolism or the enzymatic trehalose Steps. A nucleic acid molecule encoding proteins MP MP referred to herein as a nucleic acid molecule. In a preferred embodiment Case, MP proteins perform one or more of the following substances enzymatic metabolism steps: amino Acids, vitamins, cofactors, nutritional factors, nucleotides, nucleosides, and trehalose. These proteins Examples, including those listed in Table 1 of the protein encoded by the gene. ...
Accordingly, an aspect of the present invention, comprising a separate encoding a protein or MP Part of its biological activity by the nucleic acid sequence a nucleic acid molecule (e.g., cDNA, DNA, or RNA), and the separation is suitable as a detection or amplification of a nucleic acid encoding MP (such as DNA or RNA) primers or hybridization probes for nucleic acid fragment. In a particularly preferred embodiment, the sub- The nucleic acid molecule from a column containing the sequence in the sequence listing the nucleic acid sequence is an odd number (for example, Eg, SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7 ...) or a The nucleotide sequence of the coding region or the complementary sequence thereof. In other particularly preferred embodiment Solution, the isolated nucleic acid molecule of the present invention contains the sequence number of the sequence table is odd nucleoside Acid sequence (e.g., SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7 ...) or part thereof has at least about 50% homology, preferably at least about 60% of the Homology, more preferably at least about 70%, 80%, or 90% homology, even more preferably To have at least about 95%, 96%, 97%, 98%, 99% or higher homology. In other preferred Embodiments, the isolated nucleic acid molecule encoding the sequence shown in the sequence table, the even number group Acid sequence (e.g., SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8 ...). Preferred proteins of the present invention is also preferably MP described herein having at least one MP Activity. ...
In another embodiment, the isolated nucleic acid molecule encoding a protein or a portion Points, in which the protein or part thereof containing an amino acid sequence that is the present invention The amino acid sequence (for example, even in the sequence listing SEQ ID sequence) sufficient homology For example, the amino acid sequence of the present invention, there is sufficient homology such that the protein or the portion Points with MP activity. Preferably, the nucleic acid molecule encoding a protein or part thereof, maintaining for Amino acids, vitamins, cofactors, nucleotides and nucleotide metabolic pathway or the enzymatic trehalose Response capabilities. In one embodiment, the nucleic acid molecule encoding a protein of the present invention ammonia Amino acid sequence (for example, from the even sequence table serial number sequence selected from the complete amino acid sequence Column) at least about 50% homology, preferably at least about 60% homology, more preferably There are at least about 70%, 80%, 90% homology, most preferably at least about 95%, 96%, 97%, 98%, 99% or higher homology. In another preferred embodiment, the protein Corynebacterium glutamicum is the full length protein, the protein of the present invention the full length amino acid sequence (from the The corresponding sequence shown in the odd sequence number in nucleic acid sequence (e.g., SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7 ...) encoded by open reading frame) with sufficient Sources. ...
In another preferred embodiment, the isolated nucleic acid molecule from Corynebacterium glutamicum, And encodes a protein (for example, a MP fusion protein), the protein contains a biological The active region, which the present invention is an amino acid sequence (e.g., the even sequence Sequence A sequence of the sequence number) of at least about 50% or more homology, and the protein Substance capable of catalyzing the amino acids, vitamins, cofactors, nucleotides and nucleotide metabolic pathways or trehalose Diameter of the reaction, or have one or more listed in Table 1 of the activity, and the protein Further comprising a heterologous polypeptide coding regulatory region or heterologous nucleic acid sequence. ...
In another preferred embodiment, the isolated nucleic acid molecule from Corynebacterium glutamicum, And encodes a protein (for example, a MP fusion protein), the protein contains a biological The active region, which the present invention is an amino acid sequence (e.g., the even sequence Sequence A sequence of the sequence number) of at least about 50% or more homology, and the protein Substance capable of catalyzing the amino acids, vitamins, cofactors, nucleotides and nucleotide metabolic pathways or trehalose Diameter of the reaction, or have one or more listed in Table 1 of the activity, and the protein Further comprising a heterologous polypeptide coding regulatory region or heterologous nucleic acid sequence. ...
Another aspect of the present invention, the carrier, such as those containing a recombinant nucleic acid molecule of the present invention. Expression vector, and this vector is introduced into host cells. In one embodiment, by Carried out in a suitable culture medium, such host cell proteins are used to produce MP. Then From the medium or the host cell can be isolating the MP protein.
Further, another aspect of the present invention relates to a genetically altered microorganism, MP Wherein the gene has been introduced or has been changed. In one embodiment, by introducing for the The transgene coding for the wild-type or mutant sequences MP nucleic acid molecule of the invention, changing the The genome of the microorganism. In another embodiment, the change in the genome of the microorganism MP endogenous gene, for example, by using the MP gene has been altered by homologous recombination for Functional damage. In another embodiment, the microorganism of endogenous or introduced MP Gene through one or more point mutations, deletions or inversions is changed, but still can be compiled Code function MP proteins. In another embodiment, the change in a gene or a microorganism MP By a plurality of adjustment areas (e.g., promoter, repressor, or inducer), thus regulating MP Gene expression. In a preferred embodiment, the microorganism belongs to the species Corynebacterium or Brevibacterium species, Particularly preferably Corynebacterium glutamicum. In a preferred embodiment, it is also produced by using a microorganism To be compounds such as amino acids, particularly preferably lysine. ...
Further, another aspect of the present invention relates to a genetically altered microorganism, MP Wherein the gene has been introduced or has been changed. In one embodiment, by introducing for the The transgene coding for the wild-type or mutant sequences MP nucleic acid molecule of the invention, changing the The genome of the microorganism. In another embodiment, the change in the genome of the microorganism MP endogenous gene, for example, by using the MP gene has been altered by homologous recombination for Functional damage. In another embodiment, the microorganism of endogenous or introduced MP Gene through one or more point mutations, deletions or inversions is changed, but still can be compiled Code function MP proteins. In another embodiment, the change in a gene or a microorganism MP By a plurality of adjustment areas (e.g., promoter, repressor, or inducer), thus regulating MP Gene expression. In a preferred embodiment, the microorganism belongs to the species Corynebacterium or Brevibacterium species, Particularly preferably Corynebacterium glutamicum. In a preferred embodiment, it is also produced by using a microorganism To be compounds such as amino acids, particularly preferably lysine. ...
Further, another aspect of the present invention, the MP protein has been isolated or part, for example, Biological activity as its part. In a preferred embodiment, the isolated protein or the MP Part can be catalytic amino acids, vitamins, cofactors, nutritional factors, nucleotides, nucleosides, or sea Fucose metabolism pathway in one or more of the enzymatic reaction. In another preferred embodiment, In the separated protein or part MP of the invention an amino acid sequence (e.g., Sequence SEQ ID sequence, even a sequence) with sufficiently high homology, so that the protein Or a part of the catalytic mass to maintain amino acids, vitamins, cofactors, nutritional factors, nucleotides, Nucleoside or trehalose metabolism pathway in one or more of the ability of the enzymatic reaction. ...
MP present invention also provides isolated protein products. In a preferred embodiment, MP egg White comprise the amino acid sequence of the invention (e.g., SEQ ID sequence even in an ordered sequence Column). In another preferred embodiment, the present invention relates to the isolated full-length protein, The protein and the complete amino acid sequence of the present invention (having the sequence SEQ ID sequence even a Sequence) (the sequence shown in the sequence corresponding to the odd number of open reading frame encoding) Have a very high homology. Further, in another embodiment, the protein of the present invention the complete Full amino acid sequence (e.g., the sequence of SEQ ID sequence even) at least about 50% homology , It is preferable to have at least about 60% homologous, more preferably at least about 70%, 80%, or 90% homology, most preferably at least about 95%, 96%, 97%, 98%, or 99%, or more High homology. In another embodiment, the isolated protein comprises the amino acid sequence of MP And the amino acid sequence of the present invention is one (e.g., the sequence of the even sequence number of a sequence) At least about 50% or more homology to the catalytic amino acids and vitamins, auxiliary Factors, nutritional factors, nucleotides, nucleosides, or trehalose in the enzymatic reaction pathway, or Listed in Table 1 in one or more of the active. ...
MP present invention also provides isolated protein products. In a preferred embodiment, MP egg White comprise the amino acid sequence of the invention (e.g., SEQ ID sequence even in an ordered sequence Column). In another preferred embodiment, the present invention relates to the isolated full-length protein, The protein and the complete amino acid sequence of the present invention (having the sequence SEQ ID sequence even a Sequence) (the sequence shown in the sequence corresponding to the odd number of open reading frame encoding) Have a very high homology. Further, in another embodiment, the protein of the present invention the complete Full amino acid sequence (e.g., the sequence of SEQ ID sequence even) at least about 50% homology , It is preferable to have at least about 60% homologous, more preferably at least about 70%, 80%, or 90% homology, most preferably at least about 95%, 96%, 97%, 98%, or 99%, or more High homology. In another embodiment, the isolated protein comprises the amino acid sequence of MP And the amino acid sequence of the present invention is one (e.g., the sequence of the even sequence number of a sequence) At least about 50% or more homology to the catalytic amino acids and vitamins, auxiliary Factors, nutritional factors, nucleotides, nucleosides, or trehalose in the enzymatic reaction pathway, or Listed in Table 1 in one or more of the active. ...
MP polypeptide or a biologically active portion, can be effectively connected to the polypeptide and form of MP A fusion protein. In a preferred embodiment, the fusion protein having a different MP alone Protein activity itself. In another preferred embodiment, the fusion protein is introduced glutamyl Corynebacterium amino acids, vitamins, cofactors, nutritional factors metabolic pathway, causing acid Corynebacterium fine chemicals desired yield, production and / or production efficiency increases. In particularly preferred Selected embodiments, the fusion protein of the amino acid integrated into the host cell, microorganism, auxiliary Factors, nutritional factors, nucleotides, nucleosides, or trehalose metabolic pathways in the cell can be adjusted Production of desired compound. ...
MP polypeptide or a biologically active portion, can be effectively connected to the polypeptide and form of MP A fusion protein. In a preferred embodiment, the fusion protein having a different MP alone Protein activity itself. In another preferred embodiment, the fusion protein is introduced glutamyl Corynebacterium amino acids, vitamins, cofactors, nutritional factors metabolic pathway, causing acid Corynebacterium fine chemicals desired yield, production and / or production efficiency increases. In particularly preferred Selected embodiments, the fusion protein of the amino acid integrated into the host cell, microorganism, auxiliary Factors, nutritional factors, nucleotides, nucleosides, or trehalose metabolic pathways in the cell can be adjusted Production of desired compound. ...
Another aspect of the invention relates to a method for the production of fine chemicals. The method involves training Cultured cells comprising a vector, the vector instructions MP nucleic acid molecule of the present invention the expression, thereby Produce fine chemicals. In a preferred embodiment, the method further comprises obtained contains The step of the support cell, in this step, the use of a nucleic acid molecule can direct the expression of MP load Transfected cells. In another preferred embodiment, the method further comprises back from the medium The step of closing fine chemicals. In a particularly preferred embodiment, the cells are Corynebacterium Brevibacterium species or species listed in Table 3 or is selected from those strains. ...
Another aspect of the present invention is a molecule produced microorganism adjustment method. In this way France including the use of adjustable MP or MP nucleic acid protein active pharmaceutical contacting cells expressing such Cells in the absence of such activity with respect to the active agent changed. In a preferred Embodiment, the adjustment of Corynebacterium glutamicum cells, one or more amino acids, vitamins, Cofactors, nutritional factors, nucleotides, nucleosides, or trehalose metabolic pathways, such that this microorganism Yield of the desired fine chemical substances or generation efficiency is improved. Regulating protein activity MP Agents, which can be stimulated MP or MP nucleic acid protein activity expressed agents. Stimulation MP protein MP nucleic acid expression or activity of the drug of examples, including small molecules, proteins MP activity in And encodes the protein into cells MP nucleic acid. MP protein activity or inhibiting the expression of drug Agents include small molecules and antisense nucleic acid molecule MP. ...
Another aspect of the invention, the desired compound involved in the regulation of cell production methods, including Comprising the wild type or mutant MP gene into the cells, the gene or kept in a separate mass Tablets, or integrated into the host cell genome. If integrated into the host cell genome, This integration may be arbitrary, or by homologous recombination occurs, so that the introduction of Copy replace the natural gene, resulting in the generation of the desired compound in the cell is adjusted. In an excellent Selected embodiments, the production has been increased. In another preferred embodiment, said Fine chemicals are amino acids. In a particularly preferred embodiment, said amino Acid is L-lysine. ...
Another aspect of the invention, the desired compound involved in the regulation of cell production methods, including Comprising the wild type or mutant MP gene into the cells, the gene or kept in a separate mass Tablets, or integrated into the host cell genome. If integrated into the host cell genome, This integration may be arbitrary, or by homologous recombination occurs, so that the introduction of Copy replace the natural gene, resulting in the generation of the desired compound in the cell is adjusted. In an excellent Selected embodiments, the production has been increased. In another preferred embodiment, said Fine chemicals are amino acids. In a particularly preferred embodiment, said amino Acid is L-lysine. ...
MP The present invention provides nucleic acids and protein molecules, their participation in a Corynebacterium glutamicum These fine chemicals including amino acids, vitamins, cofactors, nutritional factors, nucleotides, nuclear Glycosides and trehalose metabolism. Molecules of the invention can be used to adjust the microorganisms such as Corynebacterium glutamicum Production of fine chemicals, such an adjustment may be direct (e.g., lysine biosynthesis The adjustment of the protein into the lysine-producing organism or production efficiency has a direct impact), Or have indirect effects, but will result in production of the desired compound, or an increase in productivity (for example, When the nucleotide biosynthesis regulation of protein activity against bacterial production of organic acids or fatty acid shadow Ring, may be improved because of the growth or necessary cofactors, energy compound or precursor molecule for Should be increased). The various aspects of the present invention is described in further detail below. ...
MP The present invention provides nucleic acids and protein molecules, their participation in a Corynebacterium glutamicum These fine chemicals including amino acids, vitamins, cofactors, nutritional factors, nucleotides, nuclear Glycosides and trehalose metabolism. Molecules of the invention can be used to adjust the microorganisms such as Corynebacterium glutamicum Production of fine chemicals, such an adjustment may be direct (e.g., lysine biosynthesis The adjustment of the protein into the lysine-producing organism or production efficiency has a direct impact), Or have indirect effects, but will result in production of the desired compound, or an increase in productivity (for example, When the nucleotide biosynthesis regulation of protein activity against bacterial production of organic acids or fatty acid shadow Ring, may be improved because of the growth or necessary cofactors, energy compound or precursor molecule for Should be increased). The various aspects of the present invention is described in further detail below. ...
"Fine chemical" this word is known in the art, including in various organisms Molecular species used in industry, such as, but not limited to, pharmaceuticals, agriculture, and cosmetics industries. Such compounds include organic acids, such as tartaric acid, itaconic acid, and diaminopimelic acid, protein Source and non-protein source of amino acids, purine and pyrimidine bases, nucleosides and nucleotides (case Like the device described in Kuninaka, A. (1996) Nucleotides and related compounds, p. 561-612, in Biotechnology vol.6, Rehm et al., Eds.VCH: Weinheim and its Included in the references), lipids, saturated and unsaturated fatty acids (e.g., arachidonic acid), Diols (e.g., propane diol and butane diol), aromatic compounds (e.g., aromatic amines, Vanillin and indigo), vitamins and cofactors (see Ullmann's Encyclopedia of Industrial Chemistry, vol.A27, "Vitamins", p.443-613 (1996) VCH: Weinheim and references therein; and Ong, AS, Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease "Proceedings of the UNESCO / Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research-Asia, held Sept. 1-3,1994 at Penang, Malaysia, AOCS Press, (1995)), enzymes, polyketides (Ployketides) (Cane et al., (1998) Science 282:63-68), and all the Gutcho (1983) Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 and The reference substances described in the literature. Some of these fine chemicals into the metabolism and uses Described in detail further below. ...
"Fine chemical" this word is known in the art, including in various organisms Molecular species used in industry, such as, but not limited to, pharmaceuticals, agriculture, and cosmetics industries. Such compounds include organic acids, such as tartaric acid, itaconic acid, and diaminopimelic acid, protein Source and non-protein source of amino acids, purine and pyrimidine bases, nucleosides and nucleotides (case Like the device described in Kuninaka, A. (1996) Nucleotides and related compounds, p. 561-612, in Biotechnology vol.6, Rehm et al., Eds.VCH: Weinheim and its Included in the references), lipids, saturated and unsaturated fatty acids (e.g., arachidonic acid), Diols (e.g., propane diol and butane diol), aromatic compounds (e.g., aromatic amines, Vanillin and indigo), vitamins and cofactors (see Ullmann's Encyclopedia of Industrial Chemistry, vol.A27, "Vitamins", p.443-613 (1996) VCH: Weinheim and references therein; and Ong, AS, Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease "Proceedings of the UNESCO / Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research-Asia, held Sept. 1-3,1994 at Penang, Malaysia, AOCS Press, (1995)), enzymes, polyketides (Ployketides) (Cane et al., (1998) Science 282:63-68), and all the Gutcho (1983) Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 and The reference substances described in the literature. Some of these fine chemicals into the metabolism and uses Described in detail further below. ...
Amino acids include basic structural units of all proteins, are also all organisms normally Cell biological features necessary. "Amino acid" is a term known in the art. Protein Source 20 kinds of amino acids, protein structural units, separated by a peptide bond is connected to, not the Source of protein amino acids (there are hundreds of known) would not normally occur in proteins (reference See Ulmann's Encyclopedia of Industrial Chemistry, vol.A2, p.57-97 VCH: Weinheim (1985)). While the natural L-amino acids are usually the only type of protein, However, the D-amino acid may or L-optical configuration. 20 kinds of amino acids in the protein source in each of Biosynthesis or degradation pathways are in prokaryotic cells or eukaryotic cells have their own characteristics (for example, Eg see Stryer, L.Biochemistry, 3 ...rdedition, pages 578-590 (1988)). "Necessary" Amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, Threonine, tryptophan and valine) is so named because these amino acid biosynthesis Into complex is usually necessary nutritional conditions, they can be simply converted biosynthetic pathway 11 kinds of the remaining "non-essential" amino acids (alanine, arginine, asparagine, aspartic Acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, tyrosine). Although higher organisms does have the ability to synthesize some of these amino acids, but for normal egg White matter from the diet must be supplemented synthetic essential amino acids. ...
In addition to their function in protein synthesis, these amino acids is interesting in its own right Chemicals, and many of them in the food, feed, chemicals, cosmetics, agriculture and The pharmaceutical industry has a variety of applications. Lysine in nutrition not only for human beings is an important Amino acids, such as poultry and pigs but also for monogastric animals is so important. Glutamate is The most common flavor additive (monosodium glutamate, MSG), and is widely used throughout the food Industry, as aspartic acid, glycine, cysteine ​​same. Glycine, L-methionine and All tryptophan used in the pharmaceutical industry. Glutamine, valine, leucine, isoleucine, group Acid, arginine, proline, serine and alanine are used in the pharmaceutical and cosmetic industry production Sector. Threonine, tryptophan and methionine are commonly used D/L- feed additive (Leuchtenberger, W. (1996) Amino aids-technical production and use, p. 466-502 in Rehm et al. (Eds.) Biocemistry vol.6, chapter 14a, VCH: Weinheim). In addition, these amino acid and protein synthesis as a synthetic precursor is Is useful, for example, N-acetylcysteine, S-carboxymethyl-L-cysteine, (S) -5 - serotonin Acid, and the other in Ulmann's Encyclopedia of Industrial Chemistry, vol.A2, p. 57-97 VCH: Weinheim, 1985 molecules described. ...
Natural amino acids in organisms capable of producing, for example bacteria, these natural amino acids Biosynthesis have learned very full (bacterial amino acid biosynthesis and its regulation, see Umbarger, HE (1978) Ann.Rev.Biochem.47 :533-606). Aspartic acid from the α-keto Reduction amination of glutaric acid, which is the citric acid cycle intermediates. Glutamine, proline Glutamic acid and arginine are made sequentially generated. The biosynthesis of serine is a three-step Process starts at 3 - phosphoglycerate (glycolytic intermediates), after oxidation, aminotransferase , Hydrolysis of the step, terminates at the amino acids. Cysteine ​​and glycine by Serine produced; former by the condensation of homocysteine ​​with serine, which is the β-carbon of the side chain Atom transfer to tetrahydrofolate obtained, the reaction is catalyzed by serine hydroxymethyl transferase enzyme catalyzed. Phenylalanine and tyrosine, from 4 - erythritol phosphate and phosphoenolpyruvate in a 9-step of raw Synthesized in biosynthetic pathway, which are glycolytic pathway and pentose phosphate pathway precursors, these two The synthetic route is different after prephenate. Tryptophan can also be produced by these two initial molecular Students, but their synthesis is a 11-step approach. Tyrosine can also be synthesized by a phenylalanine, the The reaction is catalyzed by the phenylalanine hydroxylase. Alanine, valine and leucine are glycolysis The end product of the biosynthesis of pyruvate. Aspartic acid synthesis by the oxaloacetate, which is lemon Acid cycle intermediates. Asparagine, methionine, threonine and lysine by aspartic acid Transformed. Isoleucine by a threonine formed. Through a complex 9-step pathway, can From a reactive sugar, 5 - phosphoribosyl -1 - pyrophosphate, produce histidine. ...
Natural amino acids in organisms capable of producing, for example bacteria, these natural amino acids Biosynthesis have learned very full (bacterial amino acid biosynthesis and its regulation, see Umbarger, HE (1978) Ann.Rev.Biochem.47 :533-606). Aspartic acid from the α-keto Reduction amination of glutaric acid, which is the citric acid cycle intermediates. Glutamine, proline Glutamic acid and arginine are made sequentially generated. The biosynthesis of serine is a three-step Process starts at 3 - phosphoglycerate (glycolytic intermediates), after oxidation, aminotransferase , Hydrolysis of the step, terminates at the amino acids. Cysteine ​​and glycine by Serine produced; former by the condensation of homocysteine ​​with serine, which is the β-carbon of the side chain Atom transfer to tetrahydrofolate obtained, the reaction is catalyzed by serine hydroxymethyl transferase enzyme catalyzed. Phenylalanine and tyrosine, from 4 - erythritol phosphate and phosphoenolpyruvate in a 9-step of raw Synthesized in biosynthetic pathway, which are glycolytic pathway and pentose phosphate pathway precursors, these two The synthetic route is different after prephenate. Tryptophan can also be produced by these two initial molecular Students, but their synthesis is a 11-step approach. Tyrosine can also be synthesized by a phenylalanine, the The reaction is catalyzed by the phenylalanine hydroxylase. Alanine, valine and leucine are glycolysis The end product of the biosynthesis of pyruvate. Aspartic acid synthesis by the oxaloacetate, which is lemon Acid cycle intermediates. Asparagine, methionine, threonine and lysine by aspartic acid Transformed. Isoleucine by a threonine formed. Through a complex 9-step pathway, can From a reactive sugar, 5 - phosphoribosyl -1 - pyrophosphate, produce histidine. ...rded.Ch. 21 "Amino Acid Degradation and the Urea Cycle" p.495-516 (1988)). Exhausted Duct cells can be transformed into useful extra amino acid metabolic intermediates, but the resulting amino acids to eliminate Consume a lot of energy, precursor molecules and the enzymes required for synthesis. Hence the feedback inhibition to regulate amino Acid biosynthesis is not surprising, particularly the presence of amino acids can slow down or completely stop For the generation of its own (for amino acid biosynthesis pathway feedback mechanisms reviews, see Stryer, L.Biochemistry 3rded.Ch.24 "Biosynthesis of Amino Acid and Heme" p. 575-600 (1988)). Thus, the output of any particular amino acid are in the group of memory cells Acid number is limited.
B. vitamins, cofactors, and metabolism and the use of nutritional factors
Vitamins, cofactors, and another group of molecules, including nutritional factors, although other organisms, such as Bacteria, these molecules can be synthesized, but the higher animals have lost the ability of their synthesis can Intake. These molecules or biologically active substance which is itself, or the biologically active substance before Body, the biological active substance may be an electron carrier or a variety of metabolic pathways intermediates. In addition to Its nutritional value, these compounds as pigments, antioxidants and catalysts or other processing aids Agent also has a significant industrial value. (For these compounds the structure, activity, and industrial applications ratings Above, see for example, Ullmann's Encyclopedia of Industrial Chemistry, "Vitamins" vol.A27, p.443-613 VCH: Weinheim 1996.) "vitamin" the word is in the field Is well known, including the normal functions of the organism but can not be synthesized nutrients. Dimension Antibiotics can include compounds of nutritional factors and cofactors. The term "cofactor" includes conduct regular Activity often desired non-protein compounds. These compounds may be inorganic or organic A; cofactor molecules of the invention are preferably organic. "Trophic factor" is the word contains a Plants and animals, especially beneficial dietary supplements. Examples of such molecules are vitamins, Antioxidants and certain lipids (such as multi-unsaturated fatty acids). ...
Vitamins, cofactors, and another group of molecules, including nutritional factors, although other organisms, such as Bacteria, these molecules can be synthesized, but the higher animals have lost the ability of their synthesis can Intake. These molecules or biologically active substance which is itself, or the biologically active substance before Body, the biological active substance may be an electron carrier or a variety of metabolic pathways intermediates. In addition to Its nutritional value, these compounds as pigments, antioxidants and catalysts or other processing aids Agent also has a significant industrial value. (For these compounds the structure, activity, and industrial applications ratings Above, see for example, Ullmann's Encyclopedia of Industrial Chemistry, "Vitamins" vol.A27, p.443-613 VCH: Weinheim 1996.) "vitamin" the word is in the field Is well known, including the normal functions of the organism but can not be synthesized nutrients. Dimension Antibiotics can include compounds of nutritional factors and cofactors. The term "cofactor" includes conduct regular Activity often desired non-protein compounds. These compounds may be inorganic or organic A; cofactor molecules of the invention are preferably organic. "Trophic factor" is the word contains a Plants and animals, especially beneficial dietary supplements. Examples of such molecules are vitamins, Antioxidants and certain lipids (such as multi-unsaturated fatty acids). ...
Thiamine (vitamin B1) is a pyrimidine and thiazole produced by chemical connection. Riboflavin (Victoria Vitamin B2) by the 5'-triphosphate and guanosine 5'-ribose synthesis. Riboflavin sequential use in Synthesis of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Collectively referred to as "dimension Vitamin B6 "a group of compounds (e.g., pyridoxine, pyridoxamine, pyridoxal 5'-phosphate, and Commercial pyridoxal hydrochloride) are common structural unit 5 - hydroxy-6 - methyl-pyridine derivatives. Pantothenate (pantothenic acid, (R) - (+)-N-(2,4 - dihydroxy-3 - dimethyl-1 - oxobutyl)-β-alanine) By chemical synthesis or fermentation. Pantothenate biosynthesis drive the final step, the ATP The β-alanine and pantoic acid condensation. Charge into pantoic acid and β-alanine enzyme, and reduced Pantothenate synthesis enzymes are known. Metabolic active form of pantothenate is coenzyme A, the biological Enzymatic synthesis process of step 5. Pantothenate, pyridoxal 5'-phosphate, cysteine ​​and ATP are Coenzyme A precursor. These enzymes not catalyzed the formation of pantothenate, but also the catalytic (R) - pantoic acid, (R) - pantolacton, (R) - panthenol (provitamin B5) cysteamine panthenol (and derivatives thereof) of Production. ...
In microorganisms from the precursor molecule pimeloyl coenzyme A to biotin biosynthesis very Specifically, several genes involved have been identified. Many proteins have been found in the corresponding parameter And clusters of iron (Fe-cluster) synthesis, and is nifS protein family member. Lipoic acid to Since acid, used as a coenzyme in energy metabolism, can be a pyruvate dehydrogenase complex and the α-keto Glutarate dehydrogenase complex part. Folate is a folic acid derivative, followed by L-glutamic acid, p-aminobenzoic acid and 6 - methyl neopterin. Starting in metabolic intermediates guanosine 5'-triphosphate Purine (GTP), L-glutamic acid and amino acid biosynthesis of folic acid and its derivatives, In certain microorganisms in detail. ...
In microorganisms from the precursor molecule pimeloyl coenzyme A to biotin biosynthesis very Specifically, several genes involved have been identified. Many proteins have been found in the corresponding parameter And clusters of iron (Fe-cluster) synthesis, and is nifS protein family member. Lipoic acid to Since acid, used as a coenzyme in energy metabolism, can be a pyruvate dehydrogenase complex and the α-keto Glutarate dehydrogenase complex part. Folate is a folic acid derivative, followed by L-glutamic acid, p-aminobenzoic acid and 6 - methyl neopterin. Starting in metabolic intermediates guanosine 5'-triphosphate Purine (GTP), L-glutamic acid and amino acid biosynthesis of folic acid and its derivatives, In certain microorganisms in detail. ...
Although some of these compounds can also be produced by microbial culture scale, for example riboflavin , Vitamin B6, pantothenic acid and biotin, but large scale production of these compounds also largely Dependent on cell-chemical system. Only vitamin B12, as the complexity of its synthesis, only By fermentation. Vitro methods require considerable material and time investment, often costly.
C. purine, pyrimidine, nucleoside and nucleotide metabolism and uses
Purine and pyrimidine metabolism of genes and their corresponding proteins, tumor diseases and viral influenza Important therapeutic target dye. The term "purine" and "pyrimidine", contains a nucleic acid, secondary Enzymes and nucleotide composition of the nitrogenous base. The term "nucleotide" the basic structure of a nucleic acid molecule that contains a single Element, the nucleic acid molecule consists of nitrogenous bases, pentose sugars (for RNA, the pentose sugar is ribose; For DNA, The pentose sugar is deoxyribose) and phosphate components. The term "nucleoside" includes a nucleotide precursors Molecule, but the lack of a phosphate portion of nucleotides. These molecules by inhibiting biological Synthesis, or inhibition of nucleic acid molecules for the synthesis of the movement carried out, may be inhibition of RNA and DNA Synthesis; through targeted tumor cells to inhibit the active mode, the tumor cell division and replication The energy may be suppressed. In addition, some nucleotides not used to form a nucleic acid, but as Energy storage (eg AMP) or coenzyme (such as FAD and NAD). ...
Some publications describe by influencing purine and / or pyrimidine metabolism, these chemicals as The use of these medical indications (eg, Christopherson, RIand Lyons, SD (1990) "Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents. "Med.Res.Reviews 10:505-548). involving purine and pyrimidine Pyridine metabolic enzymes studies focused on the development of new drugs that can be used above, for example, as an immune Inhibitor or antiproliferative agents (Smith, JL, (1995) "Enzyme in nucleotide synthesis. "Curr.Opin.Struct.Biol.5 :752-757; (1995) Biochem Soc. Transact.23 :877-902). However, purine and pyrimidine bases, nucleosides and nucleotides also have other Outside effects: as many fine chemicals biosynthetic intermediates (e.g., thiamine, S-adenosyl methionine, folic acid, or riboflavin), as a cell energy carrier (such as ATP Or GTP), and as a chemical substance itself, usually used as flavor enhancers (for example IMP or By GMP) or several medical applications (see, for example, Kuninaka, A. (1996) Nucleotides and Related Compounds in Biotechnology vol.6, Rehm et al., eds.VCH: Weinheim,, p.561-612). Similarly, involving purine, pyrimidine, nucleoside or nucleotide metabolism of Enzymes, becoming developed chemicals for crop protection role of objectives, which Chemicals including fungicides, herbicides and insecticides. ...
The metabolism of these compounds in bacteria has a characteristic (a review see, for example, Zalkin, H.and Dixon, JE (1992) "de novo purine nucleotide biosynthesis", in: Progress in Nucleic Acid Research and Molecular Biology, vol.42, Academic Press:, p.259-287; and Michal, G. (1999) "Nucleotides and Nucleosides", Chapter 8 in: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, Wiley: New York). Purine metabolism has been the focus of research, and it is necessary for normal cell function. Higher Purine metabolism in animals can cause damage serious diseases, such as gout. Purine nucleotides by the Synthesis of 5'-phosphoribosyl, through a series of steps through the intermediate inosine 5'-monophosphate (IMP), ultimately produce guanosine 5'-monophosphate (GMP) and adenosine 5'-monophosphate (AMP), They are formed by the nucleotide triphosphate form used. These compounds are also used as an energy store, Degradation of the cell to provide a variety of biochemical processes of energy. Pyrimidine biosynthesis, is through Had formed by the 5'-ribose uridine 5'-monophosphate (UMP). UMP into the next Cytosine 5'-triphosphate (CTP). All of these nucleotides deoxy forms are to undergo a step further Reduction reaction generated by the nucleotide diphosphate ribose form of the nucleotide diphosphate deoxyribose Form. Upon phosphorylation, these molecules can participate in DNA synthesis of. ...
The metabolism of these compounds in bacteria has a characteristic (a review see, for example, Zalkin, H.and Dixon, JE (1992) "de novo purine nucleotide biosynthesis", in: Progress in Nucleic Acid Research and Molecular Biology, vol.42, Academic Press:, p.259-287; and Michal, G. (1999) "Nucleotides and Nucleosides", Chapter 8 in: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, Wiley: New York). Purine metabolism has been the focus of research, and it is necessary for normal cell function. Higher Purine metabolism in animals can cause damage serious diseases, such as gout. Purine nucleotides by the Synthesis of 5'-phosphoribosyl, through a series of steps through the intermediate inosine 5'-monophosphate (IMP), ultimately produce guanosine 5'-monophosphate (GMP) and adenosine 5'-monophosphate (AMP), They are formed by the nucleotide triphosphate form used. These compounds are also used as an energy store, Degradation of the cell to provide a variety of biochemical processes of energy. Pyrimidine biosynthesis, is through Had formed by the 5'-ribose uridine 5'-monophosphate (UMP). UMP into the next Cytosine 5'-triphosphate (CTP). All of these nucleotides deoxy forms are to undergo a step further Reduction reaction generated by the nucleotide diphosphate ribose form of the nucleotide diphosphate deoxyribose Form. Upon phosphorylation, these molecules can participate in DNA synthesis of. ...
Trehalose consists of two glucose molecules by α, α-1, 1 connection. Usually in the food industry Used as sweetening agents, dry foods or frozen food additives and beverages which. Furthermore, It is also used in the pharmaceutical, cosmetics and biotechnology industries (see, for example Nishimoto et al., (1998) USPatent No.5, 759,610; Singer, MAand Lindquist, S. (1998) Trends Biotech.16 :460-467; Paiva, CLAand Panek, AD (1996) Biotech. Ann.Rev.2 :293-314; and Shiosaka, M. (1997) J.Japan 172:97-102). Many The enzyme can produce a microorganism trehalose, and released naturally into the surrounding medium can Which technically well known methods using for collection.
II. Components and methods of the present invention,
The present invention is based at least in part on the discovery of new molecules on the basis, where it is called MP Nucleic acid and protein molecules of one or more cells are metabolic pathways play a role or function Energy. In one embodiment, MP Molecular Catalysis of one or more amino acids, vitamins, cofactors Son, nutritional factors, nucleotides, nucleosides, or trehalose in the enzymatic reaction pathway. In the preferred Embodiment, the present invention is one or more of Corynebacterium glutamicum amino acids, vitamins, cofactors Son, nutritional factors, nucleotides, nucleosides, or trehalose in the metabolic pathway of a molecule active MP The microbial production of fine chemicals needed impact. In a particularly preferred embodiment, , The present invention is adjusted MP activity of molecules, so that this invention is proteins involved in the metabolism of an MP Efficiency or production pathway is regulated, which will directly or indirectly affect one or Corynebacterium glutamicum Variety of fine chemicals production and production efficiency. ...
The term "MP protein" or "MP polypeptide" included in the one or more amino acids, Victoria Vitamin, cofactor, nutritional factors, nucleotides, nucleosides, or play a role in metabolic pathways, such as trehalose Wherein the enzymatic reaction catalyzed protein. MP proteins include those listed in the sequence listing by the MP sequence number is odd genes encoding proteins. The term "MP gene" or "MP Nuclear Acid sequence "includes a nucleic acid sequence encoding MP protein, which contains the coding region and the corresponding Non-translated 5 'and 3' sequence regions. MP genes include those listed in Table 1 of the base Result. The term "production" or "productivity" is known in the art, including at a given time And a given volume of fermentation, fermentation products (eg, the desired fine chemical) concentration (for example, For example, kg product per hour per liter). The term "productivity" contains the, to achieve a particular The time required for production levels (for example, how long it takes the cell reaches a certain fine Chemical substances). The term "income", "product / carbon yield" is known in the art, including the Carbon conversion products (for example, fine chemicals) efficiency. For example, often writing kg capacity Substance per kg carbon. By increasing revenue or production compounds, increase the number of molecules recovered , Or increase in a given period of time a given quantity of the compound in the culture of molecules useful in recovery Number. The term "biosynthesis" or a "biosynthetic pathway" are known in the art, including Contained in the cells may be from the intermediate compound through a multi-step process and is highly regulated, Synthetic compounds, in particular compounds. The term "degradable" or a "degradation pathway" Is known in the art, including in cells, probably through multi-step and is highly regulated Process, the compound is preferably an organic compound, the decomposition of degradation products (in general, the Smaller or less complex molecules). The term "metabolic" is known in the art, including the Organisms biochemical reactions that occur in all. Thus, the metabolism of specific compounds (e.g., Metabolism of amino acids such as glycine this) cells with the compound, including all related biological Synthesis, modification and degradation pathways. ...
In another embodiment, the present invention is to regulate the microorganism MP molecules, such as Corynebacterium glutamicum, the desired compound such as the production of fine chemicals. Using recombinant genetic Technique of the present invention can operate one or more amino acids, vitamins, cofactors, nutrition because Son, nucleotides, nucleosides, or trehalose biosynthesis or degradation enzymes, thereby regulating their activity. For example, Biosynthetic enzymes can increase the efficiency or destruction of its allosteric control region so as to prevent production of the compound Feedback inhibition. Similarly, a degradative enzyme can be substitution, deletion or increases are deleted or modified, The desired compound thus the degradation of its activity decreased, without affecting cell viability. In a variety of intelligence State, the desired fine chemical production, or production rate is increased. ...
Proteins and nucleotides of the invention may also improve the molecule in addition to changes in the amino acid, vitamin Factors, cofactors, nutritional factors, nucleotides, nucleosides, or trehalose fine chemicals other than Qualitative production. Metabolism of any one compound bound to the intracellular synthesis and degradation pathways of other organisms Association, in a way necessary cofactors, intermediates, or the substrate may be provided by other similar means for Give or be limited. Therefore, by adjusting one or more of the active protein of the invention, another Fine chemicals or degradation pathway biosynthetic activity or efficiency of production may be affected. For example, amino acids may be used as structural units of all proteins, but its presence in the cell Level may restrict protein synthesis; Thus, by increasing the intracellular one or more amino acids of the Production efficiency or productivity, such as the protein biosynthesis or degradation can be more easily synthesized protein. With Kind, metabolic pathway enzymes specific adverse change makes more favorable or unfavorable, it will lead to one or Required for the production of a variety of fine chemical intermediates or compounds substrate excess production or raw Production is insufficient. ...
Proteins and nucleotides of the invention may also improve the molecule in addition to changes in the amino acid, vitamin Factors, cofactors, nutritional factors, nucleotides, nucleosides, or trehalose fine chemicals other than Qualitative production. Metabolism of any one compound bound to the intracellular synthesis and degradation pathways of other organisms Association, in a way necessary cofactors, intermediates, or the substrate may be provided by other similar means for Give or be limited. Therefore, by adjusting one or more of the active protein of the invention, another Fine chemicals or degradation pathway biosynthetic activity or efficiency of production may be affected. For example, amino acids may be used as structural units of all proteins, but its presence in the cell Level may restrict protein synthesis; Thus, by increasing the intracellular one or more amino acids of the Production efficiency or productivity, such as the protein biosynthesis or degradation can be more easily synthesized protein. With Kind, metabolic pathway enzymes specific adverse change makes more favorable or unfavorable, it will lead to one or Required for the production of a variety of fine chemical intermediates or compounds substrate excess production or raw Production is insufficient. ...
The present invention also related to such a protein, the amino acid sequence of the protein of the present invention Sufficient amino acid sequence homology (for example, the sequence of the even sequence of the sequence). As As used herein, has the amino acid sequence selected have sufficient homology to the amino acid sequence Column of protein, and the amino acid sequence selected, for example, the amino acid sequences of selected with At least about 50% homology. Having the amino acid sequence selected a great homology group Acid sequence of the protein, but also with an amino acid sequence selected has at least about 50-60%, preferably Selected to have at least about 60% homologous, more preferably at least about 70%, 80%, 90% of the Homology, most preferably at least about 95%, 96%, 97%, 98%, 99% or higher homology Sex. ...
The present invention also related to such a protein, the amino acid sequence of the protein of the present invention Sufficient amino acid sequence homology (for example, the sequence of the even sequence of the sequence). As As used herein, has the amino acid sequence selected have sufficient homology to the amino acid sequence Column of protein, and the amino acid sequence selected, for example, the amino acid sequences of selected with At least about 50% homology. Having the amino acid sequence selected a great homology group Acid sequence of the protein, but also with an amino acid sequence selected has at least about 50-60%, preferably Selected to have at least about 60% homologous, more preferably at least about 70%, 80%, 90% of the Homology, most preferably at least about 95%, 96%, 97%, 98%, 99% or higher homology Sex. ...
The following sections describe in more detail the various aspects of the present invention:
Isolated nucleic acid molecule A.
One aspect of the invention relates to an isolated polypeptide encoding MP or parts of its biological activity Nucleic acid molecules, and sufficient for the hybridization probe or primer is a nucleic acid molecule fragments of MP for the identification or coding nucleic acid amplification (eg MP DNA). As used herein, that Like, the term "nucleic acid molecule" means comprising a DNA molecule (e.g., cDNA or gene Groups DNA) and RNA molecules (e.g. mRNA), and the resulting DNA nucleotide analogs Or RNA analogs. The term also includes gene coding region in the 3 'and 5' untranslated end of the Sequence: coding region of the 5 'end of the sequence upstream of at least 100 nucleotides, and gene coding region 3 'end of the sequence downstream of at least 20 nucleotides. The nucleic acid molecule may be single-stranded or double-stranded , But preferably is double-stranded DNA. An "isolated" nucleic acid molecule refers to those present in the nucleus Other natural sources acid a nucleic acid molecule to an isolated nucleic acid molecule. Preferably, the "isolated" Nucleic acids do not contain genomic DNA of the organism in a natural nucleic acid sequences on both sides (for example, in DNA 5 'and 3' ends of the sequence), the nucleic acid is obtained from the organism. For example, in each Colors embodiment, the isolated nucleic acid molecule can contain less than MP about 5kb, 4kb, 3kb, 2kb, 1kb, 0.5kb or 0.1kb nucleotide sequence which naturally located in the cell genome DNA On both sides of the nucleic acid molecule, the nucleic acid is from these cells (e.g., Corynebacterium glutamicum cells) Obtained. In addition, "isolated" nucleic acid molecule, such as DNA molecules, recombinant techniques when raw Production can substantially contain other cellular material or culture medium, when the chemical synthesis can not Combined chemical precursors or other chemicals. ...
One aspect of the invention relates to an isolated polypeptide encoding MP or parts of its biological activity Nucleic acid molecules, and sufficient for the hybridization probe or primer is a nucleic acid molecule fragments of MP for the identification or coding nucleic acid amplification (eg MP DNA). As used herein, that Like, the term "nucleic acid molecule" means comprising a DNA molecule (e.g., cDNA or gene Groups DNA) and RNA molecules (e.g. mRNA), and the resulting DNA nucleotide analogs Or RNA analogs. The term also includes gene coding region in the 3 'and 5' untranslated end of the Sequence: coding region of the 5 'end of the sequence upstream of at least 100 nucleotides, and gene coding region 3 'end of the sequence downstream of at least 20 nucleotides. The nucleic acid molecule may be single-stranded or double-stranded , But preferably is double-stranded DNA. An "isolated" nucleic acid molecule refers to those present in the nucleus Other natural sources acid a nucleic acid molecule to an isolated nucleic acid molecule. Preferably, the "isolated" Nucleic acids do not contain genomic DNA of the organism in a natural nucleic acid sequences on both sides (for example, in DNA 5 'and 3' ends of the sequence), the nucleic acid is obtained from the organism. For example, in each Colors embodiment, the isolated nucleic acid molecule can contain less than MP about 5kb, 4kb, 3kb, 2kb, 1kb, 0.5kb or 0.1kb nucleotide sequence which naturally located in the cell genome DNA On both sides of the nucleic acid molecule, the nucleic acid is from these cells (e.g., Corynebacterium glutamicum cells) Obtained. In addition, "isolated" nucleic acid molecule, such as DNA molecules, recombinant techniques when raw Production can substantially contain other cellular material or culture medium, when the chemical synthesis can not Combined chemical precursors or other chemicals. ...nd, Ed.Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, In 1989) were isolated. Further, the present invention includes a nucleic acid sequence (e.g., sequence The nucleotide sequence of SEQ ID number) all or part of the nucleic acid molecule can be poly Synthase chain reaction, based on the sequences using oligonucleotide primers isolated (Example For example, the present invention includes a nucleic acid sequence (e.g., the sequence of the nucleotide sequence of the odd sequence number Column) all or part of a nucleic acid molecule that can by polymerase chain reaction based The sequences of the same oligonucleotide primers, isolated). For example, mRNA can Isolated normal endothelial cells (for example, using Chirgwin et al. (1979) Biochemistry 18: 5294-5299 guanidine thiocyanate extraction method in), DNA by reverse transcriptase (for example, Gibco / BRL, Bethesda, MD provided Moloney MLV reverse transcriptase; or Seikagaku America, Inc., St.Peterburg, FL supplied AMV reverse transcriptase) thereof. As polymerase Synthesized oligonucleotide chain reaction primers may be based on the sequence of a polynucleotide listed in Table Sequence Design. The nucleic acid of the invention may be used as an alternative or cDNA gene Genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques to extend Increase. Such amplified nucleic acid can be cloned into a suitable vector and the DNA sequence analysis Identify its characteristics. Further, the nucleotide sequence corresponding to the MP oligonucleotides can be used standard Quasi-synthesis technology to prepare, for example using an automatic DNA synthesizer. ...
, Ed.Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, In 1989) were isolated. Further, the present invention includes a nucleic acid sequence (e.g., sequence The nucleotide sequence of SEQ ID number) all or part of the nucleic acid molecule can be poly Synthase chain reaction, based on the sequences using oligonucleotide primers isolated (Example For example, the present invention includes a nucleic acid sequence (e.g., the sequence of the nucleotide sequence of the odd sequence number Column) all or part of a nucleic acid molecule that can by polymerase chain reaction based The sequences of the same oligonucleotide primers, isolated). For example, mRNA can Isolated normal endothelial cells (for example, using Chirgwin et al. (1979) Biochemistry 18: 5294-5299 guanidine thiocyanate extraction method in), DNA by reverse transcriptase (for example, Gibco / BRL, Bethesda, MD provided Moloney MLV reverse transcriptase; or Seikagaku America, Inc., St.Peterburg, FL supplied AMV reverse transcriptase) thereof. As polymerase Synthesized oligonucleotide chain reaction primers may be based on the sequence of a polynucleotide listed in Table Sequence Design. The nucleic acid of the invention may be used as an alternative or cDNA gene Genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques to extend Increase. Such amplified nucleic acid can be cloned into a suitable vector and the DNA sequence analysis Identify its characteristics. Further, the nucleotide sequence corresponding to the MP oligonucleotides can be used standard Quasi-synthesis technology to prepare, for example using an automatic DNA synthesizer. ...
For the purpose of the application, the sequence listed in the table can understand each of nucleic acids and amino acid sequence Column, there is a for identification RXA, RXN, RXS or RXC number, "RXA", "RXN", "RXS", or "RXC" followed by a five digits (i.e., RXA00007, RXN00023, RXS00116, or RXC00128). Every nucleic acid sequence contains up to three Part: 5 'upstream region, the coding region, downstream region. Each part of the three regions, all with Same RXA, RXN, RXS, or RXC name OK to eliminate confusion. So narrative "A number in the sequence table sequence encoding" refers to any sequence in a nucleic acid sequence, These sequences can also use their different RXA, RXN, RXS, or RXC name mutual Distinction. Each coding region of this sequence is translated into the corresponding amino acid sequence, the sequence Columns are also listed in the sequence listing, a nucleic acid sequence corresponding to immediately even after the serial number. For example, RXA02229 coding region shown in SEQ ID NO: 1, and its encoded amino acid sequences are listed in SEQ ID NO: 2. The nucleic acid molecule sequence of the present invention, with its encoded amino acid molecules by phase Same RXA, RXN, RXS, or RXC name that makes them easy to contact each other. For example, known RXA02229, RX00351, RXS02970 and the amino acid sequence RXC02390 Columns are RXA02229, RX00351, RXS02970 and RXC02390 nucleic acid molecules nuclear Nucleotide sequence of the coding region of the translation. The present invention RXA, RXN, RXS and RXC nucleotides and Correspondence between the amino acid sequences, and their serial numbers are specified in Table 1. ...
For the purpose of the application, the sequence listed in the table can understand each of nucleic acids and amino acid sequence Column, there is a for identification RXA, RXN, RXS or RXC number, "RXA", "RXN", "RXS", or "RXC" followed by a five digits (i.e., RXA00007, RXN00023, RXS00116, or RXC00128). Every nucleic acid sequence contains up to three Part: 5 'upstream region, the coding region, downstream region. Each part of the three regions, all with Same RXA, RXN, RXS, or RXC name OK to eliminate confusion. So narrative "A number in the sequence table sequence encoding" refers to any sequence in a nucleic acid sequence, These sequences can also use their different RXA, RXN, RXS, or RXC name mutual Distinction. Each coding region of this sequence is translated into the corresponding amino acid sequence, the sequence Columns are also listed in the sequence listing, a nucleic acid sequence corresponding to immediately even after the serial number. For example, RXA02229 coding region shown in SEQ ID NO: 1, and its encoded amino acid sequences are listed in SEQ ID NO: 2. The nucleic acid molecule sequence of the present invention, with its encoded amino acid molecules by phase Same RXA, RXN, RXS, or RXC name that makes them easy to contact each other. For example, known RXA02229, RX00351, RXS02970 and the amino acid sequence RXC02390 Columns are RXA02229, RX00351, RXS02970 and RXC02390 nucleic acid molecules nuclear Nucleotide sequence of the coding region of the translation. The present invention RXA, RXN, RXS and RXC nucleotides and Correspondence between the amino acid sequences, and their serial numbers are specified in Table 1. ...
In one embodiment, the present invention, the nucleic acid molecule does not contain the compiled in Table 2, those Corynebacterium glutamicum molecules. The dapD gene, the gene sequence published in Wehrmann, A., et al. (1998) J.Bacteriol.180 (12) :3159-3165. However, the present inventors have obtained The much longer than the published version. It is said that using the wrong version published by the fact codon And therefore only the performance of the real part of the coding region.
In one embodiment, the present invention, the nucleic acid molecule does not contain the compiled in Table 2, those Corynebacterium glutamicum molecules. The dapD gene, the gene sequence published in Wehrmann, A., et al. (1998) J.Bacteriol.180 (12) :3159-3165. However, the present inventors have obtained The much longer than the published version. It is said that using the wrong version published by the fact codon And therefore only the performance of the real part of the coding region....
Also in another preferred embodiment, the isolated nucleic acid molecule of the invention, including Such a nucleotide sequence which the nucleotide sequence of the present invention (e.g., the sequence of odd Serial number The serial number) or a part, at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59% or 60% homology, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69% or 70% homology, more preferably have at Less some 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79% or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 88%, 89% or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% Or higher homology. Cited above range (for example 70 to 90%, or 80-95% to the consistency Consistency) in the middle of the range and consistency values, are included in the present invention. For example, this includes Consistency range, these ranges are referenced above upper and / or lower limit value combination. In another A preferred embodiment, the present invention is an isolated nucleic acid molecule comprises a nucleotide sequence that Column, the sequence can be a nucleotide sequence of the present invention or parts thereof for hybridization, for example, Hybridizes under stringent conditions. ...
Further, the nucleic acid molecule of the present invention may contain only the sequence of the coding region of the sequence SEQ ID number Part of the domain, for example, can be used as probes or primers fragment or protein encoded MP Biologically active portions of clips. The MP gene of Corynebacterium glutamicum nucleotide sequence, Probes and primers allow the generation, these probes and primers designed for the identification and / or cloning other Cell type, or other organisms in the MP homologues, other genetic material, or Corynebacterium The MP species homologues. Probe / primer typically contains relatively purified oligonucleotides. Oligo Nucleotides typically including such a nucleotide sequence region that stringent hybridization conditions Next, the nucleotide sequence of the present invention (e.g., the sequence of SEQ ID sequence number) of a sense strand, An antisense sequence of these sequences, or of naturally occurring mutants of at least about 12, preferably About 25, more preferably about 40, 50 or 75 consecutive nucleotides hybridized. Based on The nucleotide sequence of the present invention, a primer can be used to clone homologues MP PCR reaction. Based on MP nucleotide sequence probe can be used to detect the same or homologous proteins or transcription-based Genome sequence. In a preferred embodiment, the probe is attached comprises an additional marker gene Group, such as a tag group can be a radioisotope, a fluorescent compound, an enzyme or enzyme cofactors Child. Such probes can be used as part of diagnostic test kits, the kit for the identification of fault MP protein expression cells mistake, such as a sample cell by measuring the level of nucleic acid encoding the MP, For example, the detection level of MP mRNA, or genomic MP determined whether there is a sudden genes Changed or missing. ...
In one embodiment, the present invention is a nucleic acid molecule encoding a protein or parts thereof, The protein or part of the amino acid sequence of the amino acid sequence of the present invention (e.g., SEQ Sequence SEQ ID table even) have sufficient homology such that the protein or part thereof Catalyzes amino acids, vitamins, cofactors, nutritional factors, nucleotides, nucleosides, or trehalose Enzymatic reaction in the metabolic pathway. As used herein, the term "sufficient homology" is the Refers to the protein or part of the amino acid sequence, containing the minimum number of amino acid sequence of the present invention. Column consistent or equivalent (eg, having a sequence table even the amino acid sequence of SEQ ID Similar residues amino acid residue side chain) amino acid residues, so that the protein or the portion Points, capable of catalyzing the Corynebacterium glutamicum amino acids, vitamins, cofactors, nutritional factors, nuclear Nucleotide, nucleoside, or trehalose in the enzymatic reaction pathway. This metabolic pathway protein members As described herein, as its function is to catalyze one or more amino acids, vitamins, cofactors, Nutritional factors, nucleotides, nucleosides, or trehalose biosynthesis or degradation. This is described here Examples of the active species. Thus, "MP protein function" for one or more of these metabolic pathways Have a role, and / or directly or indirectly affect the one or more production of fine chemicals, raw Production and / or production efficiency. Examples MP protein activity are listed in Table 1. ...
In one embodiment, the present invention is a nucleic acid molecule encoding a protein or parts thereof, The protein or part of the amino acid sequence of the amino acid sequence of the present invention (e.g., SEQ Sequence SEQ ID table even) have sufficient homology such that the protein or part thereof Catalyzes amino acids, vitamins, cofactors, nutritional factors, nucleotides, nucleosides, or trehalose Enzymatic reaction in the metabolic pathway. As used herein, the term "sufficient homology" is the Refers to the protein or part of the amino acid sequence, containing the minimum number of amino acid sequence of the present invention. Column consistent or equivalent (eg, having a sequence table even the amino acid sequence of SEQ ID Similar residues amino acid residue side chain) amino acid residues, so that the protein or the portion Points, capable of catalyzing the Corynebacterium glutamicum amino acids, vitamins, cofactors, nutritional factors, nuclear Nucleotide, nucleoside, or trehalose in the enzymatic reaction pathway. This metabolic pathway protein members As described herein, as its function is to catalyze one or more amino acids, vitamins, cofactors, Nutritional factors, nucleotides, nucleosides, or trehalose biosynthesis or degradation. This is described here Examples of the active species. Thus, "MP protein function" for one or more of these metabolic pathways Have a role, and / or directly or indirectly affect the one or more production of fine chemicals, raw Production and / or production efficiency. Examples MP protein activity are listed in Table 1. ...
MP nucleic acid molecule of the present invention encoding the protein moiety, preferably the biological activity of MP protein Fraction. As used herein, the term "MP protein portion of the biological activity" mean MP protein containing such a portion, for example, domains / base element, the part capable of catalyzing glutamicum Of one or more amino acid bacteria, vitamins, cofactors, nutritional factors, nucleotides, nucleosides, Or trehalose, the enzymatic reaction in the metabolic pathway or with activity in Table 1. May perform one Activity analysis to determine the protein or its biological activity MP some amino acids can catalysis, Vitamins, cofactors, nutritional factors, nucleotides, nucleosides, or in the metabolic pathway enzyme trehalose Reaction. This method of analysis the skilled person is well known, in the sample of Example 8 Described in detail. ...
MP nucleic acid molecule of the present invention encoding the protein moiety, preferably the biological activity of MP protein Fraction. As used herein, the term "MP protein portion of the biological activity" mean MP protein containing such a portion, for example, domains / base element, the part capable of catalyzing glutamicum Of one or more amino acid bacteria, vitamins, cofactors, nutritional factors, nucleotides, nucleosides, Or trehalose, the enzymatic reaction in the metabolic pathway or with activity in Table 1. May perform one Activity analysis to determine the protein or its biological activity MP some amino acids can catalysis, Vitamins, cofactors, nutritional factors, nucleotides, nucleosides, or in the metabolic pathway enzyme trehalose Reaction. This method of analysis the skilled person is well known, in the sample of Example 8 Described in detail. ...
Because of the degeneracy of the genetic code, as well as thus obtained, and the present invention can encode the nucleotide MP sequence encoding a protein the same protein, the present invention differs from the present invention further includes The nucleotide sequence (e.g., the sequence of SEQ ID sequence number) (and portions thereof) of the nucleic acid Child. In another embodiment, the isolated nucleic acid molecule of the present invention having such a nucleotide Sequence, the sequence having the sequence encoding the amino acid sequence listed (e.g., an even sequence number) Proteins. Also in another embodiment, the present invention is a nucleic acid molecule encoding the full length glutamic Corynebacterium acid protein, the protein of the present invention the amino acid sequence (sequence number from the sequence table Open reading frame encoding the column number) have sufficient homology. ...
In one embodiment, the present invention is not meant to include a sequence of previously known in the art Sequences, such as those listed in Table 2 or Table 4, in the present invention, before the effective Genbank Sequence, which is skilled in the art can be understood. In one embodiment, the The present invention includes such a nucleotide sequence and amino acid sequence, the nucleotide sequence of the present invention Sequence and amino acid sequence of a certain percentage of the consistency known in the percentage is greater than Sequence (e.g., Table 2 or Table 4 lists the Genbank sequence (or the sequence encoding Protein)) with the nucleotide sequence of the present invention, and the percentage of amino acid sequence identity. For example, The present invention includes and marked as RXA00115 (SEQ ID NO: 185) The nucleotide sequence of a large In and / or at least 40% identity to the nucleotide sequence, and indicated as RXA00131 (SEQ ID NO: 991) The nucleotide sequence of greater than and / or at least% identity to the nucleotide sequence, and And marked as RXA00219 (SEQ ID NO: 345) The nucleotide sequence of greater than and / or at least Consistency 39% of the nucleotide sequence. Skill in the art, listed in Table 4 by checking on At each particular sequence given three highest GPA-calculation of the percentage of matching consistency, as well as by Collected from one hundred percent in the highest GPA-calculated by subtracting the percentage of consistency, you can calculate any of the Percentage of specific sequences present invention low consistency threshold. The skilled person can sense That the percentage is greater than that calculated consistent low field values ​​(e.g., at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59% or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69% or 70%, more preferably to Less some 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79% or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 88%, 89% or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% Or greater consistency) the nucleic acid and amino acid sequences are also included in the present invention. ...
Skilled in the art will recognize that in addition to the sequence number in the table are listed the serial number MP nucleotide sequence of Corynebacterium glutamicum, the resulting amino acid sequence changes in MP DNA Polymorphisms in certain groups (such as Corynebacterium glutamicum groups) exists. The MP-based Due to genetic polymorphism, the conditions may be due to natural variations in the different individuals in a group Exists. As used herein, the term "gene" and "recombinant gene" refers to coding comprising MP protein open reading frame nucleic acid molecule, preferably Corynebacterium glutamicum MP protein MP proteins. This natural conditions can cause variations typically 1-5% MP nucleotide sequence Changes. Any and all the variations caused due to natural conditions, and does not change the MP protein White functional activity, such nucleotide changes, as well as amino acid polymorphism caused MP, Are within the scope of this invention. ...
Natural variants of the corresponding nucleic acid molecule, and the present invention is Corynebacterium glutamicum MP DNA non-Gu Corynebacterium acid homologues, are disclosed herein can be based with a nucleic acid Corynebacterium glutamicum MP Molecular homology with Corynebacterium glutamicum or a part of a DNA hybridization probes, in strict Cell hybridization according to standard hybridization techniques under conditions isolated. Thus, in another embodiment, Isolated nucleic acid molecule of the present invention, the length of at least 15 nucleotides, under stringent conditions, and containing The nucleotide sequence SEQ ID sequence number nucleic acid hybridization. In other embodiments, the nuclear The length of at least one acid molecule 30,50,100,250 or more nucleotides. As used herein, Herein, the term "hybridizes under stringent conditions" means hybridization and wash describe such a Conditions between the conditions at least 60% homology between the nucleotide sequence of protection Held typical hybrid. Preferably, this condition between the sequence of at least about 65%, more preferably At least about 70% and even more preferably at least about 75 or higher homology, Maintained between typical hybridization Such stringent conditions to be known to the skilled person , He may, Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989) ,6.3.1-6 .3.6 found. A preferred, but not limiting Stringent hybridization conditions in 6X sodium chloride / sodium citrate (SSC) were hybridized for about 45 ℃, Then 0.2X SSC, 0.1% SDS at 50-65 ℃ cleaned once or more times. Preferably, the separation The nucleic acid molecule of the invention, the stringent hybridization conditions with the nucleotide sequence of the present invention, hybridization, Equivalent to the naturally occurring nucleic acid molecule obtained. Such as used herein, "naturally occurring" The nucleic acid molecule refers to a nucleotide sequence present in the natural (e.g., encodes a natural protein) An RNA or DNA molecule. In one embodiment, the nucleic acid encoding the native pole glutamicum MP bacterial proteins. ...
Skilled in the art can be further realized that, in addition to the presence of naturally occurring populations of MP sequence variants other than the changes can be introduced by mutation in the nucleotide sequence of the present invention, thus MP result in amino acid sequence encoded changed without changing the MP protein. For example, the nucleotide sequence of the present invention, can be lead to "non-essential" amino acid residues Substituted amino group substituted nucleotides. "Non-essential" amino acid residue refers to a residue, The residue of the MP protein may be wild-type sequence (e.g., the sequence of even-numbered SEQ ID sequence) The change, without changing the MP protein activity, and the "essential" amino acid residue is MP Necessary for protein activity. However, other amino acid residues (e.g., those in the MP activity Results Non-conserved domain structure or just half conserved amino acid residues) may be not necessary for the activity , So you can not change the case of MP activity is changed. ...
Accordingly, another aspect of the present invention, such encoding nucleic acid molecule MP protein, The activity of the MP MP protein contains a non-essential amino acid residue changes. These proteins The amino acid sequence differs from the sequence of the even sequence number sequence, but still maintained at least one here MP activity is described. In one embodiment, the isolated nucleic acid molecule encoding a protein containing The nucleotide sequence of the white matter, wherein the amino acid sequence of the protein with the amino acid sequence of the present invention. At least about 50% homology, and capable of catalyzing the amino acids, vitamins, cofactors, business Raising factors, nucleotides, nucleosides, or trehalose, the enzymatic reaction in the metabolic pathway, or in Table 1 In one or more of the active list. Preferably, the nucleic acid molecule encoding a protein with the sequence table The amino acid sequence of SEQ ID number, there is at least about 50-60% homologous, more preferably with such There are at least about 60-70% sequence homology, even more preferably at least about with such sequences 70-80% ,80-90% ,90-95% homology, most preferably the amino acid sequence of the present invention, there is At least about 96%, 97%, 98%, or 99% homology. ...
In order to confirm the amino acid sequence (e.g., an amino acid sequence of the present invention, with projections Variant form) or both the percentage of nucleic acid sequence homology, most suitable for the purpose of comparison, Sequence comparison of the sequences (for example, to other proteins or nucleic acids with the most appropriate Sequence alignment, can be a protein or nucleic acid sequence into a gap). Then compare Amino acid positions corresponding to amino acid residue, or a nucleic acid nucleotide position. When a sequence (case For example, the amino acid sequence of the present invention a) is a position in the other sequence (e.g., ammonia Acid sequence mutant form) corresponding to the same position as the amino acid residue or nucleotide occupied , The molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "with Derived "with an amino acid or nucleic acid" identity "is the same.) The percentage between two sequences Points than homology is a sequence of the same number of positions to be sharing function (ie,% identity = Phase With position # / full position # x 100). ...
Isolated protein sequences of the present invention (e.g., the sequence of SEQ ID sequence even) with MP protein source encoding nucleic acid molecule can be through the introduction of the nucleotide sequence of the present invention, One or more nucleotide substitution, insertion, deletion and production, thus the argument in the encoded protein Into one or more amino acid substitutions, insertions, deletions. You can use standard techniques, such as fixed Mutagenesis and PCR-mediated mutagenesis, the nucleotide sequence of the present invention, the introduction of mutation. Preferably, Paul The amino acid substitution is to keep one or more expected in a non-essential amino acid residues carried. "Paul Gatekeeper amino acid substitution "refers to the amino acid residue having a similar side chain of amino acid residues taken Generations. Have similar amino acid residue side chain family is technically specified. These families include, Amino acids having basic side chains (eg, lysine, arginine, histidine), acidic Side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains with ammonia Amino acids (e.g., glycine, aspartic acid, glutamine, serine, threonine, tyrosine, Cysteine), nonpolar side chains (e.g., alanine, valine, leucine Acid, isoleucine, proline, phenylalanine, methionine, tryptophan), a β-branched Side chains (eg, threonine, valine, isoleucine) and aromatic groups Side chains (eg, tyrosine, phenylalanine, tryptophan, histidine). Accordingly, MP protein expected non-essential amino acid residues, preferably by the same side chain family which He amino acid substitution. Further, in another embodiment, the length of the coding sequence, at the MP Or in part, the introduction of random mutations, e.g., by saturation mutagenesis, according to the identification described herein MP activity in a mutant MP activity, screening the obtained mutants. In one sequence table The nucleotide sequence of odd sequence number mutagenesis, the encoded protein can be expressed recombinant protein Active substance can be, for example, using the analysis described herein (see the example in Example 8), to obtain correct Fixed. ...
In addition to the above-described nucleic acid molecule encoding a protein other than the MP, the other of the present invention, Surface also with the separation of antisense nucleic acid molecules related. "Antisense" nucleic acid encoding the protein includes "There Yi "nucleic acid complementary to the nucleotide sequences, such as double-stranded DNA molecule complementary to the coding strand, or with complementary mRNA sequences. Accordingly, an antisense nucleic acid can hydrogen bond with a sense nucleic acid connection. Antisense Nucleic acid can be complementary to the coding strand MP with all, or only some of its complementary. In one embodiment, Solution, antisense nucleic acid molecules encoding the MP protein coding strand of a nucleotide sequence of the "coding Zone "antisense term" coding region "refers translated into amino acid residues containing codon Nucleotide sequence regions (e.g., SEQ ID NO.1 (RAX 02229) including the entire coding region 1-825 nucleotides). In another embodiment, the antisense nucleic acid molecule encoding the MP A nucleotide sequence encoding an antisense chain. The term "noncoding region" refers to the coding region on both sides not turn Amino acids into the 5 'and 3' sequences (i.e., 5 'and 3' untranslated regions). ...
Considering published here MP coding strand of the coding sequence (e.g., the sequence listed in the table Odd serial number sequence), an antisense nucleic acid of the invention according to the Watson and Crick base pairing The design rules. Antisense nucleic acid molecules can be used with the entire coding region of MP mRNA interaction Fill, but more preferably is such that oligonucleotide, the oligonucleotide is only with MP mRNA Coding region or part of the non-coding region antisense. For example, the antisense oligonucleotide can MP mRNA translation initiation and complementary to a region near the position. For example, antisense oligonucleotides Length can be 5,10,15,20,25,30,35,40,45 or 50 nucleotides. This Invention, antisense nucleic acid molecules can be used procedures known in the art, or by chemical synthesis Construction of enzymatic ligation reactions. Using naturally occurring nucleotides or various of the modified core Nucleotide, chemically synthesized antisense nucleic acid (eg antisense oligonucleotides), which has been modified nuclear Nucleotide, is to increase the biological stability of the molecule, or in order to increase the sense and antisense nuclear Acid double helix formed between the physical stability and design, for example, phosphorothioate derivatives may be used Matter and acridine substituted nucleotides. Can be used to generate an antisense nucleic acid modified nucleotides examples Including 5 - fluorouracil and 5 - bromo-uracil and 5 - chloro uracil and 5 - iodo uracil, hypoxanthine, Xanthine 4 - acetyl cytosine, 5 - (carboxy-hydroxy-methyl) uracil, 5 - carboxymethyl-aminomethyl -2 - Thiouracil, 5 - carboxymethyl-aminomethyl-uracil, dihydrouracil, beta-D-galacto- Inosine, N6-isopentyl-adenine, 1 - methylguanine, 1 - methyl-inosine, 2,2 - dimethyl guanine Methotrexate 2 - methyl adenine 2 - methylguanine 3 - methylcytosine, 5 - methylcytosine, N6- Adenine, 7 - methylguanine, 5 - methyl-amino-methyl uracil, 5 - methoxy-aminomethyl-uracil -2 - thiouracil, beta-D-mannosyl queosine, 5'-methoxy-carboxy methyl uracil, 5 - methoxy-uracil 2 - methylthio-N6-isopentyl-adenine, uracil -5 - oxo acetic acid (v), wybutoxosine, pseudo uracil, queosme, 2 - thio cytosine and 5 - methyl-2 - thio uracil Pyridine 2 - thiouracil 4 - thiouracil, 5 - methyluracil, uracil -5 - oxo acetic acid methyl Ester, uracil -5 - oxo acetic acid (v), 5 - methyl-2 - thiouracil, 3 - (3 - amino-3-N-2- Carboxypropyl) uracil, (acp3) w, and 2,6 - diamino-purine. In addition, the antisense nucleic acid can be Biosynthesis using an expression vector wherein the nucleic acid is subcloned in an antisense orientation into the expression vector (I.e., transcribed from the inserted nucleic acid RNA, relative to the insertion of the nucleic acid is in an antisense orientation, There are further described in the following section). ...
The antisense nucleic acid molecule of the invention is typically applied to a cell or generated in situ from MP and their encoded proteins with cellular mRNA and / or genomic DNA hybridization or Junction Together, thereby inhibiting the expression of proteins, for example, inhibit transcription and / or translation. Hybridization can be Conventional nucleotide complementarity to form a stable duplex, or, for example, when the antisense nucleic acid molecule When combined with the DNA double helix, it happens the major groove of the double helix specific interactions. Antisense molecules can be As to be modified, so that the molecule with a specific cell surface receptors or antigens expressed Specific binding, for example, antisense nucleic acid molecules binding to the polypeptide or antibody, the antibody and fine Cell surface receptor or antigen. Antisense nucleic acid molecule can also be used here to describe a carrier delivery To the cells. In order to obtain sufficient concentration of intracellular antisense molecules, such vectors are preferred, In the support that the antisense nucleic acid molecule is placed in a prokaryotic, eukaryotic or viral promoter control Beneath. ...
The antisense nucleic acid molecule of the invention is typically applied to a cell or generated in situ from MP and their encoded proteins with cellular mRNA and / or genomic DNA hybridization or Junction Together, thereby inhibiting the expression of proteins, for example, inhibit transcription and / or translation. Hybridization can be Conventional nucleotide complementarity to form a stable duplex, or, for example, when the antisense nucleic acid molecule When combined with the DNA double helix, it happens the major groove of the double helix specific interactions. Antisense molecules can be As to be modified, so that the molecule with a specific cell surface receptors or antigens expressed Specific binding, for example, antisense nucleic acid molecules binding to the polypeptide or antibody, the antibody and fine Cell surface receptor or antigen. Antisense nucleic acid molecule can also be used here to describe a carrier delivery To the cells. In order to obtain sufficient concentration of intracellular antisense molecules, such vectors are preferred, In the support that the antisense nucleic acid molecule is placed in a prokaryotic, eukaryotic or viral promoter control Beneath. ...
And in another embodiment, the present invention is a nucleic acid molecule is antisense ribozyme. Ribozyme is a reminder Type of RNA molecules with ribonuclease activity, can cut single-stranded nucleic acids, such as mRNA, It has a single-stranded nucleic acid complementary to a region. Thus, ribozymes (eg, hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used for catalytic cleavage MP mRNA transcript, thereby inhibiting the MP mRNA translation. For MP nucleic acid molecules encoding Is specific ribozyme, may be based on published herein MP DNA nucleotide sequence (i.e., SEQ ID NO: 1 (RAX 02229)) to design. For example, you can build genus Tetrahymena L-19 IVS RNA The derivative of the nucleotide sequence of the active site of the cut and the MP-encoding mRNA nucleoside Acid sequence is complementary. See, e.g., Cech et al.USPatent No.4, 987,071, and Cech et al.U.S.Patent No.5, 116,742. In addition, MP mRNA can be used for RNA points Sub-library was screened with specific catalytic activity of the ribozyme RNA. See, e.g., Bartel, D.and Szostak, J.W. (1993) Science 261:1411-1418. ...
And in another embodiment, the present invention is a nucleic acid molecule is antisense ribozyme. Ribozyme is a reminder Type of RNA molecules with ribonuclease activity, can cut single-stranded nucleic acids, such as mRNA, It has a single-stranded nucleic acid complementary to a region. Thus, ribozymes (eg, hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used for catalytic cleavage MP mRNA transcript, thereby inhibiting the MP mRNA translation. For MP nucleic acid molecules encoding Is specific ribozyme, may be based on published herein MP DNA nucleotide sequence (i.e., SEQ ID NO: 1 (RAX 02229)) to design. For example, you can build genus Tetrahymena L-19 IVS RNA The derivative of the nucleotide sequence of the active site of the cut and the MP-encoding mRNA nucleoside Acid sequence is complementary. See, e.g., Cech et al.USPatent No.4, 987,071, and Cech et al.U.S.Patent No.5, 116,742. In addition, MP mRNA can be used for RNA points Sub-library was screened with specific catalytic activity of the ribozyme RNA. See, e.g., Bartel, D.and Szostak, J.W. (1993) Science 261:1411-1418. ...
B. recombinant expression vectors and host cells
Another aspect of the present invention, the carrier is preferably a protein containing the coding MP (or its Part) a nucleic acid expression vector. As used herein, the term "vector" refers to the ability even Then the other nucleic acid, and its nucleic acid molecule for transport. One type of vector is a "plasmid", Plasmids are circular double stranded DNA loop means, which is connected to an additional DNA fragment. Another type of The vector is a viral vector, wherein additional DNA segments can be connected to the viral genome. Some These vectors can be introduced in their host cells for autonomous replication (e.g., a bacterial Bacterial origin of replication vectors, and episomal mammalian vectors). Other vectors (e.g., Non-episomal mammalian vectors) will host cell upon introduction into the host cell's genes The group, thereby replicated along with the host genome. In addition, some carriers can be connected to guide Then the expression of genes. These vectors are referred to herein as "expression vectors." In short, recombinant DNA technology Technique is often used in form of a plasmid expression vector. In this description, "plasmid" and "vector" Can be used interchangeably, as the plasmid is the most commonly used form of vector. However, the present invention intends to package These include other forms of expression vectors, such as viral vectors (eg, replication defective reverse Viruses, adenoviruses and adeno-associated viruses), which have the same function. ...
Recombinant expression vectors of the invention comprise a nucleic acid of the invention, the nucleic acid in a host cell to fit Co-expressed in the form of nucleic acids, which means that the recombinant expression vectors contain one or multiple tone Section sequences that are based on the host cell selected for expression, and they are viable even Received a nucleic acid sequence to be expressed. In the recombinant expression vector, "workable connection" mean Refers to a nucleotide sequence of interest and regulatory sequences to allow expression of the nucleotide sequence of the way Connection (for example, in vitro transcription / translation system, or in a vector is introduced into a host cell In). The term "regulatory sequence" is meant to include promoters, enhancers and other expression control Elements (e.g., polyadenylation signal). Such regulatory sequences in, for example, Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990) is described. Regulatory sequences, including those in many types of host cells, Constitutive expression of a nucleotide sequence of instructions in sequence, and that in some host cells, guide The expression of the nucleotide sequence of sequence. Preferred regulatory sequences are, for example, such as cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacI ...q-,T7-,T5-,T3-,gal-,trc-,ara-,SP6-,arny-, SPO2-,λ-P RRecombinant expression vectors of the invention comprise a nucleic acid of the invention, the nucleic acid in a host cell to fit Co-expressed in the form of nucleic acids, which means that the recombinant expression vectors contain one or multiple tone Section sequences that are based on the host cell selected for expression, and they are viable even Received a nucleic acid sequence to be expressed. In the recombinant expression vector, "workable connection" mean Refers to a nucleotide sequence of interest and regulatory sequences to allow expression of the nucleotide sequence of the way Connection (for example, in vitro transcription / translation system, or in a vector is introduced into a host cell In). The term "regulatory sequence" is meant to include promoters, enhancers and other expression control Elements (e.g., polyadenylation signal). Such regulatory sequences in, for example, Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990) is described. Regulatory sequences, including those in many types of host cells, Constitutive expression of a nucleotide sequence of instructions in sequence, and that in some host cells, guide The expression of the nucleotide sequence of sequence. Preferred regulatory sequences are, for example, such as cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacI ...LSuch promoters, these promoters is preferred for use in bacteria. Additional regulatory sequences are, for example, promoters of yeast and fungi, such as ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH, promoters of plants, for example, CaMV/35S, SSU, OCS, lib4, usp, STLS1, B33, nos or ubiquitin-or phaseolin-promoter. Synthetic promoters can also be used. For those skilled in the art is aware that The design of the expression vector depends on these factors: for the selection of transformed host cells, the desired protein The expression level of the white matter. The expression vector of the present invention can be introduced into a host cell, thereby generating the Described at the protein encoded by the nucleic acid or polypeptides, including fusion proteins or peptides (for example, If, MP protein, MP mutant forms of protein, fusion proteins, etc.). ...
Can design a recombinant expression vector of the present invention, for in prokaryotic or eukaryotic cells expressing MP proteins. For example, MP gene can be expressed in the following cells, such as Corynebacterium glutamicum which Like bacterial cells, insect cells (using baculovirus expression vectors), yeast and other fungi Cells (see Romanos, MAet al. (1992) "Foreign gene expression in yeast: a review ", Yeast 8:423-488; van den Hondel, CAMJJet al. (1991)" Heterologous gene expression in filamentous fungi "in: More Gene Manipulations in Fungi, JW Bennet & L.L.Lasure, eds., P.396-428: Academic Press: San Diego; and van den Hondel, CAMJJ & Punt, PJ (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, JFet al., Eds., P.1-28, Cambridge University Press: Cambridge) or multicellular algae Plant cells (see Schmidt, R.and Willmitzer, L. (1998) High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leafand cotyledon explants "Plant Cell Rep. :583-586), or breast-feeding Animal cells. Appropriate host cell in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990) in progress Step exposition. In addition, recombinant expression vectors can be transcribed and translated in vitro, for example using T7 start Promoter regulatory sequences and T7 polymerase. ...
Prokaryotic expression of proteins in cells, is often containing constitutive or inducible promoters The carrier, the fusion protein of these promoters instructions or a non-fusion protein expression. Protein fusion vector encoding a certain number of amino acids added, usually in the recombinant protein The amino terminus, but may also be the C-terminus, or the appropriate area of ​​the fusion protein. The financial Typical co-carrier has three purposes: 1) to increase expression of recombinant protein; 2) increase the recombinant protein White matter solubility; and 3) as ligand affinity purified, fusion protein purification help. In the fusion Expression vector, the protein cleavage site is often introduced into the recombinant fusion protein portion and Junction, so that the purification of the fusion protein, the fusion protein can be part of the recombinant Separated. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and intestinal Kinases. ...
Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, DB and Johnson, KS (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ), respectively with the target Recombinant fusion protein glutathione S-transferase (GST), maltose E binding protein, or Protein A. In one embodiment, MP protein coding sequence is cloned into an expression vector pGEX The body, resulting in a fusion protein encoded vector which from N-terminus to C-terminus, including, GST-thrombin cleavage site-X protein. Fusion protein can be used glutathione - agarose tree Fat, by affinity chromatography. Separated with GST protein recombinant MP, can be prepared by coagulation Cleavage of fusion proteins of blood obtained. ...
Suitable inducible non-fusion E. coli expression vectors include, pTrc (Amann et al., (1988) Gene 69:301-315), pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pSH1, pSH2, pPLc236, pMBL24, pLG200, pUR290, pIN-III 113-B1, λgt11, pBdC1, and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89; and Pouwels et al., Eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018). pTrc vector target gene expression, by Depends on the hybrid trp-lac fusion promoter host RNA polymerase transcription. pET 11d vector Target gene expression, depending on the co-expression of viral RNA polymerase (T7 gn1) T7-mediated gn10-lac fusion promoter transcription. The viral polymerase from the host strain BL21 (DE3) or By HMS174 (DE3) reside λ phage provides the phage containing the lacUV5 Kai Mover T7 gn1 under the transcriptional control genes. For other types of bacterial transformation, can be selected together A suitable carrier. For example, it is known plasmid pIJ101, pIJ364, pIJ702 and pIJ361 transformed Streptomyces Is valid, and the plasmid pUB110, pC194, or pBD214 rod species for transformation. Have Contribute to the genetic information into Corynebacterium include several plasmids pHM1519, pBL1, pSA77 Or pAJ667 (Pouwels et al., Eds. (1985) Cloning Vectors, Elsevier: New York IBSN 0 444 904018). ...
Suitable inducible non-fusion E. coli expression vectors include, pTrc (Amann et al., (1988) Gene 69:301-315), pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pSH1, pSH2, pPLc236, pMBL24, pLG200, pUR290, pIN-III 113-B1, λgt11, pBdC1, and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89; and Pouwels et al., Eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018). pTrc vector target gene expression, by Depends on the hybrid trp-lac fusion promoter host RNA polymerase transcription. pET 11d vector Target gene expression, depending on the co-expression of viral RNA polymerase (T7 gn1) T7-mediated gn10-lac fusion promoter transcription. The viral polymerase from the host strain BL21 (DE3) or By HMS174 (DE3) reside λ phage provides the phage containing the lacUV5 Kai Mover T7 gn1 under the transcriptional control genes. For other types of bacterial transformation, can be selected together A suitable carrier. For example, it is known plasmid pIJ101, pIJ364, pIJ702 and pIJ361 transformed Streptomyces Is valid, and the plasmid pUB110, pC194, or pBD214 rod species for transformation. Have Contribute to the genetic information into Corynebacterium include several plasmids pHM1519, pBL1, pSA77 Or pAJ667 (Pouwels et al., Eds. (1985) Cloning Vectors, Elsevier: New York IBSN 0 444 904018). ...
In another embodiment, MP protein expression vector is a yeast expression vector. Yeast S. cerivisae for expression vectors include, pYepSec1 (Baldari, et al., (1987) Embo J.6 :229-234), 2μ, pAG-1, Yep6, Yep13, pEMBK Ye23, pMFa (Kurjan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al., (1987) Gene 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, CA). Suitable for building in other fungi, such as filamentous fungi, the use of a carrier vector And methods, including those described in the following literature: van den Hondel, CAMJJ & Punt, PJ (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, JFPeberdy, et al., eds., p.1-28, Cambridge University Press: Cambridge, and Pouwels et al., eds. (1985) Cloning Vectors, Elsevier: New York IBSN 0 444 904018). ...
In another embodiment, MP protein expression vector is a yeast expression vector. Yeast S. cerivisae for expression vectors include, pYepSec1 (Baldari, et al., (1987) Embo J.6 :229-234), 2μ, pAG-1, Yep6, Yep13, pEMBK Ye23, pMFa (Kurjan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al., (1987) Gene 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, CA). Suitable for building in other fungi, such as filamentous fungi, the use of a carrier vector And methods, including those described in the following literature: van den Hondel, CAMJJ & Punt, PJ (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, JFPeberdy, et al., eds., p.1-28, Cambridge University Press: Cambridge, and Pouwels et al., eds. (1985) Cloning Vectors, Elsevier: New York IBSN 0 444 904018). ...
In another embodiment, the present invention is in the single cell protein MP plant cells (for example, Such as algae) expression, or higher plants (e.g., seed plants, such as crop plants) Plant cells. Examples of plant expression vectors include those described in the following literature: Becker, D., Kemper, E., Schell, J.and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border ", Plant Mol.Biol. 20:1195-1197; and Bevan, MW (1984) "Binary Agrobacterium vectors for plant transformation ", Nucl.Acid.Res.12 :8711-8721, including pLGV23, pGHlac, pBIN19, pAK2004, and pDH51 (Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018).
Also in another embodiment, the present invention is a nucleic acid used in the feeding mammalian expression vector Mammalian cells. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBO J.6: 187-195). The control expression vector was used in mammals, often by the disease Regulating toxic elements to offer. For example, commonly used promoters derived from polyoma, Adenovirus 2, cytomegalovirus Cytomegalovirus and simian virus 40. For other prokaryotic cells and eukaryotic cells are suitable for expression of the body System, see Sambrook, J., Fritsh, EF, and Maniatis, T.Molecular Cloning: A Laboratory Manual.2nd, ed.Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989, 16 chapters and 17 chapters. ...
In another embodiment, the recombinant mammalian expression vector capable of directing specific details Preferred cell types in the expression of the nucleic acid (e.g., tissue specific regulatory elements are used to express the nuclear Acid). Tissue specific regulatory elements are known in the. Suitable tissue-specific promoter Examples of the child including but not limited, the albumin promoter (liver-specific; Pinkert et al. (1987) Gene Dev.1 :268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol.43 :235-275), T-cell receptor specific promoter (Winoto and Baltimore (1989) EMBO J.8 :729-933) and immunoglobulins specific promoter (Banerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748), Neuron-specific promoters (e.g., neurofilament promoter; Byrne and Ruddle (1989) PANS 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) Science 230: 912-916), and mammary gland-specific promoters (e.g., milk whey promoter; USPatent No. 4,873,316 and European Application Publication No.264, 166). Also include hair Sterile regulated promoters, such as murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and α-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546). ...
The present invention also provides a DNA molecule of the invention comprising a recombinant expression vector, the DNA Molecular cloning antisense orientation in the expression vector. In other words, DNA molecules can operability The regulator connected to the following sequence, which allows the MP mRNA antisense RNA molecule Expression (by transcription of the DNA molecule) of the method. Can be selected in a variety of cell types that Guiding a continuous expression of the antisense RNA molecule, a regulatory sequence, for example, viral promoters and / or enhanced Son, or you can choose guided continuous, tissue-specific or cell type-specific antisense RNA Expression control sequence, a regulatory sequence. Antisense expression vector can be recombinant plasmid phage Grain form or attenuated virus in which antisense nucleic acids under the control of regulatory regions and efficient Generation, its activity by introducing the carrier to determine the type of cell. On the use of antisense gene Regulation of gene expression, can see Weintraub, H.et al., Antisense RNA as a molecular tool for genetics analysis, Review-Trends in Genetics, Vol.1 (1) 1986. ...
The present invention also provides a DNA molecule of the invention comprising a recombinant expression vector, the DNA Molecular cloning antisense orientation in the expression vector. In other words, DNA molecules can operability The regulator connected to the following sequence, which allows the MP mRNA antisense RNA molecule Expression (by transcription of the DNA molecule) of the method. Can be selected in a variety of cell types that Guiding a continuous expression of the antisense RNA molecule, a regulatory sequence, for example, viral promoters and / or enhanced Son, or you can choose guided continuous, tissue-specific or cell type-specific antisense RNA Expression control sequence, a regulatory sequence. Antisense expression vector can be recombinant plasmid phage Grain form or attenuated virus in which antisense nucleic acids under the control of regulatory regions and efficient Generation, its activity by introducing the carrier to determine the type of cell. On the use of antisense gene Regulation of gene expression, can see Weintraub, H.et al., Antisense RNA as a molecular tool for genetics analysis, Review-Trends in Genetics, Vol.1 (1) 1986. ...
The host cell can be any prokaryotic or eukaryotic cell. For example, MP protein may like Corynebacterium glutamicum such as bacterial cells, insect cells, yeast or mammalian cells Animal cells (e.g. Chinese rat ovary cells (CHO) or COS cells) cells. Other Suitable host cells for the skilled staff is well known. The present invention can be used Nucleic acid and protein molecules of the host cell affinity Corynebacterium glutamicum microorganism listed in Table 3 Out.
Vector DNA by conventional transformation or transfection techniques, the introduction of a prokaryotic or eukaryotic Cells. As used herein, the term "transformation" and "transfection" means that there is a variety of skills Domain is well known, the exogenous nucleic acid (e.g., linear DNA or RNA (e.g., linear vector Genes alone or without the vehicle structure)) or in the form of a nucleic acid vector (e.g., Plasmid, phage, phagemid, phagemids, transposons or other DNA) into a host cell Technology, including calcium phosphate or calcium chloride coprecipitation, DEAE-dextran mediated transfection, Lipofection, or fax holes. Host cells transformed or transfected with the appropriate way, you can Sambrook, et al. (Molecular Cloning: A Laboratory Manual.2nd, ed .., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989), and other laboratory manuals found. ...
Known for stable transfection of mammalian cells, rely on the use of expression vectors and transfection Technology, only a small portion can be exogenous DNA into its own genome. In order to identify And filter these integrants, coding selection marker (eg, antibiotic resistance) gene through Often associated with the gene of interest is introduced into the host cells. The preferred selection markers include those that Fu To the drug resistance marker, such as G418, hygromycin and methotrexate. Encoding a selection marker nuclear Acid, the MP protein may be the same vector is introduced into a host cell, or contained in a separate Body into a host cell. The nucleic acid is introduced into the stably transfected cells, drug screening can be used Identification (for example, combined with the selection marker gene can survive cells, while other cells die). ...
To create a homologous recombinant microorganism comprising at least part of the MP gene preparation of the carrier, the Gene has a deletion, addition or substitution, thereby changing, for example, functional damage, MP gene. Preferably the MP gene is Corynebacterium glutamicum, but it can also be derived from the same bacterial phylogenetic Source material, even from mammalian, yeast or insect. In a preferred embodiment, Design vector, such that homologous recombination according to the endogenous gene is functional MP destroyed (i.e., not Encoding functional proteins; also called "knockout" vector). In addition, the carrier can be designed such that According to homologous recombination, the endogenous gene is mutated or MP change, but still encoding protein White matter (for example, changing the upstream regulatory region, thereby changing the expression of endogenous genes MP). In Homologous recombination vector, the altered portion of the MP gene, at its 5 'and 3' ends are connected to the side MP nucleic excess, so that homologous recombination can occur in the vectors carrying the foreign gene and the MP MP endogenous microbial genes. MP connected to the side of excess nucleic acids long enough Degrees endogenous gene can be successful homologous recombination. Typically, the vector containing thousands Base side chain DNA (5 'and 3' ends) (see, e.g., Thomas, KR, and Capecchi, MR (1987) Cell 51:503 for a description of homologous recombination vectors). Introduction of micro-organisms (such as fax hole) and cell carriers, selecting those which lead The MP gene into the endogenous MP gene, using techniques known in the art for homologous recombination. ...
To create a homologous recombinant microorganism comprising at least part of the MP gene preparation of the carrier, the Gene has a deletion, addition or substitution, thereby changing, for example, functional damage, MP gene. Preferably the MP gene is Corynebacterium glutamicum, but it can also be derived from the same bacterial phylogenetic Source material, even from mammalian, yeast or insect. In a preferred embodiment, Design vector, such that homologous recombination according to the endogenous gene is functional MP destroyed (i.e., not Encoding functional proteins; also called "knockout" vector). In addition, the carrier can be designed such that According to homologous recombination, the endogenous gene is mutated or MP change, but still encoding protein White matter (for example, changing the upstream regulatory region, thereby changing the expression of endogenous genes MP). In Homologous recombination vector, the altered portion of the MP gene, at its 5 'and 3' ends are connected to the side MP nucleic excess, so that homologous recombination can occur in the vectors carrying the foreign gene and the MP MP endogenous microbial genes. MP connected to the side of excess nucleic acids long enough Degrees endogenous gene can be successful homologous recombination. Typically, the vector containing thousands Base side chain DNA (5 'and 3' ends) (see, e.g., Thomas, KR, and Capecchi, MR (1987) Cell 51:503 for a description of homologous recombination vectors). Introduction of micro-organisms (such as fax hole) and cell carriers, selecting those which lead The MP gene into the endogenous MP gene, using techniques known in the art for homologous recombination. ...
In another embodiment, the host cell is destroyed endogenous MP gene (e.g., By homologous recombination or other genetic means known in the art) such that the protein product Expression can not occur. In another embodiment, the host cells or introduced in the endogenous MP gene, via one or more point mutations, deletion or inversion and change, but still coding MP protein function. And in another embodiment, the microorganism one or more genes MP A regulatory region (eg, promoter, repressor or inducer) is changed (for example, by Missing, cut, inverted or point mutation) such that gene expression is regulated MP. Ability Field technicians can recognize that contain more than one of the MP gene and protein modification places Primary cells, the use of the present invention can be easily produced, these cells are also included in the present Ming. ...
In another embodiment, the host cell is destroyed endogenous MP gene (e.g., By homologous recombination or other genetic means known in the art) such that the protein product Expression can not occur. In another embodiment, the host cells or introduced in the endogenous MP gene, via one or more point mutations, deletion or inversion and change, but still coding MP protein function. And in another embodiment, the microorganism one or more genes MP A regulatory region (eg, promoter, repressor or inducer) is changed (for example, by Missing, cut, inverted or point mutation) such that gene expression is regulated MP. Ability Field technicians can recognize that contain more than one of the MP gene and protein modification places Primary cells, the use of the present invention can be easily produced, these cells are also included in the present Ming. ...
C. Separation of MP protein
Aspect of the invention relates to an isolated part of MP and biological activity of the protein. "Sub- From "or" purified "protein or biologically active portion which, when the use of recombinant DNA technology Production technique basically no cellular material, while chemical synthesis of chemical precursors or substantially no Other chemicals. The term "substantially free of cellular material" includes such MP protein preparation, Wherein the protein is produced from natural or recombinant cells of the protein fraction isolated Out. In one embodiment, the term "substantially free of cellular material" includes preparation containing at Least about 30% (dry weight) of MP protein (herein also referred to as "pollution protein") of the MP Protein, more preferably contains less than about 20% of non-MP protein, even more preferably containing less Approximately 10% of non-MP protein, and most preferably contains less than about 5% of non-MP proteins. When the MP protein or a biologically active portion of rescheduled generated, is preferably substantially free of culture medium, Producing a protein that is less than the volume of the medium approximately 20%, preferably less than 10%, most preferably Less than about 5%. The term "substantially free of chemical precursors or other chemicals" includes such The MP protein preparation, wherein the protein is involved in protein synthesis from chemical precursors or other Isolated chemicals. In one embodiment, the term "substantially free of chemical precursors or By other chemicals "includes a solution containing at least about 30% (dry weight) of chemical precursors or non- MP MP protein chemicals, more preferably contains less than about 20% chemical precursors or non- MP chemical substances, even more preferably containing less than about 10% chemical precursors or non-MP of Chemicals, and most preferably contains less than about 5% chemical precursors or non-MP chemicals. In A preferred embodiment, the isolated protein, or part of its biological activity, does not contain to MP protein obtained from the same organism contamination proteins. This protein is typically from heavy Group was produced, for example, such as a microorganism of Corynebacterium glutamicum Corynebacterium glutamicum MP eggs White recombinant expression. ...
MP isolated protein of the invention or a part of its biological activity, capable of catalyzing the amino acids, Vitamins, nutritional factors, nucleotides, nucleosides, or trehalose in the metabolic pathway or enzymatic reactions Having one or more listed in Table 1 activity. In a preferred embodiment, the protein Containing such substance or part of the amino acid sequence, the sequence of the amino acid sequence of the present invention (Example For example, the sequence SEQ ID sequence even in a sequence) there is sufficient homology such that the egg White matter or part of its biological activity, capable of catalyzing the amino acids, vitamins, cofactors, nutrition because Son, nucleotides, nucleosides, or trehalose in the enzymatic reaction pathway. Part of the protein, preferably Select refers to biologically active portion as described herein. In another preferred embodiment, the present invention is The MP protein has an even number in the sequence table lists the amino acid sequence SEQ ID NO. In another In a preferred embodiment, MP from the nucleotide sequence encodes a protein having the amino acid sequence of the nuclear Nucleotide sequence of the nucleotide sequence of the present invention (e.g., SEQ ID sequence number in a sequence Sequences) hybridize under stringent conditions such as hybridization. In another preferred embodiment, MP protein has a nucleotide sequence from such an amino acid sequence encoded by the nucleotide sequence of the A nucleic acid sequence of the invention or parts thereof, at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60% homology, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69% or 70% homology, more preferably There are at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79% or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 88%, 89% or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or higher homology. Between the values ​​quoted above range, or the consistency between the values ​​(for example, If the consistency of 70 to 90%, or 80-95% identity), but also intentionally included in the present invention. For example, intentionally containing such a consistency range, the range is the upper limit of the above-cited And / or the lower limit value combination. MP Preferred proteins of the present invention is also preferred that at least one here has MP activity is described. For example, one preferred MP protein of the invention contains such nucleotides The amino acid sequence encoded by the sequence, the nucleotide sequence of the nucleotide sequence of the present invention, hybridization, for example, Hybridizes under stringent conditions as, and to catalyze the sequence of amino acids, vitamins, cofactors, Nutritional factors, nucleotides, nucleosides, or trehalose, the enzymatic reaction in the metabolic pathway, or having a Species listed in Table 1 or more of the active. ...
In other embodiments, MP protein with the amino acid sequence of the present invention (e.g., Sequence Table Even a sequence SEQ ID sequence) has sufficient homology with the present invention and the amino group Acid sequence of the functional activity of the protein, as described in detail above, as Part I, its amino acid Sequence of natural change or mutation varies. Thus, in another embodiment, MP protein is such that the protein, which has the amino acid sequence of the complete amino acid sequence of the present invention. Column, at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or In 60% homology, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69% or 70% homology, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79% or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 88%, 89% or 90%, or 91%, 92%, 93%, 94%, and even More preferably to at least about 95%, 96%, 97%, 98%, 99% or higher homology, and And having at least one MP activity as described herein. Ranged between the values ​​quoted above range, or By consistency value (for example, 70-90% identity or 80-95% identity), but also intentional Included in the present invention. For example, intentionally containing such a consistency range, these ranges The above-cited upper and / or lower limit value combination. In another embodiment, the present invention relates to Such length of the Corynebacterium glutamicum protein, the protein amino acid sequence of the present invention. Have sufficient homology. ...
MP portion of the biological activity of proteins containing such a polypeptide, the polypeptide comprising protein derived from MP Amino acid sequence, for example, the even sequence or amino acid sequence of SEQ ID MP homology with the amino acid sequence of the protein portion contains more than length or MP Full-length protein homologous proteins MP fewer amino acids, and exhibit at least one MP protein Activity. Typical biologically active portions (peptides, e.g., amino acids in length such as 5,10,15,20, 30,35,36,37,38,39,40,50,100 or more peptides) having at least one comprises a MP domain of protein activity or primitives. Alternatively, other biologically active portion, wherein the protein Other parts have been removed, can be prepared by recombinant techniques and identification of the one described herein Kind or variety of activity. Preferred biological active portion MP protein containing one or more The selection of the biologically active domains / base element or part thereof. ...
MP portion of the biological activity of proteins containing such a polypeptide, the polypeptide comprising protein derived from MP Amino acid sequence, for example, the even sequence or amino acid sequence of SEQ ID MP homology with the amino acid sequence of the protein portion contains more than length or MP Full-length protein homologous proteins MP fewer amino acids, and exhibit at least one MP protein Activity. Typical biologically active portions (peptides, e.g., amino acids in length such as 5,10,15,20, 30,35,36,37,38,39,40,50,100 or more peptides) having at least one comprises a MP domain of protein activity or primitives. Alternatively, other biologically active portion, wherein the protein Other parts have been removed, can be prepared by recombinant techniques and identification of the one described herein Kind or variety of activity. Preferred biological active portion MP protein containing one or more The selection of the biologically active domains / base element or part thereof. ...
The present invention also provides a chimeric protein or a fusion protein MP. As used herein, MP "inlay Co-protein "or" fusion protein "containing polypeptide operatively linked to a non-MP MP on the multi- Peptides. "MP polypeptide" refers to an amino acid sequence containing a MP related polypeptide, and "non-MP protein" Refers to a protein containing such a polypeptide related to the amino acid sequence of the protein with the MP protein not A basic homology, for example, from the same or different organisms and different proteins MP Proteins. In the fusion protein, the term "operatively linked" is meant, MP protein And between each of MP protein in-frame fusion. Non MP polypeptide can be fused to the MP N-terminus of the polypeptide or the C-terminus. For example, in one embodiment, the fusion protein is DST-MP fusion protein, wherein the MP sequence fused to the C-terminal GST sequence. The fusion protein White matter helps recombinant protein purification MP. In another embodiment, the fusion protein is In the N-terminal signal sequence with heterologous proteins MP. In certain host cells (e.g. mammalian Was the host cell), by using a heterologous signal sequence can increase the MP protein expression and / or Secretion. ...
Preferably, the chimeric protein of the invention or a fusion protein produced by standard recombinant DNA techniques Health. For example, according to conventional techniques, a DNA sequence encoding a different polypeptide fragments are connected in-frame Together, for example, the use of blunt ends or staggered ends the end of the connection, the use of restrictive Enzyme digestion to provide appropriate end use of cohesive ends blunted ends as appropriate, so that Treated with alkaline phosphatase to avoid undesirable connections and the use of enzymatic connection. In another In one embodiment, using conventional techniques including automated DNA synthesizer fusion gene were synthesized. Further, the anchor primer can be used for PCR amplification of gene fragments, can be increased two anchor primer Between consecutive gene fragments complementary protruding end, a continuous gene can subsequently be annealed and re-expansion Increase resulting chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, eds.Ausubel et al.John Wiley & Sons: 1992). In addition, many have been compiled Code fusion part (e.g. GST polypeptide) expression vectors are commercially available. MP-encoding nucleic acid Can be cloned into such an expression vector such that part of the in-frame fusion to connect to the MP protein White on. ...
MP homologues proteins produced by mutation, such as a discontinuity point MP mutant protein Or cut. As used herein, the term "homologue" refers to a variant form of MP protein, They can be used MP protein agonists or antagonist activity. MP protein agonists MP protein having substantially the same or part of the biological activity. MP protein antagonists may MP inhibition of protein naturally present in the form of one or more of the active, for example, by containing the MP MP proteins downstream or upstream member system competitive binding. Accordingly, the present invention is glutamic Corynebacterium MP acid protein and its homologues, you can adjust one or more pieces Carbohydrate transport pathways Activity, or to adjust the microorganism MP proteins play a role in intracellular signal transduction pathways Activity. ...
In other embodiments, MP protein homologue mutant protein can be screened MP The combinatorial library of the body, such as cut mutants to identify agonists or antagonists of protein activity MP Sex. In one embodiment, MP library diversity variant nucleic acid level by a combination of Mutations generated by the diversity of the gene library encoding. MP library diversity of variants can pass However, for example, the mixture of synthetic oligonucleotides into gene sequences enzymatic connected such that the latent The MP set of degenerate sequences as a single polypeptide sequence set MP or which contains more Large fusion proteins (eg for phage display) of the collection, can be expressed. Are each Methods can be used to be a simple and oligonucleotide sequences potentially MP library congeners. Can With automatic DNA synthesizer using degenerate gene sequence for chemical synthesis, and the synthetic gene is connected Receiving a suitable expression vector. The use of degenerate set of genes, allowing to provide encoding mixed Potential sequence set to be the entire sequence of MP. Degenerate oligonucleotide synthesis method is technically Are known (see, for example, Narang, SA (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu.Rev.Biochem.53: 323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res.11: 477). ...
In addition, protein fragments encoding a library MP, MP can be used to produce fragments diversity group Body, the group used to screen and select MP protein homologue. In one embodiment, the series Library code sequence fragments can be generated that produce only about one cut per molecule strip Conditions, with a nucleic acid sequence encoding the enzyme treatment MP double-stranded PCR fragment of denatured double-stranded DNA, complex To form a double-stranded DNA of the DNA, the double-stranded DNA may include a cutout from a different shape of the product Into the sense / antisense pairs, re-formation of the double helix by S1 nuclease treatment to remove single-stranded Portion, and the resulting fragment library into an expression vector to connect. By this method, may be To give the N-terminal coding, C-terminus and different sizes MP protein middle fragment expression library. ...
Filter or cut from the point mutation resulting in a gene product of a combinatorial library of many techniques And the screening selected cDNA library having the technical characteristics of the gene product, is technically Known. These techniques are suitable combinations of mutated homologue by the MP gene library obtained by fast Speed ​​filtering. Screening large gene pool of the most widely used technology that can be used for high yield analysis, Including the genomic library cloned into replicable expression vectors, transformed with the resulting library of vectors containing Body library, as well as in combination gene expressed under certain conditions, under conditions in which detection of the desired activity Code is detected helps carrier of the gene product of the separation. Regression ensemble mutation (REM), a Kind of library functions to increase the mutant frequency of new technologies, along with screening assays for the identification of MP homologues (Arkin and Yourvan (1992) PANS 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6 (3) :327-331). ...
Filter or cut from the point mutation resulting in a gene product of a combinatorial library of many techniques And the screening selected cDNA library having the technical characteristics of the gene product, is technically Known. These techniques are suitable combinations of mutated homologue by the MP gene library obtained by fast Speed ​​filtering. Screening large gene pool of the most widely used technology that can be used for high yield analysis, Including the genomic library cloned into replicable expression vectors, transformed with the resulting library of vectors containing Body library, as well as in combination gene expressed under certain conditions, under conditions in which detection of the desired activity Code is detected helps carrier of the gene product of the separation. Regression ensemble mutation (REM), a Kind of library functions to increase the mutant frequency of new technologies, along with screening assays for the identification of MP homologues (Arkin and Yourvan (1992) PANS 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6 (3) :327-331). ...
D. Application of the present invention and methods
Nucleic acid molecules described herein, proteins, protein homologues, fusion proteins, primers, Vectors and host cells that can be applied to one or more of the following: identification of Corynebacterium glutamicum Coli and affinity microorganisms; draw phylogenetic organism Corynebacterium glutamicum genome; identification And positioning the sequence of interest Corynebacterium glutamicum; Evolution; determine protein function must MP Area required; MP protein activity regulation; MP activity regulation pathway; desired compound, for example, fine Chemical substances produced by cells of the regulation.
MP nucleic acid molecule of the present invention has various uses. First, they can be used to identify a Whether the organism Corynebacterium glutamicum organism or its close relatives. They can also be used to identify mixed Total microbial population or the relatives Corynebacterium glutamicum organisms exists. The present invention provides Many gene of Corynebacterium glutamicum nucleic acid sequence; under stringent conditions, with over glutamate Corynebacterium specific gene probes, the probe from a single or mixed microbial culture of the base was extracted Genomic DNA, can determine the existence of the organism. Although Corynebacterium glutamicum is a non-induced Disease resistance, but it is associated with the pathogenic species such as Corynebacterium diphtheria. Corynebacterium diphtheria diphtheria Pathogenic source, Diphtheria is a rapid development of acute, fever, infections, it involves local symptoms And system pathologies. Have this disease, localized lesions of the upper respiratory tract, including epithelial cells and Necrotic cell injury; bacteria secrete toxins, toxins from the lesions spread to the end of the body vulnerable Shoot tissue. These organizations include the heart, muscles, peripheral nerves, adrenal gland, kidney, liver and Spleen, in which protein synthesis is inhibited due caused by degenerative changes which would lead to the disease System disease symptoms. Diphtheria in many parts of the world to maintain a high incidence of these regions including Africa, Asia, Eastern Europe and the former Soviet Union, independent state. From 1990 onwards, in the latter two regions diphtheria-holding Continued popularity, leading to at least 5,000 people were killed. ...
MP nucleic acid molecule of the present invention has various uses. First, they can be used to identify a Whether the organism Corynebacterium glutamicum organism or its close relatives. They can also be used to identify mixed Total microbial population or the relatives Corynebacterium glutamicum organisms exists. The present invention provides Many gene of Corynebacterium glutamicum nucleic acid sequence; under stringent conditions, with over glutamate Corynebacterium specific gene probes, the probe from a single or mixed microbial culture of the base was extracted Genomic DNA, can determine the existence of the organism. Although Corynebacterium glutamicum is a non-induced Disease resistance, but it is associated with the pathogenic species such as Corynebacterium diphtheria. Corynebacterium diphtheria diphtheria Pathogenic source, Diphtheria is a rapid development of acute, fever, infections, it involves local symptoms And system pathologies. Have this disease, localized lesions of the upper respiratory tract, including epithelial cells and Necrotic cell injury; bacteria secrete toxins, toxins from the lesions spread to the end of the body vulnerable Shoot tissue. These organizations include the heart, muscles, peripheral nerves, adrenal gland, kidney, liver and Spleen, in which protein synthesis is inhibited due caused by degenerative changes which would lead to the disease System disease symptoms. Diphtheria in many parts of the world to maintain a high incidence of these regions including Africa, Asia, Eastern Europe and the former Soviet Union, independent state. From 1990 onwards, in the latter two regions diphtheria-holding Continued popularity, leading to at least 5,000 people were killed. ...
The nucleic acid and protein molecules of the present invention can also be used in a specific area of ​​genomic markers. This Genome only in the drawing useful, and can be used for protein function Corynebacterium glutamicum Research. For example, Corynebacterium glutamicum in order to identify specific DNA-binding proteins bind to the gene Groups area, can digest Corynebacterium glutamicum genome, the fragment was incubated with the DNA-binding proteins. Binding protein fragments can be further treated with a nucleic acid molecule probe of the present invention, it is preferable to use and easy Detectable label; these nucleic acid molecules combined with genomic fragments, fragments can be positioned in glutamate Corynebacterium location on the genome, and, when performed multiple times with different enzymes operation, Helps to quickly identify the proteins bind to the nucleic acid sequence. Further, the present invention is a nucleic acid molecule With the phylogenetic species have sufficient homology to the nucleic acid molecules that can be used as building Genetic fine Bacterial genome marker, such as Brevibacterium. ...
MP nucleic acid molecules of the present invention and can be used to study protein structure and evolution. The present invention The carbohydrate molecules involved pickup system is used for a variety of bacteria; the present invention by comparison Nucleic acid molecule and those in other organisms sequence encoding nucleic acid molecule sequence similarity, may Organisms have evolved estimated correlation. Similarly, this comparison allows the estimation of conserved sequence regions and Non-conserved sequence regions, which could help to identify the protein in the region required for enzyme function. This determination of the type of value for protein engineering, and may indicate the eggs White matter can be tolerated without loss of function mutations. ...
MP nucleic acid molecules of the present invention and can be used to study protein structure and evolution. The present invention The carbohydrate molecules involved pickup system is used for a variety of bacteria; the present invention by comparison Nucleic acid molecule and those in other organisms sequence encoding nucleic acid molecule sequence similarity, may Organisms have evolved estimated correlation. Similarly, this comparison allows the estimation of conserved sequence regions and Non-conserved sequence regions, which could help to identify the protein in the region required for enzyme function. This determination of the type of value for protein engineering, and may indicate the eggs White matter can be tolerated without loss of function mutations. ...
The present invention also provides methods of screening protein activity can be adjusted MP molecular methods, these molecules Either by itself or with the protein substrate interactions, or the spouse of the MP protein body junction Together, or by adjusting the nucleic acid molecule of the present invention, MP to regulate transcription or translation of proteins MP Activity. In this method, the expression of one or more MP proteins of microorganisms, with one or Contact with a variety of test compounds and to assess each test compound or protein activity for MP The role of expression.
When from Corynebacterium glutamicum culture in large scale fermentation desired fine chemical separation Materials are amino acids, vitamins, cofactors, nutritional factors, nucleotides, nucleosides, or trehalose, By recombinant genetic mechanisms regulating one or more of the present invention, the efficiency or activity of the protein activity can be straight These directly affect a fine chemicals. For example, the desired amino acid biosynthetic pathway The enzyme, the enzyme activity or efficiency (including the presence of multiple copies of the gene) should Production or lead to the production of amino acids required for increased efficiency. For the synthesis of amino acids required for students with Synthesis of competition in the amino acid biosynthetic pathway, the enzyme activity or the reduction in efficiency (including Including gene deletion) amino acids required for production or causes an increase in productivity is due to the intermediate Donor compound and / or energy less competition. For the desired amino acid degradation pathway enzymes, the activity Or can cause reduced efficiency or yield of the desired product higher productivity, which is due to reduced Xie reduced. Finally, the desired amino acid biosynthetic enzyme mutation makes the enzyme is no longer By feedback inhibition, which causes the desired amino acid yield or production efficiency. The invention Vitamins, cofactors, nutritional factors, nucleotides, nucleosides and biosynthesis of trehalose metabolism Sing-degrading enzymes, the same is true. ...
Similarly, when the desired fine chemical substance is not one of the above compounds, the invention is a Regulating the activity of proteins of Corynebacterium glutamicum may still affect the production of large-scale cultivation of the compound The efficiency and / or production. Any organism's metabolic pathways are closely related, a way to make Intermediates used often supplied by different ways. Enzyme expression and function can vary according to metabolize too Cheng compound to regulate the cellular level, the basic necessary for production of molecules such as amino acids and nucleotides Cellular level for large-scale cultivation of microorganisms activity has a significant impact. Thus, adjusting one kinds Amino acid biosynthetic enzyme so that it no longer respond to the feedback inhibition, or increase efficiency, or change, Of one or more amino acids can cause increased cell level. Result, the increase in the supply of amino acids is not However, increasing the supply of molecules necessary for protein synthesis, also increases for a variety of other biological synthesis Pathway intermediates and precursors molecules supply. If a specific amino acid intracellular limited, increasing Increase its production will increase cell capacity of various other metabolic reactions, and make cells more efficiently To produce a variety of proteins, may increase large-scale cultivation of cells or survival of the total energy production rate Force. Increased activity was improved in the fermentation culture to produce the desired fine chemical cells Number, thereby increasing the yield of the compound. By adjusting the degradation activity of the present invention so that the No enzyme catalyzed biosynthesis of the desired compound is important, or the mass of the cell growth culture Length and cell proliferation more effectively the degradation of the compound or catalytic efficiency, there is a similar situation will Condition. It should be emphasized that the present invention optimize the degradation activity of certain molecules or lower biosynthetic activity Corynebacterium glutamicum sex will also produce some fine chemicals have a positive effect. For example, by Reducing the biosynthesis pathway of the desired compound of one or more intermediate competition in biosynthetic pathways The efficiency of the enzyme activity into more intermediates can be used for transformation of the desired material. Similar circumstances Need to improve one or more of degradation of the protein of the invention or efficiency. ...
The aforementioned compound causes increased production of the desired protein mutagenesis program list MP, This does not mean that only limited; these programs change mutagenesis of ordinary skill in the art Is very plain. After these mechanisms, the present invention can be used for nucleic acid and protein molecules MP expressing mutant nucleic acids and produces a protein molecule or a genetic Corynebacterium glutamicum strain, The desired compound thus increasing the yield, production and / or production efficiency. The desired compound can be Corynebacterium glutamicum any natural products, including the final product of the biosynthetic pathway and natural The metabolic pathway intermediates, and not in the metabolism of Corynebacterium glutamicum exists but naturally Of the present invention Corynebacterium glutamicum strains molecules. ...
The aforementioned compound causes increased production of the desired protein mutagenesis program list MP, This does not mean that only limited; these programs change mutagenesis of ordinary skill in the art Is very plain. After these mechanisms, the present invention can be used for nucleic acid and protein molecules MP expressing mutant nucleic acids and produces a protein molecule or a genetic Corynebacterium glutamicum strain, The desired compound thus increasing the yield, production and / or production efficiency. The desired compound can be Corynebacterium glutamicum any natural products, including the final product of the biosynthetic pathway and natural The metabolic pathway intermediates, and not in the metabolism of Corynebacterium glutamicum exists but naturally Of the present invention Corynebacterium glutamicum strains molecules. ...
Table 1: genes include
Lysine biosynthesis
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO  RXA02229  RXS02970  FRXA01009  RXC02390  RXC01796  RXC01207  RXC00657  RXC00552   GR00653     GR00287   2793     4714   3617     5943   DIAMINOPIMELATE EPIMERASE(EC 5.1.1.7)   ACETYLORNITHINE AMINOTRANSFERASE(EC 2.6.1.11)   ACETYLORNITHINE AMINOTRANSFERASE(EC 2.6.1.11)   MEMBRANE SPANNING PROTEIN INVOLVED IN LYSINE METABOLISM   MEMBRANE ASSOCIATED PROTEIN INVOLVED IN LYSINE METABOLISM   CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF LYSINE AND   THREONINE   TRANSCRIPTIONAL REGULATOR INVOLVED IN LYSINE METABOLISM   CYTOSOLIC PROTEIN INVOLVED IN LYSINE METABOLISM
1 3 5 7 9 11 13 15   2   4   6   8   10   12   14   16
Trehalose
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO   RXN00351     FRXA00351     RXA00873   RXA00891   VV0135     GR00066     GR00241   GR00243   37078     1486     3   100 38532   2931   758 4 ALPHA.ALPHA-TREHALOSE-PHOSPHATE SYNTHASE(UDP-FORMING)56 KD SUBUNIT(EC 2.4.1.15) ALPHA.ALPHA-TREHALOSE-PHOSPHATE SYNTHASE(UDP-FORMING)56 KD SUBUNIT(EC 2.4.1.15) trehalose synthase(EC 2.4.1.-) trehalose synthase(EC 2.4.1.-)
17   19   21 23   18     20     22   24
Lysine biosynthesis
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO   RXA00534   RXA00533   RXA02843     RXA02022   RXA00044   RXA00863   RXA00864     RXA02843     RXN00355   FRXA00352  GR00137  GR00137  GR00842    GR00613  GR00007  GR00236  GR00236    GR00842    VV0135  GR00068  4758  3469  543    2063  3458  896  1694    543    31980  861   3496   2438   4     3169   4393   1639   2443     4     30961   4   ASPARTOKINASE ALPHA AND BETA SUBUNITS(EC 2.7.2.4)   ASPARTATE-SEMIALDEHYDE DEHYDROGENASE(EC 1.2.1.11)   2,3,4,5-TRAHYDROPYRIDINE-2-CARBOXYLATE N-SUCCINYLTRANSFERASE   (EC 2.3.1.117)   SUCCINYL-DIAMINOPIMELATE DESUCCINYLASE(EC 3.5.1.18)   DIHYDRODIPICOLINATE SYNTHASE(EC 4.2.1.52)   DIHYDRODIPICOLINATE REDUCTASE(EC 1.3.1.26)   probable 2,3-dihydrodipicolinate N-C6-lyase(cyclizing)(EC 4.3.3.-)-   Corynebacterium glutamicum   2,3,4,5-TETRAHYDROPYRIDINE-2-CARBOXYLATE N-SUCCINYLTRANSFERASE   (EC 2.3.1.117)   MESO-DIAMINOPIMELATE D-DEHYDROGENASE   MESO-DIAMINOPIMELATE D-DEHYDROGENASE(EC1.4.1.16)
25  27 29   31 33 35 37   39   41 43   26    28   30     32   34   36   38     40     42   44
Table 1 (continued)
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXA00972   RXA02653   RXA01393   RXA00241   RXA01394   RXA00865   RXS02021     RXS02157   RXC00733     RXC00861   RXC00866   RXC02095     RXC03185       GR00274   GR00752   GR00408   GR00036   GR00408   GR00236           3   5237   4249   5443   4320   2647             1379   7234   3380   6945   5018   3549       DIAMINOPIMELATE DECARBOXYLASE(EC 4.1.1.20)   DIAMINOPIMELATE DECARBOXYLASE(EC 4.1.1.20)   LYSINE EXPORT REGULATOR PROTEIN   L-LYSINE TRANSPORT PROTEIN   LYSINE EXPORTER PROTEIN   DIHYDRODIPICOLINATE SYNTHASE(EC 4.2.1.52)   2,3,4,5-TETRAHYDROPYRIDINE-2-CARBOXYLATE N-SUCCINYLTRANSFERASE   (EC 2.3.1.117)   ACETYLORNITHINE AMINOTRANSFERASE(EC2.6.1.11)   ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN LYSINE   METABOLISM   PROTEIN INVOLVED IN LYSINE METABOLISM   ZN-DEPENDENT HYDROLASE INVOLVED IN LYSINE METABOLISM   ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN LYSINE   METABOLISM   PROTEIN INVOLVED IN LYSINE METABOLISM
45 47 49 51 53 55 57   59 61   63 65 67   69  46  48  50  52  54  56  58    60  62    64  66  68    70
Glutamate and glutamine metabolism in
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXN00367   FRXA00007   FRXA00364   FRXA00367   RXN00076   FRXA00075   RXN00198   FRXA00198   RXN00365   FRXA00365   RXA00366   RXA02072   RXA00323   RXA00335   RXA00324   RXN03176   FRXA02879   RXA00278   RXA00727       VV0196   GR00001   GR00074   GR00075   VV154   GR00012   VV0181   GR00031   VV0196   GR00075   GR00075   GR00628   GR00057   GR00057   GR00057   VV0332   GR10017   GR00043   GR00193       9744   7107   1296   1806   2752   2757   7916   2   14607   630   961   1259   3855   19180   5262   2   2   2612   614       14273   8912   4   964   4122   3419   7368   283   15233   4   605   2599   5192   17750   8396   862   862   1581   1525     GLUTAMATE SYNTHASE[NADH]PRECURSOR(EC 1.4.1.14) GLUTAMATE SYNTHASE(NADPH)LARGE CHAIN PRECURSOR(EC 1.4.1.13) GLUTAMATE SYNTHASE(NADPH)LARGE CHAIN PRECURSOR(EC 1.4.1.13) GLUTAMATE SYNTHASE(NADPH)LARGE CHAIN PRECURSOR(EC 1.4.1.13) GLUTAMATE SYNTHASE(NADPH)SMALL CHAIN(EC 1.4.1.13) GLUTAMATE SYNTHASE(NADPH)SMALL CHAIN(EC 1.4.1.13) GLUTAMATE SYNTHASE(NADPH)SMALL CHAIN(EC 1.4.1.13) GLUTAMATE SYNTHASE(NADPH)SMALL CHAIN(EC 1.4.1.13) GLUTAMATE SYNTHASE[NADPH]SMALL CHAIN(EC 1.4.1.13) GLUTAMATE SYNTHASE(NADPH)SMALL CHAIN(EC 1.4.1.13) GLUTAMATE SYNTHASE(NADPH)SMALL CHAIN(EC 1.4.1.13) NADP-SPECIFIC GLUTAMATE DEHYDROGENASE(EC 1.4.1.4) GLUTAMINE SYNTHETASE(EC 6.3.1.2) GLUTAMINE SYNTHETASE(EC 6.3.1.2) GLUTAMATE-AMMONIA-LIGASE ADENYLYLTRANSFERASE(EC 2.7.7.42) GLUTAMINASE(EC 3.5.1.2) GLUTAMINASE(EC 3.5.1.2) GLUTAMINE-BINDING PROTEIN PRECURSOR GLUTAMINE-BINDING PERIPLASMIC PROTEIN PRECURSOR
71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107   72   74   76   78   80   82   84   86   88   90   92   94   96   98   100   102   104   106   108
                                                               Table 1 (continued)
Alanine and aspartic acid and asparagine metabolic
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO  SEQ ID NO      RXA02139  RXN00116  FRXA00116  RXN00618  FRXA00618  FRXA00627  RXA02550  RXA02193  RXA02432  RXN03003  RXN00508  RXN00636      GR00639  VV0100  GR00018  VV0135  GR00163  GR00164  GR00729  GR00645  GR00708  VV0138  VV0086  VV0135      6739  26974  510  10288  213  854  1585  1942  2669  680  4701  20972       4901   25814   4   9182   746   1138   275   365   1695   6   5783   19944     ASPARAGINE SYNTHETASE(GLUTAMINE-HYDROLYZING)(EC 6.3.5.4) ASPARTATE AMINOTRANSFERASE(EC 2.6.1.1) ASPARTATE AMINOTRANSFERASE(EC 2.6.1.1) ASPARTATE AMINOTRANSFERASE(EC 2.6.1.1) ASPARTATE AMINOTRANSFERASE(EC 2.6.1.1) ASPARTATE AMINOTRANSFERASE(EC 2.6.1.1) ASPARTATE AMINOTRANSFERASE(EC 2.6.1.1) ASPARTATE AMMONIA-LYASE(EC 4.3.1.1) L-ASPARAGINASE(EC 3.5.1.1) ASPARTATE AMINOTRANSFERASE(EC 2.6.1.1) ALANINE RACEMASE(EC 5.1.1.1) ALANINE RACEMASE,BIOSYNTHETIC(EC 5.1.1.1)
109 111 113 115 117 119 121 123 125 127 129 131   110   112   114   116   118   120   122   124   126   128   130   132
β-alanine metabolic
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO         RXA02536     RXS00870     RXS02299       GR00726       8581     7826     BETA-UREIDOPROPIONASE(EC 3.5.1.6) METHYLMALONATE-SEMIALDEHYDE DEHYDROGENASE(ACYLATING)(EC 1.2.1.27) ASPARTATE 1-DECARBOXYLASE PRECURSOR(EC 4.1.1.11)
133 135 137   134   136   138
Glycine and serine metabolic
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXA01561   RXA01850   RXA00580   RXA01821   RXN02263   FRXA02263   RXA02176   RXN02758   FRXA02479   FRXA02758   FRXA02759   RXA02501   RXN03105   RXS01130   RXS03112       GR00435   GR00525   GR00156   GR00515   VV0202   GR00654   GR00641   GR00766   GR00717   GR00766   GR00766   GR00720   VV0074       1113   481   7343   10253   11783   33454   11454   5082   393   5082   5330   15041   15857       2042   1827   6042   9876   12160   33813   12581   4648   4   4648   5220   13977   15423       L-SERINE DEHYDRATASE(EC 4.2.1.13)   L-SERINE DEHYDRATASE(EC 4.2.1.13)   SERINE HYDROXYMETHYLTRANSFERASE(EC 2.1.2.1)   SARCOSINE OXIDASE(EC 1.5.3.1)   SARCOSINE OXIDASE(EC 1.5.3.1)   SARCOSINE OXIDASE(EC 1.5.3.1)   PHOSPHOSERINE AMINOTRANSFERASE(EC 2.6.1.52)   PHOSPHOSERINE PHOSPHATASE(EC 3.1.3.3)   PHOSPHOSERINE PHOSPHATASE(EC 3.1.3.3)   PHOSPHOSERINE PHOSPHATASE(EC 3.1.3.3)   PHOSPHOSERINE PHOSPHATASE(EC 3.1.3.3)   PHOSPHOSERINE PHOSPHATASE(EC 3.1.3.3)   SARCOSINE OXIDASE(EC 1.5.3.1)   D-3-PHOSPHOGLYCERATE DEHYDROGENASE(EC 1.1.1.95)   D-3-PHOSPHOGLYCERATE DEHYDROGENASE(EC 1.1.1.95)
139 141 143 145 147 149 151 153 155 157 159 161 163 165 167     140     142     144     146     148     150     152     154     156     158     160     162     164     166     168
                                                                         Table 1 (continued)
Threonine metabolic
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO  SEQ ID NO         RXN00969     FRXA00974     RXA00970     RXA00330     RXN00403     FRXA00403     RXC01207       RXC00152       VV0149   GR00274   GR00273   GR00057   VV0086   GR00088         12053   2623   161   12968   70041   723       13387   3015   1087   14410   68911   1832      HOMOSERINE DEHYDROGENASE(EC 1.1.1.3)  HOMOSERINE DEHYDROGENASE(EC 1.1.1.3)  HOMOSERINE KINASE(EC 2.7.1.39)  THREONINE SYNTHASE(EC 4.2.99.2)  HOMOSERINE O-ACETYLTRANSFERASE  HOMOSERINE O-ACETYLTRANSFERASE(EC 2.3.1.11)  CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF LYSINE AND  THREONINE  MEMBRANE ASSOCIATED PROTEIN INVOLYED IN THREONINE METABOLISM
169 171 173 175 177 179 181   183     170     172     174     176     178     180     182       184
Methionine and S-adenosylmethionine metabolic
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXA00115   RXN00403   FRXA00403   RXS03158   FRXA00254   RXA02532   RXS03159   FRXA02768   RXA00216   RXN00402     FRXA00402     RXA00405     RXA02197     RXN02198     FRXA02198     RXN03074     FRXA02906     RXND0132   FRXA00132       GR00017   VV0086   GR00088     GR00038   GR00726     GR00770   GR00032   VV0086     GR00088     GR00089     GR00645     VV0302     GR00646     VV0042     GR10044     VV0124   GR00020       5359   70041   723     2404   3085     1919   16286   70787     1     3289     4552     9228     2483     2238     1142     3612   7728       4313   68911   1832     1811   2039     2521   15297   70188     576     3801     4025     11726     6     1741     645     5045   7624       HOMOSERINE O-ACETYLTRANSFERASE(EC 2.3.1.31)   HOMOSERINE O-ACETYLTRANSFERASE   HOMOSERINE O-ACETYLTRANSFERASE(EC 2.3.1.11)   CYSTATHIONINE GAMMA-SYNTHASE(EC 4.2.99.9)   CYSTATHIONINE GAMMA-SYNTHASE(EC 4.2.99.9)   CYSTATHIONINE GAMMA-SYNTHASE(EC 4.2.99.9)   CYSTATHIONINE GAMMA-SYNTHASE(EC 4.2.99.9)   CYSTATHIONINE GAMMA-SYNTHASE(EC 4.2.99.9)   5-methyltetrahydrofolate-homocysteine methyltransferase(methionine synthetase)   O-ACETYLHOMOSERINE SULFHYDRYLASE(EC 4.2.99.10)/O-ACETYLSERINE   SULFHYDRYLASE(EC 4.2.99.8)   O-ACETYLHOMOSERINE SULFHYDRYLASE(EC 4.2.99.10)/O-ACETYLSERINE   SULFHYDRYLASE(EC 4.2.99.8)   O-ACETYLHOMOSERINE SULFHYDRYLASE(EC 4.2.99.10)/O-ACETYLSERINE   SULFHYDRYLASE(EC 4.2.99.8)   5-METHYLTETRAHYDROFOLATE-HOMOCYSTEINE METHYLTRANSFERASE   (EC 2.1.1.13)   5-METHYLTETRAHYDROFOLATE-HOMOCYSTEINE METHYLTRANSFERASE   (EC2.1.1.13)   5-METHYLTETRAHYDROFOLATE-HOMOCYSTEINE METHYLTRANSFERASE   (EC 2.1.1.13)   S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE   METHYLTRANSFERASE(EC 2.1.-.-)   S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE   METHYLTRANSFERASE(EC 2.1.-.-)   ADENOSYLHOMOCYSTEINASE(EC 3.3.1.1)   ADENOSYLHOMOCYSTEINASE(EC 3.3.1.1)
185 187 189 191 193 195 197 199 201 203   205   207   209   211   213   215   217   219 221   186   188   190   192   194   196   198   200   202   204     206     208     210     212     214     216     218     220   222
                                                                       Table 1 (continued)
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       FRXA01371   RXN02085     FRXA02085     FRXA02086     RXN02648     FRXA02648     FFXA02658     RXC02238     RXC00128           GR00398       GR00629     GR00629         GR00751     GR00752               2339       3496     5252         5254     14764       3631       5295     5731         4730     15447       ADENOSYLHOMOCYSTEINASE(EC 3.3.1.1)   S-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE   METHYLTRANSFERASE(EC 2.1.1.14)   5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE   METHYLTRANSFERASE(EC 2.1.1.14)   5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE   METHYLTRANSFERASE(EC 2.1.1.14)   5-METHYLTETRAHYDROPTEROYLJRIGLUTAMATE-HOMOCYSTEINE   METHYLTRANSFERASE(EC 2.1.1.14)   5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE   METHYLTRANSFERASE(EC 2.1.1.14)   5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE   METHYLTRANSFERASE(EC 2.1.1.14)   PROTEIN INVOLVED IN METABOLISM OF S-ADENOSYUMETHI0NINE,PURINES   AND PANTOTHENATE     EXPORTED PROTEIN INVOLVED IN METABOLISM OF PYRIDIMES AND   ADENOSYLHOMOCYSTEINE
223 225   227   229   231   233   235   237   239         224     226       228       230       232       234       236       238       240  
S-adenosylmethionine (SAM) biosynthesis
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO     RKA02240   GR00654   7160   8380   S-ADENOSYLMETHIONINE SYNTHEIASE(EC 2.5.1.6)
241    242  
Cysteine ​​Metabolism
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO   RXA00780   RXA00779   RXN00402     FRXA00402       RXS00405       RXC00164       RXC01191   GR00206   GR00206   VV0086     GR00088   1689   550   70787     1  2234  1482  70188    576 SERINE ACETYLTRANSFERASE(EC 2.3.1.30) CYSTEINE SYNTHASE(EC 4.2.99.8) O-ACETYLHOMOSERINE SULFHYDRYLASE(EC 4.2.99.10)/O-ACETYLSERINE SULFHYDRYLASE(EC 4.2.99.8) O-ACETYLHOMOSERINE SULFHYDRYLASE(EC 4.2.99.10)/O-ACETYLSERINE SULFHYDRYLASE(EC 4.2.99.8) O-ACETYLHOMOSERINE SULFHYDRYLASE(EC 4.2.99.10)/O-ACETYLSERINE   SULFHYDRYLASE(EC 4.2.99.8) ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN CYSTEINE   METABOLISM ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN CYSTEINE   METABOLISM
243  245 247   249     251     253     255   244    246   248     250       252       254       256
Table 1 (continued)
Valine, leucine and isoleucine
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXA02646   RXA00766   RXN01690   FRXA01690   RXN01026   FRXA01026   RXN01127   FRXA01132   RXN00536   FRXA00536   RXN02965   RXN01929     FRXA01929   RXN01420   RXS01145   FRXA01145       GR00751   GR00204   VV0246   GR00473   VV0143   GR00294   VV0157   GR00315   VV0219   GR00137   VV0143   VV0127     GR00555   VV0122     GR00321      3856  5091  1296  1248  9171  1  4491  1349  6128  6128  7711  47590    2766  15584    1075      2588  4249  196  196  7513  1602  3472  1651  7498  7360  7121  48402    1960  14643    1530     THREONINE DEHYDRATASE BIOSYNTHETIC(EC 4.2.1.16) BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE(EC 2.6.1.42) BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE(EC 2.6.1.42) BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE(EC 2.6.1.42) 3-ISOPROPYLMALATE DEHYDRATASE LARGE SUBUNIT(EC 4.2.1.33) 3-ISOPROPYLMALATE DEHYDRATASE LARGE SUBUNIT(EC 4.2.1.33) 3-ISOPROPYLMALATE DEHYDROGENASE(EC 1.1.1.85) 3-ISOPROPYLMALATE DEHYDROGENASE(EC 1.1.1.85) 2-ISOPROPYLMALATE SYNTHASE(EC 4.1.3.12) 2-ISOPROPYLMALATE SYNTHASE(EC 4.1.3.1) 3-ISOPROPYLMALATE DEHYDRATASE SMALL SUBUNIT(EC 4.2.1.33) 3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE(EC 2.1.2.11) /DECARBOXYLASE(EC 4.1.1.44) 3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE(EC 2.1.2.11) 4”-MYCAROSYL ISOVALERYL-COA TRANSFERASE(EC 2.-.-.-) KETOL-ACID REDUCTOISOMERASE(EC 1.1.1.86) KETOL-ACID REDUCTOISOMERASE(EC 1.1.1.86)
257 259 261 263 265 267 269 271 273 275 277 279   281 283 285 287     258     260     262     264     266     268     270     272     274     276     278     280       282     284     286     288
Arginine and proline metabolism in
Proline biosynthetic enzyme:
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXA02375   RXN02382   FRXA02378   FRXA02382   RXA02499   RXS02157   RXS02262   RXS02970   FRXA01009       GR00689   VV0213   GR00690   GR00691   GR00720         GR00287       1449   5162   624   2493   11883         4714       223   3867   16   1894   12692         5943       GLUTAMATE5-KINASE(EC 2.7.2.11)   GAMMA-GLUTAMYL PHOSPHATE REDUCTASE(GPR)(EC 1.2.1.41)   GAMMA-GLUTAMYL PHOSPHATE REDUCTASE(GPR)(EC 1.2.1.41)   GAMMA-GLUTAMYL PHOSPHATE REDUCTASE(GPR)(EC 1.2.1.41)   PYRROLINE-5-CARBOXYLATE REDUCTASE(EC 1.5.1.2)   ACETYLORNITHINE AMINOTRANSFERASE(EC 2.6.1.11)   ORNITHINE CYCLODEAMINASE(EC 4.3.1.12)   ACETYLORNITHINE AMINOTRANSFERASE(EC 2.6.1.11)   ACETYLORNITHINE AMINOTRANSFERASE(EC 2.6.1.11)
289 291 293 295 297 299 301 303 305     290     292     294     296     298     300     302     304     306
                                                                      Table 1 (continued)
Proline-degrading enzymes:
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXN00023     FRXA00023     FRXA02284     RXC02498       VV0127     GR00003     GR00660         68158    2    3028        64703    454    5      PROLINE DEHYDROGENASE(EC 1.5.99.8)/DELTA-1-PYRROLINE-5-  CARBOXYLATEDEHYDROGENASE (EC 1.5.1.12)  PROLINE DEHYDROGENASE(EC 1.5.99.8)/DELTA-1-PYRROLINE-5-  CARBOXYLATE DEHYDROGENASE (EC 1.5.1.12)  PROLINE DEHYDROGENASE(EC 1.5.99.8)/DELTA-1-PYRROLINE-5-  CARBOXYLATE DEHYDROGENASE (EC 1.5.1.12)  PROTEIN INVOLVED IN PROLINE METABOLISM
307 309 311 313     308     310     312     314
3 - hydroxy - proline synthesis:
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO           RXA01491           GR00423         5337       4687         DNA FOR L-PROLINE 3-HYDROXYLASE,COMPLETE CDS
 315   316
Ornithine, arginine and spermidine metabolic enzymes:
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXA02155     RXA02156   RXN02153   FRXA02153   RXA02154   RXA02157   RXS02970   FRXA01009   RXA02158   RXA02160   RXN02162   FRXA02161   FRXA02162   RXA02262   RXA00219   RXA01508   RXA01757   RXA02159   RXN02154   RXS00147   RXS00905   RXS00906      GR00640    GR00640  VV0122  GR00640  GR00640  GR00640    GR00287  GR00640  GR00640  VV0122  GR00640  GR00640  GR00654  GR00032  GR00424  GR00498  GR00640  VV0122       1913     3125   14106   757   1536   4079     4714   5268   6914   6683   8180   8949   32291   19289   12652   2942   6231   13327       3076     4075   13327   1536   1826   5251     5943   6224   8116   5253   8962   9611   33436   20230   14190   2142   6743   13037      GLUTAMATE N-ACETYLTRANSFERASE(EC 2.3.1.35)/AMINO-ACID  ACETYLTRANSFERASE(EC 2.3.1.1)  ACETYLGLUTAMATE KINASE(EC 2.7.2.8)  N-ACETYL-GAMMA-GLUTAMYL-PHOSPHATE REDUCTASE(EC 1.2.1.38)  N-ACETYLGLUTAMATE-5-SEMIALDEHYDE DEHYDROGENASE  N-ACETYLGLUTAMATE-5-SEMIALDEHYDE DEHYDROGENASE  ACETYLORNITHINE AMINOTRANSFERASE(EC 2.6.1.11)  ACETYLORNITHINE AMINOTRANSFERASE(EC 2.6.1.11)  ACETYLORNITHINE AMINOTRANSFERASE(EC 2.6.1.11)  ORNITHINE CARBAMOYLTRANSFERASE(EC 2.1.3.3)  ARGININOSUCCINATE SYNTHASE(EC 6.3.4.5)  ARGININOSUCCINATE LYASE(EC 4.3.2.1)  ARGININOSUCCINATE LYASE(EC 4.3.2.1)  ARGININOSUCCINATELYASE(EC 4.3.2.1)  ORNITHINE CYCLODEAMINASE(EC 4.3.1.12)  SPERMIDINE SYNTHASE(EC 2.5.1.16)  SPERMIDINE SYNTHASE(EC 2.5.1.16)  PUTRESCINE OXIDASE(EC 1.4.3.10)  ARGININE HYDROXIMATE RESISTANCE PROTEIN  N-ACETYL-GAMMA-GLUTAMYL-PHOSPHATEREDUCTASE(EC 1.2.1.38)  CARBAMOYL-PHOSPHATE SYNTHASE SMALL CHAIN(EC 6.3.5.5)  N-ACYL-L-AMINO ACIDAMIDOHYDROLASE(EC 3.5.1.14)  N-ACYL-L-AMINO ACIDAMIDOHYDROLASE(EC 3.5.1.14)
317   319 321 323 325 327 329 331 333 335 337 339 341 343 345 347 349 351 353 355 357 359     318       320     322     324     326     328     330     332     334     336     338     340     342     344     346     348     350     352     354     356     358     360
                                                            Table 1 (continued)
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXS00907   RXS02001   RXS02101   RXS02234   FRXA02234   RXS02565   RXS02937              GT00654              1               3198         N-ACYL-L-AMINO ACID AMIDOHYDROLASE(EC 3.5.1.14)   N-ACYL-L-AMIMO ACID AMIDOHYDROLASE(EC 3.5.1.14)   N-ACYL-L-AMINO ACID AMIDOHYDROLASE(EC 3.5.1.14)   CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN(EC 6.3.5.5)   CARBAMOYL-PHOSPHATE SYNTHASE SYNGE CHAIN(EC 6.3.5.5)   N-ACYL-L-AMINO ACID AMIDOHYDROLASE(EC 3.5.1.14)   N-ACYL-L-AMINO ACID AMIDOHYDROLASE(EC 3.5.1.14)
361 363 365 367 369 371 373   362   364   366   368   370   372   374
Histidine metabolic
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO         RXA02194     RXA02195     RXA01097     RXA01100       RXA01101     RXN01657     FRXA01657     RXA01098     RXN01104     FRXA01104       RXN00446     FRXA00446     RXA01105     RXA01106     RXC00930     RXC01096     RXC01056     RXC01158       GR00645   GR00645   GR00306   GR00306     GR00306   VV0010   GR00460   GR00306   VV0059   GR00306     VV0112   GR00108   GR00306   GR00306      2897  3186  4726  7072    7726  39950  2444  5499  7037  10927    24181  4  12044  13378      2055  2917  4373  6335    7094  39351  2944  4726  6432  10322    23318  525  10947  12053      ATP PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.17)  PHOSPHORIBOSYL-ATP PYROPHOSPHOHYDROLASE(EC 3.6.1.31)  PHOSPHORIBOSYL-AMP CYCLOHYDROLASE(EC 3.5.4.19)  PHOSPHORIBOSYLFORMIMINO-5-AMINOIMIDAZOLE CARBOXAMIDE  RIBOTIDE ISOMERASE(EC 5.3.1.16)  AMIDOTRANSFERASE HISH(EC 2.4.2.-)  AMIDOTRANSFERASE HISH(EC 2.4.2.-)  AMIDOTRANSFERASE HISH(EC 2.4.2.-)  HISF PROTEIN  IMIDAZOLEGLYCEROL-PHOSPHATE DEHYDRATASE(EC 4.2.1.19)  IMIDAZOLEGLYCEROL-PHOSPHATE DEHYDRATASE(EC 4.2.1.19)/  HISTIDINOL-PHOSPHATASE(EC 3.1.3.15)  HISTIDINOL-PHOSPHATE AMINOTRANSFERASE(EC 2.6.1.9)  HISTIDINOL-PHOSPHATE AMINOTRANSFERASE(EC 2.6.1.9)  HISTIDINOL-PHOSPHATE AMINOTRANSFERASE(EC 2.6.1.9)  HISTIDINOL DEHYDROGENASE(EC 1.1.1.23)  PROTEIN INVOLVED IN HISTIDINE METABOLISM  PROTEIN INVOLVED IN HISTIDINE METABOLISM  PROTEIN INVOLVED IN HISTIDINE METABOLISM  MEMBRANE SPANING PROTEIN INVOLVED IN HISTIDINE METABOLISM
375 377 379 381 383 385 387 389 391 393 389 397 399 401 403 405 407 409     376     378     380     382       384     366     388     390     392     394       396     398     400     402     404     406     408     410
Aromatic amino acid metabolism
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO         RXA02458     RXA02790     RXN00954     FRXA00954     RXN00957     FRXA00957       GR00712   GR00777   VV0247   GR00263   VV0208   GR00264       3056   5806   3197   3   1211   3     4345 6948 2577 590 2764 1130     3-PHOSPHOSHIKIMATE1-CARBOXYPINYLTRANSFERASE(EC 2.5.1.19) 4-AMINO-4-DEOXYCHORISMATE LYASE(EC 4.-.-.-) ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.18) ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.18) ANTHRANILATE SYNTHASE COMPONENT I(EC 4.1.3.27) ANTHRANILATE SYNTHASE COMPONENT I(EC 4.1.3.27)
411 413 415 417 419 421     412     414     416     418     420     422
Table 1 (continued)
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO         RXA02687       RXN01698     FRXA01698     RXA01095     RXA00955       RXA02814     RXA00229     RXA02093     RXA02791     RXA01699     RXA00952     RXN00956     FRXA00956     RXA0064     RXN00448     FRXA00448     FRXA00452     RXA00584     RXA00579     RXA00958         RXN03007     RXN02918     RXN01116     RXN01115       RXS00116     FRXA00116     RXS00391     RXS00393     FRXA00393     RXS00446     FRXA00446     RS00618     FRXA00618     FRXA00327     RXS01105     RXS02315       RXS02550     RXS02319     RXS02908     RXS03003     RXS03026       GR00754     VV0134   GR00477   GR00306   GR00263     GR00795   GR00033   GR00629   GR00777   GR00477   GR00262   VV0247   GR00263   GR00010   VV0112   GR00109   GR00110   GR00156   GR00156   GR00264       VV0208   VV0086   VV0182   VV0182       GR00018       GR00086     GR00108     GR00163   GR00164         11306     11507   2   3603   586     598   1715   12444   6968   984   97   1140   2027   2499   33959   3   854   11384   5946   1130       3410   25447   7497   10347       510      4030    4    213  854       12250     12736   991   2821   2007     128   936   13247   7795   1553   936   4   3157   3776   32940   668   1099   10260   4087   1753       3778   25887   6886   11099       4       4911     525     746   1138     CHORISMATE MUTASE(EC 5.4.99.5)/PREPHENATE DEHYDRATASE(EC 4.2.1.51) CHORISMATE SYNTHASE(EC 4.6.1.4) CHORISMATE SYNTHASE(EC 4.6.1.4) INDOLE-3-GLYCEROL PHOSPHATE SYNTHASE(EC 4.1.1.48) INDOLE-3-GLYCEROL PHOSPHATE SYNTHASE(EC 4.1.1.48)/N-(5’-PHOSPHO- RIBOSYL)ANTHRANILATE ISOMERASE(EC 5.3.1.24) ISOCHORISMATE MUTASE SHIKIMATE 5-DEHYDROGENASE(EC 1.1.1.25) SHIKIMATE 5-DEHYDROGENASE(EC 1.1.1.25) SHIKIMATE 5-DEHYDROGENASE(EC 1.1.1.25) SHIKIMATE KINASE(EC 2.7.1.71) TRYPtopHAN SYNTHASE ALPHA CHAIN(EC 4.2.1.20) TRYPtopHAN SYNTHASE BETA CHAIN(EC 4.2.1.20) TRYPtopHAN SYNTHASE BETA CHAIN(EC 4.2.1.20) TYROSINE AMINOTRANSFERASE(EC 2.6.1.5) PREPHENATE DEHYDROGENASE(EC 1.3.1.12) PREPHENATE DEHYDROGENASE(EC 1.3.1.12) PREPHENATE DEHYDROGENASE(EC 1.3.1.12) PHOSPHO-2-DEHYDRO-3-DEOXYHEPTONATE ALDOLASE(EC 4.1.2.15) PARA-AMINOBENZOATE SYNTHASE COMPONENT I(EC 4.1.3.-) PARA-AMINOBENZOATE SYNTHASE GLUTAMINE AMIDOTRANSFERASE COMPONENT II(EC 4.1.3.-)/ANTHRANILATE SYNTHASE COMPONENT II(EC 4.1.3.27) ANTHRANILATE SYNTHASE COMPONENT II(EC 4.1.3.27) TRYPtopHAN SYNTHASE BETA CHAIN(EC 4.2.1.20) 3-OXOADIPATE COA-TRANSFERASE SUBUNIT B(EC 2.8.3.6) 3-OXOADIPATE ENOL-LACTONE HYDROLASE(EC 3.1.1.24)/4- CARBOXYMUCONOLACTONE ASPARTATE AMINOTRANSFERASE(EC 2.6.1.1) ASPARTATE AMINOTRANSFERASE(EC 2.6.1.1) O-SUCCINYUBENZOICACID-COALIGASE(EC 6.2.1.26) 1,4-DIHYDROXY-2-NAPHTHOATE OCTAPRENYLTRANSFERASE(EC 2.5.-.-) 1,4-DIHYDROXY-2-NAPHTHOATE OCTAPRENYLTRANSFERASE(EC 2.5.-.-) HISTIDINOL-PHOSPHATE AMINOTRANSFERASE(EC 2.6.1.9) HISTIDINOL-PHOSPHATE AMINOTRANSFERASE(EC 2.6.1.9) ASPARTATE AMINOTRANSFERASE(EC 2.6.1.1) ASPARTATE AMINOTRANSFERASE(EC 2.6.1.1) ASPARTATE AMINOTRANSFERASE(EC 2.6.1.1) HISTIDINOL-PHOSPHATE AMINOTRANSFERASE(EC 2.6.1.9) 2-SUCCINYL-6-HYDROXY-2.4(YCLOHEXADIENE-1-CARBOXYLATE SYNTHASE/2-OXOGLUTARATE DECARBOXYLASE(EC 4.1.1.71) ASPARTATE AMINOTRANSFERASE(EC 2.6.1.1) NAPHTHOATE SYNTHASE(EC 4.1.3.36) O-SUCCINYLBENZOIC ACID-COA LIGASE(EC 6.2.1.26) ASPARTATE AMINOTRANSFERASE(EC 2.6.1.1) 3-DEHYDROQUINATE DEHYDRATASE(EC 4.2.1.10)
 423    425  427  429  431    433  435  437  439  441  443  445  447  449  451  453  455  457  459  46      463  465  467  469    471  473  475  477  479  481  483  485  487  489  491  493    495  497  499  501  503   424     426   428   430   432     434   436   438   440   442   444   446   448   450   452   454   456   458   460   462       464   466   468   470     472   474   476   478   480   482   484   486   488   490   492   494     496   498   500   502   504
                                                           Table 1 (continued)
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO RXS03074 RXC01434 RXC02080 RXC02789 RXC02295  S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE  METHYLTRANSFERASE(EC 2.1.-.-)  MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMA TIC  AMINO ACIDS AND RIBOFLAVIN  MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMA TIC  AMINO ACIDS  CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO  ACIDS  MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC  AMINO ACIDS
505 507 509 511 513   506 508 510 512 514
Aminobutyric acid metabolic
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO         RXN03063   RXN02970   FRXA01009         VV0035   VV0021   GR00287         666   4714   4714       1697  6081  5943       4-aminobutyrate aminotransferase(EC 2.6.1.19) ACETYLORNITHINE AMINOTRANSFERASE(EC 2.6.1.11) ACETYLORNITHINE AMINOTRANSFERASE(EC 2.6.1.11)
515 517 519   516 518   520
Vitamins, vitamin-like substance (cofactor), nutritional factors
Thiamine Metabolism
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO   RXA01551   RXA01019   RXA01352   RXA01381   RXA01360   RXA01361   RXA01208   RXA00838   RXA02400   RXN01209   FRXA01209   RXN01413   RXN01617   FRXA01617   RXS01807     RXC01021  GR00431  GR00291  GR00393  GR00403  GR00394  GR00394  GR00348  GR00227  GR000699  VV0270  GR00348  VV0050  VV0050  GR00451    2945  6  609  3206  162  983  229  1532  1988  1019  1019  27306  22187  2   4819   995   4   2286   4   378   1032   633   2557   2446   2446   27905   22858   616 THIAMINBIOSYNTHESIS PROTEIN THIC THIAMIN-MONOPHOSPHATE KINASE(EC 2.7.4.16) THIAMIN-PHOSPHATE PYROPHOSPHORYLASE(EC 2.5.1.3) THIF PROTEIN THIG PROTEIN THIG PROTEIN HYDROXYETHYLTHIAZOLE KINASE(EC 2.7.1.50) APBA PROTEIN THIAMIN BIOSYNTHESIS PROTEIN X PHOSPHOMETHYLPYRIMIDINE KINASE(EC 2.7.4.7) PHOSPHOMETHYLPYRIMLDINE KINASE(EC 2.7.4.7) PHOSPHOMETHYLPYRIMIDINE KINASE(EC 2.7.4.7) PHOSPHOMETHYLPYRIMIDINE KINASE(EC 2.7.4.7) PHOSPHOMETHYLPYRIMIDINE KINASE(EC 2.7.4.7) PYRIDOXINE KINASE(EC 2.7.1.35) CYTOSOLIC KINASE INVOLVED IN METABOLISM OF SUGARS AND THIAMIN
521  523 525 527 529 531 533 535 537 539 541 543 545 547 549   551   522   524   526   528   530   532   534   536   538   540   542   544   546   548   550     552
                                                              Table 1 (continued)
Riboflavin Metabolism
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO  SEQ ID NO       RXN02246     FRXA02246   RXA02247   RXN02248     FRXA02248   RXN02249   FRXA02249     RXA02250   RXA01489     RXA02135     RXA01489     RXN01712   FRXA01712   RXN02384   RXN01560   RXN00667   RXC01711   RXC02380   FRXA02380   RXC02921     RXC01434       VV0130     GR00654   GR00654   VV0130     GR00654   VV0130   GR00654     GR00654   GR00423     GR00639     GR00423     VV0191   GR00484   VV0213   VV0319   VV0109       GR00691      4388    14299  15286  6021    15932  7301  17212    17778  3410    2809    3410    8993  2652  1386  767  1363      709      5371    15282  15918  7286    17197  7777  17688    18356  2388    1736    2388    8298  2152  679  438  350      56     diaminohydroxyphosphoribosylaminopyrimiditne deaminase(EC 3.5.4.26)/5-amino- 6-(5-phosphoribosylamino)uracil reductare(EC 1.1.1.1.93) RIBG PROTEIN riboflavin-specific deaminase[EC:3.5.4.-] RIBOFLAYIN SYNTHASE ALPHA CHAIN(EC 2.5.1.9) GTP CYCLOHYDROLASE II(EC 3.5.4.25)/3,4-DIHYDROXY-2-BUTANONE 4- PHOSPHATE SYNTHASE RIBA PROTEIN-GTP cyclohydrolase II[EC:3.5.4.25] 6,7-DIMETHYL-8-RIBITYLLUMAZINE SYNTHASE(EC 2.5.1.9) RIBH PROTEIN-6,7-dimethyl-8-ribityllumazine synthase(dmrl synthase,lumazine synthase,riboflavin synthase beta chain)[EC:2.5.1.9] RIBX PROTEIN RIBOFLAVIN KINASE(EC 2.7.1.26)/FMN ADENYLYLTRANSFERASE(EC 2.7.7.2) NICOTINATE-NUCLEOTIDE-DIMETHYLBENZIMIDAZOLE PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.21) RIBOFLAVIN KINASE(EC 2.7.1.26)/FMN ADENYLYLTRANSFERASE(EC 2.7.7.2) RIBOFLAVIN-SPECIFIC DEAMINASE(EC 3.5.4.-) RIBOFLAVIN-SPECIFIC DEAMINASE(EC 3.5.4.-) ALPHA-RIBAZOLE-5’-PHOSPHATE PHOSPHATASE(EC 3.1.3.-) RIBOFLAVIN-SPECIFIC DEAMINASE(EC 3.5.4.-) DRAP DEAMINASE MEMBRANE SPANNING PROTEIN INVOLVED IN RIBOFLAVIN METABOLISM PROTEIN INVOLVED IN RIBOFLAVIN METABOUSM Predicted nucleotidyltransferases CYIOSOLIC PROTEIN INVOLVED IN METABOLISM OF RIBOFLAVIN AND LIPIDS MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO ACIDS AND RIBOFLAVIN
553   555 557 559   561 563 565   567 569   571   573   575 577 579 581 583 585 587 589 591   593   554     556   558   560     562   564   566     568   570     572     574     576   578   580   582   584   586   588   590   592     594
Vitamin B6 Metabolism
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO         RXA01807       GR00509       7868       7077       PYRIDOXINE KINASE(EC 2.7.1.35),pyridoxal/pyridoxine/pyridoxamine kinase
595     596  
                                                          Table 1 (continued)
Niacin, nicotinamide, NAD and NADP
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXN02754   FRXA02405   FRXA02754   RXA02112     RXA02111       VV0084   GR00701   GR00766   GR00632     GR00632      22564  774  3  5600    4310      23901  4  488  6436    5593     NICOTINATE PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.11) NICOTINATE PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.11) NICOTINATE PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.11) NICOTINATE-NUCLEOTIDE PYROPHOSPHORYLASE(CARBOXYLATING)(EC 2.4.2.19) QUINOLINATE SYNTHETASE A
597 599 601 B03   605     598     600     602     604       606
NAD biosynthesis
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID N0 SEQ ID NO         RXA01073     RXN02754       GR00300   VV0084       1274   22564      2104  23901      NH(3)-DEPENDENTNAD(+)SYNTHEYASE(EC 6.3.5.1)  NICOTINSTE PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.11)
607 609     608     610
Pantothenic acid and coenzyme A (CoA) biosynthesis
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXA02299   RXA01928   RXN01929     FRXA01929   RXA01521   RXS01145   FRXA01145   RXA02239   RXA00581   RXS00838   RXC02238       GR00662   GR00555   VV0127     GR00555   GR00424     GR00321   GR00654   GR00156       10452   1957   47590     2766   25167     1075   5784   7572       10859   1121   48402     1960   25964     1530   7049   8540     ASPARTATE 1-DECARBOXYLASE PRECURSOR(EC 4.1.1.1) PANTOATE-BETA-ALANINE LIGASE(EC 6.3.2.1) 3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE(EC 2.1.2.11) /DECARBOXYLASE(EC 4.1.1.44) 3-METHYL-2-OXOBUTANQATE HYDROXYMETHYLTRANSFERASE(EC 2.1.2.11) PANTOATE-BETA-ALANINE LIGASE(EC 6.3.2.11) KETOL-ACID REDUCTOISOMERASE(EC 1.1.1.86) KETOL-ACID REDUCTOISOMERASE(EC 1.1.1.86) DNA/PANTOTHENATE METABOLISM FLAVOPROTEIN PANTOTHENATE KINASE(EC 2.7.1.33) 2-DEHYDROPANTOATE 2-REDUCTASE(EC 1.1.1.1.69) PROTEIN INVOLVED IN METABOLISM OF S-ADENOSYLMETHIONINE,PURINES AND PANTOTHENATE
511 613 615   617 619 621 623 625 627 629 631     612     614     616       618     620     622     624     626     628     630     632
Biotin Metabolism
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXN03058      VV0028      8272      8754      BIOTIN SYNTHESIS PROTEIN BIOC
633       634  
Table 1 (continued)
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO         FRXA02903     RXA00166     RXA00633       RXA00632     RXA00295     RXA00223     RXN00262     FRXA00262     RXN00435     FRXA00435     FRXA02801     RXA02516     RXA02517       GR10040   GR00025   GR00166     GR00166   GR00047   GR00032   VV0123   GR00040   VV0112   GR00100   GR00782   GR00723   GR00723       11532   3650   3556     2281   3407   23967   16681   79   10037   3563   438   1724   2989       12014   4309   2288     1610   4408   22879   15608   897   11209   2949   4   2986   3435       BIOTIN SYNTHESIS PROTEIN BIOC   BIOTIN SYNTHESIS PROTEIN BIOC   ADENOSYLMETHIONINE-8-AMINO-7-OXONONANOATE AMINOTRANSFERASE   (EC 2.6.1.62)   DETHIOBIOTIN SYNTHETASE(EC 6.3.3.3)   BIOTIN SYNTHASE(EC 2.8.1.6)   NIFS PROTEIN   NIFS PROTEIN   NIFS PROTEIN   NIFS PROTEIN   NIFS PROTEIN   NIFS PROTEIN   NIFS PROTEIN   NIFU PROTEIN
635 637 639   641 643 645 647 649 651 653 655 657 659   636   638   640     642   644   646   648   650   652   654   656   658   660
Lipoic acid
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXA01747   RXA01746   RXA02106   RXS01183     RXS01260     RXS01261         GR00495   GR00495   GR00632             2506   1614   472       3549   2366   1527       LIPOIC ACID SYNTHETASE   LIPOATE-PROTEIN LIGASE B(EC 6.-.-.-)   LIPOATE-PROTEIN LIGASE A(EC 6.-.-.-)   DIHYDROLIPOAMIDE SUCCINYLTRANSFERASE COMPONENT(E2)OF 2-   OXOGLUTARATE DEHYDROGENASE COMPLEX(EC 2.3.1.61)   LIPOAMIDE DEHYDROGENASE COMPONENT(E3)OFBRANCHED-CHAIN   ALPHA-KETO ACID DEHYDROGENASE COMPLEX(EC 1.8.1.4)   LIPOAMIDE DEHYDROGENASE COMPONENT(E3)OFBRANCHED-CHAIN   ALPHA-KETO ACID DEHYDROGENASE COMPLEX(EC 1.8.1.4)
661 663 665 667   669   671     662   654   666   668     670     672  
Folic acid biosynthesis
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXA02717   RXN02027   FRXA02027   RXA00106   RXN01321   FRXA01321   RXA00461     RXA01514   RXA01516      GR00758  VV0296  GR00616  GR00014  VV0082  GR00384  GR00116    GR00424  GR00424      18281  503  500  17469  8868  23  428    20922  22360      17400  1003  6  17924  9788  559  1279    21509  22749     5,10-METHYLENETETRAHYDROFOLATE REDUCTASE(EC 1.7.99.5) 5-FORMYLTETRAHYDROFOLATE CYCLO-LIGASE(EC 6.3.3.2) 5-FORMYLTETRAHYDROFOLATE CYCLO-LIGASE(EC 6.3.3.2) DIHYDROFOLATE REDUCTASE(EC 1.5.1.3) FORMYLTETRAHYDROFOLATE DEFORMYLASE(EC 3.5.1.10) FORMYLTETRAHYDROFOLATE DEFORMYLASE(EC 3.5.1.10) METHYLENETETRAHYDROFOLATE DEHYDROGENASE(EC 1.5.1.5) METHENYLTETRAHYDROFOLATE CYCLOHYDROLASE(EC 3.5.4.9) GTP CYCLOHYDROLASE I(EC 3.5.4.16) DIHYDRONEOPTERIN ALDOLASE(EC 4.1.2.25)
673 675 677 679 681 683 685   687 689     674     676     67B     680     682     684     686       688     690
Table 1 (continued)
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO   RXA01515   RXA02024   RXA00106   RXA00989   RXA01517     RXA00579   RXA00958       RXA02790   RXA00106   RXN02198     FRXA02198     RXN02085     FRXA02085     FRXA02086       RXN02648     FRXA02648     FRXA0265B       RXS02197     RXC00988   RXC01518     RXC01942   GR00424   GR00613   GR00014   GR00280   GR00424     GR00156   GR00264       GR00777   GR00014   VV0302     GR00646     VV0126     GR00629     GR00629           GR00751     GR00752             21513   4026   17469   2903   22752     5946   1130       5806   17469   9228     2483     8483     3496     5252           5254     14764  22364  4784  17924  1371  23228    4087  1753      6948  17924  11726    6    10717    5295    5731          4730    15447 DIHYDROPTEROATE SYNTHASE(EC 2.5.1.15) DIHYDROPTEROATE SYNTHASE(EC 2.5.1.15) DIHYDROFOLATE REDUCTASE(EC 1.5.1.3) FOLYLPOLYGLUTAMATE SYNTHASE(EC 6.3.2.17) 2-AMINO-4-HYDROXY-6-HYDROXYMETHYLDIHYDROPTERIDINE PYROPHOSPHOKINASE(EC 2.7.6.3) PARA-AMINOBENZOATE SYNTHASE COMPONENT I(EC 4.1.3.-) PARA-AMINOBENZOATE SYNTHASE GLUTAMINE AMIDOTRANSFERASE COMPONENT II(EC 4.1.3.-)/ANTHRANILATE SYNTHASE COMPONENT II(EC 4.1.3.27) 4-AMINO-4-DEOXYCHORISMATE LYASE(EC 4.-.-.-) DIHYDROFOLATE REDUCTASE(EC 1.5.1.3) 5-METHYLTETRAHYDROFOLATE-HOMOCYSTEINE METHYLTRANSFERASE (EC 2.1.1.13) 5-METHYLTETRAHYDROFOLATE-HOMOCYSTEINE METHYLTRANSFERASE (EC 2.1.1.13) 5-METHYLTETRAHYDROPTEROYLTTIGLUTAMATE-HOMOCYSTEINE METHYLTRANSFERASE 5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE METHYLTRABSFERASE(EC 2.1.1.14) 5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE METHYLTRANSFERASE(EC 2.1.1.14) 5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE   METHYLTRANSFERASE(EC 2.1.1.14) 5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE METHYLTRANSFERASE(EC 2.1.1.14) 5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE METHYLTRANSFERASE(EC 2.1.1.14) 5-METHYLTETRAHYDROFOLATE-HOMOCYSTEINE METHYLTRANSFERASE   (EC 2.1.1.13) PROTEIN INVOLVED IN FOLATE METABOLISM MEMBRANE SPANNING PROTEIN INVOLVED IN FOLATE METABOLISM ATP-BINDING PROTEIN INVOLVED IN FOLATE METABOLISM
691  693 695 697 699   701 703     705 707 709   711   713   715   717     719   721   723     725   727 729   731  692   694  696  69B  700    702  704      706  708  710    712    714    716    718      720    722    724      726    728  730    732
Molybdenum butterflies make metabolic
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO   RXN02802   FRXA02802   FRXA00438   RXN00437   FRXA00437   RXN00439   FRXA00439   FRXA00442   VV0112   GR00783   GR00103   VV0112   GR00103   VV0112   GR00104   GR00105   17369   7   362   178224   3   18742   2   830  16299  474  796  17369  362  18275  196  1087  MOLYBDOPTERIN BIOSYNTHESIS MOEB PROTEIN  MOLYBDOPTERIN BIOSYNTHESIS MOEB PROTEIN  MOLYBDOPPTEIN BIOSYNTHESIS MOEB PROTEIN  MOLYBDOPTERIN(MPT)CONVERTING FACTOR,SUBUNIT2  MOLYBDOPTERIN(MPT)CONVERTING FACTOR,SUBUNIT2  MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROEIIN  MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN  MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN
733  735 737 39 741 743 745 747  734   736  738  740  742  744  746  748
Table 1 (continued)
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO  SEQ ID NO      RXA00440  RXN00441  FRXA00441  RXN02085    FRXA02085    FRXA02086    RXN02648    FRXA02648    FRXA02658    RXA01516  RXA01515  RXA02024  RXA01719  RXA01720  RXS03223  FRXA01970  RXA02629  RXA02318  RXA01517    RXN01304  RXS02556  RXS02560      GR00104  VV0112  GR00105      GR00629    GR00629        GR00751    GR00752    GR00424  GR00424  GR00613  GR00488  GR00488    GR00568  GR00748  GR00665  GR00424    VV0148      196  19942  2      3496    5252        5254    14764    22360  21513  4026  1264  2476    2  1274  9684  22752    4449           654 18779 793     5295   5731        4730    15447    22749  22364  4784  704  1268    1207  690  9962  23228    4934      MOLYBDENUM COFACTOR BIOSYNTHESIS PROTEIN CB  MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN  MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN  5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE  METHYLTRANSFERASE(EC 2.1.1.14)  5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE  METHYLTRANSFERASE(EC 2.1.1.14)  5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE  METHYLTRANSFERASE(EC 2.1.1.14)  5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE  METHYLTRANSFERASE(EC 2.1.1.14)  5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE  METHYLTRANSFERASE(EC 2.1.1.14)  5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE  METHYLTRANSFERASE(EC 2.1.1.14)  DIHYDRONEOPTERIN ALDOLASE(EC 4.1.2.25)  DIHYDROPTEROATE SYNTHASE(EC 2.5.1.15)  DIHYDROPTEROATE SYNTHASE(EC 2.5.1.15)  MOLYBDOPTERIN-GUANINE DINUCLEOTIDE BIOSYNTHESIS PROTEIN A  MOLYBDOPTERIN BIOSYNTHESIS MOEA PROTEIN  MOLYBDOPTERIN BIOSYNTHESIS MOEA PROTEIN  MOLYBDOPTERIN BIOSYNTHESIS MOEA PROTEIN  MOLYBDOPTERIN BIOSYNTHESIS CNX1 PROTEIN  (D90909)pterin-4a-carbinolamine dehydratase[Synechocystis sp.)  2-AMINO-4-HYDROXY-6-HYDROXYMETHYLDIHYDROPTERIDINE  PYROPHOSPHOKINASE(EC 2.7.6.3)  MOLYBDOPTERIN BIOSYNTHESIS MOG PROTEIN  FLAVOHEMOPROTEIN/DIHYDROPTERIDINE REDUCTASE (EC 1.6.99.7)  OXYGEN-INSENSITIVE NAD(P)H NITROREDUCTASE(EC 1.-.-.-)/  DIHYDROPTERIDINE REDUCTASE(EC1.6.99.7)
749 751 753 755   757   759   761   763   765   767 769 771 773 775 777 779 781 783 785   787 789 791  750  752  754  756    758    760    762    764    756    768  770  772  774  776  778  780  782  784  786    788  790  792  
Vitamin B12Porphyrin and heme metabolism in
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXA00382   RXA00156   RXA00624   RXA00306   RXA00884   RXN02503   FRXA02503   RXA00377   RXN02504   FRXA02504         GR00082     GR00023     GR00163     GR00051     GR00242     VV0007     GR00720     GR00081     VV0007     GR00720       2752   10509   7910   2206   10137   22456   16906   1427   22805   17379       1451   9400   8596   1274   11276   22854   17340   306   23362   17816       GLUTAMATE-1-SEMIALDEHYDE 2.1-AMINOMUTASE(EC 5.4.3.8)   FERROCHELATASE(EC 4.99.1.1)   FERROCHELATASE(EC 4.99.1.1)   HEMK PROTEIN   OXYGEN-INDEPENDENT COPROPORPHYRINOGEN III OXIDASE(EC 1.-.-.-)   PORPHOBILINOGEN DEAMINASE(EC 4.3.1.8)   PORPHOBILINOGEN DEAMINASE(EC 4.3.1.8)   UROPORPHYRINOGEN DECARBOXYLASE(EC 4.1.1.37)   PORPHOBILINOGEN DEAMINASE(EC 4 3.1.8)   PORPHOBILINOGEN DEAMINASE(EC 4 3.1.8)
793 795 797 799 801 803 805 807 809 811     794     796     798     800     802     804     806     808     810     812
Table 1 (continued)
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO  SEQ ID NO   RXN01162   FRXA01162   RXA01692   RXN00371     FRXA00371     FRXA00374     RXN00383   FRXA00376   FRXA00383   RXA01253   RXA02134   RXA02135     RXA02136   RXN03114   RXN01810   RXS03205   FRXA00306     RXC01715   VV0088   GR00330   GR00474   VV0226     GR00078     GR00079     VV0223   GR00081   GR00082   GR00365   GR00639   GR00639     GR00639   VV0088   VV0082     1849     1248     1498     4180       929       1102       4206     287     3876     2536     1721     2809       3362     1     1739   524   4   749   5973     6     371     2863   6   2863   1787   801   1736     2841   552   663   PRECORRIN-6Y METHYLASE(EC 2.1.1.-)   PRECORRIN-6Y METHYLASE(EC 2.1.1.-)   UROPORPHYRIN-III C-METHYLTRANSFERASE(EC 2.1.1.107)   UROPORPHYRIN-III C-METHYLTRANSFERASE(EC 2.1.1.107)/   UROPORPHYRINOGEN-III SYNTHASE(EC 4.2.1.75)   UROPORPHYRIN-III C-METHYLTRANSFERASE(EC 2.1.1.107)/   UROPORPHYRINOGEN-III SYNTHASE(EC 4.2.1.75)   UROPORPHYRIN-III C-METHYLTRANSFERASE(EC 2.1.1.107)/   UROPORPHYRINOGEN-III SYNTHASE(EC 4.2 1.75)   PROtopORPHYRINOGEN OXIDASE(EC 1.3.3.4)   PROtopORPHYRINOGEN OXIDASE(EC 1.3.3 4)   PROtopORPHYRINOGEN OXIDASE(EC 1.3.3.4)   COBYRIC ACID SYNTHASE   COBALAMIN(5′-PHOSPHATE)SYNTHASE   NICOTINATE-NUCLEOTIDE--DIMETHYLBENZIMIDAZOLE   PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.21)   COBINAMIDE KINASE/COBINAMIDE PHOSPHATE GUANYLYLTRANSFERASE   COBG PROTEIN(EC 1.-.-.-)   HEMIN-BINDING PERIPLASMIC PROTEIN HMUT PRECURSOR   HEMK PROTEIN   HEMK PROTEIN   CYTOSOLIC PROTEIN INVOLVED IN PORPHYRIN METABOLISM
 813  815  817  819    821    823    825  827  829  831  833  835    837  839  841  843  845    847  814  816  818  820    822    824    826  828  830  832  834  836    838  840  842  844  846    848
Precursor of vitamin C
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO   SEQ ID NO   RXN00420   FRXA00420   FRXA00426   RXN00708   FRXA00708   RXA02373   RXS00389   RXS00419   RXC00416   RXC02206   VV0112   GR00096   GR00097   VV0005   GR00185   GR00688  2511  2  1737  4678  2030  1540  1048  541  2258  3872  1359  626 L-GULONOLACTONE OXIDASE(EC 1.1.3.8) L-GULONOLACTONE OXIDASE(EC 1.1.3.8) L-GULONOLACTONE OXIDASE(EC 1.1.3.8) 2,5-DIKETO-D-GLUCONIC ACID REDUCTASE(EC 1.1.1.-) 2,5-DIKETO-D-GLUCONIC ACID REDUCTASE(EC 1.1.1.-) 2,5-DIKETO-D-GLUCONIC ACID REDUCTASE(EC 1.1.1.-) oxoglutarate semialdehyde dehydrogenase(EC 1.2.1.-) ACETOACETYL-COA REDUCTASE(EC 1.1.1.36) MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF VITAMIN C PRECURSORS OXIDOREDUCTASE INVOLVED IN METABOLISM OF VITAMIN C PTECURSORS
849 851 853 855 857 859 861 863 865 867   850   852   854   856   858   860   862   864   866   868
Vitamin K2
Nucleic acid Amino acids Numbers starting NT NT contig termination
SEQ ID NO   SEQ ID NO RXS03074                          S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE                                   METHYLTRANSFERASE(EC 2.1.-.-)
869     870
Table 1 (continued)
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO  SEQ ID NO       FRXA02906     RXA02315     RXA02319   RXS00393   FRXA00393   RXA00391   RXS02908       GR10044     GR00665     GR00665     GR00086   GR00086       1142     8011     9977     4030   2031       645     6383     10933     4911   2750       S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE   METHYLTRANSFERASE(EC 2.1.-.-)   2-SUCCINYL-6-HYDROXY-2,4-CYCLOHEXADIENE-1-CARBOXYLATE   SYNTHASE/2-OXOGLUTARATEDECARBOXYLASE(EC 4 1.1.71)   NAPHTHOATE SYNTHASE(EC 4.1.3-36)   1,4-DIHYDROXY-2-NAPHTHOATE OCTAPRENYLTRANSFERASE(EC 2.5.-.-)   1,4-DIHYDROXY-2-NAPHTHOATE OCTAPRENYLTRANSFERASE(EC 2 5.-.-)   O-SUCCINYLBENZOIC ACID-COA LIGASE(EC 6.2.1.26)   O-SUCCINYLBENZOIC ACID-COA LIGASE(EC 6.2.1.26)
871   873   875 877 879 881 883   872     874     876   878   880   882   884
Ubiquinone biosynthesis
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXA00997   RXA02189   RXA02311   RXN02912     RXS00998         GR00283     GR00642     GR00665     VV0135       2389   986   3073   13299      1808  249  2384  12547     3-DEMETHYLUBIQUINONE-9 3-METHYLTRANSFERASE(EC 2.1 1.64) 3-DEMETHYLUBIQUINONE-9 3-METHYLTRANSFERASE(EC 2 1.1.64) 3-DEMETHYLUBIQUINONE-9 3-METHYLTRANSFERASE(EC 2.1.1.64) UBIQUINONE/MENAQUINONE BIOSYNTHESIS METHLYTRANSFERASE UBIE (EC 2.1.1.-) COMA OPERON PROTEIN 2
885 887 889 891   893   886   888   890   892     894
Purine, pyrimidine, and other nucleotides
Purine, pyrimidine biosynthetic pathway regulation
Purine Metabolism
Purine biosynthesis
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXA01215   RXN00558   FRXA00558   RXN00626   FRXA00629   FRXA00626   RXA02623       RXA01442       GR00352   VV0103   GR00148   VV0135   GR00165   GR00164   GR00746       GR00418       1187   8235   61   11624   1450   1   4875       10277       213   9581   501   10362   1713   780   4285       9054       RIBOSE-PHOSPHATE PYROPHOSPHOKINASE,PRPP synthetase(EC 2.7.6.1)   AMIDOPHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.14)   AMIDOPHOSPHORIBOSYLTRANSFERASE(EC 2.4 2.14)   PHOSPHORIBOSYLAMINE-GLYCINE LIGASE(EC 6 3.4.13)   PHOSPHORIBOSYLAMINE-GLYCINE LIGASE(EC 6.3.4.13)   PHOSPHORIBOSYLAMINE-GLYCINE LIGASE.GARS(EC 6.3.4.13)   PHOSPHORIBOSYLAMINE-GLYCINE LIGASE(EC 6.3.4.13)/   PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE(EC 6.3 31)/   PHOSPHORIBOSYLGLYCINAMIDE FORMYLTRANSFERASE(EC 2.1.2.2)   PHOSPHORIBOSYLGLYCINAMIDE FORMYLTRANSFERASE 2(EC 2.1.2-)
895 897 899 901 903 905 907     909  896  898  900  902  904  906  908      910
Table 1 (continued)
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO 911 913 915 917 919 921   923 925 927 929   931   933   935   937   939 941 943     SEQ ID NO   912   914   916   918   920   922     924   926   928   930     932     934     936     938     940   942   944    RXN00537  FRXA02805  FRXA00537  FRXA00561  RXA00541  RXA00620    RXN00770  FRXA00557  FRXA00770  RXN02345    FRXA02345    RXN02350    FRXA02346    FRXA02350    RXA01087  RXA00619  RXA02622    VV0103  GR00786  GR00138  GR00150  GR00139  GR00163    VV0103  GR00147  GR00204  VV0078    GR00676    VV0078    GR00677    GR00678    GR00304  GR00163  GR00746     3351   54   23   2   2269   3049     9614   15   7809   4788     1534     8369     127     1120     498   793   4274     5636   638   697   280   2937   3939     10783   818   7495   5984     725     8863     5     911     1373   2220   2715   PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE(EC 6.3.5.3) PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE(EC 6.3.5.3) PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE(EC 6.3.5.3) PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE(EC 6.3.5.3) PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE(EC 6.3.5.3) PHOSPHORIBOSYLAMIDOIMIDAZOLE-SUCCINOCARBOXAMIDE SYNTHASE (EC 6.3.2.6) PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE(EC 6.3.3.1) PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE(EC 6.3.3.1) PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE(EC 6.3.3.1) PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE ATPASE SUBUNIT(EC 4.1.1.21) PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE ATPASE SUBUNIT(EC 4.1.1.21) PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT (EC 4.1.1.21) PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT (EC4.1.1.21) PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT (EC 4.1.1.21) PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE(EC 4.1.1.21) ADENYLOSUCCINATE LYASE(EC 4.3.2.2) PHOSPHORIBOSYLAMINOIMIDAZOLECARBOXAMIDE FORMYLTRANSFERASE (EC 2.1.2.3)/IMP CYCLOHYDROLASE(EC 3.5.4.10)
GMP, GDP, AMP and ADP synthesis, starting from inosine-5'-monophosphate (IMP)
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO 945 947 949 951 953 955 957 959 961 963 965  SEQ ID NO   946   948   950   952   954   956   958   960   962   964   966     RXN00488   FRXA00492   FRXA00488   RXA02469   RXN00487   FRXA00487   RXA02237   RXA01446   RXA00619   RXA00688   RXA00266       VV0086     GR00122     GR00121     GR00715     VV0086     GR00120     GR00654     GR00418     GR00163     GR00179     GR00040     19066   1171   1   1927   23734   712   4577   17765   793   10443   3769    20583  1644  534  497  25302  2097  5146  16476  2220  10985  3362    INOSINE-5′-MONOPHOSPHATE DEHYDROGENASE(EC 1.1.1.205)  INOSINE-5′-MONOPHOSPHATE DEHYDROGENASE(EC 1.1.1 205)  INOSINE-5′-MONOPHOSPHATE DEHYDROGENASE(EC 1.1.1.205)  INOSINE-5′-MONOPHOSPHATE DEHYDROGENASE(EC 1.1.1.205)  GMP SYNTHASE[GLUTAMINE-HYDROLYZING](EC 6.3.5.2)  GMP SYNTHASE(EC 6.3.4.1)  GUANYLATE KINASE(EC 2.7.4.8)  ADENYLOSUCCINATE SYNTHETASE(EC 6.3.4.4)  ADENYLOSUCCINATE LYASE(EC 4.3.2.2)  ADENYLATE KINASE(EC 2.7.4.3)  NUCLEOSIDE DIPHOSPHATE KINASE(EC 2.7-4.6)
Table 1 (continued)
GMP / AMP degradation activity
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO 967 969 971 SEQ ID NO   968   970   972     RXA00489   RXN02281   FRXA02281     GR00121   VV0152   GR00659     654   1893   1101     1775   3323   34   GMP REDUCTASE(EC 1.6.6.8) AMP NUCLEOSIDASE(EC 3.2.2.4) AMP NUCLEOSIDASE(EC 3.2.2.4)
Pyrimidine metabolic
De novo pyrimidine biosynthesis:
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXA00147   RXA00145   RXA00146   RXA02208   RXA01660   RXA02235   RXN01892   FRXA01892   RXA00105   RXA00131   RXA00266   RXA00718   RXA01599   RXN02234   FRXA02234   RXN00450   FRXA00450   RXN02272   FRXA02272   RXN03004   RXN03137   RXN03171   FRXA02857       GR00022   GR00022   GR00022   GR00647   GR00462   GR00654   VV0150   GR00542   GR00014   GR00020   GR00040   GR00188   GR00447   VV0134   GR00654   VV0112   GR00110   VV0020   GR00655   VV0237   VV0129   VV0328   GR10003       9722   7258   8249   2   591   3207   3020   47   16672   7621   3769   4576   8780   24708   1   34491   322   15566   6691   1862   9680   568   570       10900   8193   9589   1003   1142   4040   3748   775   17346   7013   3362   5283   10441   28046   3198   34814   5   16810   7935   2341   9579   1080   1082     CARBAMOYL-PHOSPHATE SYNTHASE SMALL CHAIN(EC 6.3.5.5) ASPARTATE CARBAMOYLTRANSFERASE CATALYTIC CHAIN(EC 2.1.3.2) DIHYDROOROTASE(EC 3.5.2.3) DIHYDROOROTATE DEHYDROGENASE(EC 1.3.3.1) OROTATE PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.10) OROTIDINE 5′-PHOSPHATE DECARBOXYLASE(EC 4.1.1.23) URIDYLATE KINASE(EC 2.7.4.-) URIDYLATE KINASE(EC 2.7.4.-) THYMIDYLATE SYNTHASE(EC 2.1.1.45) THYMIDYLATE KINASE(EC 2.7.4.9) NUCLEOSIDE DIPHOSPHATE KINASE(EC 2.7.4.6) CYTIDYLATE KINASE(EC 2.7.4.14) CTP SYNTASE(EC 6.3.4.2) CARBAMOYL-PHOSPHATE SYNTASE LARGE CHAIN(EC 6.3.5.5) CARBAMOYL-PHOSPHATE SYNTASE LARGE CHAIN(EC 6.3.5.S) CYTOSINE DFAMINASE(EC 3 5.4.1) CYTOSINE DEAMINASE(EC 3.5.4.1) CYTOSINE DEAMINASE(EC 3.5.4.1) CREATININE DEAMINASE(EC 3.5.4.21) DEOXYCYTIDINE TRIPHOSPHATE DEAMINASE(EC 3.5.4.13) THYMIDYLATE SYNTHASE(EC 2.1.1.45) URACIL PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.9) URACIL PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.9)
973 975 977 979 981 983 985 987 989 991 993 995 997 999 1001 1003 1005 1007 1009 1011 1013 1015 1017   974   976   978   980   982   984   986   988   990   992   994   996   998   1000   1002   1004   1006   1008   1010   1012   1014   1016   1018
Table 1 (continued)
Purine and pyrimidine bases, nucleotides and nucleosides remedy mutual transformation, reduction and degradation:
Purine:
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO  SEQ ID NO       RXA02771   RXA01512   RXA02031   RXA00981   RXN02772     FRXA02772     FRXA02773     RXA01835     RXA01483   RXN01027   FRXA01024   FRXA01027   RXA01528   RXA00072   RXA01878   RXN02281   FRXA02281   RXN01240   RXN02008       GR00772   GR00424   GR00618   GR00276   VV0171     GR00772     GR00772     GR00517     GR00422   VV0143   GR00293   GR00294   GR00425   GR00012   GR00537   VV0152   GR00659   VV0090   VV0171       1329   17633   3820   3388   2045     1962     2741     3147     19511   5761   661   2580   5653   446   1239   1893   1101   30442   1138      1883 18232  3347  4017  1011    2741    2902    3677    18240  6768  5  2347  5126  6  2117  3323  34  29420  5      ADENINE PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.7)  HYPOXANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.8)  XANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.22)  GTP PYROPHOSPHOKINASE(EC 2.7.6.5)  GUANOSINE-3′,5′-BIS(DIPHOSPHATE)3′-PYROPHOSPHOHYDROLASE(EC  3.1.7.2)  GUANOSINE-3′,5′-BIS(DIPHOSPHATE)3′-PYROPHOSPHOHYDROLASE(EC  3.1.7.2)  GUANOSINE-3′,5′-BIS(DIPHOSPHATE)3′-PYROPHOSPHOHYDROLASE(EC  3.1.7.2)  GUANOSINE-3′,5′-BIS(DIPHOSPHATE)3′-PYROPHOSPHOHYDROLASE(EC  3.1.7.2)  DEOXYGUANOSINETRIPHOSPHATE TRIPHOSPHOHYDROLASE(EC 3.1.5.1)  DIADENOSINE 5′,5_-P1,P4-TETRAPHOSPHATE HYDROLASE(EC 3.6.1.17)  DIADENOSINE 5′,5_-P1,P4-TETRAPHOSPHATE HYDROLASE(EC 3.6 1.17)  DIADENOSINE 5′,5_-P1,P4-TETRAPHOSPHATE HYDROLASE(EC 3.6.1.17)  DIADENOSINE 5′,5_-P1,P4-TETRAPHOSPHATE HYDROLASE(EC 3.6.1.17)  PHOSPHOADENOSINE PHOSPHOSULFATE REDUCTASE(EC 1.8.99.4)  DIMETHYLADENOSINE TRANSFERASE(EC 2.1.1.-)  AMP NUCLEOSIDASE(EC 3.2.2.4)  AMP NUCLEOSIDASE(EC 3.2.2.4)  GTP PYROPHOSPHOKINASE(EC 2.7.6.5)  GUANOSINE-3′,5′-BIS(DIPHOSPHATE)3′-PYROPHOSPHOHYDROLASE(EC  3.1.7.2)
1019 1021 1023 1025 1027   1029   1031   1033   1035 1037 1039 1041 1043 1045 1047 1049 1051 1053 1055   1020   1022   1024   1026   1028     1030     1032     1034     1036   1038   1040   1042   1044   1046   1048   1050   1052   1054   1056
Pyrimidine and purine metabolism:
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXN01940   FRXA01940   RXA02559   RXA02497   RXN01079   FRXA01079   FRXA01084   RXN01920   FRXA01920   RXA01080   RXA00867   RXA01416   RXA01486       VV0120   GR00557   GR00731   GR00720   VV0084   GR00301   GR00302   VV0084   GR00550   GR00301   GR00237   GR00413   GR00423       10268   3   5418   10059   38084   693   3402   32843   1321   1240   1   2   660       9333   581   6320   10685   35982   4   2062   31842   908   797   627   631   4       INOSINE-URIDINE PREFERRING NUCLEOSIDE HYDROLASE(EC 3.2.2.1)   INOSINE-URIDINE PREFERRING NUCLEOSIDE HYDROLASE(EC 3.2 2.1)   INOSINE-URIDINE PREFERRING NUCLEOSIDE HYDROLASE(EC 3.2.2.1)   EXOPOLYPHOSPHATASE(EC 3.6.1.11)   RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE ALPHA CHAIN(EC 1.1.7.4.1)   RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE ALPHA CHAIN(EC 1.1.7.4.1)   RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE ALPHA CHAIN(EC 1.1.7.4.1)   RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE 2BETA CHAIN(EC 1.1.7 4.1)   RIBONUCLEOTIDE REDUCTASE SUBUNITR2F   NRDI PROTEIN   POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE(EC 2.7.7.8)   POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE(EC 2.7.7.8)   POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE(EC 2.7.7.8)
1057 1059 1061 1063 1065 1067 1069 1071 1073 1075 1077 1079 1081   1058   1060   1062   1064   1066   1068   1070   1072   1074   1076   1078   1080   1082
Table 1 (continued)
Nucleic acid Amino acids Number Contigs starting NT NT termination
SEQ ID NO  SEQ ID NO      RXA01678  RXA01679  RXN01488  RXC00540  RXC00560  RXC01088  FXC02624  RXC02665  RXC02770  FRXC02238    RXC01946         GR00467    7162     7689    2′,3′-CYCLIC-NUCLEOTIDE 2′-PHOSPHODIESTERASE(EC 3.1 4.16)     GR00467    7729     8964    2′,3′-CYCLIC-NUCLEOTIDE 2′-PHOSPHODIESTERASE(EC 3.1.4.16)     VV0139     39842    40789   INOSINE-URIDINE PREFERRING NUCLEOSIDE HYDROLASE(EC 3.2.2.1)                                 CYTOSOLIC PROTEIN INVOLVED IN PURINE METABOLISM                                 PROTEIN INVOLVED IN PURINE METABOLISM                                 CYTOSOLIC PROTEIN INVOLVED IN PURINE METABOLISM                                 MEMBRANE SPANNING PROTEIN INVOLVED IN PURINE METABOLISM                                 PROTEIN INVOLVED IN PURINE METABOLISM                                 LIPOPROTEIN INVOLVED IN PURINE METABOLISM                                 PROTEIN INVOLVED IN METABOLISM OF S-ADENOSYLMETHIONINE,PURINES                                 AND PANTOTHENATE                                 ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN PURINE                                 METABOLISM
1083 1085 1087 1089 1091 1093 1095 1097 1099 1101   1103  1084  1086  1088  1090  1092  1094  1096  1098  1100  1102    1104
Pyrimidine:
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO       RXN03171   FRXA02857   RXN00450   FRXA00450   RXA00465   RXA00717   RXA01894   RXA02536   RXN01209   FRXA01209   RXN01617   FRXA01617   RXC01600   RXC01622   RXC00128     RXC01709   RXC00207         VV0328     GR10003     VV0112     GR00110     GR00117     GR00188     GR00542     GR00726     VV0270     GR00348     VV0050     GR00451       568   570   34491   322   337   3617   1622   8581   1019   1019   22187   2      1080  1082  34814  5  828  4576  2476  7826  2446  2446  22858  616      URACIL PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.9)  URACIL PHOSPHORIBOSYLTRANSFERASE(EC 2.4.2.9)  CYTOSINE DEAMINASE(EC 3.5.4.1)  CYTOSINE DEAMINASE(EC 3.5.4.1)  CYTOSINE DEAMINASE(EC 3.5.4.1)  RIBOSOMAL LARGE SUBUNIT PSEUDOURIDINE SYNTHASE B(EC 4.2.1.70)  PHOSPHATIDATE CYTIDYLYLTRANSFERASE(EC 2.7.7.41)  BETA-UREIDOPROPIONASE(EC 3.5.1.6)  PHOSPHOMETHYLPYRIMIDINE KINASE(EC 2.7.4.7)  PHOSPHOMETHYLPYRIMIDINE KINASE(EC 2.7.4.7)  PHOSPHOMETHYLPYRIMIDINE KINASE(EC 2.7.4.7)  PHOSPHOMETHYLPYRIMIDINE KINASE(EC 2.7.4.7)  CYTOSOLIC PROTEIN INVOLVED IN PYRIMIDINE METABOLISM  CYTOSOLIC PROTEIN INVOLVED IN PYRIMIDINE METABOLISM  EXPORTED PROTEIN INVOLVED IN METABOLISM OF PYRIDIMES AND  ADENOSYLHOMOCYSTEINE  CYTOSOLIC PROTEIN INVOLVED IN PYRIMIDINE METABOLISM  EXPORTED PROTEIN INVOLVED IN PYRIMIDINE METABOLISM
1105 1107 1109 1111 1113 1115 1117 1119 1121 1123 1125 1127 1129 1131 1133   1135 1137   1106   1108   1110   1112   1114   1116   1118   1120   1122   1124   1126   1128   1130   1132   1134     1136   1138
Table 1 (continued)
Sugar
Trehalose
Nucleic acid Amino acids Number Contigs NT Start NT termination Function
SEQ ID NO SEQ ID NO   RXA00347   RXN01239   FRXA01239   RXA02645   RXN02355   RXN02909   RXS00349   RXS03183     RXC00874   GR00065   VV0090   GR00358   GR00751   VV0051   VV0135   246   32921   5147   714   735   38532  1013  30489  7579  2543  4  39017  TREHALOSE-PHOSPHATASE(EC 3.1.3.12)  maltooligosyltrehalose synthase  maltooligosyltrehalose synthase  maltooligosyltrehalose trehalohydrolase  TREHALOSE/MAL TOSE BINDING PROTEIN  Hypothetical Trehalose-Binding Protein  Hypothetical TrehaIose Transport Protein  TREHALOSE/MALTOSE BINDING PROTEIN  TRANSMEBRANE PROTEIN INVOLVED IN TREHALOSE METABOLISM
1139 1141 1143 1145 1147 1149 1151 1153   1155  1140  1142  1144  1146  1148  1150  1152  1154    1156
Table 2 - exclude genes
GenBank TMAccession number Gene Name Gene function Literature
A09073  ppg  Phosphoenol pyruvate carboxylase  Bachmann,B.et al.“DNA fragment coding for phosphoenolpyruvat  corboxylase,recombinant DNA carrying said fragment,strains carrying the  recombinant DNA and method for producing L-aminino acids using said  stains,”Patent:EP 0358940-A 3 03/21/90
A45579, A4558I, A45583, A45585 A45587  Threonine dehydratase  Moeckel,B.et al.“Production of L-isoleucine by means of recombinant  micro-organisms with deregulated threonine dehydratase,”Patent:WO  9519442-A 5 07/20/95
AB003132  murC;ftsQ;ftsZ  Kobayashi,M.et al.“Cloning,sequencing,and characterization of the ftsZ  gene from coryneform bacteria,” Biochem.Biophys.Res.Commun.,  236(2):383-388(1997)
AB015023  murC;ftsQ  Wachi,M.et al.“A murC gene from Coryneform bacteria,”Appl.Microbiol.  Biotechnol,51(2):223-228(1999)
AB018530  dtsR  Kimura,E.et al.“Molecular cloning of a novel gene,dtsR,which rescues the  detergent sensitivity of a mutant derived from Brevibacterium  lactofermentum,”Biosci.Biotechnol.Biochem.,60(10):1565-1570(1996)
AB018531  dtsR1;dtsR2
AB020624  murl  D-glutamate racemase
AB023377  tkt  transketolase
AB024708  gltB;gltD  GIutamine 2-oxoglutatate aminotransferase  large and small subunits
AB025424  acn  aconitase
AB027714  rep  Replication protein
AB027715  rep;aad  Replication protein;aminoglycoside  adenyltransferase
AF005242  argC  N-acetylglutamate-5-semialdehyde  dehydrogenase
AF005635  glnA  Glutamine synthetase
AF030405  hisF  cyclase
AF030520  argG  Argininosuccinate synthetase
AF031518  argF  Omithine carbamolytransferase
AF036932  aroD  3-dehydroquinate dehydratase
AF038548  pyc  Pyruvate carboxylase
Table 2 (continued)
AF038651      dciAE;apt;rel  Dipeptide-binding protein;adenine  phosphoribosyltransferase;GTP  pyrophosphokinase  Wehmeier,L.et al.“The role of the Corynebacterium glutamicum rel gene in  (p)ppGpp metabolism,”Microbiology,144:1853-1862(1998)
AF041436  argR  Arginine repressor
AF045998  impA  Inositol monophosphate phosphatase
AF048764  argH  Argininosuccinate lyase
AF049897  argC;argJ;argB;  argD;argF;argR;  argG;argH  N-acetylglutamylphosphate reductase;  omithine acetyltransferase;N-  acetylglutamate kinase;acetylomithine  transminase;omithine  carbamoyltransferase;arginine repressor;  argininosuccinate synthase;  argininosuccinate lyase
AF050109  inhA  Enoyl-acyl carrier protein reductase
AF050166  hisG  ATP phosphoribosyltransferase
AF051846  hisA  Phosphoribosylformimino-5-amino-1-  phosphoribosyl-4-imidazolecarboxamide  isomerase
AF052652  metA  Homoserine O-acetyltransferase  Park,S.et al.“Isolation and analysis of metA,a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum,”Mol.  Cells.,8(3):286-294(1998)
AF053071  aroB  Dehydroquinate synthetase
AF060558  hisH  Glutamine amidotransferase
AF086704  hisE  Phosphoribosyl-ATP-  pyrophosphohydrolase
AF114233  aroA  5-enolpyruvylshikimate 3-phosphate  synthase
AF116184  panD  L-aspartate-alpha-decarboxylase precursor  Dusch,N.et al.“Expression of the Corymebacterium glutamicum pamD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate  overproduction in Escherichia coli,”Appl.Environ.Microbiol,65(4)1530-  1539(1999)
AF124518  aroD;aroE  3-dehydroquiniase;shikimate  dehydrogenase
AF124600  aroC;aroK;aroB;  pepQ  Chorismate synthase;shikimate kinase;3-  dehydroquinate synthase;putative  cytoplasmic peptidase
AF145897  inhA
AF145898  inhA
                                                                                  Table 2 (continued)
AJ001436  ectP  Transport of ectoine,glycine betaine,  proline  Peter,H.et al.“Corynebacterium glutamicum is equipped with four secondary  carriers for compatible solutes:Identification,sequencing,and characterization  of the proline/ectoine uptake system,ProP,and the ectoine/proline/glycine  betaine carrier,EctP,”J.Bacteriol.,180(22):6005-6012(1998)
AJ004934  dapD  Tetrahydrodipicolinate succinylase  (incompletei)  Wehrmann,A.et al.“Different modes of diaminopimelate synthesis and their  role in cell wall integrity:A study with Corynebacterium glutamicum,”J.  Bacteriol.,180(12):3159-3165(1998)
AJ007732  ppc;secG;amt;ocd;  soxA  Phosphoenolpyruvate-carboxylase;?;high  affinity ammonium uptake protein;putative  omithine-cyclodecarboxylase;sarcosine  oxidase
AJ010319  ftsY,glnB,glnD;srp;  amtP  Involved in cell division;Pll protein;  uridylyltransferase(uridylyl-removing  enzmye);signal recognition particle;low  affinity ammonium uptake protein  Jakoby,M.et al.“Nitrogen regulation in Corynebacterium glutamicum;  Isolation of genes involved in biochemical characterization of corresponding  proteins,”FEMS Microbiol.,173(2):303-310(1999)
AJ132968  cat  Chloramphenicol aceteyl transferase
AJ224946  mqo  L-malate:quinone oxidoreductase  Molenaar,D.et al.“Biochemical and genetic characterization of the  membrane-associated malate dehydrogenase(acceptor)from Corynebacterium  glutamicum,”Eur.J.Biochem.,254(2):395-403(1998)
AJ238250  ndh  NADH dehydrogenase
AJ238703  potA  Porin  Lichtinger,T.et al.“Biochemical and biophysical characterization of the cell  wall porin of Corynebacterium glutamicum:The channel is formed by a low  molecular mass polypeptide,”Biochemistry,37(43):15024-15032(1998)
D17429  Transposable element IS31831  Vertes et al.“Isolation and characterization of IS31831,a transposable element  from Corynebacterium glutamicum,”Mol.Microbiol.,11(4):739-746(1994)
D84102  odhA  2-oxoglutarate dehydrogenase  Usuda,Y.et al.“Molecular cloning of the Corynebacterium glutamicum  (Brevibacterium lactofermentum AJ12036)odhA gene encoding a novel type  of 2-oxoglutarate dehydrogenase,”Microbiology,142:3347-3354(1996)
E01358  hdh;hk  Homoserine dehydrogenase;homoserine  kinase  Katsumata,R.et al.“Production of L-thereonine and L-isoleucine,”Patenl:JP  1987232392-A 1 10/12/87
E01359  Upstream of the start codon of homoserine kinase gene  Katsumata,R.et al.“Production of L-thereonine and L-isoleucine,”Patent:JP   1987232392-A 2 10/12/87
E01375  Tryptophan operon
E01376  trpL;trpE  Leader peptide;anthranilate synthase  Matsui,K.et al.“Tryptophan operon,peptide and protein coded thereby,  utilization of tryptophan operon gene expression and production of  tryptophan,”Patent:JP 1987244382-A 1 10/24/87
Table 2 (continued)
  E01377   Promoter and operator regions of   tryplophan operon   Matsui,K.et al.“Tryptophan operon,peptide and protein coded thereby,   utilization of tryptophan operon gene expression and production of   tryptophan,”Patent:JP 1987244382-A 1 10/24/87
  E03937   Biotin-synthase   Hatakeyama,K.et al.“DNA fragment containing gene capable of coding    biotin synthetase and its utilization,”Patent:JP 1992278088-A 1 10/02/92
  E04040   Diamino pelargonic acid aminotransferase   Kohama,K.et al.“Gene coding diaminopelargonic acid aminotransferase and   desthiobiotin synthetase and its utilization,”Patent:JP 1992330284-A 1   11/18/92
  E04041   Desthiobiotinsynthetase   Kohama,K.et al.“Gene coding diaminopelargonic acid aminotransferase and   desthiobiotin synthetase and its utilization,”Patent:JP 1992330284-A 1   11/18/92
  E04307   Flavum aspartase   Kurusu,Y.et al.“Gene DNA coding aspartase and utilization thereof,”Patent:   JP 1993030977-A 1 02/09/93
  E04376   Isocitric acid lyase   Katsumata,R.et al.“Gene manifestation controlling DNA,”Patent:JP   1993056782-A 3 03/09/93
  E04377   Isocitric acid lyase N-terminal fragment   Katsumata,R.et al.“Gene manifestation controlling DNA,”Patent:JP   1993056782-A 3 03/09/93
  E04484   Prephenate dehydratase   Sotouchi,N.et al.“Production of L-phenylalanine by fermentation,”Patent:JP   1993076352-A 2 03/30/93
  E05108   Aspartokinase   Fugono,N.et al.“Gene DNA coding Aspartokinase and its use,”Patent:JP   1993184366-A 1 07/27/93
  E05112   Dihydro-dipichorinate synthetase   Hatakeyama,K.et al.“Gene DNA coding dihydrodipicolinic acid synthetase   and its use,”Patent:JP 1993184371-A 1 07/27/93
  E05776   Diaminopimelic acid dehydrogenase   Kobayashi,M.et al.“Gene DNA coding Diaminopimelic acid dehydrogenase   and its use,”Patent:JP 1993284970-A 1 11/02/93
  E05779   Threonine synthase   Kohama,K.et al.“Gene DNA coding threonine synthase and its use,”Patent:   JP 1993284972-A 1 11/02/93
  E06110   Prephenate dehydratase   Kikuchi,T.et al.“Production of L-phenylalanine by fermentation method,”     Patent:JP 1993344881-A 1 12/27/93
  E06111   Mutated Prephenate dehydratase   Kikuchi,T.et al.“Production of L-phenylalanine by fermentation method,”     Patent:JP 1993344881-A1 12/27/93
  E06146   Acetohydroxy acid synthetase   Inui,M.et al.“Gene capable of coding Acetohydroxy acid synthetase and its   use,”Patent:JP 1993344893-A 1 12/27/93
  E06825   Aspartokinase   Sugimoto,M.et al.“Mutant aspartokinase gene,”patent:JP 1994062866-A 1   03/08/94
  E06826   Mutated aspartokinase alpha subunit   Sugimoto,M.et al.“Mutant aspartokinase gene,”patent:JP 1994062866-A 1   03/08/94
Table 2 (continued)
 E06827  Mutated aspartokinase alpha subunit  Sugimoto,M.et al.“Mutant aspartokinase gene,”patent:JP 1994062866-A 1  03/08/94
 E07701  secY  Honno,N.et al.“Gene DNA participating in integration of membraneous  protein to membrane,”Patent:JP 1994169780-A 1 06/21/94
 E08177  Aspartokinase  Sato,Y.et al.“Genetic DNA capable of coding Aspartokinase released from  feedback inhibition and its utilization,”Patent:JP 199426 1766-A 1 09/20/94
 E08178,  E08179,  E08180,  E08181,  E08182  Feedback inhibition-released Aspartokinase  Sato,Y.et al.“Genetic DNA capable of coding Aspartokinase released from  feedback inhibition and its utilization,”Patent:JP 1994261766-A 1 09/20/94
 E08232  Acetohydroxy-acid isomeroreductase  Inui,M.et al、“Gene DNA coding acetohydroxy acid isomeroreductase,”   Patent:JP 1994277067-A 1 10/04/94
 E08234  secE  Asai,Y.et al.“Gene DNA coding for translocation machinery of protein,”   Patent:JP 1994277073-A 1 10/04/94
 E08643  FT aminotransferase and desthiobiotin  synthetase promoter region  Hatakeyama,K.et al.“DNA fragment having promoter function in  coryneform bacterium,”Patent:JP 1 99503 1 476-A 1 02/03/95
 E08646  Biotin synthetase  Hatakeyama,K.et al.“DNA fragment having promoter function in  coryneform bacterium,”Patent:JP 1995031476-A 1 02/03/95
 E08649  Aspartase  Kohama,K.et al“DNA fragment having promoter function in coryneform  bacterium,”Patent:JP 1995031478-A 1 02/03/95
 E08900  Dihydrodipicolinate reductase  Madori,M.et al.“DNA fragment containing gene coding Dihydrodipicolinate   acid reductase and utilization thereof,”Patent:JP 1995075578-A 1 03/20/95
 E08901  Diaminopimelic acid decarboxylase  Madori,M.et al.“DNA fragment containing gene coding Diaminopimelic acid  decarboxylase and utilization thereof,”Patent:JP 1995075579-A1 03/20/95
 E12594  Serine hydroxymethyltransferase  Hatakeyama,K.et al.“Production of L-trypophan,”Patent:JP 1997028391-A  1 02/04/97
 E12760,  E12759,  E12758  transposase  Moriya,M.et al.“Amplification of gene using artificial transposon,”Patent:  JP 199707029l-A 03/18/97
 E12764  Arginyl-tRNA synthetase;diaminopimelic  acid decarboxylase  Moriya,M.et al.“Amplification of gene using artificial transposon,”Patent:  JP 199707029l-A 03/18/97
 E12767  Dihydrodipicolinic acid synthetase  Moriya,M.et al.“Amplification of gene using artificial transposon,”Patent:  JP 199707029l-A 03/18/97
 E12770  aspartokinase  Moriya,M.et al.“Amplification of gene using artificial transposon,”Patent:  JP 1997070291-A 03/18/97
 E12773  Dihydrodipicolinic acid reductase  Moriya,M.et al.“Amplification of gene using artificial transposon,”Patent:  JP 1997070291-A 03/18/97
Table 2 (continued)
  E13655   Glucose-6-phosphate dehydrogenase   Hatakeyama,K.et al.“Glucose-6-phosphate dehydrogenase and DNA capable    of coding the same,”Patent:JP 199722461-A 1 09/02/97
  L01508   IlvA   Threonine dehydratase   Moeckel,B.et al.“Functional and strctural analysis of the threonine   dehydratsae of Corynebacterium glutamicum,”J.Bacteriol.,174:8065-8072   (1992)
  L07603   EC4.2.1.15   3-deoxy-D-arabinoheptulosonate-7-   phosphate synthase   Chen,C.et al.“The cloning and nucleotide sequence of Corynebacterium   glutamicum 3-deoxy-D-arabinoheptulosonatee-7-phosphate synthase gene,”     FEMS Microbiol.Len.,107:223-230(1993)
  L09232   IlvB;ilvN;ilvC   Acetohydroxy acid synthase large subunit;   Acetohydroxy acid synthase small subunit;   Acetohydroxy acid isomeroreductase   Keilhauer,C.et al.“lsoleucine synthesis in Corynebacterium glutamicum:   molecular analysis of the ilvB-ilvN-ilvC operon,”J.Bacteriol.175(17):5595-   5603(1993)
  L18874   PtsM   Phosphoenolpyruvate sugar   phosphotransferase   Fouet,A et al.“Bacillus subtilis sucrose-specific enzyme II of the   phosphotransferase system:expression in Escherichia coli and homology to   enzymes II from enteric bacteria,”PNAS USA,84(24):8773-8777(1987);Lee,   J.K.et al.“Nucleotide sequence of the gene encoding the Corynebacterium   glutamicum mannose enzyme II and analyses of the deduced protein   sequence,”FEMS Microbiol.,119(1-2):137-145(1994)
  L27123   aceB   Malate synthase   Lee,H-S.et al.“Molecular characterization of aceB,a gene encoding malate   synthase in Corynebacterium glutamicum,”J.Microbiol.Bioiechnol.,   4(4):256-263(1994)
  L27126   Pyruvate kinase   Jetten,M.S.et al.“Structural and functional analysis of pyruvate kinase from   Corynebacterium glutamicum,”Appl.Environ.Microbiol.,60(7):2501-2507   (1994)
  L28760   aceA   Isocitrate lyase
  L35906   dtxr   Diphtheria toxin repressor   Oguiza,J.A.et al.“Molecular cloning,DNA sequence analysis,and   characterization ofthe Corynebacterium diphtheriae dtxR from Brevibacterium   lactofermentum,”J.Bacteriol,177(2):465-467(1995)
  M13774   Prephenate dehydratase   Follettie,M.T.et al.“Molecular cloning and nucleotide sequence of the   Corynebacterium glutamicum pheA gene,”J.Bacteriol.,167:695-702(1986)
  M16175   5SrRNA   Park,Y-H.et al.“Phylogenetic analysis of the coryneform bacteria by 56   rRNA sequences,”J.Bacteriol.,169:1801-1806(1987)
  M16663   trpE   Anthranilate synthase,5’end   Sano,K.et al.“Structure and function of the trp operon control regions of   Brevibacterium lactofermentum,a glutamic-acid-producing bacterium,”Gene,   52:191-200(1987)
  M16664   trpA   Tryptophan synthase,3’end   Sano,K.et al.“Structure and function of the trp operon control regions of   Brevibacterium lactofermentum,a glutamic-acid-producing bacterium,”Gene   52:191-200(1987)
Table 2 (continued)
M25819  Phosphoenolpyruvate carboxylase  O’Regan,M.et al.“Cloning and nucleotide sequence of the  Phosphoenolpyruvate carboxylase-coding gene of Corynebacterium  glutamicum ATCC13032,”Gene,77(2):237-251(1989)
M85106  23S rRN A gene insertion sequence  Roller,C.et al.“Gram-positive bacteria with a high DNA G+C content are  characterized by a common insertion within their 23S rRNA genes,”J.Gen.  Microbiol.,138:1167-1175(1992)
M85107, M85108  23S rRNA gene insertion sequence  Roller,C.et al.“Gram-positive bacteria with a high DNA G+C content are  characterized by a common insertion within their 23S rRNA genes,”J.Gen.  Microbiol.,138:1167-1175(1992)
M89931  aecD;brnQ;yhbw  Beta C-S lyase;branched-chain amino acid  uptake carrier;hypothetical protein yhbw  Rossol,I.et al.“The Corynebacterium glutamicum aecD gene encodes a C-S  lyase with alpha,beta-elimination activity that degrades aminoethylcysteine,”   J.Bacteriol.,174(9):2968-2977(1992);Tauch,A.et al.“Isoleucine uptake in   Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene   product,”Arch.Microbiol.,169(4):303-312(1998)
S59299  trp  Leader gene(promoter)  Herry,D.M.et al.“Cloning of the trp gene cluster from a tryptophan-  hyperproducing strain of Corynebacterium glutamicum:identification of a  mutation in the teader sequence,”Appl.Environ.Microbiol.,59(3):791-799  (1993)
U11545  trpD  Anthranilate phosphoribosyltransferase  O’Gara,J.P.and Dunican,L.K.(1994)Complete nucleotide sequence of the  Corynebacterium glutamicum ATCC 21850 tpD gene.”Thesis,Microbiology  Department,University College Galway,Ireland.
U13922  cglIM;cglIR;clgIIR Putative type II 5-cytosoine  methyltransferase;putative type II  restriction endonuclease;putative type I or  type III restriction endonuclease  Schafer,A.et al.“Cloning and characterization of a DNA region encoding a  stress-sensitive restriction system from Corynebacterium glutamicum ATCC  13032 and analysis of its role in intergeneric conjugation with Escherichia  coli,”J.Bacteriol,176(23):7309-7319(1994);Schafer,A.et al.“The  Corynebacterium glutamicum cglIM gene encoding a 5-cytosine in an McrBC-  deficient Escherichia coli strain,”Gene,203(2):95-101(1997)
U14965  recA
U31224  ppx  Ankri,S.et al.“Mutations in the Corynebacterium glutamicumproline  biosynthetic pathway:A natural bypass of the proA step,”J.Bacteriol.,  178(15):4412-4419(1996)
U31225  proC  L-proline:NADP+5-oxidoreductase  Ankri,S.et al.“Mutations in the Corynebacterium glutamicumproline  biosynthetic pathway:A natural bypass of the proA step,”J.Bacteriol.,  178(15):4412-4419(1996)
U31230  obg;proB;unkdh  ?;gamma glutamyl kinase;similar to D-  isomer specific 2-hydroxyacid  dehydrogenases  Ankri,S.et al.“Mutations in the Corynebacterium glutamicumproline  biosynthetic pathway:A natural bypass of the proA step,”J.Bacteriol.,  178(15):4412-4419(1996)
Table 2 (continued)
 U31281  bioB  B iotin synthase  Serebriiskii,l.G.,“Two new members of the bio B superfamily:Cloning,  sequencing and expression of bio B genes of Methylobacillus flagellatum and   Corymebacterium glutamicum,”Gene,175:15-22(1996)
 U35023  thtR;accBC  Thiosulfate sulfurtransferase;acyl CoA  carboxylase  Jager,W.et al.“A Corynebacterium glutamicum gene encoding a two-domain  protein simlar to biotin carboxylases and biotin-carboxyl-carrier proteins,”   Arch.Microbiol.,166(2);76-82(1996)
 U43535  cmr  Multidrug resistance protein  Jager,W.et al.A“Corynebacterium glutamicum gene conferring multidrug   resistance in the heterologous host Escherichia coli,”J.Bacteriol.,  179(7):2449-2451(1997)
 U43536  clpB  Heat shock ATP-binding protein
 U53587  aphA-3  3’5”-aminoglycoside phosphotransferase
 U89648  Corynebacterium glutamicum unidentified  sequence involved in histidine biosynthesis,  partial sequence
 X04960  trpA;trpB;trpC;trpD;  trpE;trpG;trpL  Tryptophan operon  Matsui,K.et al.“Complete nuleotide and deduced amino acid sequences of   the Brevibacterium lactofermentum tryptophan operon,”Nucleic Acids Res.,  14(24):10113-10114(1986)
 X07563  lys A  DAP decarboxylase(meso-diaminopimelate  decarboxylase,EC 4.1.1.20)  Yeh,P.et al.”Nucleic sequence of the lysA gene of Corynebacterium  glutamicum,and possible mechanisms for modulation of its expression,”Mol.   Gen.Genet.,212(1):112-119(1988)
 X14234  EC4.1.1.31  Phosphooenolpyruvate carboxylase  Eikmanns,B.J.et al.“The Phosphoenolpyruvate carboxylase gene of  Corynebacterium glutamicum:Molecular cloning,nucleotide sequence,and  expression,”Mol. Gen.Genet.,218(2):330-339(1989);Lepiniec,L.et al.  “Sorghum Phosphoenolpyruvate carboxylase gene family:structure,function  and molecular evolution,”Plant.Mol.Biol.,21(3):487-502(1993)
 X17313  fda  Fructose-bisphosphate aldolase  Von der Osten,C.H.et al.“Molecular cloning,nucleotide sequence and fine-  structural analysis of the Corynebacterium glutamicum fda gene:structural  comparison of C.glutamicum fructose-1,6-biphosphate aldolase to class I and  class II aldolases,”Mol. Microbiol.,
 X53993  dapA  L-2,3-dihydrodipicolinate synthetase(EC  4.2.1.52)  Bonnassie,S.et al.“Nucleic sequence of the dapA gene from  Corynebacterium glutamicum,”Nucleic Acids Res.,18(21):6421(1990)
 X54223  AttB-related site  Cianciotto,N.et al“DNA sequence homology between att B-related sites of  Corynebacterium diphtheriae,Corynebacterium ulcerans,Corynebacterium  glutamicum,and the attP site of lambdacorynephage,”FEMS.Microbiol,  Lett.,66:299-302(1990)
 X54740  argS;lysA  Arginyl-tRNA synthetase;Diam inopimelate  decarboxylase  Marcel,T.et al.“Nucleotide sequence and organization of the upstream region  of the Corynebactetium glutamicum lysA gene,”Mol.Microbiol.,4(11):1819-  1830(1990)
Table 2 (continued)
X55994  trpL;trpE  Putative leader peptide;anthranilate  synthase component I  Heery,D.M.et al.“Nucleotide sequence of the Corynebacterium glutamicum  trpE gene,”Nucleic Acids Res.,18(23):7138(1990)
X56037  thrC  Threonine synthase  Han,K.S.et al.“The molecular structure of the Corynebacterium glutamicum  threonine synthase gene,”Mol.Microbiol.,4(10):1693-1702(1990)
X56075  attB-related site  Attachment site  Cianciotto,N.et al.“DNA sequence homology between att B-related sites of  Corynebacterium diphtheriae,Corynebacterium ulcerans,Corynebacterium  glutamicum,and the attP site of lambdacorynephage,”FEMS.Microbiol.  Lett.,66:299-302(1990)
X57226  lysC-alpha;lysC-beta;  asd  Aspartokinase-alpha subunit;  Aspartokinase-beta subunit;aspartate beta  semialdehyde dehydrogenase  Kalinowski,J.et al.“Genetic and biochemical analysis of the Aspartokinase  from Corynebacterium glutamicum,”Mol.Microbiol.,5(5):1197-1204(1991);  Kalinowski,J.et al.“Aspartokinase genes lysC alpha and lysC beta overlap   and are adjacent to the asperate beta-semialdehyde dehydrogenase gene asd in  Corynebacterium glutamicum,”Mol.Gen.Genet.,224(3):317-324(1990)
X59403  gap;pgk;tpi  Glyceraldehyde-3-phosphate;  phosphoglycerate kinase;triosephosphate  isomerase  Eikmanns,B.J.“Identitication,sequence analysis,and expression of a  Corynebacterium glutamicum gene cluster encoding the three glycolytic  enzymes glyceraldehyde-3-phosphate dehydrogenase,3-phosphoglycerate  kinase,and triosephosphate isomeras,”J.Bacteriol.,174(19):6076-6086  (1992)
X59404  gdh  Glutamate dehydrogenase  Bormann,E.R.et al.“Molecular analysis of the Corynebacterium glutamicum  gdh gene encoding glutamate dehydrogenase,”Mol.Microbiol.,6(3):317-326  (1992)
X60312  lys1  L-lysine permase  Seep-Feldhaus,A.H.et al.“Molecular analysis of he Corynebacterium  glutamicum lysl gene involved in lysine uptake,”Mol.Microbiol.5(12):2995-  3005(1991)
X66078  cop1  Psl protein  Joliff,G.et al.“Cloning and nucleotide sequence of the csp1 gene encoding  PS1,one ofthe two major secreted proteins of Corynebacterium glutamicum:  The deduced N-terminal region of PS1 is similar to the Mycobacterium antigen  85 complex,”Mol.Microbiol.,6(16):2349-2362(1992)
X66112  glt  Citrate synthase  Eikmanns,B.J.et al.“Cloning sequence,expression and transcriptional  analysis of the Corynebacterium glutamicum gltA gene encoding citrate  synthase,”Microbiol.,140:1817-1828(1994)
X67737  dapB  Dihydrodipicolinate reductase
X69103  csp2  Surface layer protein PS2  Peyret,J.L.et al.“Characterization of the cspB gene encoding PS2,an ordered  surface-layer protein in Corynebacterium glutamicum,”Mol.Microbiol.,  9(1):97-109(1993)
X69104  IS3 related insertion element  Bonamy,C.et al.“Identification of IS1206,a Corynebacterium glutamicum  IS3-related insertion sequence and phylogenetic analysis,”Mol.Microbiol.,  14(3):571-581(1994)
Table 2 (continued)
X70959  leuA  Isopropylmalate synthase  Patek,M.et al.“Leucine synthesis in Corynebacterium glutamicum:enzyme  activities,structure of leuA,and effect of leuA inactivation on lysine  synthesis,”Appl.Environ.Microbiol.,60(1):133-140(1994)
X71489  icd  Isocitrate dehydrogenase(NADP+)  Eikmanns,B.J.et al.“Cloning sequence analysis,expression,and inactivation  of the Corynebacterium glutamicum icd gene encoding isocitrate  dehydrogenase and biochemical characterization of the enzyme,”J.Bacteriol.,  177(3):774-782(1995)
X72855  GDHA  Glutamate dehydrogenase(NADP+)
X75083, X70584  mtrA  5-methyltryptophan resistance  Heery,D.M.et al.“A sequence from a tryptophan-hyperproducing strain of  Corynebacterium glutamicum encoding resistance to 5-methyltryptophan,”   Biochem.Biophys.Res.Commun.,201(3):1255-1262(1994)
X75085  recA  Fitzpatrick,R.et al.“Construction and characterization of recA mutant strains  of Corynebacterium glutamicum and Brevibacterium lactofermentum,”Appl.  Microbiol.Biotechnol.,42(4):575-580(1994)
X75504  aceA;thiX  Partial Isocitrate lyase;?  Reinscheid,D.J.et al.“Characterization of the isocitrate lyase gene from  Corynebacterium glutamicum and biochemical analysis of the enzyme,”J.  Bacteriol.,176(12):3474-3483(1994)
X76875  ATPase beta-subunit  Ludwig,W.et al.“Phylogenetic relationships of bacteria based on comparative  sequence analysis of elongation factor Tu and ATP-synthase beta-subunit  genes,”Antonie Van Leeuwenhoek,64:285-305(1993)
X77034  tuf  Elongation factor Tu  Ludwig,W.et al.“Phylogenetic relationships of bacteria based on comparative  sequence analysis of elongation factor Tu and ATP-synthase beta-subunit  genes,”Antonie Van Leeuwenhoek,64:285-305(1993)
X77384  recA  Billman-Jacobe,H.“Nucleotide sequence ofa recA gene from  Corynebacterium glutamicum,”DNA Seq.,4(6):403-404(1994)
X78491  aceB  Malate synthase  Reinscheid,D.J.et al.“Malate synthase from Corynebacterium glutamicum  pta-ack operon encoding phosphotransacetylase:sequence analysis,”   Microbiology,140:3099-3108(1994)
X80629  16S rDNA  16S ribosomal RNA  Rainey,F.A.et al.“Phylogenetic analysis of the genera Rhodococcus and  Norcardia and evidence for the evolutionary origin of the genus Norcardia  from within the radiation of Rhodococcus species,”Microbiol.,141:523-528  (1995)
X81191  gluA;gluB;gluC;  gluD  Glutamate uptake system  Kronemeyer,W.et al.“Structure of the gluABCD cluster encoding the  glutamate uptake system of Corynebacterium glutamicum,”J.Bacteriol.,  177(5):1152-1158(1995)
X81379 dapE  Succinyldiaminopimelate desuccinylase  Wehrmann,A.et al.“Analysis of different DNA fragments of   Corynebacterium glutamicum complementing dapE of Escherichia coli,”   Microbiology,40:3349-56(1994)
Table 2 (continued)
 X82061  16S rDNA  16S ribosomal RNA Ruimy,R.et al.“Phylogeny of the genus Corynebacterium deduced from alyses of small-subunit ribosomal DNA sequences,”Int.J.Syst.Bacteriol., 45(4):740-746(1995)
 X82928  asd;lysC  Aspartate-semialdehyde dehydrogenase;? Serebrijski,I.et al.“Multicopy suppression by asd gene and osmotic stress- dependent complementation by heterologous proA in proA mutants,”J. Bacteriol.,177(24):7255-7260(1995)
 X82929  proA  Gamma-glutamyl phosphate reductase Serebrijski,1.et al.“Multicopy,suppression by asd gene and osmotic stress- dependent complementation by heterologous proA in proA mutants,”J. Bacteriol.,177(24):7255-7260(1995)
 X84257  16S rDNA  16S ribosomal RNA Pascual,C.et al.”Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences,”Int.J.Syst.Bacteriol.,45(4):724-728(1995)
 X85965  aroP;dapE  Aromatic amino acid permease;? Wehrmann et al.“Functional analysis of sequences adjacent to dapE of C. glutamicum proline reveals the presence of aroP,which encodes the aromatic amino acid transporter,”J.Bacteriol.,177(20):5991-5993(1995)
 X86157  argB;argC;argD;  argF;argJ  Acetylglutamate kinase;N-acetyl-gamma-  glutamyl-phosphate reductase;  acetylornithine aminotransferase;omithine  carbamoyltransferase;glutamate N-  acetyltransfeferase Sakanyan,V.et al.“Genes and enzymes of the acetyl cycleof arginine biosynthesis in Corynebacterium glutamicum:enzyme evolution in the early steps of the arginine pathway,”Microbiolgy,142:99-108(1996)
 X89084  pta;ackA  Phosphate acetyltransferase;acetate kinase Reinschheid,D.J.et al.“Cloning,sequence analysis,expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding  phosphotransacetylase and acetate kinase,”Microbiology,145:503-513(1999)
 X89850  attB  Attachment site Le Marrec,C.et al.“Genetic characterization of site-specific integration  functions of phi AAU2 infecting”Arthrobacter aureus C70,”J.Bacteriol., 178(7):1996-2004(1996)
 X90356  Promoter fragment F1 Patek,M.et al.“Promoters from Corynebacterium glutanicum:cloning, molecular analysis and search for a consensus motif,”Microbiology, 142:1297-1309(1996)
 X90357  Promoter fragment F2 Patek,M.et al.“Promoters from Corynebacterium glutanicum:cloning, molecular analysis and search for a consensus motif,”Microbiology, 142:1297-1309(1996)
 X90358  Promoter fragment F10 Patek,M.et al.“Promoters from Corynebacterium glutamicum:cloning, molecular analysis and search for a consensus motif,”Microbiology, 142:1297-1309(1996)
 X90359  Promoter fragment F13 Patek,M.et al.“Promoters from Corynebacterium glutamicum:cloning, molecular analysis and search for a consensus motif,”Microbiology, 142:1297-1309(1996)
Table 2 (continued)
X90360 Promoter fragment F22 Patek,M.et al.“Promoters from Corymebacterium glutamicum:cloning, molecular analysis and search for a consensus motif,”Microbiology, 142:1297-1309(1996)
X90361 Promoter fragment F34 Patek,M.et al.“Promoters from Corynebacterium glutamicum:cloning, molecular analysis and search for a consensus motif,”Microbiology, 142:1297-1309(1996)
X90362 Promoter fragment F37 Patek,M.et al.“Promotets from C.glutamicum:cloning,molecular analysis  and search for a consensus motif,”Microbiology, 142:1297-1309(1996)
X90363 Promoter fragment F45 Patek,M.et al.“Promoters from Corynebacterium glutamicum:cloning, molecular analysis and search for a consensus motif,”Microbiology, 142:1297-1309(1996)
X90364 Promoter fragment F64 Patek,M.et al.“Promoters from Corynebacterium glutamicum:cloning, molecular analysis and search for a consensus motif,”Microbiology, 142:1297-1309(1996)
X90365 Promoter fragment F75 Patek,M.et al.“Promoters from Corynebacterium glutamicum:cloming, molecular analysis and search for a consensus motif,”Microbiology, 142:1297-1309(1996)
X90366 Promoter fragment PF101 Patek,M.et al.“Promoters from Corynebacterium glutamicum:cloning, molecular analysis and search for a consensus motif,”Microbiology, 142:1297-1309(1996)
X90367 Promoter fragment PF104 Patek,M.et al.“Promoters from Corynebacterium glutamicum:cloning, molecular analysis and search for a consensus motif,”Microbiology, 142:1297-1309(1996)
X90368 Promoter fragment PF109 Patek,M.et al.“Promoters from Corynebacterium glutamicum:cloning, molecular analysis and search for a consensus motif,”Microbiology, 142:1297-1309(1996)
X93513  amt Ammonium transport system Siewe,R.M.et al.“Functional and genetic characterization of the(methyl)  ammonium uptake carrier of Corynebacterium glutamicum,”J.Biol.Chem., 271(10):5398-5403(1996)
X93514  betP Glycine betaine transport system Peter,H.et al.“Isolation,characterization,and expression of the Corynebacterium glutamicum betP gene,encoding the transport system for the  compatible solute glycine betaine,J.Bacteriol.,178(17):5229-5234(1996)
X95649  orf4 Patek,M.et al.“Identification and transcriptional analysis of the dapB-ORF2- dapA-ORF4 operon of Corynebacterium glutamicum,encoding two enaymes  involved in L-lysine synthesis,”Biotechnol.Lett.,19:1113-1117(1997)
X96471  lysE;lysG Lysine exporter protein;Lysine export regulator protein Vrljic,M.et al.“A new type of transporter with a new type of cellular function:L-lysine export from Corynebacterium glutamicum,”Mol. Microbiol,22(5):815-826(1996)
Table 2 (continued)
X96580  panB;panC;xylB  3-methy-2-oxobutanoate  hydroxymethyltransferase;pantoate-beta-  alanine ligase;xylulokinase  Sahm,H.et al.“D-pantothenate synthesis in Corynebacte rium glutamicum and  use of panBC and genes encoding L-valine synthesis for D-pantothenate  overproduction,”Appl.Environ.Microbiol.,65(5):1973-1979(1999)
X96962  Insertion sequence IS 1207 and transposase
X99289  Elongation factor P  Ramos,A.et al.“Cloning,sequencing and expression of gene encoding   elongation factor P in the amino-acid producer Brevibacterium lactofermentum  (Corynebacrerium glutamicum ATCC 13869),”Gene,198:217-222(1997)
Y00140  thrB  Homoserine kinase  Mateos,L.M.et al.“Nucleotide sequence of the homoserine kinase(thrB)gene   of the Brevibacterium lactofermentum,”Nucleic Acids Res.,15(9):3922(1987)
Y00151  ddh  Meso-diaminopimelate D-dehydrogenase  (EC 1.4.1.16)  Ishino,S.et al.“Nucleotide sequence of the meso-diaminopimelate D-  dehydrogenase gene from Corynebacterium glutamicum,”Nucleic Acids Res.,  15(9):3917(1987)
Y00476  thrA  Homoserine dehydrogenase  Mateos,L.M.et al.“Nucleotide sequence of the homoserine dehydrogenase  (thrA)gene of the Brevibacterium lactofermentum,”Nucleic Acids Res.,  15(24):10598(1987)
Y00546  hom;thrB  Homoserine dehydrogenase;homoserine  kinase  Peoples,O.P.et al.“Nucleotide sequence and fine structural analysis of the  Corynebacterium glutamicum hom-thrB operon,”Mol.Microbiol.,2(1):63-72  (1988)
Y08964  murC;ftsQ/divD;ftsZ  UPD-N-acetylmuramate-alanine ligase;  division initiation protein or cell division  protein;cell division protein  Honrubia,M.P.et al.“Identification,characterization,and chromosomal  organization of the ftsZ gene from Brevibacterium lactofermentum,”Mol.Gen.  Genet.,259(1):97-104(1998)
Y09163  putP  High affinity proline transport system  Peter,H.et al.“Isolation of the putP gene of Corynebacterium  glutamicumproline and characterization of a low-affinity uptake system for  compatible solutes,”Arch.Microbiol.,168(2):143-151(1997)
Y09548  pyc  Pyruvate carboxylase  Peters-Wendisch,P.G.et al.“Pyruvate carboxylase from Corynebacterium  glutamicum:characterization,expression and inactivation of the pyc gene,”   Microbiology,144:915-927(1998)
Y09578  leuB  3-isopropylmalate dehydrogenase  Patek,M.et al.“Analysis of the leuB gene from Corynebacterium  glutamicum,”Appl.Microbiol.Biotechnol,50(1):42-47(1998)
Y12472  Attachmentsite bacteriophage Phi-16  Moreau,S.et al.“Site-specific integration of corynephage Phi-16:The  construction of an integration vector,”Microbiol.,145:539-548(1999)
Y12537  proP  Proline/ectoine uptake system protein  Peter,H.et al.“Corynebacterium glutamicum is equipped with four secondary  carriers for compatible solutes:ldentification,sequencing,and characterization  of the prolinee/ectoine uptake system,ProP,and the ectoine/proline/glycine   betaine carrier,EctP,”J.Bacteriol.,180(22):6005-6012(1998)
Table 2 (continued)
 Y13221  glnA  Glutamine synthetase I  Jakoby,M.et al.“Isolation of Corynebacte rium glutamicum glnA gene  encoding glutamine synthetase I,”FEMS Microbiol.Lett.,154(1):81-88(1997)
 Y16642  lpd  Dihydrolipoamide dehydrogenase
 Y18059  Attachment site Corynephage 304L  Moreau,S.et al.“Analysis of the integration functions of φ304L:An  integrase module among corynephages,”Virology,255(1):150-159(1999)
 Z21501  argS;lysA  Arginyl-tRNA synthetase;diaminopimelate  decarboxylase(partial)  Oguiza,J.A.et al“A gene encoding arginyl-tRNA synthetase is located in the  upstream region of the lysA gene in Brevibacterium lactofermentum:  Regulation of argS-lysA cluster expression by arginine,”J.  Bacteriol.,175(22):7356-7362(1993)
 Z21502  dapA;dapB  Dihydrodipicolinate synthase;  dihydrodipicolinate reductase  Pisabarro,A.et al.“A cluster of three genes(dapA,orf2,and dapB)of  Brevibacterium lactofermentum encodes dihydrodipicolinate reductase,and a  third polypeptide of unknown function,”J.Bacteriol.,175(9):2743-2749  (1993)
 Z29563  thrC  Threonine synthase  Malumbres,M.et al.“Analysis and expression of the thrC gene of the encoded  threonine synthase,”Appl.Environ.Microbiol.,60(7)2209-2219(1994)
 Z46753  16S rDNA  Gene for 16S ribosomal RNA
 Z49822  sigA  SigA sigma factor  Oguiza,J.A.et al“Multiple sigma factor genes in Brevibacterium  lactofermentum:Characterization of sigA and sigB,”J.Bacteriol.,178(2):550-  553(1996)
 Z49823  galE;dtxR  Catalytic activity UDP-galacrose 4-  epimerase;diphtheria toxin regulatory  protein  Oguiza,J.A.et al“The galE gene encoding the UDP-galactose 4-epimerase of  Brevibacterium lactofermentum is coupled transcriptionally to the dmdR  gene,”Gene,177:103-107(1996)
 Z49824  orf1;sigB  ?;SigB sigma factor  Oguiza,J.A.et al“Multiple sigma factor genes in Brevibacterium  lactofermentum:Characterization of sigA and sigB,”J.Bacteriol.,178(2):550-  553(1996)
 Z66534  Transposase  Correia,A.et al.“Cloning and characterization of an IS-like element presentin  the genome of Brevibacterium lactofermentum ATCC 13869,”Gene,  170(1):91-94(1996)
The gene sequences in the cited references have been disclosed. However, the present inventors disclosed a sequence obtained was compared to the sequence length. Speculate publicly initiation codon sequence error, therefore only Actual fragment of the coding region.
Table 3: can be used in the practice of the invention, Corynebacterium and Brevibacterium
Generic name Species     ATCC FERM  NRRL CECT NCIMB  CBS NCTC DSMZ
 Brevibacterium  ammoniagenes     21054
 Brevibacterium  ammoniagenes     19350
 Brevibacterium  ammoniagenes     19351
 Brevibacterium  ammoniagencs     19352
 Brevibacterium  ammoniagenes     19353
 Brevibacterium  ammoniagenes     19354
 Brevibacterium  ammoniagenes     19355
 Brevibacterium  ammoniagenes     19356
 Brevibacterium  ammoniagenes     21055
 Brevibacterium  ammoniagenes     21077
 Brevibacterium  ammoniagenes     21553
 Brevibacterium  ammoniagenes     21580
 Brevibacterium  ammoniagenes     39101
 Brevibacterium  butanicum     21196
 Brevibacterium  divaricatum     21792  P928
 Brevibacterium  flayum     21474
 Brevibacterium  flavum     21129
 Brevibacterium  flavum     21518
 Brevibacterium  flavum  B11474
 Brevibacterium  flavum  B11472
 Brevibacterium  flavum     21127
 Brevibacterium  flavum     21128
 Brevibaeterium  flavum     21427
 Brevibacterium  flavum     21475
 Brevibacterium  flavum     21517
 Brevibacterium  flavum     21528
 Brevibacterium  flavum     21529
 Brevibacterium  flavum  B11477
 Brevibacterium  flavum  B11478
 Brevibacterium  flavum     21127
 Brevibacterium  flavum  B11474
 Brevibacterium  healii     15527
 Brevibacterium  ketoglutamicum     21004
 Brevibacterium  ketoglutamicum     21089
 Brevibacterium  ketosoreductum     21914
 Brevibacterium  lactofermentum     70
 Brevibacterium  lactofermentum     74
 Brevibacterium  lactofermentum     77
 Brevibacterium  lactofermentum     21798
 Brevibacterium  lactofermentum     21799
 Brevibacterium  lactofermentum     21800
 Brevibacterium  lactofermentum     21801
 Brevibacterium  lactofermentum  B11470
 Brevibacterium  lactofermentum  B11471
Generic name Species     ATCC FERM  NRRL CECT  NCIMB   CBS NCTC DSMZ
 Brevibacterium lactofermentum     21086
 Brevibacterium lactofermentum     21420
 Brevibacterium lactofermentum     21086
 Brevibacterium lactofermentum     31269
 Brevibacterium linens     9174
 Brevibacterium linens     19391
 Brevibacterium linens     8377
 Brevibacterium paraffinolyticum  11160
 Brevibacterium spec.  717.73
 Brevibacterium spec.  717.73
 Brevibacterium spec.     14604
 Brevibacterium spcc.     21860
 Brevibacterium spec.     21864
 Brevibacterium spec.     21865
 Brevibacterium spec.     21866
 Brevibacterium spec.     19240
 Corynebacterium acetoacidophilum     21476
 Corynebactcrium acetoacidophilum     13870
 Corynebacterium acetoglutamicum  B11473
 Corynebacterium acetoglutamicum  B11475
 Corynebacterium acetoglutamicum     15806
 Corynebacterium acetoglutamicum     21491
 Corynebacterium acetoglutamicum     31270
 Corynebacterium acetophilum  B3671
 Corynebacterium ammoniagenes     6872  2399
 Corynebacterium ammoniagenes     15511
 Corynebacterium fujiokense     21496
 Corynebacterium glutamicum     14067
 Corynebacterium glutamicum     39137
 Corynebacterium glutamicum     21254
 Corynebacterium glutamicum     21255
 Corynebacterium glutamicum     31830
 Corynebacterium glutamicum     13032
 Corynebacterium glutamicum     14305
 Corynebacterium glutamicum     15455
 Corynebacterium glutamicum     13058
 Corynebacterium glutamicum     13059
 Corynebacterium glutamicum     13060
 Corynebacterium glutamicum     21492
 Corynebacterium glutamicum     21513
 Corynebacterium glutamicum     21526
 Corynebacterium glutamicum     21543
 Corynebacterium glutamicum     13287
 Corynebacterium glutamicum     21851
 Corynebacterium glutamicum     21253
 Corynebacterium glutamicum     21514
 Corynebacterium glutamicum     21516
 Corynebacterium glutamicum     21299
Generic name Species    ATCC FERM  NRRL CECT  NCIMB  CBS NCTC  DSMZ
 Corynebacterium  glutamicum    21300
 Corynebacterium  glutamicum    39684
 Corynebacterium  glutamicum    21488
 Corynebacterium  glutamicum    21649
 Corynebacterium  glutamicum    21650
 Corynebacterium  glutamicum    19223
 Corynebacterium  glutamicum    13869
 Corynebacterium  glutamicum    21157
 Corynebacterium  glutamicum    21158
 Corynebacterium  glutamicum    21159
 Corynebacterium  glutamicum    21355
 Corynebacterium  glutamicum    31808
 Corynebacterium  glutamicum    21674
 Corynebacterium  glutamicum    21562
 Corynebacterium  glutamicum    21563
 Corynebacterium  glutamicum    21564
 Corynebacterium  glutamicum    21565
 Corynebacterium  glutamicum    21566
 Corynebacterium  glutamicum    21567
 Corynebacterium  glutamicum    21568
 Corynebacterium  glutamicum    21569
 Corynebacterium  glutamicum    21570
 Corynebacterium  glutamicum    21571
 Corynebacterium  glutamicum    21572
 Corynebacterium  glutamicum    21573
 Corynebacterium  glutamicum    21579
 Corynebacterium  glutamicum    19049
 Corynebacterium  glutamicum    19050
 Corynebacterium  glutamicum    19051
 Corynebacterium  glutamicum    19052
 Corynebacterium  glutamicum    19053
 Corynebacterium  glutamicum    19054
 Corynebacterium  glutamicum    19055
 Corynebacterium  glutamicum    19056
 Corynebacterium  glutamicum    19057
 Corynebacterium  glutamicum    19058
 Corynebacterium  glutamicum    19059
 Corynebacterium  glutamicum    19060
 Corynebacterium  glutamicum    19185
 Corynebacterium  glutamicum    13286
 Corynebacterium  glutamicum    21515
 Corynebacterium  glutamicum    21527
 Corynebacterium  glutamicum    21544
 Corynebacterium  glutamicum    21492
 Corynebacterium  glutamicum   B8183
 Corynebacterium  glutamicum   B8182
 Corynebacterium  glutamicum   B12416
 Corynebacterium  glutamicum   B12417
Generic name Species   ATCC FERM  NRRL CECT  NCIMB  CBS NCTC  DSMZ
 Corynebacterium  glutamicum  B12418
 Corynebacterium  glutamicum  B11476
 Corynebacterium  glutamicum   21608
 Corynebacterium  lilium P973
 Corynebacterium  nitrilophilus   21419   11594
 Corynebacterium  spec. P4445
 Corynebacterium  spec. P4446
 Corynebacterium  spec.   31088
 Corynebacterium  spec.   31089
 Corynebacterium  spec.   31090
 Corynebacterium  spec,   31090
 Corynebacterium  spec.   31090
 Corynebacterium  spec.   15954  20145
 Corynebacterium  spec.   21857
 Corynebacterium  spec.   21862
 Corynebacterium  spec.   21863
ATCC: American Type Culture Collection, Rockville, MD, USA
FERM: Fermentation Research Institute, Chiba, Japan
NRRL: ARS Agricultural Research Institutions Collection, NRRL, Peoria, IL, USA
CECT: Spanish Type Culture Collection, Valencia, Spain
NCIMB: National Collection of Industrial and Marine Microorganisms Limited, Aberdeen, UK
CBS: Fungal Culture Collection, Baarn, NL
NCTC: National Type Culture Collection, London, UK
DSMZ: Deutsche Microorganismes, Braunschweig, Germany
See also Sugawara, H.et al. (1993) World directory of collections of cultures of microorganisms: Bacteria, fungi and yeasts (4th edn),World federation for culture collections world data center on microorganisms,Saimata,Japen.
Table 4: Sequence comparison results
ID# Length (NT) Hit Results Length Accession number Genbank Hit name Source Genbank Hit Homology (GAP) Warehousing Day
rxa00023       rxa00044             rxa00064               rxa00072 rxa00105       rxa00106           rxa00115            3579        1059              1401                  798        579            1170            GB_EST33:A1776129    GB_EST33:A1776129    EM_PAT:E11760      GB_PAT:126124    GB_BA2:ECOUW89    GB_PAT:E16763    GB_HTG2:AC007892      GB_HTG2:AC007892        GB_BA1:MTV002    GB_BA1:ECU29581  GB_BA2:AE000366  GB_EST15:AA494237      GB_BA2:AF161327    GB_PAT:AR041189  GB_PR4:AC007110    GB_HTG3:AC008537    GB_HTG3:AC008537   483   483   6911     6911   176195   2517   134257     13257       56414   71128 10405 367     2021   654 148336   170030   170030    A1776129    A1776129    E11760      126124    U00006    E16763    AC007892      AC007892        AL008967    U29581  AE000366  AA494237      AF161327    AR041189  AC007110    AC008537    AC008537    EST257217 tomato resistant,Cornell Lycopersicon esculentum cDNA clone  cLER17D3,mRNA sequence.  EST257217 tomato resistant,Cornell Lycopersicon esculentum cDNA clone  cLER17D3.mRNA sequence.  Base sequence of sucrase gene.      Sequence 4 from patent US 5556776.    E.coli chromosomal region from 89.2 to 92.8 minutes.    gDNA encoding aspartate transferase(AAT).    Drosophlia melanogaster chromosome 3 clone BACR02O03(D797)RPCI-98  02.0.3map 99B-99B strain y;cn bw sp,***SEQUENCING IN PROGRESS  ***,113 unordered pieces.  Drosophila melanogaster chromosome 3 clone BACR02O03(D797)RPC1-98  02.0.3map 99B-99B strain y;cn bw sp,***SEQUENCING IN  PROGRESS***,113 unordered pieces.    Mycobacterium tuberculosis H37Rv complete genome;segment 122/162.    Escherichia coli K-12 genome;approximately 63 to 64 minutes.  Escherichia coli K-12 MG1655 section 256 of 400 of the complete genome-  ng83f04.s1 NCI_CGAP_Pr6 Homo sapiens cDNA clone IMAGE:941407  similar to SW:DYR_LACCA P00381 DIHYDROFOLATE REDUCTASE;,  mRNA sequence.  Corynebacterium diphtheriae histidine kinase ChrS(chrS)and response  regulator ChrA(chrA)genes,complete cds.  Sequence 4 from patent US 5811286  Homo sapiens chromosome 17,clone hRPK.472_J_18,complete sequence.    Homo sapiens chromosome 19 clone CIT-HSPC_490E21.***SEQUENCING  IN PROGRESS***,93 unordered pieces.  Homo sapiens chromosome 19 clone CIT-HSPC_490E21.***SEQUENCING  IN PROGRESS***,93 unordered pieces.  Lycopersicon esculentum    Lycopersicon esculentum    Corynebacterium  glutamicum    Unknown.    Escherichia coli    Corynebacterium  glutamicum  Drosophila melanogaster      Drosophila melanogaster        Mycobacterium  tuberculosis  Escherichia coli  Escherichia coli  Homo sapiens      Corynebacterium  diphtheriae  Unknown  Homo sapiens    Homo sapiens    Homo sapiens    40,956    40,956    42,979      42,979    39,097    95,429    31,111      31,111        37,753    35,669  35,669  42,896      40,210    41,176  36,783    40,296    40,296     29-Jun-99     29-Jun-99     08-OCT-   1997(Rel.   52,Created)   07-OCT-   1996   17-DEC-   1993   28-Jul-99     2-Aug-99       2-Aug-99         17-Jun-98     14-Jan-97   12-Nov-98   20-Aug-97       9-Sep-99     29-Sep-99   30-MAR-   1999   2-Sep-99     2-Sep-99
Table 4 (continued)
 rxa00116                    rxa00131      rxa00132          rxa00145          rxa00146        rxa00147          rxa00156  1284                    732      1557          1059          1464        1302          1233  GB_BA2:AF062345     16458      AF062345            GB_PAT:118647       3300       118647    GB_GSS13:AQ44619    751        AQ446197  7  GB_BA1:MTY20B11     36330      Z95121  GB_BA1:SAR7932      15176      AJ007932  GB_BA1:MTY20B11     36330      Z95121  GB_BA1:MTY20B11     36330      Z95121  GB_IN2:TVU40872     1882       U40872  GB_HTG6:AC010706    169265     AC010706      GB_BA1:MTCY2B12     20431      Z81011    GB_BA1:PSEPYRBX     2273       L19649    GB_BA1:LLPYRBDNA    1468       X84262  GB_BA1:MTCY2B12     20431      Z81011  GB_BA1:MTCY154      13935      Z98209  GB_BA1:MSGY154      40221      AD000002  GB_BA1:MTCY2B12     20431      Z81011  GB_BA1:MSGB937C     38914      L78820  S  GB_BA1:PAU81259     7285       U81259    GB_BA1:SC9B10       33320      AL009204  Caulobacter crescentus Sst1(sst1),S-layer protein subunit(rsaA),ABC  transporter(rsaD),membrane forming unit(rsaE),putative GDP-mannose-4,6-  dehydratase(lpsA),putative acetyltransferase(lpsB),putative perosamine  synthetase(lpsC),putative mannosyltransferase(lpsD),putative  mannosyltransferase(lpsE),outer membrane protein(rsaF).and putative  perosamine transferase(lpsE)genes,complete cds.  Sequence 6 from patent US 5500353.  nbxb0062D16r CUGI Rice BAC Library Oryza sativa genomic clone  nbxb0062D16r,genomic survey sequence.  Mycobacterium tuberculosis H37Rv complete genome;segment 139/162.  Streptomyces argillaceus mithramycin biosynthetic genes.  Mycobacterium tuberculosis H37Rv complete genome;segment 139/162.  Mycobacterium tuberculosis H37Rv complete genome;segment 139/162.  Trichomonas vaginalis S-adenosyl-L-homocysteine hydrolase gene,complete  cds.  Drosophila melanogaster chromosome X clone BACR36D15(D887)RPC1-98  36.D.15 map 13C-13E strain y;cn bw sp, ***SEQUENCING IN PROGRESS   ***,74 unordered pieces.  Mycobacterium tuberculosis H37Rv complete genome;segment 61/162.  Pseudomonas aeruginosa aspartate transcarbamoylase(pyrB)and  dihydroorotase-like(pyrX)genes,complete cds’s.  L.leichmannii pyB gene.  Mycobacterium tuberculosis H37Rv complete genome;segment 61/162.  Mycobacterium tuberculosis H37Rv complete genome;segment 121/162.  Mycobacterium tuberculosis sequence from clone y154.  Mycobacterium tuberculosis H37Rv complete genome;segment 61/162.  Mycobacterium leprae cosmid B937 DNA sequence.  Pseudomonas aeruginosa dihydrodipicolinate reductase(dapB)gene,partial  cds.carbamoylphosphate synthetase small subunit(carA)and  carbamoylphosphate synthetase large subunit(carB)genes.complete cds.  and FtsJ homolog(ftsJ)gene.partia cds.  Streptomyces coelicolor cosmid 9B10.  Caulobacter crescentus  Unknown.  Oryza sativa  Mycobacterium  tuberculosis  Streptomyces argillaceus  Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Trichomonas vaginalis  Drosophila melanogaster  Mycobacterium  tuberculosis  Pseudomonas aeruginosa  Lactobacillus leichmannii  Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Mycobacltrium  tuberculosis  Mycobacterium  tuberculosis  Mycobacterium leprae  Pseudomonas aeruginosa  Streptomyces coelicotor  36,235  36,821  38,124  43,571  41,116  39,726  36,788  61,914  51,325  63,365  56,080  47,514  60,714  39,229  36,618  61,527  59.538  55,396  52,666   19-OCT-   1999   07-OCT-   1996   8-Apr-99   17-Jun-98   15-Jun-99   17-Jun-98   17-Jun-98   31-OCT-   1996   22-Nov-99   18-Jun-98   26-Jul-93   29-Apr-97   18-Jun-98   17-Jun-98   03-DEC-   1996   18-Jun-98   15-Jun-96   23-DEC-   1996   10-Feb-99
Table 4 (continued)
            rxa00166  783           rxa00198  672             rxa00216  1113             rxa00219  1065           rxa00223  1212         rxa00229  803         rxa00241  1626    GB_BA2:AF002133        GB_BA1:D85417    GB_HTG3:AC008167    GB_HTG3:AC008167    GB_HTG4:AC010118    GB_BA1:AB024708    GB_BA1:AB024708    GB_EST24:A1232702    GB_HTG2:HSDJ850E  9  GB_HTG2:HSDJ850E  9  GB_PR2:CNS01DSA      GB_HTG2:AC005079  _0  GB_HTG2:AC005079  _1  GB_HTG2:AC005079  _1  GB_BA1:PPEA3NIF  GB_BA2:AF128444    GB_HTG4:AC010111    GB_BA2:AF124518    GB_PR3:AC004593  GB_HTG2:AC006907    GB_BA1:CGLYSI  15437        7984    174223    174223    80605    8734    8734    528    117353    117353    159400      110000    110000    110000    19771  2477    138938    1758    150221  188972    4232 AF002133       D85417   AC008167   AC008167   AC010118   AB024708   AB024708   AI232702   AL121758   AL121758   AL121766     AC005079   AC005079   AC005079   X99694 AF128444   AC010111   AF124518   AC004593 AC006907   X60312   Mycobacterium avium strain GIR10 transcriptional regulator(mav81)gene, partial cds,aconitase(acn),invasin 1(inv1),invasin 2(inv2),transcriptional regulator(moxR),ketoacyl-reductase(fabG),enoyl-reductase(inhA)and ferrochelatase(mav272)genes,complete cds. Propionibacterium freudenreichii hemY,hemH,hemB,hemX,hemR and heml,genes,complete cds. Homo sapiens clone NH0172013,***SEQUENClNG IN PROGRESS***,7 unordered pieces. Homo sapiens clone NH0172013,***SEQUENCING IN PROGRESS***,7 unordered pieces. Drosophila melanogaster chromosome 3L/62B1 clone RPCI98-10D15,*** SEQUENCING IN PROGRESS***,51 unordered pieces. Corynebacterium glutamicum gltB and gltD genes for glutamine 2- oxocglutarate aminotransferase large and small subunits,complete cds. Corynebacterium glutamicum gltB and gttD genes for glutamine 2- oxoglutarate aminotransferase large and small subunits,complete cds. EST229390 NormaLized rat kidney.Bento Soares Rattus sp.cDNA clone RKICF35 3′end,mRNA sequence. Homo sapiens chromosome 20 clone RP5-850E9,***SEQUENCING IN PROGRESS***,in unordered pieces. Homo sapiens chromosome 20 clone RP5-850E9,***SEQUENCING IN PROGRESS***,in unordered pieces. Human chromosome 14 DNA sequence***IN PROGRESS***BAC R-412H8 of RPCI-11 library from chromosome 14 of Homo sapiens(Human),complete sequence. Homo sapiens clone RG252P22,***SEQUENCING IN PROGRESS***,3 unordered pieces. Homo sapiens clone RG252P22,***SEQUENCING IN PROGRESS***,3 unordered pieces. Homo sapiens clone RG252P22,***SEQUENCING IN PROGRESS***,3 unordered pieces Plasmid pEA3 nitrogen fixation genes. Rhodobacter capsulatus molybdenum cofactor biosynthetic gene cluster. partial sequence. Drosophila melanogaster chromosome 3L/70C1 clone RPC198-9B18.*** SEQUENCING IN PROGRESS***,64 unordered pieces. Conynebacterium glutamicum 3-dehydroquinase(aroD)and shikimate dehydrogenase(aroE)genes,complete cds. Homo sapiens PAC clone DJ0964C11 from 7p14-p15.complete sequence Caenorhabditis elegans clone Y76B12,***SEQUENCING IN PROGRESS*** 25 unordered pieces. C.glutamicum lysl gene for L-lysine permease. Mycobacterium avium       Propionibacterium freudenreichii Homo sapiens   Homo sapiens   Drosophila melanogaster   Corynebacterium glutamicum Corynebacterium glutamicum Rattus sp.   Homo sapiens   Homo sapiens   Homo sapiens     Homo sapiens   Homo sapiens   Homo sapiens   Enterobacter agglomerans Rhodobacter capsulatus   Drosophila melanogaster   Corynebacterium glutamicum Homo sapiens Caenorhabditis elegans   Corynebacterium qlutamicum  54,191        46,667    37,451    37,451    38,627    92,113    93,702    34,221    37,965    37,965    38,796      38,227    38,227    38,227    48,826  40,135    39,527    98,237    36,616  37,095    100,000    26-MAR-  1998      6-Feb-99    21-Aug-99    21-Aug-99    16-OCT-  1999  13-MAR-  1999  13-MAR-  1999  31-Jan-99    03-DEC-  1999  03-DEC-  1999  11-Nov-99      22-Nov-98    22-Nov-98    22-Nov-98    2-Aug-g6  22-MAR-  1999  16-OCT-  1999  18-MAY-  1999  18-Apr-98  26-Feb-99    30-Jan-92
Table 4 (continued)
         rxa00262  1197        rxa00266  531          rxa00278  1155        rxa00295  1125            rxa00323  1461          rxa00324  3258        rxa00330  1566            rxa00335  1554    GB_HTG1:PFMAL13P  1  GB_HTG1:PFMAL13P  1  GB_IN2:EHU899655    GB_IN2:EHU89655    GB_RO:AF016190  EM_PAT:E09719      GB_PAT:E02133  GB_IN1:CELK05F6  GB_BA1:CGU43535    GB_RO:RNU30789  GB_BA2:CGU31281    GB_BA1:BRLBIOBA    GB_PATE:03937    GB_BA1:MTCY427    GB_BA1:MSGB32CS  GB_BA1:MTCY427    GB_BA1:MSGB32CS  GB_BA1:MTCY427    GB_OM:BOVELA  GB_BA1:CGTHRC    GB_PAT:109078    GB_BA1:BLTHRESY  N  GB_BA1:CGGLNA  192581    192581    3219    3219    2939  3505      3494  36912  2531    3510  1614    1647    1005    38110    364D4  38110    36404  38110    3242  3120    3146    1892    3686  AL049180    AL049180    U89655    U89655    AF016190  E09719      E02133  AF040653  U43535    U30789  U31281    D14084    E03937    Z70692    L78818  Z70692    L78818  Z70692    J02717  X56037    109078    Z29563    Y13221 Plasmodium talciparum chromosome 13 strain 3D7,***SEQUENCING IN PROGRESS***,in unordered pieces Plasmodium falciparum chromosome 13 strain 3D7,***SEQUENCING IN PROGRESS***,in unordered pieces. Entamoeba histolytica unconventional myosin IB mRNA,complete cds.   Entamoeba histolytica unconventional myosin IB mRNA,complete cds.   Mus musculus connexin-36(Cx36)gene,complete cds. DNA encoding precursor protein of alkaline cellulase.     gDNA encoding alkaline cellulase. Caenorhabditis elegans cosmid K05F6. Corynebacterium glutamicum multidrug resistance protein(cmr)gene, complete cds. Rattus norvegicus clone N27 mRNA. Corynebacterium glutamicum biotin synthase(bioB)gene,complete cds.   Brevibacterium flavum gene for biotin synthetase,complete cds.   DNA sequence encoding Brevibacterium flavum biotin-synthase.   Mycobacterium tuberculosis H37Rv complete genome;segment 99/162.   Mycobacterium leprae cosmid B32 DNA sequence. Mycobacterium tuberculosis H37Rv complete genome;segment 99/162.   Mycobacterium leprae cosmid B32 DNA sequence. Mycobacterium tuberculosis H37Rv complete genome;segment 99/162.   Bovine elastin a mRNA,complete cds. Corynebacterium glutamicum thrC gene for threonine synthase(EC 4.2 99.2).   Sequence 4 from Patent WO 8809819.   Brevibacterium lactofermentum;ATCC 13869::DNA(genomic):.   Corynebacterium glutamicum glnA gene.  Plasmodium falciparum    Plasmodium falciparum    Entamoeba histolytica    Entamoeba histolytica    Mus musculus  Bacillus sp.      Bacillus sp.  Caenorhabditis elegans  Corynebacterium  glutamicum  Rattus norvegicus  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Mycobacterium  tuberculosis  Mycobacterium leprae  Mycobacterium  tuberculosis  Mycobacterium leprae  Mycobacterium  tuberculoss  Bos taurus  Corynebacterium  glutamicum  Unknown.    Corynebacterium  glutamicum  Corynebacterium  glutamicum   34,947     34,947     36,496     37,544     41,856   34,741       34,741   36,943   36,658     38,190   99,111     98,489     98,207     35,615     60,917   44,606     52,516   38,079     39,351   99,808     99,617     99,170     100,000     11-Aug-99     11-Aug-99     23-MAY-   1997   23-MAY-   1997   9-Feb-99   08-OCT-   1997(Rel   52.Created   29-Sep-97   6-Jan-98   9-Apr-97     20-Aug-96   21-Nov-96     3-Feb-99     29-Sep-97     24-Jun-99     15-Jun-96   24-Jun-99     15-Jun-96   24-Jun-99     27-Apr-93   17-Jun-97     02-DEC-   1994   20-Sep-95     28-Aug-97  
Table 4 (continued)
       rxa00347  891                  rxa00351  1578            rxa00365  727            rxa00366  480            rxa00367  4653            rxa00371  1917           GB_BA2:AF005635     GB_BA1:MSGB27CS   GB_EST27:A1455217     GB_6A2:SSU30252         GB_EST21:AA911262       GB_BA1:MLU15187     GB_IN2:AC004373     GB_IN2:AF145653     GB_BA1:AB024708     GB_BA1:MTCY1A6     GB_BA1:SC3A3     GB_BA1:AB024708     GB_BA1:MTCY1A6     GB_BA1:SC3A3     GB_BA1:AB024708     GB_BA1:MTCY1A6     GB_BA1:SC3A3     GB_V1:SBVORFS   GB_EST37:A1967505       GB_IN1:CELK09H9  1690    38793  624    2891        581      36138    72722    3197    8734    37751    15901    8734    37751    15901    8734    37751    15901    7568  380      37881  AF005635    L78817  A1455217    U30252        AA911262      U15187    AC004373    AF145653    AB024708    Z83864    AL109849    AB024708    Z83864    AL109849    AB024708    Z83864    AL109849    M89923  A1967505      AF043700 Corynebacterium glutamicum glutamme synthetase(glnA)gene,complete cds. Mycobacterium leprae cosmid B27 DNA sequence. LD21828.3prime LD Drosophila melanogaster embryo pOT2 Drosophila melanogaster cDNA clone LD21828 3prime.mRNA sequence. Synechococcus PCC7942 nucleoside diphosphate kinase and ORF2 protein   genes.complete cds,ORF1protein gene,partial cds,and neutral site I for vector use. oe75a02.s1 NCI_CGAP_Lu5 Homo sapiens cDNA clone IMAGE:1417418 3′ similar to gb:A1B757 UROKINASE PLASMINOGEN ACTIVATOR SURFACE RECEPTOR,GPI-ANCHORED(HUMAN);,mRNA sequence. Mycobacterium leprae cosmid L296.   Drosophila melanogaster DNA sequence(P1 DS05273(D80)),complete sequence. Drosophila melanogaster clone GH08860 BcDNA.GH08860 (BcDNA.GH08860)mRNA,complete cds. Corynebacterium glutamicum gltB and gltD genes for glutamine 2- oxoglutarate aminotransferase large and small subunits,complete cds. Mycobacterium tuberculosis H37Rv complete genome;segment 159/162.   Streptomyces coelicolor cosmid 3A3.   Corynebacterium glutamicum gltB and gltD genes for glutamine 2- oxoglutarate aminotransferase large and small subunits,complete cds. Mycobacterium tuberculosis H37Rv complete genome;segment 159/162.   Streptomyces coelicolor cosmid 3A3.   Corynebacterium glutamicum gltB and gltD genes for glutamine 2. oxoglutarate aminotransferase large and small subunits,complete cds. Mycobacterium tuberculosis H37Rv complete geome;segment 159/162.   Streptomyces coelicolor cosmid 3A3.   Sugarcane bacilliform virus ORF 1,2,and 3 DNA,complete cds. Ljirnpest03-215-c10 Ljirnp Lambda HybriZap two-hybrid library Lotus japonicus cDNA done LP215-03-c10 5’similar to 60S ribosomal protein L39, mRNA sequence. Caenorhabditis elegans cosmid K09H9.  Corynebacterium  glutamicum  Mycobacterium leprae  Drosophila melanogaster    Synechococcus PCC7942        Homo sapiens      Mycobacterium leprae    Drosophila melanogaster    Drosophila melanogaster    Corynebacterium  glutamicum  Mycobaclerium  tuberculosis  Streptomyces coelicolor  A3(2)  Corynebacterium  glutamicum  Mycobacterium  tuberculosis  Streptomyces coelicolor  A3(2)  Corynebacterium  glutamicum  Mycobacterium  tuberculosis  Streplomyces coelicolor  A3(2)  Sugarcane bacilliform virus  Lotus japonicus      Caenorhabditis elegans  98,906    66,345  34,510    37,084        37,500      52,972    46,341    49,471    96,556    39,496    37,946    99,374    41,333    37,554    99,312    36,971    37,905    35,843  42,593      34,295   14-Jun-99     15-Jun-96   09-MAR-   1999   29-OCT-     1999     21-Apr-98       09-MAR-   1995   17-Jul-98     14-Jun-99     13-MAR-   1999   17-Jun-98     16-Aug-99     13-MAR-   1999   17-Jun-98     16-Aug-99     13-MAR-   1999   17-Jun-98     16-Aug-99     12-Jun-93   24-Aug-99       22-Jan-98
Table 4 (continued)
rxa00377           rxa00382           rxa00383         rxa00391             rxa00393         rxa00402           rxa00403             1245           1425           1467          843             1017          623            1254              GB_BA1:CCU13664    GB_PL1:ANSDGENE    GB_GSS4:AQ730303    GB_BA1:PAHEML    GB_BA1:MTY25D10    GB_BA1:MSGY224    GB_BA1:MLCB1222  GB_HTG2:AC006269    GB_HTG2:AC007638    GB_EST38:AW01705  3  GB_PAT:AR065852  GB_VI:AF148805        GB_BA1:MTY25D10    GB_BA1:MSGY224    GB_BA1:MLB1306  GB_BA2:AF052652    GB_BA2:AF109162    GB_BA2:AF092918    GB_BA2:AF052652    GB_BA1:MTV016    GB_EST23:Al111288     678   299   483   4444   40838   40051   34714 167171   178053   613   32207 28559       40838   40051   7762 2096   4514   20758   2096   53662   750     U13664   Y08866   AQ730303   X82072   Z95558   AD000004   AL049491 AC006269   AC007638   AW017053   AR065852 AF148805       Z95558   AD000004   Y13803 AF052652   AF109162   AF092918   AF052652   AL021841   A1111288     Caulobacter crescentus uroporphynogen decarboxylase homolog(hemE) gene,partial cds. A.nidulans sD gene.   HS_5505_B1_C04_T7A RPC1-11 Human Male BAC Library Homo sapiens genomic clone Plate=1081 Col=7 Row=F,genomic survey sequence. P.aeruginosa hemL gene.   Mycobacterium tuberculosis H37Rv complete genome;segment 28/162.   Mycobacterium tuberculosis sequence from clone y224.   Mycobacterium leprae cosmid B1222. Homo sapiens chromosome 17 clone hRPK.515_E_23map 17,*** SEQUENCING IN PROGRESS***,2 ordered pieces. Homo sapiens chromosome 17 clone hRPK.515_O_17map 17,*** SEQUENCING IN PROGRESS***,8 unordered pieces EST272398 Schistosoma mansoni male.Phil LoVerde/Joe Merrick Schistosoma mansoni cDNA clone SMMAS14 5′end,mRNA sequence. Sequence 20 from patent US 5849564. Kaposi′s sarcoma-associated herpesvirus ORF 68 gene,parial cds;and ORF 69,kaposin,v-FLIP,v-cyclin,latent nuclear antigen,ORF K14,v-GPCR, putative phosphoribosylformylglycinamidine synthase,and LAMP (LAMP)genes,complete cds. Mycobacterium tuberculosis H37Rv complete genome;segment 28/162.   Mycobacterium tuberculosis sequence from clone y224.   Mycobacterium leprae cosmid B1306 DNA. Corynebacterium glutamicum homoserine O-acetyltransferase(metA)gene, complete cds. Corynebacterium diphtheriae heme uptake locus,complete sequence.   Pseudomonas alcaligenes outer membrane Xcp-secretion system gene cluster. Corynebacterium glutamicum homoserine O-acetyltransferase(metA)gene. complete cds. Mycobacterium tuberculosis H37Rv complete genome;segment 143/162.   SWOvAMCAQ02A05SK Onchocerca volvulus adult male cDNA(SAW98MLW OvAM)Onchocerca volvulus cDNA clone SWOvAMCAQ02A05 5′,mRNA sequence. Caulobacter crescentus   Emericella nidulans   Homo sapiens   Pseudomonas aeruginosa   Mycobacterium tuberculosis Mycobacterium tuberculosis Mycobacterium leprae Homo sapiens   Homo sapiens   Schistosoma mansoni   Unknown. Kaposi’s sarcoma- associated herpesvirus     Mycobacterium tuberculosis Mycobacterium tuberculosis Mycobacterium leprae Corynebacterium glutamicum Corynebacterium diphtheriae Pseudomonas alcaligenes   Corynebacterium glutamicum Mycobacterium tuberculosis Onchocerca volvulus  36,832    39,603    36,728    54,175    61,143    61,143    43,981  35,444    34,821    40,472    38,586  38,509        36,308    39,282    39,228  99,672    40,830    50,161    99,920    52,898    37,565       24-MAR-   1995   17-OCT-   1996   15-Jul-99     18-DEC-   1995   17-Jun-98     03-DEC-   1996   27-Aug-99   10-Jun-99     22-MAY-   1999   10-Sep-99     29-Sep-99   2-Aug-99         17-Jun-98     03-DEC-   1996   24-Jun-97   19-MAR-   1998   8-Jun-99     06-DEC-   1998   19-MAR-   1998   23-Jun-99     31-Aug-98    
Table 4 (continued)
rxa00405           rxa00420           rxa00435           rxa00437     rxa00439         rxa00440       rxa00441           rxa00446         613           1587           1296           579     591         582       1287           987          GB_BA1:MTV016    GB_PR4:AC005145    GB_BA1:MTV016    GB_BA1:MTY13D12    GB_BA1:MSGY126    GB_BA1:MSGB971C  S  GB_BA1:AFACBBTZ    GB_HTG4:AC009541    GB_HTG4:AC009541    GB_PR4:AC005951  GB_BA1:SC2A11  G8_PR4:AC005951  GB_BA1:MTV016    GB_PL2:AF167358  GB_HTG3:AC009120    GB_BA2SKZ86111    GB_BA1:SC2E1  GB_BA1:SC2E1  GB_PR2:HS173D1    GB_HTG2:HSDJ719K  3  GB_HTG2:HSDJ719K  3  GB_BA1:SCD78  GB_HTG4:AC009367    GB_HTG4:AC009367   53662   143678   53662   37085   37164   37566   2760   169583   169583   155450 22789 155450 53662   1022 269445   7860   38962 38962 11733B   267114   267114   36224 226055   226055    AL021841    AC005145    AL021841    Z80343    AD000012    L78821    M68904    AC009541    AC009541    AC005951  AL031184  AC005951  AL021841    AF167358  AC009120    Z86111    AL023797  AL023797  AL031984    AL109931    AL109931    AL034355  AC009367    AC009367   Mycobacterium tuberculosis H37Rv complete genome;segment 143/162.   Homo sapiens Xp22-166-169 GSHB-523A23(Genome Systems Human BAC library)complete sequernce. Mycobacterium tuberculosis H37Rv complete genome;segment 143/162.   Mycobacterium tuberculosis H37Rv complete genome;segment 156/162.   Mycobacterium tuberculosis sequence from clone y126.   Mycobacterium leprae cosmid B971 DNA sequence.   Alcaligenes eutrophus chromsomal transketolase.(ctbTc)and phosphoglycolate phosphatase(cbbZc)genes,complete cds. Homo sapiens chromosome 7,***SEQUENCING IN PROGRESS***,25 unordered pieces. Homo sapiens chromosome 7,***SEQUENCING IN PROGRESS***,25 unordered pieces. Homo sapiens chromosome 17.clone hRPK.372_K_20,complete sequence. Streptomyces coelicolor cosmid 2A11. Homo sapiens chromosome 17.clone hRPK.372_K_20,complete sequence. Mycobacterium tuberculosis H37Rv complete genome;segment 143/162.   Rumex acetosa expansin(EXP3)gene,partial cds. Homo sapiens chromosome 16 clone RPC1-11_484E3,***SEQUENCING IN PROGRESS***,34 unordered pieces. Streptomyces lividans rpsP,trmD,rplS,sipW,sipX,sipY,sipZ,mutT genes and 4 open reading frames. Streptomyces coelicolor cosmid 2E1. Streptomyces coelicolor cosmid 2E1. Human DNA sequence from clone 173D1 on chromosome 1p36.21- 36.33.Contains ESTs,STSs and GSSs,complete sequence. Homo sapiens chromosome X clone RP4-719K3 map q21.1-21.31,*** SEQUENCING IN PROGRESS***,in unordered pieces. Homp sapiens chromosome X clone RP4-719K3 map q21.1-21.31,*** SEQUENCING IN PROGRESS***,in unordered pieces. Streptomyces coelicolor cosmid D78. Drosophila melano9aster chromosome 3L/76A2 clone RPC198-48B15,*** SEQUENCING IN PROGRESS***,44 unordered pieces. Drosophila metanogaster chromosome 3L/76A2 clone RPC198-48B15,*** SFOUENGING IN PROGRESS***,44 unordered pieces.  Mycobacterium  tuberculosis  Homo sapiens    Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Mycobacterium leprae    Ralstonia eutropha    Homo sapiens    Homo sapiens    Homo sapiens  Streptomyces coelicolor  Homo sapiens  Mycobacterium  tuberculosis  Rumex acetosa  Homo sapiens    Strepromyces lividans    Streptomyces coelico1or  Streptomyces coelicolor  Homo sapiens    Homo sapiens    Homo sapiens    Streptomyces coelicolor  Drosophila melanogaster    Drosophila melanogaster    57,259    34,179    40,169    62,031    61,902    39,651    38,677    36,335    36,335    31,738  43,262  37,647  37,088    46,538  43,276    43,080    42,931  36,702  38,027    34,521    34,521    56,410  34,959    34,959    23-Jun-99    08-DEC-  1998  23-Jun-99    17-Jun-98    10-DEC-  1996  15-Jun-96    27-Jul-94    12-OCT-  1999  12-OCT-  1999  18-Nov-98  5-Aug-98  18-Nov-98  23-Jun-99    17-Aug-99  3-Aug-99    27-OCT-  1999  4-Jun-98  4-Jun-98  23-Nov-99    03-DEC-  1999  03-DEC-  1999  26-Nov-98  16-OCT-  1999  16-OCT-  1999
Table 4 (continued)
 rxa00448            rxa00450                  rxa00461        rxa00465  rxa00487            rxa00488          rxa00489            rxa00533      1143            424                  975          1692            1641          1245            1155      GB_PR3:AC003670    GB_HTG2:AF029367    GB_HTG2:AF029367    GB_HTG2:AC007824      GB_HTG2:AC007824      GB_EST35:A1818057      GB_BA1:MLCB1779  GB_IN1:DMC86E4  GB_GSS15:AQ64032  5    GB_BA1:BAGUAA    GB_BA2:U00015    GB_BA1:MTCY78    GB_BA1:MTCY78    GB_BA2:U00015    GB_BA1:SCAJ10601  GB_BA2:U00015    GB_HTG2:HS225E12    GB_HTG2:HS225E12    GB_BA1:CGLYS      88945    148676    148676    133361      133361      412      43254  29352  467      3866    42325    33818    33818    42325    4692  42325    126464    125464    2803    AC003670    AF029367    AF029367    AC007824      AC007824      A1818057      Z98271  AL021086  AQ640325      Y10499    U00015    Z77165    Z77165    U00015    AJ010601  U00015    AL031772    AL031772    X57226   Homo sapiens 12q13.1 PAC RPC11-130F5(Roswell Park Cancer Institute Human PAC library)complete sequence. Homo sapiens chromosome 12 clone RPC1-1 130F5 map 12q13.1,*** SEQUENCING IN PROGRESS***,156 unordered pieces. Homo sapiens chromosome 12 clone RPC1-1 130F5 map 12q13.1,*** SEQUENCING IN PROGRESS***,156 unordered pieces. Drosophila melanogaster chromosome 3 clone BACR02L16(D715)RPC1-98 02.L.16 map 89E-90A strainy;cn bw sp,***SEQUENCING IN PROGRESS ***,91 unordered pieces. Drosophila melanogaster chromosome 3 clone BACR02L16(D715)RPC1-98 02.L.16 map 89E-90A strainy;cn bw sp,***SEQUENCING IN PROGRESS ***,91 unordered pieces. wk14a08.x1 NCI_CGAP_Lym12 Homo sapiens cDNA clone IMAGE:2412278 3′similar to gb:Y00764 UBIQUINOL-CYTOCHROME C REDUCTASE 11 KD PROTEIN(HUMAN):.mRNA sequeence. Mycobacterium leprae cosmid B1779. Drosophila melanogaster cosmid clone 86E4. 927P1-2H3.TP 927P1 Trypanosoma brucei genomic clone 927P1-2H3. genomic survey sequence.   B.ammoniagenes guaA gene.   Mycobacterium leprae cosmid B1620.   Mycobacterium tuberculosis H37Rv complete genome;segment 145/162.   Mycobacterium tuberculosis H37Rv complete genome;segment 145/162.   Mycobacterium leprae cosmid B1620.   Streptomyces coelicolor A3(2)DNA for whiD and whiK loci. Mycobacterium leprae cosmid B1620.   Homo sapiens chromosome 6 clone RP1-225E12 map q24,*** SEQUENCING IN PROGRESS***,in unordered pieces. Homo sapiens chromosome 6 clone RP1-225E12 map q24,*** SEQUENCING IN PROGRESS***,in unordered pieces C.glutamicum lysC-alpha,lysC-beta and asd genes for aspartokinase-alpha and-beta subunits,and aspartate beta semialdehyde dehydrogenase, respectively(EC 2.7.2.4;EC 1.2.1.11).  Homo sapiens    Homo sapiens    Homo sapiens    Drosophila melanogaster      Drosophila melanogaster      Homo sapiens      Mycobacterium leprae  Drosophila melanogaster  Trypanosoma brucei      Corynebacterium  ammoniagenes  Mycobacterium leprae    Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Mycobacterium leprae    Streptomyces coelicolor  Mycobacterium leprae    Homo sapiens    Homo sapiens    Corynebacterium  glutamicum  35,682    31,373    31,373    40,000      40,000      35,714      39,308  37,487  38,116      74,259    37,248    39,725    39,451    39,178    60,835  38,041    36,756    36,756    99,913    9-Jun-98    18-OCT-  1997  18-OCT-  1997  2-Aug-99      2-Aug-99      24-Aug-99      8-Aug-97  27-Apr-99  8-Jul-99      8-Jan-98    01-MAR-  1994  17-Jun-98    17-Jun-98    01-MAR-  1994  17-Sep-98  01-MAR-  1994  03-DEC-  1999  03-DEC-  1999  17-Feb-97
Table 4 (continued)
       rxa00534  1386              rxa00536  1494            rxa00537  2409            rxa00541  792          rxa00558  1470            rxa00579  1983              rxa00580  1425    GB_BA1:CGCYSCA5  D  GB_PAT:A07546  GB_BA1:CGLYS      GB_BA1:CORASKD    GB_PAT:E14514    GB_BA1:CGLEUA    GB_BA1:MTV025    GB_BA1:MTU88526    GB_BA2:SCD25    GB_BA1:MTCY7H7A    GB_BA1:MTU34956    GB_PAT:192052    GB_BA1:MLCB5  GB_BA1:MTCY369    GB_BA1:BAPURF    GB_BA1:MLU15182    GB_BA1:MTCY7H7A    GB_PAT:AR016483    EM_PAT:E11273      GB_PAT:E12594    GB_PAT:E12594    1591    2112  2803      2957    1643    3492    121125    2412    41622    10451    2462    2115    38109  36850    1885    40123    10451    2104    2104      2104    2104    X82928    A07546  X57226      L16848    E14514    X70959    AL022121    U88526    AL118514    Z95618    U34956    192052    Z95151  Z80226    X91252    U15182    Z95618    AR016483    E11273      E12594    E12594   C.glutamicum aspartate-semialdehyde dehydrogenasegene.   Recombinant DNA fragment(Pstl-Xhol). C.glutamicum lysC-alpha,lysC-beta and asd genes for aspartokinase-alpha and-beta subunits,and aspartate beta semialdehyde dehydrogenase, respectively(EC 2.7.2.4;EC 1.2.1.11). Corynebacterium flavum aspartokinase(ask),and aspartate-semialdehyde dehydrogenase(asd)genes,complete cds. DNA encoding Brevibacterium aspartokinase.   C.glutamicum gene leuA for isopropylmalate synthase.   Mycobacterium tuberculosis H37Rv complete genome;segment 155/162.   Mycobacterium tuberculosis putative alpha-isopropyl malate synthase(leuA) gene,complete cds. Streptomyces coelicolor cosmid D25.   Mycobacterium tuberculosis H37Rv complete genome;segment 39/162.   Mycobacterium tuberculosis phosphoribosylformylglycinamidine synthase (purL)gene,complete cds. Sequence 19 from patent US 5726299.   Mycobacterium leprae cosmid B5. Mycobacterium tuberculosis H37Rv complete genome;segment 36/162.   B.ammoniagenes purF gene.   Mycobacterium leprae cosmid B2266.   Mycobacterium tuberculosis H37Rv complete genome;segment 39/162.   Sequence 1 from patent US 5776740.   DNA encoding serine hydroxymethyl transferase.     DNA encoding serine hydroxymethyltransferase from Brevibacterium flavum.   DNA encoding serine hydroxymethyltransferase from Brevibacterium flavum.    Corynebactenum  glutamicum  synthetic construct  Corynebacterium  glutamicum    Corynebacterium  flavescens  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Streptomyces coelicolor  A3(2)  Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Unknown.    Mycobacterium leprae  Mycobacterium  tuberculosis  Corynebacterium  ammoniagenes  Mycobacterium leprae    Mycobacterium  tuberculosis  Unknown.    Corynebacterium  glutamicum    Corynebacterium  glutamicum  Corynebaclerium  glutamicum   99,221     99,391   99,856       98,701     98,773     100,000     68,003     68,185     63,187     62,401     62,205     98,359     62,468   60,814     66,095     64,315     64,863     98,810     98,810       98,810     99,368     17-Feb-97     30-Jul-93   17-Feb-97       11-Jun-93     28-Jul-99     10-Feb-99     24-Jun-99     26-Feb-97     21-Sep-99     17-Jun-98     28-Jan-97     01-DEC-   1998   24-Jun-97   17-Jun-98     5-Jun-97     09-MAR-   1995   17-Jun-98     05-DEC-   1998   08-OCT-   1997(Rel.   52,Created)   24-Jun-98     24-Jun-98
           rxa00581              rxa00584          rxa00618            rxa00619          rxa00620          rxa00624      rxa00626                 1092              1248          1230            1551          1014          810      1386          GB_PAT:AR016483    EM_PAT:E11273      GB_PAT:E12594    EM_PAT:E11273      GB_PAT:AR016483    GB_BA1:CORAHPS    GB_BA1:AOPCZA361    GB_BA1:D90714  GB_EST19:AA802737    GB_EST28:A1534381      GB_IN1:DMANILLIN  GB_BA1:MTCY369    GB_BA1:MLC85  GB_PAT:A60305    GB_PL2:AF063247    GB_BA1:STMAPP  GB_HTG3:AC008763    GB_IN1:CEY41E3  GB_EST13:AA362167  GB_N1:CEY41E3  GB_BA1:MTCY369    GB_BA1:MLCB5  GB_BA1:MLU15187  2104    2104      2104    2104      2104    2570    37941    14358  280    581      4029  36850    38109  1845    1450    2069  214575    150641  372  150641  36850    38109  36138  AR016483    E11273      E12594    E11273      AR016483    L07603    AJ223998    D90714  AA802737    A1534381      X89858  Z80226    Z95151  A60305    AF063247    M91546  AC008763    Z95559  AA362167  Z95559  Z80226    Z95151  U15187 Sequence 1 from patent US 5776740.   DNA encoding serine hydroxymethyl transferase.     DNA encoding serine hydroxymethyltransferase from Brevibacterium flavum.   DNA encoding serine hydroxymethyltransferase.     Sequence 1 from patent US 5776740.   Corynebacterium gtutamicum 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase gene,complete cds. Amycolatopsis orientalis cosmid PCZA361.   Escherichia coli genomic DNA.(16.8-17.1min). GM06236.5prime GM Drosophila melanogaster ovary BlueScript Drosophila melanogaster cDNA clone GM06236 5prime,mRNA sequence. SD07186.5prime SD Drosophila melanogaster Schneider L2 cell culture pOT2 Drosophila melanogaster cDNA clone SD07186 5prime similar to X89858:Ani FBgn0011558 PID:g927407 SPTREMBL:Q24240,mRNA sequence. D.melanogaster mRNA for anillin protein. Mycobacterium tuberculosis H37Rv complete genome;segment 36/162.   Mycobacte rium leprae cosmid B5. Sequence 5 from Patent WO9708323.   Pneumocystis carinii f.sp.ratti enolase mRNA,complete cds.   Streptomyces lividans aminopeptidase P(PepP)gene.complete cds. Homo sapiens chromosome 19 clone CITB-E1_3214H19,***SEQUENCING IN PROGRESS***,21 unordered pieces. Caenorhabditis elegans cosmid Y41E3,complete sequence. EST71561 Macrophage I Homo sapiens cDNA 5′end,mRNA sequence. Caenorhabditis elegans cosmid Y41E3,complete sequence Mycobacterium tuberculosis H37Rv complete genome;segment 36/162.   Mycobacterium leprae cosmid B5. Mycobacterium leprae cosmid L296.    Unknown.    Corynebacterium  glutamicum    Corynebacterium  glutamicum  Corynebacterium  glutamicum    Unknown.    Corynebacterium  glutamicum  Amycolatopsis orientalis    Escherichia coli  Drosophila melanogaster    Drosophila melanogaster      Drosophila melanogaster  Mycobacterium  tuberculosis  Mycobaclerium leprae  unidentified    Pneumocystis carinii f.sp.  ratti  Streptomyces lividans  Homo sapiens    Caenorhabditis elegans  Homo sapiens  Caenorhabditis elegans  Mycobacterium  tuberculosis  Mycobacterium leprae  Mycobacterium leprae  99,368    99,368      37,071    37,071      37,071    98,236    54,553    53,312  39,928    41,136      34,398  62,776    61,831  61,785    41,060    37,126  40,020    36,986  38,378  37,694  57,971    58,806  38,007     05-DEC-   1998   08-OCT-   1997(Rel.   52,Created   24-Jun-98     08-OCT-   1997(Rel.   52,Created   05-DEC-   1998   26-Apr-93     29-MAR-   1999   7-Feb-99   25-Nov-98     18-MAR-   1999     8-Nov-95   17-Jun-98     24-Jun-97   06-MAR-   1998   5-Jan-99     12-Jun-93   3-Aug-99     2-Sep-99   21-Apr-97   2-Sep-99   17-Jun-98     24-Jun-97   09-MAR-   1995
Table 4 (continued)
 rxa00632            rxa00633            rxa00688                rxa00708        rxa00717          rxa00718            rxa00727            795            1392            666                930        1083          831            1035            GB_BA1:BRLBIOAD    GB_PAT:E04041    GB_PAT:E04040    GB_BA1:BRLBIOAD    GB_PAT:E04040    GB_BA2:EHU38519    GB_BA1:MTV041    GB_BA1:BRLSECY    GB_BA2:MBU77912        GB_BA2:AF157493  GB_PAT:100836    GB_PAT:E00311  GB_PAT:178753  GB_PAT:192042    GB_BA1:MTC1125    GB_BA1:MTC1125    GB_BA1:MTC1125    GB_GSS12:AQ42075  5  GB_HTG3:AC008332      GB_HTG3:AC008332      2272    675    1272    2272    1272    1290    28826    1516    7163        25454  1853    1853  1187  1187    37432    37432    37432    671    118545      118545      D14083    E04041    E04040    D14083    E04040    U38519    AL021958    D14162    U77912        AF157493  100836    E00311  178753  192042    Z98268    Z98268    Z98268    AQ420755    AC008332      AC008332     Brevibacterium flavum genes for 7,8-diaminopelargonic acid aminotransterase and dethiobiotin synthetase,complete cds. DNA sequence coding for desthiobiotinsynthetase.   DNA sequence coding for diamino pelargonic acid aminotransferase.   Brevibacterium flavum genes for 7,8-diaminopelargonic acid aminotransferase and dethiobiotin synthetase,complere cds. DNA sequence coding for diamino pelargonic acid aminotransferase.   Erwinia herbicola adenosylmethionine-8-amino-7-oxononanoate transaminase (bioA)gene,complete cds. Mycobacterium tuberculosis H37Rv complete genome;segment 35/162.   Brevibacterium flavum gene for SecY protein(complete cds)and gene or adenylate kinase(partial cds). Mycobacterium bovis MBE50a gene,partial cds;and MBE50b,MBE50c, preprotein translocase SecY subunit(secY),adenylate kinase(adk). methionine aminopeptidase(map),RNA polymerase ECF sigma factor (sigE50),MBE50d,and MBE50e genes,complete cds. Zymomonas mobilis ZM4 fosmid clone 42D7,complete sequence. Sequence 1 from Patent US 4758514.   DNA coding of 2,5-diketogluconic acid reductase. Sequence 9 from patent US 5693781. Sequence 9 from patent US 5726299.   Mvcobacterium tuberculosis H37Rv complete genome;segment 76/162.   Mycobacterium tuberculosis H37Rv complete genome;segment 76/162.   Mvcobacterium tuberculosis H37Rv complete genome;segment 76/162.   RPC1-11-168G18.TJ RPC1-11 Homo sapiens genomic cloneRPC1-11- 168G18,genomic survey sequence. Drosophila melanogaster chromosome 2 clone BACR48D10(D867)RPC1-98 48.D.10 map 34A-34A strain y;cn bw sp,***SEQUENCING IN PROGRESS ***.78 unordered pieces. Drosophila melanogaster chromosome 2 clone BACR48D10(D867)RPC1-98 48 D 10 map 34A-34A strain y;cn bw sp,***SEQUENCING IN PROGRESS***,78 unordered pieces. Corynebacterium glutamicum Corynebacterium glutamicum Corynebacterium glutamicum Corynebacterium glutamicum Corynebacterium glutamicum Erwinia herbicola   Mycobacterium tuberculosis Corynebacterium glutamicum Mycobacterium bovis       Zymomonas mobilis Unknown.   unidentified Unknown. Unknown   Mycobacterium tuberculosis Mycobacterium tuberculosis Mycobacterium tuberculosis Homo sapiens   Drosophila melanogaster     Drosophila melanogaster      97,358    98,074    93,814    95,690    95,755    55,564    60,030    99,563    60,030        39,116  47,419    47,419  37,814  37,814    50,647    55,228    40,300    35,750    40,634      40,634      3-Feb-99    29-Sep-97    29-Sep-97    3-Feb-99    29-Sep-97    4-Nov-96    17-Jun-98    3-Feb-99    27-Jan-99        5-Jul-99  21-MAY-  1993  29-Sep-97  3-Apr-98  01-DEC-  1998  17-Jun-98    17-Jun-98    17-Jun-98    23-MAR-  1999  6-Aug-99      6-Aug-99    
Table 4 (continued)
      rxa00766           rxa00770           rxa00779           rxa00780           rxa00838           rxa00863           rxa00864              966            1293            1056            669            1023            867            873        GB_HTG3:AC008332      GB_HTG2:AG006789    GB_HTG2:AC006789    GB_BA1:D90810    GB_BA1:MTv043    GB_BA1:MLU15182    GB_BA2:SCD25    GB_HTG1:CER08A5    GB_HTG1:CER08A5    GB_PL2:AF078693    GB_BA1:MTCY98    GB_BA1:AVINIFREG    GB_BA2:AF001780    GB_EST1:Z30506    GB_PL2:AC006258    GB_EST37:A1998439    GB_BA1:BLDAPAB    GB_PAT:E16749    GB_PAT:E14520    GB_BA1:BLDAPAB    GB_BA1:CGDAPB    118545      83823    83823    20476    68848    40123    41622    51920    51920    1492    31225    7099    6701    329    110469    455    3572    2001    2001    3572    1902    AC008332      AC006789    AC006789    D90810    AL022004    U15182    AL118514    Z82281    Z82281    AF078693    Z83860    M60090    AF001780    Z30506    AC006258    A1998439    Z21502    E16749    E14520    Z21502    X67737   Drosop hila melanogaster chromosome 2 clone BACR48D10(D867)RPC1-98 48.D 10 map 34A-34A strain y;cn bw sp,***SEQUENCING IN PROGRESS***,78 unordered pieces. Caenorhabditis elegans clone Y49F6,***SEQUENCING IN PROGRESS***, 2 unordered pieces. Caenorhabditis elegans clone Y49F6,***SEQUENCING IN PROGRESS***, 2 unordered pieoes. E.coli genomic DNA,Kohara clone #319(37.4-37.8min.).   Mycobacterium tuberculosis H37Rv complete genome;segment 40/162.   Mycobacterium leprae cosmid B2266.   Streptomyces coelicolor cosmid D25.   Caenorhabditis elegans chromosome V clone R08A5,***SEQUENCING IN PROGRESS***,in unordered pieces. Caenorhabditis elegans chromosome V clone R08A5,***SEQUENCING IN PROGRESS***,in unordered pieces. Chlamydomonas reinhardtii putative O-acetylserine(thiol)lyase precursor (Crcys-1A)mRNA,nuclear gene encoding organellar protein.complete cds. Mycobacterium tuberculosis H37Rv complete genome;segment 103/162.   Azotobacter chroococcum nifU,nifS,nifV,nifP,nifW,nifZ and nifM genes, complete cds. Cyanothece PCC 8801 NifP(nifP),nitrogenase(nifB),FdxN(fdxN),NifS(nifS and NifU(nifU)genes,complete cds,and NifH(nifH)gene,partial cds. ATTS2430 AC16H Arabidopsis thaliana cDNA clone TA1306 3′,mRNA sequence. Arabidopsis thaliana BAC F18G18 from chromosome V near 60.5 cM, complete sequence. 701545695 A.thaliana,Columbia Col-0,rosette-2 Arabidopsis thaliana cDNA clone 701545695,mRNA sequence. B.lactofermentum dapA and dapB genes for dihydrodipicolinate synthase and dihydrodipicolinate reductase. gDNA encoding dihydrodipicolinate synthase(DDPS).   DNA encoding Brevibacterium dihydrodipicolinic acid synthase.   B.lactofemnentum dapAand dapB genes for dihydrodipicolinate synthase and dihydrodipicolinate reductase. C.glutamicum dapB gene for dihydrodipicolinate reductase.    Drosopmila melanogaster      Caenorhabditis elegans    Caenorhabditis elegans    Escherichia coli    Mycobacterium  tuberculosis  Mycobacterium leprae    Streptomyces coelicolor  A3(2)  Caenorhabditis elegans    Caenorhabditis elegans    Chlamydomonas reinhardti    Mycobacterium  tuberculosis  Azotobacter chroococcum    Cyanothece PCC8801    Arabidopsis thaliana    Arabidopsis thaliana    Arabidopsis thaliana    Corynebacterium  glutamicum  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Corynebacterium  glutamicum  33,888      36,737    36,737    36,526    66,193    61,443    59,938    64,896    64,896    57,970    54,410    51,729    36,309    44,308    35,571    36,044    99,539    99,539    99,539    99,885    100,000    6-Aug-99      25-Feb-99    25-Feb-99    29-MAY-  1997  24-Jun-99    09-MAR-  1995  21-Sep-99    14-OCT-  1998  14-OCT-  1998  3-Nov-99    17-Jun-98    26-Apr-93    08-MAR-  1999  11-MAR-  1994  2B-DEC-  1998  8-Sep-99    16-Aug-93    28-Jul-99    28-Jul-99    16-Aug-93    1-Apr-93  
Table 4 (continued)
     rxa00865          rxa00867          rxa00873          rxa00884            rxa00891            rxa00952            rxa00954          rxa00955      1026          650          779          1263            1102            963            644          1545    GB_PAT:E14520    GB_BA1:BLDAPAB    GB_PAT:E16752    GB_PAT:AR038113  GB_BA1:MTV002    GB_BA1:MLCB22  GB_BA1:SAU19858    GB_BA1:SCO001206    GB_BA1:SCO001205    GB_BA1:D78198  GB_BA1:MTGY253    GB_BA1:MSGY222    GB_GSS15:AQ65460  0  GB_BA1:MTC14188    GB_BA1:SCO001206    GB_BA1:SCO001205    EM_PAT:E10963      GB_BA1:BLTRP    GB_PAT:E01688  GB_PAT:E01375    GB_PAT:E01688  GB_BA1:BLTRP    GB_PAT:E01375    2001    3572    1411    1411  56414    40281  2838    9184    9589    2304  41230    41156    468    11700    9184    9589    3118      7725    7725  7726    7725  7725    7726    E14520    Z21502    E16752    AR038113  AL008967    Z98741  U19858    AJ001206    AJ001205    D78198  Z81368    AD000010    AQ654600    Z96071    AJ001206    AJ001205    E10963      X04960    E01688  E01375    E01688  X04960    E01375   DNA encoding Brevibacterium dihydrodipicolinic acid synthase.   B.lactofermentum dapA and dapB genes for dihydrodipicolinate synthase and dihydrodipicolinate reductase. gDNA encoding dihydrodipicolinate reductase(DDPR).   Sequence 18 from patent US 5804414. Mycobacterium tuberculosis H37Rv complete genome;segment 122/162.   Mycobacterium leprae cosmid B22. Streptomyces antibioticus guanosine pentaphosphate synthetase(gpsl)gene. complete cds. Streptomyces coelicolor A3(2),glycogen metabolism cluster II.   Streptomyces coelicolor A3(2)glycogen metabolism clusterl.   Pimelobacter sp.DNA for trehalose synthase,complete cds. Mycobacterium tuberculosis H37Rv complete genome;segment 106/162.   Mycobacterium tuberculosis sequence from clone y222.   Sheared DNA-1014.TF Sheared DNA Trypanosoma brucei genomic clone Sheared DNA-1014.genomc survey sequence. Mycobacterium tuberculosis H37Rv complete genome;segment 7/162.   Streptomyces coelicolor A3(2),glycogen metabolism cluster II.   Streptomyces coelicolor A3(2)glycogen metabolism clusterl.   gDNA encoding tryptophan synthase.     Brevibacterium lactofermentum tryptophan operon.   Genomic DNA oftrp operon of prepibacterium latophelmentamn. DNA sequence of tryptophan operon.   Genomic DNA of trp operon of prepibacterium latophelmenlamn. Brevibacterium lactofermentum tryptophan operon.   DNA sequence of tryptophan operon.    Corynebacterium  glutamicum  Corynebaderium  glutamicum  Corynebacterium  glutamicun  Unknown.  Mycobacterium  tuberculosis  Mycobacterium leprae  Streptomyces antibioticus    Streptomyces coelicolor    Streptomyces coelicolor    Pimelobacter sp.  Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Trypanosoma brucei    Mycobacterium  tuberculosis  Streptomyoes coelicolor    Streptomyces coelicolor    Corynebacterium  glutamicum    Corynebacterium  glutamicum  unidentified  Corynebacterium  glutamicum  unidentified  Corynebacterium  glutamicum  Corynebacterium  glutamicum  100,000    100,000    99,805    99,805  39,179    39,482  69,706    63,415    61,617    60,594  37,785    38,006    33,974    63,297    61,965    61,727    99,688      98,847    98,428  98,758    98,758  98,758    98,372     28-Jul-99     16-Aug-93     28-Jul-99     29-Sep-99   17-Jun-98     22-Aug-97   25-OCT-   1996   29-MAR-   1999   29-MAR-   1999   5-Feb-99   17-Jun-98     03-DEC-   1996   22-Jun-99     18-Jun-98     29-MAR-   1999   29-MAR-   1999   08-OCT-   1997(Rel.   52,Created)   10-Feb-99     29-Sep-97   29-Sep-97     29-Sep-97   10-Feb-99     29-Sep-97  
Table 4 (continued)
      rxa00956             rxa00957         rxa00958         rxa00970           rxa00972         rxa00981           rxa00989                  1237              1677          747          1050            1458          753            1644            GB_BA1:BLTRP    GB_PAT:E01688  EM_PAT:E10963      GB_BA1:BLTRP    GB_PAT:E01375    GB_BA1:BLTRP    GB_PAT:ED1375    GB_PAT:E01688  GB_BA1:BLTRP    GB_PAT:E01375    GB_PAT:E01688  GB_BA1:CGHOMTHR    GB_PAT:109077    GB_PAT:E01358    GB_PAT:E16755    GB_PAT:AR038110  GB_PAT:E14508    GB_OV:GGA245664  GB_PL2:AC007887    GB_GSS1:CNS00RN  W    GB_BA1:MTV008    GB_BA1:SCVALSFP    GB_BA1:MTV008    7725    7725  3118      7725    7726    7725    7726    7725  7725    7726    7725  3685    3685    2615    3579    3579  3579    512  159434    542      63033    3619    63033    X04960    E01688  E10963      X04960    E01375    X04960    E01375    E01688  X04960    E01375    E01688  Y00546    109077    E01358    E16755    AR038110  E14508    AJ245664  AC007887    AL087338      AL021246    Y13070    AL021246   Brevibacterium lactotermentum tryptophan operon.   Genomic DNA of trp operon of prepibaclerium latophelmentamn. gDNA encoding tryptophan synthase.     Brevibacterium lactofermentum tryptophan operon.   DNA sequence of tryptophan operon.   Brevibacterium lactofermentum tryptophan operon.   DNA sequence of tryptophan operon.   Genomic DNA of trp operon of prepibacterium latophelmentamn. Brevibacterium lactofermentum tryptophan operon.   DNA sequence of tryptophan operon.   Genomic DNA of trp operon of prepibacterium latophelmentamn. Corynebacterium glutamicum hom-thrB genes for homoserine dehydrogenase and homoserine kinase. Sequence 1 from Patent WO 8809819.   DNA encoding for homoserine dehydrogenase(HDH)and homoserine kinase(HK). gDNA encoding diaminopimelate decarboxylase(DDC)and arginyl-tRNA synthase. Sequence 15 from patent US 5804414. DNA encoding Brevibacterium diaminopimelic acid decarboxylase and arginyl- tRNA synthase. Gallus gallus partial mRNA for ATP-citrate lyase(ACL gene). Genomic sequence for Arabidopsis thaliana BAC F 1504 from chromosome I, complete sequence. Arabidopsis thaliana genome survey sequence T7 end of BAC F14D7 of IGF library from strain Columbia of Arabidopsis thaliana,genomic survey sequence. Mycobacterium tuberculosis H37Rv complete genome;segment 108/162.   S.coelicolor valS,fpgs,ndk genes.   Mycobacterium luberculosis H37Rv complete genome:segment 108/162.    Corynebacterium  glutamicum  unidentifid  Corynebacterium  glutamicum    Corynebacterium  glulamicum  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Corynebacterium  glutamicum  unidentified  Corynebacterium  glutamicum  Corynebacterium  glutamicum  unidentified  Corynebacterium  glutamicum  Unknown.    Corynebacterium  glutamicum  Corynebacterium  glutamicum  Unknown.  Corynebacterium  glutamicum  Gallus gallus  Arabidopsis thaliana    Arabidopsis thaliana      Mycobacterium  tuberculosis  Streptomyces coelicolor    Mycobacterium  tuberculosis  98,372    98,242  98,949      99,107    98,945    99,165    98,927    98,867  98,792    98,792    98,658  99,905    99,810    97,524    99,931    99,931  99,931    37,538  37,600    41,264      40,773    58,119    38,167    10-Feb-99    29-Sep-97  08-OCT-  1997(Rel.  52,Created)  10-Feb-99    29-Sep-97    10-Feb-99    29-Sep-97    29-Sep-97  10-Feb-99    29-Sep-97    29-Sep-97  12-Sep-93    02-DEC-  1994  29-Sep-97    28-Jul-99    29-Sep-99  28-Jul-99    28-Sep-99  04-OCT-  1999  28-Jun-99      17-Jun-98    03-MAR-  1998  17-Jun-98  
Table 4 (continued)
rxa00997         rxa01019             rxa01026         rxa01D27         rxa01073       rxa01079           rxa01080           rxa01087          705          1110              1782          1131          954        2226            567            999          GB_BA2:CGU31225    1817     U31225    GB_HTG1:CEY39C12   282838   AL009026    GB_IN1:CEB0001     39416    Z6g634  GB_HTG2:AC005052   144734   AC005052    GB_HTG2:AC005052   144734   AC005052    GB_GSS9:AQ171808   512      AQ171808      GB_BA1:SC1C2       42210    AL031124  GB_BA1:ATLEUCD     2982     X84647    GB_BA1:MTV012      70287    AL021287    GB_BA1:MLC8637     44882    Z99263  GB_BA1:MTCY349     43523    Z83018    GB_BA1:SPUNGMUT    1172     Z21702  X  GB_BA1:BACOUTB     1004     M15811  GB_PR4:AC007938    167237   AC007938  GB_PL2:ATAC006282  92577    AC006282    GB_BA2:AF112535    4363     AF112535    GB_BA1:CANRDFGE    6054     Y09572  N  GB_BA1:MTV012      70287    AL021287    GB_BA2:AF112535    4363     AF112535    GB_BA1:CANRDFGE    6054     Y09572  N  GB_BA1:STNRD       4894     X73226    GB_IN2:AF063412    1093     AF063412    GB_PR3:HS24M15     134539   Z94055    GB_IN2:ARU85702    1240     U85702 Corynebacterium glutamicum L-proline;NADP+5-oxidoreductase(proC)gene, complete cds. Caenorhabditis elegans chromosome IV clone Y39C12,***SEQUENCING IN PROGRESS***,in unordered pieces. Caenorhabditis elegans cosmid B0001,complete sequence. Homo sapiens clone RG038K21,***SEQUENCING IN PROGRESS***,3 unordered pieces. Homo sapiens clone RG038K21,***SEQUENCING IN PROGRESS***,3 unordered pieces. HS_3179_A1_G03_T7 CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=3179 Col=5 Row=M,genomic survey sequence. Streptomyces coelicolor cosmid 1C2. A.teichomyceticus leuC and leuD genes.   Mycobacterium tuberculosis H37Rv complete genome;segment 132/162.   Mycobacterium leprae cosmid8637. Mycobacterium tuberculosis H37Rv complete genome;segment 131/162.   S.pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase and 8-oxodGTP nucleoside triphosphatase. Bacillus subtilis outB gene encoding a sporulation protein,complete cds. Homo sapiens ctone UWGC:djs201 from 7q31,complete sequenoe. Arabidopsis thaliana chromosome II BAC F13K3 genomic sequence. complete sequence. Corycebacterium glutamicum putative glutaredoxin NrdH(nrdH),NrdI(nrdI), and ribonucleotide reductase alpha-chain(nrdE)genes,complete cds. Corynebacterium ammoniagenes nrdH,nrdI,nrdE,nrdF genes.   Mycobacterium tuberculosis H37Rv complete genome;segment 132/162.   Corynebacterium glutamicum putative glutaredoxin NrdH(nrdH),NrdI(nrdI). and ribonucleotide reductase alpha-chain(nrdE)genes,complete cds. Corynebacterium ammoniagenes nrdH,nrdI,nrdE,nrdF genes.   S.typhimurium nrdEF operon.   Limnadia lenticularis elongation factor 1-alpha mRNA,partial cds.   Human DNA sequence from PAC 24M15 on chromosome 1.Contains tenascin-R(restrictin),EST. Anathix ralla elongation factor-1 alpha(EF-1a)gene,partial cds.  Corynebacterium  glutamicum  Caenorhabditis elegans    Caenorhabditis elegans  Homo sapiens    Homo sapiens    Homo sapiens      Streptomyces coelicolor  Actinoplanes  teichomyceticus  Mycobacterium  tuberculosis  Mycobacterium leprae  Mycobacterium  tuberculosis  Streptococcus pneumoniae    Bacillus subtilis  Homo sapiens  Arabidopsis thaliana    Corynebacterium  glutamicum  Corynebacterium  ammoniagenes  Mycobacterium  tuberculosis  Corynebacterium  glutamicum  Corynebacterium  ammoniagenes  Salmonella typhimurium    Limnadia lenticularis    Homo sapiens    Anathix ralla  40,841    36,416    36,416  39,172    39,172    34,661      68,275  65,935    40,454    38,636  51,989    38,088    53,723  34,322  36,181    99,820    75,966    38,296    100,000    65,511    52,477    43,750    37,475    37,319  2-Aug-96    26-OCT-  1999  2-Sep-99  12-Jun-98    12-Jun-9B    17-OCT-  1998    15-Jan-99  04-OCT-  1995  23-Jun-99    17-Sep-97  17-Jun-98    15-Jun-94    26-Apr-93  1-Jul-99  13-MAR-  1999  5-Aug-99    18-Apr-98    23-Jun-99    5-Aug-99    18-Apr-98    03-MAR-  1997  29-MAR-  1999  23-Nov-99    16-Jul-97
Table 4 (continued)
 rxa01095            rxa01097        rxa01098          rxa01100              rxa01101            rxa01104            rxa01105          rxa01106    857            477        897          861              756            729            1221          1449    GB_BA1:MTCY01B2  35938  Z95554    GB_HTG5:AC011632 175917 AC011632    GB_HTG5:AC011632 175917 AC011632    GB_BA2:AF030405  774    AF030405    GB_BA2:AF030405  774    AF030405    GB_BA2:AF030405  774    AF030405    GB_BA1:MSGY223   42061  AD000019    GB_BA1:MLCB1610  40055  AL049913  GB_BA2:AF051846  738    AF051846      GB_BA2:AF060558  636    AF060558    GB_HTG1:HSDJ140A 221755 AL109917  9  GB_BA2:AF060558  636    AF060558    GB_BA1:SC4G6     36917  AL096884    GB_BA1:STMHISOPA 3981   M31628    GB_BA1:STMHISOPA 3981   M31628    GB_BA1:SC4G6     36917  AL096884    GB_BA1:MTCY336   32437  Z95586    GB_BA1:MTCY336   32437  Z95586    GB_BA1:MSGY223   42061  AD000019    GB_BA1:MLCB1610  40055  AL049913  GB_BA1:MSGY223   42061  AD000019   Mycobacterium tuberculosis H37Rv complete genome;segment 72/162.   Homo sapiens clone RP11-3N13,WORKING DRAFT SEQUENCE,9 unordered pieces. Homo sapiens clone RP11-3N13,WORKING DRAFT SEQUENCE,9 unordered pieces. Corynebacterium glutamicum cyclase(hisF)gene,complete cds.   Corynebacterium glutamicum cyclase(hisF)gene,complete cds.   Corynebacterium glutamicum cyclase(hisF)gene,complete cds.   Mycobacterium tuberculosis sequence from clone y223.   Mycobacterium leprae cosmid B1610. Corynebacterium glutamicum phosphoribosylformimino-5-amino-1- phosphoribosyl-4-imidazolecarboxamide isomerase(hisA)gene, complete cds. Corynebacterium glutamicum glutamine amidotransferase(hisH)gene, complete cds. Homo sapiens chromosome 1 clone RP1-140A9,***SEQUENCING IN PROGRESS***,in unordered pieces. Corynebacterium glutamicum glutamine amidotransferase(hisH)gene, complete cds. Streptomyces coelicolor cosmid 4G6.   S.coelicolor histidine biosynthesis operon encoding hisD,partial cds.,and hisC,hisB,hisH,and hisA genes,complete cds. S.coelicolor histidine biosynthesis operon encoding hisD,partial cds.,and hisC,hisB,hisH,and hisA genes,complete cds. Streptomyces coelicolor cosmid 4G6.   Mycobacterium tuberculosis H37Rv complete genome;segment 70/162.   Mycobacterium tuberculosis H37Rv complete genome;segment 70/162.   Mycobacterium tuberculosis sequence from clone y223.   Mycobacterium leprae cosmid B1610. Mycobacterium tuberculosis sequence from clone y223.    Mycobacterium  tuberculosis  Homo sapiens    Homo sapiens    Corynebacterium  glutamicum  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Mycobacterium  tuberculosis  Mycobacterium leprae  Corynebacterium  glutamicum    Corynebacterium  glutamicum  Homo sapiens    Corynebacterium  glutamicum  Streptomyces coelicolor  A3(2)  Streptomyces coelicolor    Streptomyces coelicolor    Streptomyces coelicolor  A3(2)  Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Mycobacterium leprae  Mycobacterium  tuberculosis  43,243    36,471    36,836    100,000    41,206    97,933    40,972    61,366  97,154      95,455    30,523    94,462    38,378    60,053    58,333    39,045    60,364    60,931    36,851    60,902  37,233     17-Jun-98     19-Nov-99     19-Nov-99     13-Nov-97     13-Nov-97     13-Nov-97     10-DEC-   1996   27-Aug-99   12-MAR-   1998     29-Apr-98     23-Nov-99     29-Apr-98     23-Jul-99     26-Apr-93     26-Apr-93     23-Jul-99     24-Jun-99     24-Jun-99     10-DEC-   1996   27-Aug-99   10-DEC-   1996
Table 4 (continued)
        rxa01145           rxa01162         rxa01208         rxa01209           rxa01215           rxa01239           rxa01253                  1137            1449          846          1528            1098             2556            873           GB_BA1:MSHISCD     GB_BA1:MTCY336     GB_BA1:CORAIA     GB_BA1:BRLILVCA     GB_PAT:E08232     GB_PAT:A60299     GB_PR3:HS24E5     GB_PR3:AC005265   GB_HTG2:AC004965     GB_HTG2:AC004965     GB_PL2:TAU55859   GB_HTG3:AC011469     GB_HTG3:AC011469     GB_PL1:AB010077     GB_BA1:MTCY10G2     GB_IN1:LEIPRPP     GB_HTG2:HSJ799D1    6   GB_BA1:MTCY48     GB_PR2:AB029032   GB_GSS9:AQ107201       GB_PL2:F508     GB_PL2:F508     GB_IN1:CELC06G1  2298    32437    4705    1364    1017    2869    35506    43900  323792    323792    2397  113436    113436    77380    38970    1887    130149    35377    6377  355      99923    99923    31205  X65542    Z95586    L09232    D14551    E08232    A60299    Z82185    AC005265  AC004965    AC004965    U55859  AC011469    AC011469    AB010077    Z92539    M76553    AL050344    Z74020    AB029032  AQ107201      AC005990    AC005990    U41014 M.smegmalis genes hisD and hisC for histidinol dehydrogenase and histidinol- phosphate aminotransferase.respectively. Mycobacterium tuberculosis H37Rv complete genome;segment 70/162.   Corynebacterium glutamicum acetohydroxy acid synthase(ilvB)and(ilvN) genes,and acetohydroxy acid isomeroreductase(ilvC)gene,complete cds. Brevibacterium flavum ilvC gene for acetohydroxy acid isomeroreductase. complete cds. DNA encoding aceohydroxy-acid isomeroreductase.   Secquence 18 from Patent WO9706261.   Human DNA sequence from Fosmid 24E5 on chromosome 22q11.2-qter contains parvalbumin,ESTs,STS. Homo sapiens chromosome 19,cosmid F19750,complete sequence. Homo sapiens clone DJ1106H14,***SEQUENCING IN PROGRESS***,42 unordered pieces. Homo sapiens clone DJ1106H14,***SEQUENCING IN PROGRESS***,42 unordered pieces. Triticum aeslivum heat shock protein 80 mRNA,complete cds. Homo sapiens chromosome 19 clone CIT-HSPC_475D23,***SEQUENCING IN PROGRESS***,31 unordered pieces. Homo sapiens chromosome 19 clone CIT-HSPC_475D23,***SEQUENCING IN PROGRESS***,31 unordered pieces. Arabidopsis thaliana genomic DNA,chromosome 5,P1 clone:MYH19, complete sequence. Mycobacterium tuberculosis H37Rv complete genome;segment 47/162.   Leishmania donovani phosphoribosylpyrophosphate synthetase gene, complete cds. Homo sapiens chromosome 1 clone RP4-799D16 map p34.3-36.1,*** SEQUENCING IN PROGRESS***,in unordered pieces. Mycobacterium tuberculosis H37Rv complete genome;segment 69/162.   Homo sapiens mRNA for KIAA1109 protein,patial cds. HS_3098_A1_C03_T7 CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=3098 Col=5 Row=E,genomic survey sequence. Arabidopsis thaliana chromosome 1 BAC F508 sequence,complete sequence. Arabidopsis thailana chromosome 1 BAC F508 sequence,complete sequence. Caenorhabditis elegans cosmid C06G1.  Mycobacterium smegmatis    Mycobacterium  tuberculosis  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Aspergillus niger    Homo sapiens    Homo sapiens  Homo sapiens    Homo sapiens    Triticum aestivum  Homo sepiens    Homo sapiens    Arabidopsis thaliana    Mycobacterium  tuberculosis  Leishmania donovani    Homo sapiens    Mycobacterium  tuberculosis  Homo sapiens  Homo sapiens      Arabidopsis thaliana    Arabidopsis thaliana    Caenorhabditis elegans  60,111    58,420    100,000    99,560    99,803    38,675    36,204    38,363  36,058    36,058    37,269  40,000    40,000    36,803    37,047    50,738    38,135    38,139    39,394  41,408      36,118    35,574    38,560   30-Jun-93     24-Jun-99     23-Feb-95     3-Feb-99     29-Sep-97     06-MAR-   1998   23-Nov-99     6-Jul-98   12-Jun-98     12-Jun-98     1-Feb-99   07-OCT-   1999   07-OCT-   1999   20-Nov-99     17-Jun-98     7-Jun-93     29-Nov-99   17-Jun-98     4-Aug-99   28-Aug-98       23-DEC-   1998   23-DEC-   1998   30-Nov-95
Table 4 (continued)
rxa01321               rxa01352           rxa01360           rxa01361         rxa01381             rxa01393       rxa01394          1044                706            259            629          944              993        822          GB_GSS14:AQ51884   441       AQ518843  3  GB_HTG2:AC007473   194859    AC007473      GB_HTG4:AC011696   115847    AC011696      G3_PL2:ATAC005167  83260     AC005167    GB_PL2:ATAC005825  97380     AC005825    GB_HTG3:AC011150   127222    AC011150    GB_EST32:A1725583  728       A1725583    GB_PR2:HS227P17    82951     Z81007    GB_EST34:AV171099  173       AV171099    GB_RO:AB008915S1   530       AB008915  GB_EST22:A1050532  293       A1050532      GB_RO:AB008895     3062      AB008895  GB_PL1:AB005237    87835     AB005237    GB_GSS5:AQ766840   491       AQ766840      GB_BA1:MTV043      68848     AL022004    GB_BA1:CGLYSEG     2374      X96471    GB_BA1:SC5A7       40337     AL031107  GB_PR3:AC004054    112184    AC004054  GB_BA1:CGLYSEG     2374      X96471    GB_GSS5:AQ769223   500       AQ769223     HS_5106_A1_D10_SP6E RPCI-11 Human Male BAC Library Homo sapiens genonic clone Plate=682 Col=19 Row=G,genomic survey sequence. Drosophila melanogaster chromosome 2 clone BACR38D12(D590)RPC1-98 38.D.12 map 48A-48B strain y;cn bw sp,***SEQUENCING IN PROGRESS ***,60 unordered pieces. Drosophila melanogaster chromosome 2 clone BACR35F01(D1156)RPC1-98 35.F.1 map 48A-48C strain y;cn bw sp,***SEQUENCING IN PROGRESS ***,108 unordered pieces. Arabidopsis thaliana chromosome 11 BAC F12A24 genomic sequence. complete sequence. Arabidopsis thaliana chromosome 11 BAC T24121 genomic sequence. complete sequence. Homo sapiens clone 4_K_17,LOW-PASS SEQUENCE SAMPLING.   BNLGHi12371 Six-day Cotton fiber Gossypium hirsutum cDNA 5′similar to (U86081)root hair defective 3[Arabidopsis thaliana].mRNA sequence. Human DNA sequence from PAC 227P17,between markers DXS6791 andDXS8038 on chromosome X contains CpG island,EST. AV171099 Mus musculus head C57BL/6J 14,17 day embryo Mus musculus cDNA clone 3200002M11,mRNA sequence. Mus musculus mGpi1 gene,exon 1. uc83d10.y1 Sugano mouse kidney mkia Mus musculus cDNA clone IMAGE:1432243 5′similar to TR:O35120 O35120 MGPI1P.;,mRNA sequence. Mus musculus mRNA for mGpi1p.complete cds. Arabidopsis thaliana genoic DNA,chromosome 5,P1 clone:MJJ3,complete sequence. HS_026_A2_C09_T7C ClT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=2026 Col=18 Row=E,genomic survey sequence. Mycobacterium tuberculosis H37Rv complete genome;segment 40/162.   C.glutamicum lysE and lysG genes   Streptomyces coelicolor cosmid 5A7. Homo sapiens chromosome 4 clone B220GB map 4q21,complete sequence. C.glutamicum lysE and lysG genes.   HS_3155_B2_G10_T7C CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=3155 Col=20 Row=N,genomic survey sequence.  Homo sapiens    Drosophila melanogaster      Drosophila melanogaster      Arabidopsis thaliana    Arabidopsis thaliana    Homo sapiens    Gossypium hirsutum    Homo sapiens    Mus musculus    Mus musculus  Mus musculus      Mus musculus  Arabidopsis thaliana    Homo sapiens      Mycobacterium  tuberculosis  Corynebacterium  glutamicum  Streptcmyces coelicolor  Homo sapiens  Corynebacterium  glutamicum  Homo sapiens      41,121    40,634      38,290      34,311    34,311    37,722    38,492    39,738    46,237    45,574  44,097      41,316  36,606    37,916      37,419    34,831    35,138  37,277  100,000    38,400      05-MAY-  1999  2-Aug-99      26-OCT-  1999    15-OCT-  1998  12-Apr-99    01-OCT-  1999  11-Jun-99    23-Nov-99    6-Jul-99    28-Sep-99  9-Jul-98      23-Nov-97  20-Nov-99    28-Jul-99      24-Jun-99    24-Feb-97    27-Jul-98  9-Jul-98  24-Feb-97    28-Jul-99    
Table 4 (continued)
    rxa01416       rxa01442         rxa01446         rxa01483         rxa01486       rxa01489       rxa01491         rxa01508     rxa01512            630        1347          1413          1395          757        1146        774          1662      723        GB_BA1:CGLYSEG    2374     X96471    GB_BA1:SC3C3      31382    AL031231  GB_BA1:MLCB22     40281    Z98741    GB_BA1:MTV002     56414    AL008967  GB_BA1:D90827     18886    D90827    GB_BA1:D90828     14590    D90828    GB_BA2:AE000279   10855    AE000279  GB_BA1:SCH10      39524    AL049754    GB_BA1:MTY13E10   35019    Z95324    GB_BA1:MLCB4      36310    AL023514  GB_BA1:MTCY98     31225    Z83860    GB_BA1:MSGB1229C  30670    L78812  S  GB_BA2:AF027507   5168     AF027507  GB_BA1:MTV002     56414    AL008967    GB_BA1:MLCB22     40281    Z98741  GB_BA1:SC3C3      31382    AL031231  GB_BA1:CORFADS    1547     D37967    GB_BA1:MLCB22     40281    Z98741  GB_BA1:SC1QA7     39739    AL078618  GB_BA1:MTV002     56414    AL008967    GB_EST13:AA356956 255      AA356956    GB_OV:OMDNAPROI   7327     X92380  GB_IN1:CEF28C12   14653    Z93380  GB_IN1:CEF28C12   14653    Z93380    GB_BA1:SCE9       37730    AL04984  GB_BA1:MAU88875   840      U88875     C.glutamicum lysE and lysG genes.   Streptomyces coelicolor cosmid 3C3. Mycobacterium leprae cosmid B22. Mycobacterium tuberculosis H37Rv complete genome;segment 122/162.   E.coli genomic DNA,Kohara clone #336(41.2-41.6min.).   E.coli genomic DNA,Kohara clone #336gap(41.6-41.9min.).   Escherichia coli K-12 MG1655 section 169 of 400 of the complete genome. Streptomyces coelicolor cosmid H10.   Mycobacterium tuberculosis H37Rv complete genome;segment 18/162.   Mycobacterium leprae cosmid B4. Mycobacterium tuberculosis H37Rv complete genome;segment 103/162.   Mycobacterium leprae cosmid B1229 DNA sequence. Mycobacterium smegmatis dGTPase(dgt),and primase(dnaG)genes.   complete cds;tRNA-Asn gene,cornplete sequence. Mycobacterium tuberculosis H37Rv complete genome;segment 122/162. Mycobacterium leprae cosmid B22. Streptomyces coelicolor cosmid 3C3. Corynebaclerium ammoniagenes gene for FAD synthetase.complete cds.   Mycobacterium leprae cosmid B22. Streptomyces coelicolor cosmid 10A7. Mycobacterium tuberculosis H37Rv complete genome;segment 122/162.   EST65614 Jurkat T-cells III Homo sapiens cDNA 5′end,mRNA sequence.   O.mossambicus prolactin I gene. Caenorhabditis elegans cosmid F28C12.complete sequence. Caenorhabditis elegans cosmid F28C12.complete sequence.   Streptomyces coelicolor cosmid E9. Mycobacterium avium hyposanthine-guanine phosphoribosyl transferase   gene,complete cds.  Corynebacterium  glutamicum  Streptomyces coelicolor  Mycobacterium leprae  Mycobacterium  tuberculosis  Escherichia coli    Escherichia coli   Escherichia coli  Streptomyces coelicolor    Mycobacterium  tuberculosis  Mycobacterium leprae  Mycobacterium  tuberculosis  Mycobacterium leprae  Mycobacterium smegmatis    Mycobacterium  tuberculosis  Mycobacterium leprae  Streptomyces coelicolor  Corynebacterium  ammoniagenes  Mycobacterium leprae  Streptomyces coelicolor  Mycobacterium  tuberculosis  Homo sapiens  Tilapia mossambica    Caenorhabditis elegans  Caenorhabditis elegans  Streptomyces coelicolor    Mycobacterium avium      33,665    62,726  39,159  37,340    58,517    56,151    56,021  39,037    40,130    37,752  39,057    54,382  52,941    40,941    38,451  61,194  58,021    38,414  36,930  37,062    37,647  38,289    37,984  38,469  39,021    57,521       24-Feb-97     10-Aug-98   22-Aug-97   17-Jun-98     21-MAR-   1997   21-MAR-   1997   12-Nov-98   04-MAY-   1999   17-Jun-98     27-Aug-99   17-Jun-98     15-Jun-96   16-Jan-98     17-Jun-98     22-Aug-97   10-Aug-98   8-Feb-99     22-Aug-97   9-Jun-99   17-Jun-98     21-Apr-97   19-OCT-   1995   23-Nov-98   23-Nov-98   19-MAY-   1999   05-MAR-   1997  
Table 4 (continued)
    rxa01514  711         rxa01515  975       rxa01516  513           rxa01517 600         rxa01521  921       rxa01528  651         rxa01551  1998         rxa01561  1053       rxa01599  1785       GB_BA1:MTY15C10   33050    295436     GB_BA1:MTCY7H78   24244    Z95557     GB_BA1:MLCB2548   38916    AL023093   GB_PL1:EGGTPCHI   242      Z49757     GB_BA1:ECOUW93    338534   U14003   GB_BA1:ECOUW93    338534   U14003   GB_BA1:MTCY49     39430    Z73966     GB_IN1:DME238847  5419     AJ238847     GB_HTG3:AC009210  103814   AC009210       GB_IN2:AF132179   4842     AF132179   GB_PL2:F6H8       82596    AF178045   GB_PL2:AF038831   647      AF038831     GB_PL2:ATAC005957 108355   AC005957     GB_BA1:ANANIFBH   5936     J05111     GB_PR2:AC002461   197273   AC002461   GB_PR2:AC002461   197273   AC002461   GB_RO:MM437P9     165901   AL049866   GB_PR3:AC005740   186780   AC005740     GB_PR3:AC005740   186780   AC005740     GB_BA1:MTCY22G10  35420    Z84724     GB_BA2:ECOUW89    176195   U00006     GB_BA1:SCQ11      15441    AL096823   GB_IN1:CEY62HgA   47396    AL032630   GB_PR4:HSU51003   3202     U51003     GB_OM:PIGDAO1     395      M18444   GB_BA1:MTC1125    37432    Z98268     GB_BA1:U00021     39193    U00021 Mycobacterium tuberculosis H37Rv complete genome;segment 154/162.   Mycobacterium tuberculosis H37Rv complete genome;segment 153/162.   Mycobacterium leprae cosmid B2548. E.gracilis mRNA for GTP cyclohydrolese I(core region).   Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes. Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes. Mycobacterium tuberculosis H37Rv complete genome;segment 93/162.   Drosophila melanogaster mRNA for drosophila dodeca-satellite protein 1 (DDP-1). Drosophila melanogaster chromosome 2 clone BACR01106(D1054)RPC1-98 01.1.6 map 55D-55D strain y;cn bw sp,***SEQUENCING IN PROGRESS ***,86 unordered pieces. Drosophila melanogaster clone LD21677 unknown mRNA. Arabidopsis thalina BAC F6H8. Sorosporium saponariae internal transcribed spacer 1,5.8S ribosomal RNA gene;and internal transcribed spaoer 2,complete sequence. Arabidopsis thaliana chromosome II BAC T15J14 genomic sequence, complete sequence. Anabaena sp.(clone AnH20.1)nitrogen fixation operon nifB,fdxN,nifS,nifU, and nifH genes.complete cds. Human BAC clone RG204116 from 7q31,complete sequence. Human BAC clone RG204116 from 7q31,complete sequence. Mus musculus chromosome X,clone 437P9. Homo sapiens chromosome 5p,BAC clone 50g21(LBNL H154),complete sequence. Homo sapiens chromosome 5p,BAC clone 50g21(LBNL H154),complete sequence. Mycobacterium tuberculosis H37Rv complete genome;segment 21/162.   E.coli chromosomal region from 89.2 to 92.8 minutes.   Streptomyces coelicolor cosmid Q11. Caenorhabditis elegans cosmid Y62H9A,complete sequence. Homo sapiens DLX-2(DLX-2)gene,complete cds.   Pig D-amino acid oxidase(DAO)gene,exon 1. Mycobacterium tuberculosis H37Rv complete genome;segment 76/162.   Mycobacterium leprae cosmid L247.  Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Mycobacterium leprae  Euglena gracilis    Escherichia coli  Escherichia coli  Mycobacterium  tuberculosis  Drosophila melarogaster    Drosophila melanogaster      Drosophila melanogaster  Arabidopsis thaliana  Sorosporium saponariae    Arabidopsis thaliana    Anabaena sp.    Homo sapiens  Homo sapiens  Mus musculus  Homo sapiens    Homo sapiens    Mycobacterium  tuberculosis  Escherichia coli    Streptomyces coelicolor  Caenorhabditis elegans  Homo sapiens    Sus scrofa  Mycobacterium  tuberculosis  Mycobacterium leprae   40,086     43,343     38,177   64,876     38,943   37,500   38,010     36,346     37,897       36,149   35,846   40,566     38,095     38,206     36,623   34,719   37,500   37,031     38,035     38,371     38,064     60,775   38,514   37,730     39,340   63,300     36,756     17-Jun-98       18-Jun-98       27-Aug-99     20-OCT-     1995     17-Apr-96     17-apr-96     24-Jun-99       13-Aug-99       20-Aug-99         3-Jun-99     19-Aug-99     13-Apr-99       7-Jan-99       26-Apr-93       20-Aug-97     20-Aug-97     29-Jun-99     01-OCT-     1998     01-OCT-     1998     17-Jun-98       17-DEC-     1993     8-Jul-99     2-Sep-99     07-DEC-     1999     27-Apr-93     17-Jun-98       29-Sep-94
Table 4 (continued)
  rxa01617           rxa01657           rxa01660         rxa01678           rxa01679         rxa01690       rxa01692       rxa01698            795            723            675          651            1359          1224        873        1353          GB_BA1:MLCB51351   38936     Z95117  GB_PR2:HSMTM0      217657    AL034384    GB_PR2:HS13D10     153147    AL021407    GB_PR2:HSMTM0      217657    AL034384    GB_BA1:MTCY1A10    25949     Z95387    GB_EST6:D79278     392       D79278    GB_BA2:AF129925    10243     AF129925    GB_BA1:MTV013      11364     AL021309    GB_RO:MMFV1        6480      X97719  GB_PAT:A67508      6480      A67508    GB_VI:TVU95309     600       U95309    GB_VI:TVU95303     600       U95303    GB_VI:TVU95302     600       U95302    GB_EST5:H91843     362       H91843      GB_STS:G26925      362       G26925  GB_PL2:AF139451    1202      AF139451  GB_8A1:SC1C2       42210     AL031124  GB_EST22:A1064232  493       A1064232    GB_IN2:AF117896    1020      AF117896  GB_BA2:AF057123    1034      AF067123    GB_RO:RATNFHPEP    3085      M37227  GB_RO:RSNFH        3085      X13804  GB_BA2:AF124600    4115      AF124600      GB_BA1:MTCY159     33818     Z83863   Mycobacterium leprae cosmid B1351. Human chromosome Xq28,cosmid clones 7H3,14D7,C1230,11E7,F1096, A12197,12GB,A09100;complete sequence bases 1..217657. Homo sapiens DNA sequence from PAC 13D10 on chromosome 6p22.3-23. Contains CpG island. Human chromosome Xq28,cosmid clones 7H3,14D7,C1230,11E7,F1096, A12197,12GB,A09100;complete sequence bases 1..217657. Mycobacterium tuberculosis H37Rv complete genome;segment 117/162.   HUM213D06B Human aorta polyA+(TFujiwara)Homo sapiens cDNA clone GEN-213D06 5′,mRNA sequencce. Thiobacillus ferrooxidans carboxysome operon,complete cds.   Mycobacterium tuberculosis H37Rv complete genome;segment 134/162.   M.musculus retrovirus restriction gene Fv1. Sequence 1 from Patent WO9743410.   Tula virus O64 nucleocapsid protein gene,partial cds.   Tula virus O52 nucleocapsid protein gene,partial cds.   Tula virus O24 nucleocapsid protein gene,partial cds.   ys81e01.s1 Soares retina N2b4HR Homo sapiens cDNA clone IMAGE:221208 3′similar to gb:X63749_ma1 GUANINE NUCLEDTIDE- BINDING PRDTEIN G(T).ALPHA-1(HUMAN);.mRNA sequence. human STS SHGC-30023.sequence tagged site. Gossypium robinsonii CelA2 pseudogene,partial sequence. Streptomyces coelicolor cosmid 1C2. GH04563.5prime GH Drosophila melanogaster head pOT2 Drosophi1a melanogaster cDNA clone GH04563 5prime,mRNA sequence. Drosophila melanogaster neuropeptide F(npf)gene,complete cds. Lactobacillus reuteri cobalamin biosynthesis protein J(cbiJ)gene.partial cds; and uroporphyrin-III C-methyltransferase(sumT)gene,complete cds. Rat heavy neurofilament(NF-H)polypeptide,partial cds. Rat mRNA for heavy neurofilament polypeptide NF-H C-terminus. Corynebacterium glutamicum chorismate synthase(aroC),shikimate kinase (aroK).and 3-dehydroquinate synthase(aroB)genes,complete cds;and putative cytoplasmic peptidase(pepQ)gene,partial cds. Mycobacterium tuberculosis H37Rv complete genome;segment 111/162.    Mycobacterium leprae  Homo sapiens    Homo sapiens    Homo sapiens    Mycobacterium  tuberculosis  Homo sapiens    Thiobacillus ferrooxidans    Mycobacterium  tuberculosis  Mus musculus  Mus musculus    Tula virus    Tula virus    Tula virus    Homo sapiens      Homo sapiens  Gossypium robinsonii  Streptomyces coelicolor  Drosophila melanogaster    Drosophila melanogaster  Lactobacillus reuteri    Rattus norvegicus  Rattus sp.  Corynebacterium  glutamicum    Mycobacterium  tuberculosis  36,756  40,811    38,768    39,018    40,656    44,262    40,709    40,986    35,364  35,364    41,894    41,712    39,576    39,157      39,157  38,910  60,644  38,037    36,122  48,079    37,093  37,093  100,000      36,323    24-Jun-97  5-Jul-99    23-Nov-99    5-Jul-99    17-Jun-98    9-Feb-96    17-MAY-  1999  17-Jun-98    29-Aug-96  05-MAY-  1999  28-OCT-  1997  28-OCT-  1997  28-OCT-  1997  29-Nov-95      14-Jun-96  1-Jun-99  15-Jan-99  24-Nov-98    2-Jul-99  3-Jun-98    27-Apr-93  14-Jul-95  04-MAY-  1999    17-Jun-98  
Table 4 (continued)
     rxa01699                rxa01712        rxa01719            rxa01720          rxa01746        rxa01747          rxa01757                  693                805        684            1332          876        1167          924              GB_BA1:MSGB937C     38914  L78820  S  GB_8A2:AF124600     4115   AF124600      GB_BA2:AF016585     41097  AF016585      GB_EST9:C19712      399    C19712    GB_EST21:AA952466   278    AA952466    GB_EST21:AA952466   278    AA952466    GB_HTG1:HSDJ534K    154416 AL109925  7  GB_HTG1:HSDJ534K    154416 AL109925  7  GB_EST27:A1447108   431    A1447108    GB_PR4:AC006322     179640 AC006322    GB_PL2:TM018A10     106184 AF013294  GB_PR4:AC006322     179640 AC006322    GB_EST3:R46227      443    R46227    GB_EST3:R46227      443    R46227    GB_BA1:MTCY190      34150  Z70283    GB_BA1:MLCB22       40281  Z98741  GB_BA1:SC5F7        40024  AL096872    GB_EST21:AA918454   416    AA918454      GB_EST4:H34042      345    H34042    G8_EST20:AA899038   450    AA899038   Mycobacterium leprae cosmid B937 DNA sequence.   Corynebacterium glutamicum chorismate synthase(aroC),shikimate kinase (aroK),and 3-dehydroquinate synthase(aroB)genes,complete cds;and putative cytoplasmic peptidase(pepQ)gene,partial cds. Streptomyces caelestis cytochrome P-450 hydroxylase homolog(nidi)gene, partial cds;polyketide synthase modules 1 through 7(hidA)genes,complete cds;and N-methyltransferase homolog gene,partial cds. C19712 Rice panicle at ripening stage Oryza sativa cDNA clone E10821_1A, mRNA sequence. TENS1404 T.cruzi epimastigote normalized cDNA Library Trypanosoma cruzi cDNA clone 1404 5′,mRNA sequence. TENS1404 T.cruzi epimastigote normalized cDNA Library Trypanosoma cruzi cDNA clone 1404 5′,mRNA sequence. Homo sapiens chromosome 1 clone RP4-534K7,***SEQUENCING IN PROGRESS***,in unordered pieces. Homo sapiens chromosome 1 clone RP4-534K7,***SEQUENCING IN PROGRESS***,in unordered pieces. mq91e08.x1 Stratagene mouse heart(#937316)Mus musculus cDNA clone IMAGE:586118 3′,mRNA sequence. Homo sapiens PAC clone DJ1060B11 from 7q11.23-q21.1,complete sequence. Arabidopsis thaliana BAC TM018A10. Homo sapiens PAC clone DJ1060B11 from 7q11.23-q21.1,complete sequence. yg52a03.s1 Soares infant brain 1NIB Homo sapiens cDNA clone IMAGE:36000 3′,mRNA sequence. yg52a03.s1 Soares infant brain 1NIB Homo sapiens cDNA clone IMAGE:36000 3′,mRNA sequence. Mycobacterium tuberculosis H37Rv complete genome;segment 98/162.   Mycobacterium leprae cosmid B22. Streptomyces coelicolor cosmid 5F7.   om38c02.s1 Soares_NFL_T_GBC_S1 Homo sapiens cDNA clone IMAGE:1543298 3′similar to WP:F28F8.3 CE09757 SMALL NUCLEAR RIBONUCLEOPROTEIN E;.mRNA sequence. EST110563 Rat PC-12 cells,NGF-treated(9 days)Rattus sp.cDNA clone RPNB181 5′end,mRNA sequence. NCP6G8T7 Perithecial Neurospora crassa cDNA clone NP6G8 3′end,mRNA sequence.  Mycobacterium leprae    Corynebacterium  glutamicum    Streptomyces caelestis      Oryza sativa    Trypanosoma cruzi    Trypanosoma cruzi    Homo sapiens    Homo sapiens    Mus musculus    Homo sapiens    Arabidopsis thaliana  Homo sapiens    Homo sapiens    Homo sapiens    Mycobacterium  tuberculosis  Mycobacterium leprae  Streptomyces coelicolor  A3(2)  Homo sapiens      Rattus sp.    Neurospora crassa     62,780     100,000       40,260       45,425     40,876     41,367     35,651     35,651     39,671     35,817     35,698   37,243     42,812     42,655     59,294     57,584   61,810     39,655       35,942     40,000     15-Jun-96     04-MAY-   1999     07-DEC-   1997     24-OCT-   1996   29-OCT-   1998   29-OCT-   1998   23-Nov-99     23-Nov-99     09-MAR-   1999   18-MAR-   1999   12-Jul-97   18-MAR-   1999   22-MAY-   1995   22-MAY-   1995   17-Jun-98     22-Aug-97   22-Jul-99     23-Jun-98       2-Apr-98     12-Apr-98  
Table 4 (continued)
 rxa01807          rxa01821          rxa01835            rxa01850          rxa01878            rxa01892          rxa01894            rxa01920        915          401          654            1470          1002            852          978            1125        GB_BA1:AP000063     185300  AP000063  GB_HTG4:AC010694    115857  AC010694    GB_HTG4:AC010694    115857  AC010694    GB_BA1:CGL007732    4460    AJ007732    GB_RO:RATALGL       7601    M24108    GB_OV:APIGY2        1381    X78272  GB_EST30:A1629479   353     A1629479    GB_STS:G48245       515     G48245    GB_GSS3:B49052      515     B49052    GB_BA2:ECOUw67_     110000  U18997  0  GB_BA2:AE000392     10345   AE000392  GB_BA2:U32715       13136   U32715    GB_HTG1:CEY64F11    177748  Z99776    GB_HTG1:CEY64F11    177748  Z99776    GB_HTG1:CEY64F11    177748  Z99776    GB_BA1:MTCY274      39991   Z74024    GB_BA1:MLCB250      40603   Z97369  GB_BA1:MSGB1529C    36985   L78824  S  GB_BA1:MTCY274      39991   Z74024    GB_IN1:CELF46H5     38886   U41543  GB_HTG3:AC009204    115633  AC009204      GB_BA2:AF112536     1798    AF112536    GB_BA1:CANRDFGE     6054    Y09572  N Aeropyrum pemix genomic DNA,section 677. Drosophila melanogaster clone RPC198-6H2,***SEQUENCING IN PROGRESS***,75 unordered pieces. Drosophila melanogaster clone RPCI98-6H2,***SEQUENCING IN PROGRESS***,75 unordered pieces. Corynebacterium glutamicum 3′ppc gene,secG gene,amt gene,ocd gene and 5′soxA gene. Rattus norvegicus(clone A2U42)alpha2u globulin gene,exons 1-7.   Anas platyrhynchos(Super M)lgY upsilon heavy chain gene,exon 2. 486101D10.x1 486-leaf primordia cDNA library from Hake lab Zea mays cDNA,mRNA sequence. SHGC-62915 Human Homo sapiens STS genomic,sequence tagged site.   RPC111-4112.TV RPC1-11 Homo sapiens genomic clone RPC1-11-4112. genomic survey sequence. Escherichia coli K-12 chromosomal region from 67.4 to 76.0 minutes.   Escherichia coli K-12 MG1655 section 282 of 400 of the complete genome. Haemophilus influenzae Rd section 30 of 163 of the complete genome.   Caenorhabditis elegans chromosome IV clone Y64F11,***SEQUENCING IN PROGRESS***,in unordered pieces. Caenorhabditis elegans chromosome IV clone Y64F11,***SEQUENCING IN PROGRESS***,in unordered pieces. Caenorhabditis elegans chromosome IV clone Y64F11,***SEQUENCING IN PROGRESS***,in unordred pieces. Mycobacterium tuberculosis H37Rv complete genome;segment 126/162.   Mycobacterium leprae cosmid B250. Mycobacterium leprae cosmid B1529 DNA sequence.   Mycobacterium tuberculosis H37Rv complete genome;segment 126/162.   Caenorhabditis elegans cosmid F46H5. Drosophila melanogaster chromosome 2 clone BACR03E19(D1033)RPC1-98 03.E.19 map 36E-37C strain y;cn bw sp,***SEQUENCING IN PROGRESS ***,94 unordered pieces. Corynebacterium glutamicum ribonucleotide reductase beta-chain(nrdF) gene,complele cds. Corynebacterium ammoniagenes nrdH,nrdI,nrdE,nrdF genes.    Aeropyrum pernix  Drosophila melanogaster    Drosophila melanogaster    Corynebacterium  glutamicum  Rattus norvegicus    Anas platyrhynchos  Zea mays    Homo sapiens    Homo sapiens    Escherichia coli    Escherichia coli  Haemophilus influenzae  Rd  Caenorhabditis elegans    Caenorhabditis elegans    Caenorhabditis elegans    Mycobacterium  tuberculosis  Mycobacterium leprae  Mycobacterium leprae    Mycobacterium  tuberculosis  Caenorhabditis elegans  Drosophila melanogaster      Corynebacterium  glutamicum  Corynebacterium  ammoniagenes  40,067  35,450    35,450    100,000    38,692    36,962  38,109    37,021    37,021    37,196    38,021  39,860    37,564    37,564    37,576    35,910    64,260  64,260    37,229    38,525  31,579      99,733    70,321     22-Jun-99   16-OCT-   1999   16-OCT-   1999   7-Jan-98     15-DEC-   1994   15-Feb-99   26-Apr-99     26-MAR-   1999   8-Apr-99     U18997     12-Nov-98   29-MAY-   1998   14-OCT-   1998   14-OCT-   1998   14-OCT-   1998   19-Jun-98     27-Aug-99   15-Jun-96     19-Jun-98     29-Nov-96   18-Aug-99       5-Aug-99     18-Apr-98  
Table 4 (continued)
     rxa01928            rxa01929          rxa01940  rxa02022                rxa02024          rxa02027  rxa02031    rxa02072                960            936          1059  1230                859                1464           GB_BA2:AF050168    1228   AF050168   GB_BA1:CGPAN       2164   X96580   GB_PL1:AP000423    154478 AP000423   GB_PL1:AP000423    154478 AP000423   GB_BA1:CGPAN       2164   X96580   GB_BA1:XCU33548    8429   U33548   GB_BA1:XANHRPB6    1329   M99174 A GB_IN2:CFU43371    1060   U43371 GB_BA2:AE001467    11601  AE001467 GB_RO:AF175967     3492   AF175967 GB_BA1:CGDAPE      1966   X81379     GB_BA1:CGDNAARO    2612   X85965 P GB_BA1:APU47055    6469   U47055   GB_BA1:MTC1364     29540  Z93777 GB_BA1:MSGB1912C   38503  L01536 S GB_BA1:MLU15180    38675  U15180          GB_BA1:CGGDHA     2037   X72855    GB_BA1:CGGDH      2037   X59404    GB_BA1:PAE18494   1628   Y18494   Corynebacterium ammoniagenes ribonucleoside diphosphate neductase small subunit(nrdF)gene,complete cds. C.glulamicum panB,panC & xylB genes.   Arabidopsis thaliana chloroplast genomic DNA,complete sequence, strain:Columbia. Arabidopsis thaliana chloroplast genomic DNA,complete sequence, strain:Columbia. C.glutamicum panB,panC &xyIB genes.   Xanthomonas campestris hrpB pathogenicity locus proteins HrpB1,HrpB2, HrpB3,HrpB4,HrpB5,HrpB6,HrpB7,HrpB8,HrpA1,and ORF62 genes,complete cds. Xanthomonas campestris hrpB6 gene,complete cds. Crithidia fasciculata inosine-uridine preferring nucleoside hydrolase(IUNH) gene,complete cds. Helicobacter pylori,strain J99 section 28 of 132 of the complete genome. Homo sapiens Leman coiled-coil protein(LCCP)mRNA,complete cds. C.glutamicum dapE gene and orf2.     C.glutamicum ORF3 and aroP gene.   Anabaena PCC7120 nitrogen fixation proteins(nifE,nifN,nifX,nifW)genes. complete cds,and nitrogenase(nifK)and hesA genes,partial cds. Mycobacterium tuberculosis H37Rv complete genome;segment 52/162. M.leprae genomic dna sequence,cosmid b1912. Mycobacterium leprae cosmid B1756.         C.glutamicum GDHA gene.   Corynebacterium glutamicum,gdh gen fo rglutamate dehydrogenase.   Pseudomonas aeruginosa gdhA gene,strain PAC1.   Corynebacterium ammoniagenes Corynebacterium glutamicum Chloroplast Arabidopsis thaliana Chloroplast Arabidopsis thaliana Corynebacterium glutamicum Xanthomonas campestris pv.vesicatoria Xanthomonas campestris Crithidia fasciculata Helicobacter pylori J99 Mus musculus Corynebacterium glutamicum Corynebacterium   glutamicum Anabaena PCC7120 Mycobacterium tuberculosis Mycobacterium leprae Mycobacterium leprae       Corynebacterium   glutamicum Corynebacterium glutamicum Pseudomonas aeruginosa  72,082    100,000    35,917    33,925    100,000    38,749    39,305 61,417  38,560  40,275  100,000    38,889      36,647  59,415    57,093  57,210        99,317      94,387    62,247  23-Apr-98    11-MAY-  1999  15-Sep-99    15-Sep-99    11-MAY-  1999  19-Sep-96    14-Sep-93 18-Jun-96  20-Jan-99  26-Sep-99  8-Aug-95    30-Nov-97      17-Feb-96  17-Jun-98    14-Jun-96  09-MAR-  1995      24-MAY-  1993    30-Jul-99    6-Feb-99
Table 4 (continued)
rxa02085         rxa02093         rxa02106           rxa02111           rxa02112               rxa02134             rxa02135        2358          927          1179            1407            960                1044              1197           GB_BA1 :MTCY22G8     22550    Z95585     GB_BA1:MLCB33        42224    Z94723   GB_BA1:ECOUW85       91414    M87049     GB_EST14:AA448146    452      AA448146     GB_EST17:AA641937    444      AA641937     GB_PR3:AC003074      143029   AC003074   GB_BA1:SC1A6         37620    AL023496   GB_PR4:AC005553      179651   AC005553     GB_EST3:R49746       397      R49746       GB_BA1:SC6G10        36734    AL049497     GB_BA1:U00010        41171    U00010     GB_BA1:MTCY336       32437    Z95586     GB_HTG3:AC010579     157658   AC010579       GB_GSS3:B09839       1191     B09839     GB_HTG3:AC010579     157658   AC010579       GB_BA1:SCSECYDN       6154    X83011   A   GB_EST32:A1731596     568     A1731596       GB_BA1:SCSECYDN       6154    X83011   A   GB_PR3:HS525L6        168111  AL023807     GB_PL2:ATF21P8        85785   AL022347     GB_PL2:U89959         106973  U89959 Mycobacterium tuberculosis H37Rv complete genome;segment 49l162.   Mycobacterium leprae cosmid B33. E.coli genomic sequence of the region from 84.5 to 86.5 minutes.   zw82hD1.r1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:782737 5′.mRNA sequence. ns18b10.r1 NCI_CGAP_GCB1 Homo sapiens cDNA clone IMAGE:1183963 5′.mRNA sequence. Human PAC clone DJ0596009 from 7p15,complete sequence. Streptomyces coelicolor cosmid 1A6. Homo sapiens chromosome 17,clone hRPK.112_J_9,complete sequence.   yg71g10.r1 Soares infant brain 1NIB Homo sapiens cDNA clone IMAGE:38768 5′similar to gb:V00567 BETA-2-MICROGLOBULIN PRECURSOR(HUMAN);,mRNA sequence. Streptomyces coelicolor cosmid 6G10.   Mycobacterium leprae cosmid B1170.   Mycobacterium tubercu1osis H37Rv complete genome;segment 70/162.   Drosophila melanogaster chromnosome 3 clone BACR09D08(D1101)RPCI-98 09.D.8 map 96F-96F strain y;cn bw sp,***SEQUENCING IN PROGRESS ***,121 unordered pieces. T12A12-Sp6 TAMU Arabidopsis thaliana genomic clone T12A12,genomic survey sequence. Drosophila melanogaster chromosome 3 clone BACR09DD08(D1101)RPC1-98 09.D.8 map 96F-96F strain y;cn bw sp,***SEQUENCING IN PROGRESS ***,121 unordered pieces. S.coelicolor secY locus DNA.   BNLGHi10185 Six-day Cotton fiber Gossypium hirsutum cDNA 5′similar to (AC004005)putative ribosomal protein L7[Arabidopsis thaliana],mRNA sequence. S.coelicolor secY locus DNA.   Human DNA sequence from clone RP3-525L6 on chromosome 6p22.3-23 Contains CA repeat,STSs,GSSs and a CpG Island,complete sequence. Arabidopsis thaliaha DNA chromosome 4,BAC clone F21P8(ESSA project).   Arabidopsis thaliana BAC T7123,complete sequence.  Mycobacterium  tuberculosis  Mycobacterium leprae  Escherichia coli    Homo sapiens    Homo sapiens    Homo sapiens  Streptomyces coelicolor  Homo sapiens    Homo sapiens      Streptomyces coelicolor    Mycobacterium leprae    Mycobacterium  tuberculosis  Drosophila melanogaster      Arabidopsis thaliana    Drosophila melanogaster      Streptomyces coelicolor    Gossypium hirsutum      Streptomyces coelicolor    Homo sapiens    Arabidopsis thaliana    Arabidopsis thaliana  38,442    56,486  52,127    34,163    35,586    31,917  35,818  34,274    41,162      50,791    37,563    39,504    37,909      37,843    37,909      36,533    33,451      36,756    34,365    34,325    33,874   17-Jun-98     24-Jun-97   29-MAY-   1995   4-Jun-97     27-OCT-   1997   6-Nov-97   13-Jan-99   31-DEC-   1998   18-MAY-   1995     24-MAR-   1999   01-MAR-   1994   24-Jun-99     24-Sep-99       14-MAY-   1997   24-Sep-99       02-MAR-   1998   11-Jun-99       02-MAR-   1998   23-Nov-99     9-Jun-99     26-Jun-98
Table 4 (continued)
rxa02136         rxa02139           rxa02153                 rxa02154                 rxa02155                 rxa02156          645          1962            903                  414                  1287                  1074  GB_PL2:ATAC005819  57752   AC005819    GB_PL2:F15K9       71097   AC005278    GB_PL2:U89959      106973  U89959  GB_BA1:MTCY190     34150   270283    GB_BA1:MSGB1554C   36548   L78814  S  GB_BA1:MSGB1551C   36548   L78813  S  GB_BA2:AF049897    9196    AF049897          GB_BA1:AF005242    1044    AF005242    GB_BA1:CGARGCJB    4355    X86157  D  GB_BA2:AF049897    9196    AF049897          GB_BA1:AF005242    1044    AF005242    GB_BA1:CGARGCJB    4355    X86157  D  GB_BA1:CGARGCJB    4355    X86157  D  GB_BA2:AF049897    9196    AF049897          GB_BA1:MSGB1133C   42106   L78811  S  GB_BA2:AF049897    9196    AF049897         Arabidopsis thaliana chromosome II BAC T3A4 genomic sequence,complete sequence. Arabidopsis thaliana chromosome 1 BAC F15K9 sequence,complete sequence. Arabidopsis thaliana BAC T7123,complete sequence. Mycobacterium tuberculosis H37Rv complete genome;segment 98/162.   Mycobacterium leprae cosmid B1 554 DNA sequence.   Mycobacterium leprae cosmid B1 551 DNA sequence.   Corynebacterium glutamicum N-acetylglutamylphosphate reductase(argC), omithine acetyltransferase(argJ),N-acetylglutamate kinase(argB), acetylomithine transaminase(argD),omithine carbamoyltransferase (argF),arginine repressor(argR),argininosuccinate synthase(argG),and argininosuccinate lyase(argH)genes,complete cds. Corynebacterium glutamicum N-acetylglutamate-5-semialdehyde dehydrogenase(argC)gene,complete cds. C.glutamicum argC,argJ,argB,argD,and argF genes.   Corynebacterium glutamicum N-acetylglutamylphosphate reductase(argC), ornithine acetyltransferase(argJ),N-acetylglutamate kinase(argB), acetyfornithine transaminase(argD),omithine carbamoyltransferase(argF), arginine repressor(argR),argininosuccinate synthase(argG),and argininosuccinate lyase(argH)genes,comptete cds. Corynebacterium glutamicum N-acetylglutamate-5-semialdehyde dehydrogenase(argG)gene,complete cds. C.glutamicum argC,argJ,argB,argD,and argF genes.   C.glutamicum argC,argJ,argB,argD,and argF genes.   Corynebacterium glutamicum N-acetylglutamylphosphate reductase(argC), omithine acetyltransferase(argJ),N-acetylglutamate kinase(argB), acetylomithine transaminase(argD),omithine carbamoyltransferase(argF), arginine repressor(argR),argininosuccinate synthase(argG),and argininosuccinate lyase(argH)genes,complete cds. Mycobacterium leprae cosmid B1133 DNA sequence.   Corynebaclerium glutamicum N-acetylglutamylphosphate reductase(argC), ornithine acetyltransferase(argJ),N-acetylglutamate kinase(argB), acetylomithine transaminase(argD),omithine carbamoyltransferase(argF), arginine repressor(argR),argininosuccinate synthase(argG),and argininosuccinate lyase(argH)genes,complete cds.  Arabidopsis thaliana    Arabidopsis thaliana    Arabidopsis thaliaha  Mycobacterium  tuberculosis  Mycobacterium leprae    Mycobacterium leprae    Corynebacterium  glutamicum        Corynebacterium  glutamicum  Corynebacterium  glutamicum  Corynebacterium  glutamicum        Corynebacterium  glutamicum  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Corynebacterium  glutamicum        Mycobacterium leprae    Corynebacterium  glutamicum         34,123     31,260     34,281   62,904     36,648     36,648     99,104           99,224     100,000     98,551           98,477     100,000     99,767     99,378           55,504     100,000           3-Nov-98     7-Nov-98     26-Jun-98   17-Jun-98     15-Jun-96     15-Jun-96     1-Jul-98           2-Jul-97     25-Jul-96     1-Jul-98           2-Jul-97     25-Jul-96     25-Jul-96     1-Jul-98           15-Jun-96     1-Jul-98        
Table 4 (continued)
       rxa02157                  rxa02158                  rxa02159                  rxa02160                rxa02162               1296                 1080                 636                 1326               1554          GB_BA1:CGARGCJB    4355     X86157  D  GB_BA2:AE001816    10007    AE001816  GB_BA2:AF049897    9196     AF049897          GB_BA1:CGARGCJB    4355     X86157  D  GB_BA1:MTCY06H11   38000    Z85982    GB_BA2:AF049897    9196     AF049897          GB_BA2:AF031518    2045     AF031518    GB_BA1:CGARGCJB    4355     X86157  D  GB_BA2:AF049897    9196     AF049897          GB_BA2:AF031518    2045     AF031518    GB_BA2:AF041436    516      AF041436    GB_BA2:AF049897    9196     AF049897          GB_BA2:AF030520    1206     AF030520    GB_BA1:SCARGGH     1909     Z49111  GB_BA2:AF049897    9196     AF049897         C.glutamicum argC,argJ,atgB,argD,and argF genes.   Thermotoga maritima section 128 of 136 of the complete genome. Corynebacterium glutamicum N-acetylglutamylphosphate reductase(argC), ornithine acetyltransferase(argJ),N-acetylglutamate kinase(argB), acetylomithine transaminase(argD),omithine carbamoyltransferase(argF), arginine repressor(argR),argininosuccinate synthase(argG),and argininosuccinate lyase(argH)genes,complete cds. C.glutamicum argC,argJ,argB,argD,and argF genes.   Mycobacterium tuberculosis H37Rv complete genome;segmant 73/162.   Corynebacterium glutamicum N-acetylglutamylphosphate reductase(argC), ornithine acetyltransferase(argJ),N-acetylglutamate kinase(argB), acetylomithine transaminase(argD),ornithine carbamoyltransferase(argF), arginine repressor(argR),argininosuccinate synthase(argG),and argininosuccinate tyase(argH)genes,complete cds. Corynebacterium glutamicum omithine carbamolytransferase(argF)gene, complete cds. C.glutamicum argC,argJ,argB,argD,and argF genes.   Corynebacterium glutamicum N-acetylglutamylphosphate reductase(argC), omithine acetyltransferase(argJ),N-acetylglutamate kinase(argB), acetylomithine transaminase(argD),ornithine carbamoyltransferase(argF), arginine repressor(argR),argininosuccinate synthase(argG),and argininosuccinate lyase(argH)genes,complete cds. Corynebacterium glutamicum ornithine carbamolytransferase(argF)gene, complete cds. Corynebacterium glutamicum arginine repressor(argR)gene,complete cds.   Corynebacterium glutamicum N-acetylglutamylphosphate reductase(argC), omithine acetyllransferase(argJ).N-acetylglutamate kinase(argB), acetylornithine transaminase(argD),ornithine carbamoyltransferase(argF), arginine repressor(argR),argininosuccinate synthase(argG),and argininosuccinate lyase(argH)genes,complete cds. Corynebacterium glutamicum argininosuccinate synthetase(argG)gene, complete cds. S.clavuligerus argG gene and argH gene(partial). Corynebacterium glutamicum N-acetylglutamylphosphate reductase(argC), omithine acetyltransferase(argJ),N-acetylglutamate kinase(argB), acetylomithine transaminase(argD),omithine carbamoyltransferase(argF), arginine repressor(argR),argininosuccinate synthase(argG),and argininosuccinate lyase(argH)genes,complete cds.  Corynebacterium  glutamicum  Thermologa maritima  Corynebacterium  glutamicum        Corynebacterium  glutamicum  Mycobacterium  tuberculosis  Corynebacterium  glutamicum        Corynebacterium  glutamicum  Corynebacterium  glutamicum  Corynebacterium  glutamicum        Corynebacterium  glutamicum  Corynebacterium  glutamicum  Corynebacterium  glutamicum        Corynebacterium  glutamicum  Streptomyces clavuligerus  Corynebacterium  glutamicum  100,000    50,238  99,612          99,612    57,278    100,000          99,898    100,000    99,843          88,679    100,000    99,774          99,834    65,913  88,524           25-Jul-96     2-Jun-99   1-Jul-98           25-Jul-96     17-Jun-98     1-Jul-98           5-Jan-99     25-Jul-96     1-Jul-98           5-Jan-99     5-Jan-99     1-Jul-98           19-Nov-97     22-Apr-96   1-Jul-98        
Table 4 (continued)
         rxa02176  1251            rxa02189  861        rxa02193  1701          rxa02194  966            rxa02195  393          rxa02197  551          rxa02198  2599          rxa02208  1025      GB_BA2:AF048764        1437           AF048764    GB_BA1:MTCY06H11       38000          Z85982    GB_BA1:MTCY31          37630          Z73101    GB_BA1:CGGLTG          3013           X66112    GB_PL2:PGU65399        2700           U65399    GB_PR3:AC002468        115888         AC002468  GB_BA1:MSGB1970C       39399          L78815  S  GB_PR3:AC002468        115888         AC002468  GB_BA1:BRLASPA         1987           D25316    GB_PAT:E04307          1581           E04307    GB_BA1:ECOUW93         338534         U14003  GB_BA2:AF050166        840            AF050166    GB_BA1:BRLASPA         1987           D25316    GB_PAT:E08649          188            E08649    GB_BA2:AF086704        264            AF086704    GB_BA1:EAY17145        6019           Y17145    GB_STS:G01195          332            G01195  GB_BA1:MTCY261         27322          Z97559    GB_BA1:MLCB2533        40245          AL035310  GB_BA1:U00017          42157          U00017    GB_BA1:U00017          42157          U00017    GB_BA1:MLCB2533        40245          AL035310  GB_BA1:MTCY261         27322          Z97559    GB_BA1:U00017          42157          U00017    GB_BA1:AP000063        185300         AP000063 Coryneoacterium glutamicum argininosuccinate lyase(agH)gene,complete cds. Mycobacterium tuberculosis H37Rv complete genome;segment 73/162.   Mycobaclerium tuberculosis H37Rv complete genome;segment 41/162.   C.glutamicum glt gene for citrate synthase and ORF.   Basidiomycete CECT 20197 phenoloxidase(pox1)gene,complete cds.   Human Chromosome 15q26.1 PAC clone pDJ417d7,complete sequence. Mycobacterium leprae cosmid B1970 DNA sequence.   Human Chromosome 15q26.1 PAC clone pDJ417d7,complete sequence. Brevibacterium flavum aspA gene for aspartase,complete cds.   DNA encoding Brevibacterium flavum aspartase.   Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes. Corynebacterium glutamicum ATP phosphoribosyltransferase(hisG)gene, complete cds. Brevibacterium flavum aspA gene for aspartase,complete cds.   DNA encoding part of aspartase from coryneform bacteria.   Corynebacterium glutamicum phosphoribosyl-ATP-pyrophosphohydrolase (hisE)gene,complete cds. Eubacterium acidaminophilum grdR,grdI,grdH genes and partial ldc,grdT genes. fruit fly STS Dm1930 clone DS06959 T7. Mycobacterium tuberculosis H37Rv complete genome;segment 95/162.   Mycobacterium leprae cosmid B2533. Mycobacterium leprae cosmid B2126.   Mycobacterium leprae cosmid B2126.   Mycobacterium leprae cosmid B2533. Mycobacterium tuberculosis H37Rv complete genome;segment 95/162.   Mycobacterium leprae cosmid B2126   Aeropyrum pemix genomic DNA,seection 6/7.  Corynebacterium  glutamicum  Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Corynebacterium  glutamicum  basidiomycete CECT  20197  Homo sapiens  Mycobacterium leprae    Homo sapiens  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Escherichia coli  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Eubacterium  acidaminophilum  Drosophila melanogastar  Mycobacterium  tuberculosis  Mycobacterium leprae  Mycobacterium leprae    Mycobacterium lepraa    Mycobacterium leprae  Mycobacterium  tuberculosis  Mycobacterium leprae    Aeropyrum pernix  87,561    64,732    36,998    39,910    38,474    35,941  40,286    33,689  99,353    99,367    37,651  98,214    93,805    100,000    100,000    39,075    35,542  33,938    65,517  36,770    38,674    65,465  37,577    59,823    39,442   1-Jul-98     17-Jun-98     17-Jun-98     17-Feb-95     19-Jul-97     16-Sep-98   15-Jun-96     16-Sep-98   6-Feb-99     29-Sep-97     17-Apr-96   5-Jan-99     6-Feb-99     29-Sep-97     8-Feb-99     5-Aug-98     28-Feb-95   17-Jun-98     27-Aug-99   01-MAR-   1994   01-MAR-   1994   27-Aug-99   17-Jun-98     01-MAR-   1994   22-Jun-99
Table 4 (continued)
     rxa02229  948            rxa02234  3462            rxa02235  727              rxa02237  693          rxa02239  1389          rxa02240  1344              rxa02246  1107      GB_PR4:AC006236     127593   AC006236    GB_BA1:MSGY154      40221    AD000002    GB_BA1:MTCY154      13935    Z98209    G3_BA1:U00019       36033    U00019    GB_BA1:MSGB937C     38914    L78820  S  GB_BA1:MTCY2B12     20431    Z81011  GB_BA2:UD1072       4393     U01072      GB_BA1:MSU91572     960      U91572      GB_HTG3:AC009364    192791   AC009364    GB_HTG3:AC009364    192791   AC009364    GB_BA1:MTCY21B4     39150    Z80108  GB_BA2:AF077324     5228     AF077324  GB_EST22:AU017763   586      AU017763      GB_BA1:MTCY2184     39150    Z80108  GB_HTG3:AC010745    193862   AC010745    GB_HTG3:AC010745    193862   AC010745    EM_PAT:E09855       1239     E09855      GB_PAT:A37831       5392     A37831  GB_BA2:AF117274     2303     AF117274      EM_BA1:AB003693     5589     AB003693     Homo sapiens chromosome 17,clone hCIT.162_E_12,complete sequence.   Mycobacterium tuberculosis sequence from clone y154.   Mycobacterium tuberculosis H37Rv complete genome;segment 121/162.   Mycobacterium leprae cosmid B2235.   Mycobacterium leprae cosmid B937 DNA sequence.   Mycobacterium tuberculosis H37Rv complete genome;segment 61/162. Mycobacterium bovis BCG orotidine-5′-monophosphate decarboxylase(uraA) gene.   Mycobacterium smegmatis carbamoyl phosphate synhetase(pyrAB)gene, partial cds and orotidine 5′-monophosphate decarboxylase(pyrF)gene, complete cds. Homo sapiens chromosome 7,***SEQUENCING IN PROGRESS***,57 unordered pieces. Homo sapiens chromosome 7,***SEQUENCING IN PROGRESS***,57 unordered pieoes. Mycobacterium tuberculosis H37Rv complete genome;segment 62/162. Rhodococcus equi strain 103 plasmid RE-VP1 fragment f. AU017763 Mouse two-cell stage embryo cDNA Mus musculus cDNA clone J0744A04 3′.mRNA sequence.   Mycobacterium tutberculosis H37Rv complete genome;segment 62/162. Homo sapiens clone NH0549D18,***SEQUENCING IN PROGRESS***,30 unordered pieces. Homo sapiens clone NH0549D18,***SEQUENCING IN PROGRESS***,30 unordered pieces. gDNA encoding S-adenosylmethionine synthelase.     Sequence 1 from Patent WO9408014. Streptomyces spectabilis flavoprotein homolog Dfp(dfp)gene,partial cds;and S-adenosylmethionine synthetase(metK)gene,complete cds.   Corynebacterium ammoniagenes DNA for rib operon,complete cds.  Homo sapiens    Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Mycobacterium leprae    Mycobacterium leprae    Mycobacterium  tuberculosis  Mycobacterium bovis    Mycobacterium smegmatis      Homo sapiens    Homo sapiens    Mycobacterium  tuberculosis  Rhodococcus equi  Mus musculus    Mycobacterium  tuberculosis  Homo sapiens  Homo sapiens    Corynebacterium  glutamicum    Streptomyces  pristinaespiralis  Streptomyces spectabilis    Corynebacterium  ammoniagenes   37,191     53,541     40,407     40,541     66,027     71,723     67,101     60,870       37,994     37,994     55,844     41,185   38,616     56,282     36,772   36,772     99,515       63,568     65,000     52,909       29-DEC-   1998   03-DEC-   1996   17-Jun-98     01-MAR-   1994   15-Jun-96     18-Jun-98     22-DEC-   1993   22-MAR-   1997     1-Sep-99     1-Sep-99     23-Jun-98     5-Nov-98   19-OCT-   1998   23-Jun-98     21-Sep-99   21-Sep-99     07-OCT-   1997(Rel.   52,Crealed   05-MAR-   1997   31-MAR-   1999   03-OCT-   1997(Rel.   52,Created)
Table 4 (continued)
       rxa02247  756          rxa02248  1389            rxa02249   600        rxa02250   643            rxa02262   1269          rxa02263   488        rxa02272   1368          rxa02281   1545      GB_PAT:E07957       5589    ED7957    GB_PAT:132742       5589    132742  GB_PAT:132743       2689    132743  EM_BA1:AB003693     5589    AB003693      GB_PAT:132742       5589    132742  GB_PAT:132742       5589    132742  EM_BA1:AB003693     5589    AB003693      GB_PAT:E07957       5589    E07957    GB_PAT:E07957       5589    E07957    GB_PAT:132742       5589    132742  GB_PAT:132743       2689    132743  GB_PAT:E07957       5589    E07957    GB_PAT:132742       5589    132742  EM_BA1:AB003693     5589    AB003693      GB_BA1:CGL007732    4460    AJ007732    GB_BA1:CGAMTGEN     2028    X93513  E  GB_VI:HEHCMVCG      229354  X17403  GB_BA1:CGL007732    4460    AJ007732    GB_BA1:CGL007732    4460    AJ007732    EM_PAT:E09373       1591    E09373      GB_BA1:D38505       1591    D38505  GB_HTG2:AC006595    146070  AC006595  GB_GSS12:AQ41101    551     AQ411010  O    gDNA encoding at least guanosine triphosphate cyclohydrolase and riboflavin  synthase.  Sequence 1 from patent US 5589355.  Sequence 2 from patent US 5589355.  Corynebacterium ammoniagenes DNA for rib operon,complete cds.      Sequence 1 from patent US 5589355.  Sequence 1 from patent US 5589355.  Corynebacterium ammoniagenes DNA for rib operon,complete cds.      gDNA encoding at least guanosine triphosphate cyclohydrolase and riboflavin  synthase  gDNA encoding at least guanosine triphosphate cyclohydrolase and riboflavin  synthase.  Sequence 1 from patent US 5589355.  Sequence 2 from patent US 5589355.  gDNA encoding at least guanosine triphosphate cyclohydrolase and riboflavin  synthase.  Sequence 1 from patent US 5589355.  Corynebacterium ammoniagenes DNA for rib operon,complete cds.      Corynebacterium glutamicum 3′ppc gene,secG gene,amt gene,ocd gene  and 5′soxA gene.  C.glutamicum amt gene.    Human cytomegaloviris strain AD169 complete genome.  Corynebacterium glutamicum 3′ppc gene,secG gene,amt gene,ocd gene  and 5′soxA gene.  Corynebacterium glutamicum 3′ppc gene,secG gene,amt gene,ocd gene  and 5′soxA gene.  Creatinine deiminase gene.      Bacillus sp.gene for creatinine deaminase,conplete cds.  Homo sapiens,***SEQUENCING IN PROGRESS***,4 unordered pieces.  HS_2257_B1_H02_MR CIT Approved Human Genomic Sperm Library D  Homo sapiens genomic clone Plate=2257 Col=3 Row=P,genomic survey  sequence.  Corynebacterium  ammoniagenes  Unknown.  Unknown.  Corynebacterium  ammoniagenes    Unknown.  Unknown.  Corynebacterium  ammoniagenes    Corynebacterium  ammoniagenes  Corynebacterium  amoniagenes  Unknown.  Unknown.  Corynebacterium  ammoniagenes  Unknown.  Corynebacterium  ammoniagenes    Corynebacterium  gluamicum  Corynebacterium  glutamicum  human herpesvirus 5  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Bacillus sp.      Bacillus sp.  Homo sapiens  Homo sapiens       52,909     52,909   57,937   57,937       57,937   61,843   61,843       61,843     64,346     64,346   64,346   56,318     56,318   56,318       100,000     100,000     38,651   100,000     37,526     96,928       96,781   36,264   36,197       29-Sep-97     6-Feb-97   6-Feb-97   03-OCT-   1997(Re1.   52,Created)   6-Feb-n97   6-Feb-97   03-OCT-   1997(Rel.   52,Created)   29-Sep-97     29-Sep-97     6-Feb-97   6-Feb-97   29-Sep-97     6-Feb-97   03-OCT-   1997(Rel   52,Created   7-Jan-99     29-MAY-   1996   10-Feb-99   7-Jan-99     7-Jan-99     08-OCT-   1997(Rel.   52,Created)   7-Aug-98   20-Feb-99   17-MAR-   1999
Table 4 (continued)
         rxa02299  531            rxa02311  813                          rxa02315  1752            rxa02318  402            rxa02319  1080            GB_EST23:A1128623    363    A128623    GB_PL2:ATAC007019    102335 AC007019    GB_BA2:AF116184      540    AF116184    GB_GSS9:AQ164310     507    AQ164310      GB_VI:MH68TKH        4557   X93468  GB_HTG4:AC006091     176878 AC006091      GB_HTG4:AC006091     176878 AC006091      GB_BA2:RRU65510      16259  U65510              GB_BA1:MSGY224       40051  AD000004    GB_3A1:MTY25D10      40838  Z95558    GB_BA1:MSGY224       40051  AD000004    GB_HTG3:AC011348     111083 AC011348    GB_HTG3:AC011348     111083 AC011348    GB_HTG3:AC011412     89234  AC011412    GB_BA1:MSGY224       40051  AD000004    GB_BA1:MTY25D10      40838  Z95558    GB_EST23:A117213     476    A1117213   qa62c01.s1 Soares_fetal_heart_NbHH19VV Homo sapiens cDNA clone IMAGE:1691328 3′,mRNA sequence. Arabidopsis thaliana chromosome II BAC F7D8 genomic sequence,complete sequence. Corynebacterium glutamicum L-aspartate-alpha-decarboxylase precursor (panD)gene,complete cds. HS_2171_A2_E01_MR CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=2171 Col=2 Row=1,genomic survey sequence. Murine herpesvirus type 68 thymidine kinase and glycoprotein H genes. Drosophila melanogaster chromosome 3 clone BACR48G05(D475)RPC1-98 48.G.5 map 91F1-91F13 strain y;cn bw sp,***SEQUENCING IN PROGRESS***,4 unordered pieces. Drosophila melanogaster chromosome 3 clone BACR48G05(D475)RPCI-98 48.G.5 map 91F1-91F13 strain y;cn bw sp,***SEQUENCING IN PROGRESS***,4 unorderd pieces. Rhodospirillum rubrum CO-induced hydrogenase operon(cooM,cooK,cooL, cooX,cooU,cooH)geres,iron sulfur protein(cooF)gene,carbon monoxide dehydrogenase(cooS)gene,carbon monoxide dehydrogenase accessory proteins(cooC,cooT,cooJ)genes.putative transcriptional activator (cooA)gene,nicotinate-nucleotide pyrophosphorylase(nadC)gene,complete cds.L-aspartate oxidase(nadB)gene.and alkyl hydroperoxide reductase(ahpC)gene,partial cds. Mycobacterium tuberculosis sequence from clone y224.   Mycobacteriun tuberculosis H37Rv complete genome;segment 28/162.   Mycobacterium tuberculosis sequence from clone y224.   Homo sapiens chromosome 5 clone CIT-HSPC_303E13,***SEQUENCING IN PROGRESS***,3 ordered pieces. Homo sapiens chromosome 5 clone CIT-HSPC_303E13,***SEQUENCING IN PROGRESS***,3 orderd pieces. Homo sapiens chromosome 5 clone CIT978SKB_81K21,***SEQUENCING IN PROGRESS***,3 ordred pieces. Mycobacterium tuberculosis sequence from clone y224.   Mycobacterium tuberculosis H37Rv complete genome;segment 28/162.   ub83h02.r1 Soares 2NbMT Mus musculus cDNA clone IMAGE:1395123 5′,mRNA sequence.  Homo sapiens    Arabidopsis thaliana    Corynebacterium  glutamicum  Homo sapiens      murine herpesvirus 68  Drosophila melanogaster      Drosophila melanogaster      Rhodospirillum rubrum              Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Homo sapiens    Homo sapiens    Homo sapiens    Mycobaclerium  tuberculosis  Mycobacterium  tuberculosis  Mus musculus  37,017    33,988    100,000    37,278      40,288  36,454      36,454      37,828              49,418    49,360    38,150    35,821    35,821    36,181    37,792    37,92    35,084    05-OCT-  1998  16-MAR-  1999  02-MAY-  1999  16-OCT-  1998    3-Sep-96  27-OCT-  1999    27-OCT-  1999    9-Apr-97              03-DEC-  1996  17-Jun-98    03-DEC-  1996  06-OCT-  1999  06-OCT-  1999  06-OCT-  1999  03-DEC-  1996  17-Jun-98    2-Sep-98
Table 4 (continued)
 rxa02345            rxa02350        rxa02373          rxa02375            rxa02380            rxa02382            rxa02400        rxa02432    1320            618        1038          1350            777            1419            693        1098  GB_BA1:BAPURKE    2582    X91189    GB_BA1:MTCY71     42729   Z92771    GB_BA1:MTCY71     42729   Z92771    GB_BA1:BAPURKE    2582    X91189    GB_PL1:SC130KBXV  129528  X94335  GB_PL1:SCXVORFS   50984   X90518  GB_PAT:E00311     1853    E00311  GB_PAT:106030     1853    106030    GB_PAT:100836     1853    100836    GB_BA2:CGU31230   3005    U31230    GB_HTG3:AC009946  169072  AC009946    GB_HTG3:AC009946  169072  AC009946    GB_BA1:MTCY253    41230   Z81368    GB_HTG4:AC010658  120754  AC010658    GB_HTG4:AC010658  120754  AC010658    GB_BA1:CGPROAGE   1783    X82929  N  GB_BA1:MTCY428    26914   Z81451    GB_BA2:CGU31230   3005    U31230    GB_BA1:CGACEA     2427    X75504    GB_PAT:186191     2135    186191  GB_PAT:113693     2135    113693  GB_GSS15:AQ60684  574     AQ606842  2 B.ammoniagenes purK and purE genes.   Mycobacterium tuberculosis H37Rv complete genome;segment 141/162.   Mycobacterium tuberculosis H37Rv complete genome;segment 141/162.   B.ammoniagenes purK and purE genes.   S.cerevisiae 130kb DNA fragment from chromosome XV. S.cerevisiae DNA of 51 Kb from chromosome XV right arm. DNA coding of 2.5-diketogluconic acid reductase. Sequence 4 from Patent EP 0305608.   Sequence 1 from Patent US 4758514.   Corynebacterium glutamicum Obg protein homolog gene,partial cds,gamma glutamyl kinase(proB)gene,complete cds,and(unkdh)gene,complete cds. Homo sapiens clone NH0012C17,***SEQUENCING IN PROGRESS***,1 unordered pieces. Homo sapiens clone NH0012C17,***SEQUENCING IN PROGRESS***,1 unordered pieces. Mycobacterium tuberculosis H37Rv complete genome;segment 106/162.   Drosophila melanogaster chromosome 3L/75C1 clone RPC198-3820,*** SEQUENCING IN PROGRESS***,78 unordered pieces. Drosophila melanogaster chromosome 3L/75C1 clone RPC198-3B20,*** SEQUENCING IN PROGRESS***,78 unordered pieces. C.glutamicum proA gene.   Mycobacterium tuberculosis H37Rv complete genome;segment107/162.   Corynebacterium glutamicum Obg protein homolog gene,partial cds,gamma glutamyl kinase(proB)gene,complete cds,and(unkdh)gene,complete cds. C.glutamicum aceA gene and thiX genes(partial).   Sequence 3 from patent US 5700661. Sequence 3 from patent US 5439822. HS_5404_B2_E07_T7A RPC1-11 Human Male BAC library Homo sapiens genomic clone Plate=980 Col=14 Row=J.genomic survey sequence.  Corynebacterium  ammoniagenes  Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Corynebacterium  ammoniagenes  Saccharomyces cerevisiae  Saccharomyces cerevisiae  unidentified  Unknown.    Unknown.    Corynebacterium  glutamicum  Homo sapiens    Homo sapiens    Mycobacterium  tuberculosis  Drosophila melanogaster    Drosophila melanogaster    Corynebacterium  glutamicum  Mycobacterium  tuberculosis  Corynebacterium  glutamicum  Corynebacterium  glutamicum  Unknown.  Unknown.  Homo sapiens 61,731   39,624   39,847   64,286   36,617 36,617 56,123 56,220   56,220   99,332   36,115   36,115   38,088   35,817   35,817   98,802   38,054   98,529   100,000   100,000 100,000 39,716     14-Jan-97     10-Feb-99     10-Feb-99     14-Jan-97     15-Jul-97   1-Nov-95   29-Sep-97   02-DEC-   1994   21-MAY-   1993   2-Aug-96     8-Sep-99     8-Sep-99     17-Jun-98     16-OCT-   1999   16-OCT-   1999   23-Jan-97     17-Jun-98     2-Aug-96     9-Sep-94     10-Jun-98   26-Sep-95   10-Jun-99
Table 4 (continued)
        rxa02458  1413             rxa02469  1554       rxa02497  1050           rxa02499  933           rxa02501  1188         rxa02503  522     rxa02504  681       rxa02516  1386        GB_EST1:T05804     406      T05804    GB_PL1:AB006699    77363    AB006699    GB_3A2:AF114233    1852     AF114233    GB_EST37:AW01306   578      AW013061  1    GB_GSS15:AQ65002   728      AQ650027  7  GB_BA1:MTCY359     36021    Z83859    GB_BA1:MLCB1788    39228    AL008609  GB_BA1:SCAJ10601   4692     AJ010601  GB_BA2:CGU31224    422      U31224    GB_BA1:MTCY20G9    37218    Z77162    GB_BA1:SCE7        16911    AL049819    GB_BA2:CGU31225    1817     U31225    GB_BA1:NG17PILA    1920     X13965  GB_HTG2:AC007984   129715   AC007984      GB_BA1:MTCY20G9    37218    Z77162    GB_BA1:U00018      42991    U00018    GB_VI:HE1CG        152261   X14112  GB_PR3:AC005328    35414    AC005328  GB_PR3:AC005545    43514    AC005545  GB_PR3:AC005328    35414    AC005328  GB_BA1:MTCY20G9    37218    Z77162    GB-PR3:AC005328    35414    AC005328  GB_PR3:AC005545    43514    AC005545  GB_BA1:MLCL536     36224    Z99125    GB_BA1:U00013      35881    U00013 EST03693 Fetal brain,Stratagene(cat#936206)Homo sapiens cDNA clonle HFBDG63 similar to EST containing Alu repeat.mRNA sequence. Arabidopsis thaliana genomic DNA,chromosome 5,P1 clone:MDJ22, complete sequence. Corynebacterium glutamicum 5-enolpyruvylshikimate 3-phosphate synthase aroA)gene,complete cds. ODT-0033 Winter flounder ovary Pleuronectes americanus cDNA clone ODT- 0033 5′similar to FRUCTOSE-BISPHOSPHATE ALDOLASE B(LVER). mRNA sequence. Sheared DNA-5L2,TF Sheared DNA Trypanosoma brucei genomic clone Sheared DNA-5L2,genomic survey sequence. Mycobacterium tuberculosis H37Rv complete genome;segment 84/162.   Mycobacterium leprae cosmid B1788. Streptomyces coelicolor A3(2)DNA for whiD and whiK loci. Corynebacterium glutamicum(ppx)gene,partial cds.   Mycobacterium tuberculosis H37Rv complete genome;segment 25/162.   Streptomyces coelicolor cosmid E7.   Corynebacterium glutamicum L-proline:NADP+5-oxidoreductase(proC)gene complete cds. Neisseria gonorrhoeae pilA gene. Drosophila melanogaster chromosome 3 clone BACR05C10(D781)RPC1-98 05.C.10map 97D-97E strain y;cn bw sp,***SEQUENCING IN PROGRESS ***,87 unordered pieces. Mycobacterium tuberculosis H37Rv complete genome;segment 25/162.   Mycobacterium leprae cosmid B2168.   Herpes simplex virus(HSV)type 1 complete genome. Homo sapiens chromosome 19.cosmid R26660.complete sequence. Homo sapiens chromosome 19.cosmid R26634.complete sequence. Homo sapiens chromosome 19.cosmid R26660.complete sequence. Mycobacterium tuberculosis H37Rv complete genome;segment 25/162.   Homo sapiens chromosome 19.cosmid R26660.complete sequence. Homo sapiens chromosome 19.cosmid R26634.complete sequence. Mycobacterium leprae cosmid L536.   Mycobacterium leprae cosmid B1496.  Homo sapiens    Arabidopsis thaliana    Corynebacterium  glutamicum  Pleurronectes americanus      Trypanosoma brucei    Mycobacterium  tuberculosis  Mycobacterium leprae  Streptomyces coelicolor  Corynebacterium  glutamicum  Mycobacterium  luberculosis  Streptomyces coelicolor    Corynebacterium  glutamicum  Neisseria gonorrhoeae  Drosophila melanogaster      Mycobacterium  tuberculosis  Mycobacterium leprae    human herpesvirus 1  Homo sapiens  Homo sapiens  Homo sapiens  Mycobacterium  tuberculosis  Homo sapiens  Homo sapiens  Mycobacterium leprae    Mycobacterium leprae  37,915    35,526    100,000    39,175      39,281    39,634    59,343  48,899  96,445    59,429    39,510    97,749    43,249  33,406      39,357    51,768    39,378  39,922  39,922  34,911  54,940    41,265  41,265  37,723    37,723  30-Jun-93    20-Nov-99    7-Feb-99    10-Sep-99      22-Jun-99    17-Jun-98    27-Aug-99  17-Sep-98  2-Aug-96    17-Jun-98    10-MAY-  1999  2-Aug-96    30-Sep-93  2-Aug-99      17-Jun-98    01-MAR-  1994  17-Apr-97  28-Jjl-98  3-Sep-98  28Jul-98  17Jun-98    28-Jul-98  3-Sep-98  04-DEC-  1998  01-MAR-  1994
Table 4 (continued)
     rxa02517  570          rxa02532  1170          rxa02536   879          rxa02550   1434            rxa02559   1026          rxa02622   1683              rxa02623   714            GB_BA1:MTV007     32806    AL021184    GB_BA1:MLCL536    36224    Z99125    GB_BA1:U00013     35881    U00013    GB_BA1:SCC22      22115    AL096839  GB_OV:AF137219    831      AF137219  GB_EST30:A1645057 301      A1645057    GB_EST20:AA822595 429      AA822595    GB_HTG2:AF130866  118874   AF130866    GB_HTG2:AF130866  118874   AF130866    GB_PL1:ATT12J5    84499    AL035522  GB_BA1:MTCY279    9150     Z97991    GB_BA1:MSGB1970C  39399    L78815  S  GB_BA2:SC2H4      25970    AL031514    GB_BA1:MTV004     69350    AL009198    GB_PAT:128684     5100     128684  GB_BA1:MTU27357   5100     U27357    GB_BA2:AE001780   11997    AE001780  GB_OV:AF064564    49254    AF064564      GB_OV:AF064564    49254    AF064564      GB_GSS5:AQ818728  444      AQ818728    GB_HTG5:AC011083  198586   AC011083    GB_GSS6:AQ826948  544      AQ826948   Mycobacterium tuberculosis H37Rv complete genome;segment 647162.   Mycobacterium leprae cosmid L536.   Mycobacterium leprae cosmid B1496.   Streptomyces coelicolor cosmid C22. Amia calva mixed lineage leukemia-like protein(MII)gene,partial cds. vs52a10.y1 Stratagene mouse Tcell 937311 Mus musculus cDNA clone IMAGE:11498825′.mRNA sequence. vs52a10.r1 Stratagene mouse Tcell 937311 Mus musculus cDNA clone IMAGE:1149882 5′,mRNA sequence. Homo sapiens chromosome 8 clone PAC 172N13 map 8q24,*** SEQUENCING IN PROGRESS***,in unordere pipieces. Homo sapiens chromosome 8 clone PAC 172N13 map 8q24,*** SEQUENCING IN FROGRESS***,in unordered pieces. Arabidopsis thaliana DNA chromosome 4,BAC clone T12J5(ESSAII project) Mycobacterium tuberculosis H37Rv complete genome;segment 17/162.   Mycobacterium leprae cosmid B1970 DNA sequence.   Streptomyces coelicolor cosmid 2H4.   Mycobacterium tuberculosis H37Rv complete genome;segment 144/162.   Sequence 1 from patent US 5573915. Mycobacterium tuberculosis cyclopropane mycolic acid synthase(cma1) gene,complete cds. Thermotoga maritima section 92 of 136 of the complete genome. Fugu rubripes neurofibromatosis type 1(NF1),A-kinase anchor protein (AKAP84).BAVV protein(BAVV),and WSB1 protein(VVSB1)genes,complete cds. Fugu rubripes neurofibromatosis type 1(NF1).A-kinase anchor protein (AKAP84).BAVV protein(BAVV),and VVSB1 protein(VVSB1)genes.complete cds. HS_5268_A1_G09 SP6E RPC1-11 Human Male BAC Library Homo sapiens genomic clone Plate=844 Col=17 Row=M,genomic survey sequence. Homo sapiens chromosome 9 clone RP11-111M7 map 9,WORKING DRAFT SEQUENCE,51 unordered pieces. HS_5014_A2_C12_T7A RPC1-11 Human Male BAC Library Homo sapiens geaomic clone Plate=590 Col=24 Row=E genomic survey sequence.  Mycobacterium  tuberculosis  Mycobacterium leprae    Mycobacterium leprae    Streptomyces coelicolor  Amia calva  Mus musculus    Mus musculus    Homo sapiens    Homo sapiens    Arabidopsis thaliana  Mycobacterium  tuberculosis  Mycobacterium leprae    Streptomyces coelicolor  A3(2)  Mycobacterium  tuberculosis  Unknown.  Mycobacterium  tuberculosis  Thermotoga maritima  Fugu rubripes      Fugu rubripes      Homo sapiens    Homo sapiens    Homo sapiens   61,335     37,018     37,018     37,071   36,853   41,860     42,353     40,754     40,754     35,063   37,773     39,024     37,906     47,358     39,138   39,138     44,914   39,732       36,703       38,801     35,714     39,146     17-Jun-98     04-DEC-   1998   01-MAR-   1994   12-Jul-99   7-Sep-99   29-Apr-99     17-Feb-98     21-MAR-   1999   21-MAR-   1999   24-Feb-99   17-Jun-98     15-Jun-96     19-OCT-   1999   18-Jun-98     6-Feb-97   26-Sep-95     2-Jun-99   17-Aug-99       17-Aug-99       26-Aug-99     19-Nov-9g     27-Aug-99  
Table 4 (continued)
 rxa02629    708          rxa02645    1953          rxa02646    1392              rxa02648  1326              rxa02653  rxa02687  1068            rxa02717   1005                  rxa02754  1461       GB_VI:BRSMGP      462       M86652     GB_VI:BRSMGP      462       M86652       GB_PAT:A45577     1925      A45577     GB_PAT:A45581     1925      A45581   GB_BA1:CORILVA    1925      L01508     GB_BA1:CORILVA    1925      LD1508       GB_PAT:A45585     1925      A45585     GB_PAT:A45583     1925      A45583     GB_OV:mCTCNC      2049      M83111     GB_EST11:AA265464 345       AA265464       GB_GSS8:AQ006950  480       AQ006950       GB_BA1:CORPHEA    1088      M13774     GBB_PAT:E04483    948       E04483     GB_PAT:E06110     948       E06110     GB_PL1:HVCH4H     59748     Y14573     GB_PR2:HS310H5    29718     Z69705       GB_PR3:AC004754   39188     AC004754       GB_HTG2:AC008223  130212    AC008223       Bovine respiratory syncytial virus membrane glyccprolein mRNA.complete   cds.   Bovine respiratory syncytial virus membrane glycoprotein mRNA.complete   cds.     Sequence 1 from Patent W09519442     Sequence 5 from Patent W09519442.   Corynebacterium glutamicum threonine dehydratase(ilvA)gene,complete   cds.   Corynebacterium glutamicum threonine dehydratase(ilvA)gene,complete   cds.     Sequence 9 from Patent WO9519442.     Sequence 7 from Patent WO9519442.     lctalurus punctatus cyctic nucleotide-gated channel RNA sequence.     mx91c06.r1 Soares mouse NML Mus musculus cDNA clone IMAGE:693706   5′,mRNA sequence.     CIT-HSP-2294E14.TR CIT-HSP Homo sapiens genomic clone 2294E14.   genomic survey sequence.     C.glutamicum pheA gene encoding prephenate dehydratase,complete cds.     DNA encoding prephenate dehydratase.     DNA encodin9 prephenate dehydratase.     Hordeum vulgare DNA for chromosome 4H.     Human DNA sequence from cosmid 310H5 from a contig from the tip of the   short arm of chromosome 16,spanning 2Mb of 16p13.3.Contains EST and   CpG island.   Homo sapiens chromosome 16,cosmid clone RT286(LANL),complete   sequence.     Drosophila melanogaster chromosome 3 clone BACR16118(D815)RPC1-98   16.1.18 map 95A-95A strain y;cn bw sp,***SEQUENCING IN   PROGRESS***,101 unordered pleces.   Bovine respiratory syncytia   virus   Bovine respiratory syncytia     virus   Corynebacterium   glutamicum   Corynebacterium   glutamicum   Corynebacterium   glutamicum   Corynebacterium   glutamicum   Corynebacterium   glutamicum   Corynebacterium   glutamicum   lctalunus punctatus     Mus musculus       Homo sapiens       Corynebacterium   glutamicum   Gorynebacterium   glutamicum   Corynebacterium   glutamicum   Hordeum vulgare     Homo sapiens       Homo sapiens       Drosophila melanogaster     37,013   37,013     39,130   39,130   39,130   99,138   99,066   99,066   38,402   38,655     36,074     99,715   98,523   98,523   36,593   36,089     36,089     32,757       28-Apr-93     28-Apr-93       07-MAR-   1997   07-MAR-   1997   26-Apr-93     26-Apr-93     07-MAR-   1997   07-MAR-   1997   24-MAY-   1993   20-MAR-     1997   27-Jun-98       26-Apr-93     29-Sep-97     29-Sep-97     25-MAR-   1999   22-Nov-99       28-MAY-     1998   2-Aug-99    
Table 4 (continued)
           rxa302758  1422                      rxa02771  678              rxa02772  1158              rxa02790  1266            rxa02791  951        rxa02802  1194    GB_HTG2:AC008223   130212  AC008223      GB_BA1:MTCY71      42729   Z92771    GB_HTG5:AC011678   171967  AC011678    GB_HTG5:AC011678   171967  AC011678    GB_BA2:AF064070    23183   AF064070              GB_BA2:AF038651    4077    AF038651      GB_IN1:CELT19B4    37121   U80438    GB_EST36:AV193572  360     AV193572    GB_BA2:AF038651    4077    AF038651      GB_BA1:MTCY227     35946   Z77724    GB_BA1:U00011      40429   U00011    GB_BA1:MTCY159     33818   Z83863    GB_PR4:AC006581    172931  AC006581    GB_PR4:AC006581    172931  AC006581    GB_BA1:MTCY159     33818   Z83863    GB_OV:CHKCEK2      3694    M35195  GB_BA1:MSASDASK    5037    Z17372  GB_EST24:A1223401  169     A1223401 Drosophila melanogaster chromosome 3 clone BACR 16118(D815)RPC1-98 16.1.18 map 95A-95A strain y;cnbw sp,***SEQUENCING IN PROGRESS ***,101 unordered pieces. Mycobacterium tuberculosis H37Rv complete genome;segment 141/162.   Homo sapiens clone 14_B_7,***SEQUENCING IN PROGRESS***,20 unordered pieces. Homo sapiens clone 14_B_7,***SEQUENCING IN PROGRESS***,20 unordered pieces. Burkholderia pseudomallei putative dihydroorotase(pyrC)gene,partial cds; putative 1-acyl-sn-glycerol-3-phosphate acyltransferase(plsC),putative diadenosine tetraphosphatase(apaH),complete cds;type II O-antigen biosynthesis gene cluster,complete sequence;putative undecaprenyl phosphate N-acetyglucosaminyttransferrase,and putative UDP-glucose 4- epimerase genes,complete cds;and putative galactosyl transferase gene, partial cds. Corynebacterium glutamicum dipeptide-binding protein(dciAE)gene,partial cds:adenine phosphoribosyltransferase(apt)and GTP pyrophosphokinase (rel)genes.complete cds;and unknown gene. Caenorhabditis elegans cosmid T19B4.   AV193572 Yuii Kohara unpublished cDNA:Strain N2 hermaphrodite embryo Caenorhabditis elegans cDNA clone yk618h85′,mRNA sequence. Corynebacterium glutamicum dipeptide-binding protein(dciAE)gene,partial cds;adenine phosphoribosyltransferase(apt)and GTP pyrophosphokinase (rel)genes,complete cds;and unknown gene. Mycobacterium tuberculosis H37Rv complete genome;segment 114/162.   Mycobacterium leprae cosmid B1177.   Mycobacterium tuberculosis H37Rv complete genome;segment 111/162.   Homo sapiens 12p21 BAC RPCI11-259018(Roswell Park Cancer Institute Human BAC Library)complete sequence. Homo sapiens 12p21 BAC RPCI11-259018(Roswell Park Cancer Institute Human BAC Library)complete sequence. Mycobacterium tuberculosis H37Rv complete genome;segment 111/162.   Chicken tyrosine kinase(cek2)mRNA,complete cds. M.smegmatis asd,ask-alpha.and ask-beta genes. qg48g01.x1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:1838448 3′similar to WP:C25D7.8 CE08394;.mRNA sequence.  Drosophila melanogaster      Mycobacte rium  tuberculosis  Homo sapiens    Homo sapiens    Burkholderia pseudomallei              Corynebacterium  glutamicum    Caenorhabditis elegans    Caenorhabditis elegans    Corynebacterium  glutamicum    Mycobacterium  tuberculosis  Mycobacterium leprae    Mycobacterium  tuberculosis  Homo sapiens    Homo sapiens    Mycobacterium  tuberculosis  Gallus gallus  Mycobacterium smegmatis  Homo sapiens  32,757      37,838    35,331    33,807    36,929              99,852      43,836    48,588    99,914      38,339    38,996    37,640    37,906    35,280    39,765    38,937  38,495  40,828     2-Aug-99       10-Feb-99     5-Nov-99     5-Nov-99     20-Jan-99               14-Sep-98       04-DEC-   1996   22-Jul-99     14-Sep-98       17-Jun-98     01-MAR-   1994   17-Jun-98     3-Jun-99     3-Jun-99     17-Jun-98     28-Apr-93   9-Aug-94   27-OCT-   1998
Table 4 (continued)
    rxa02814 494         rxa02843 6D8           rxs03205 963           rxs03223 1237                     GB_EST24:A1223401 169   A.1223401     GB_BA1:MTCY7D11   22070 Z95120     GB_BA1:MTCY7D11   22070 Z95120     GB_PR1:HSAJ2962   778   AJ002962   GB_BA1:CGAJ4934   1160  AJ004934     GB_BA1:MTC1364    29540 Z93777     GB_BA1:MLU15180   38675 U15180     GB_BA1:BLSIGBGN   2906  Z49824   GB_EST21:AA980237 377   AA980237       GB_EST23:A1158316 371    A1158316     G8_IN1:LMFL2743   38368  AL031910     GB_PR3:HSDJ61B2   119666 AL096710         GB_PR3:HSDJ6182   119666 AL096710       qg48g01.x1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:1838448 3′similar to WP:C25D7.8 CE08394:.mRNA sequence. Mycobacterium tuberculosis H37Rv complete genome;segment 138/162.   Mycobacterium tuberculosis H37Rv complete genome;segment 138/162.   Homo sapiens mRNA for hB-FABP. Corynebacterium glutamicum dapD gene,complete CDS.   Mycobacterium tuberculosis H37Rv complete genome;segment 52/162.   Mycobacterium leprae cosmid B1756.   B.lactofermentum orf1 gene and sigB gene. ua32a12.r1 Soares_mammary_gland_NbMMG Mus musculus cDNA clone IMAGE:13484145′similar to TR:Q61025 Q61025 HYPOTHETICAL 15.2 KD PROTEIN.;.mRNA sequence. ud27c05.r1 Soares_thymus_2NbMT Mus musculus cDNA clone IMAGE:14471125′,mRNA sequence. Leishmania major Friedtin chromosome 4 cosmid L2743.   Human DNA sequence from clone RP1-6182 on chromosome 6p 11.2-12.3 Contains isoforms 1 and 3 of BPAG1(bullous pemphigoid antigen 1 (230/240kD),an exon of a gene similar to murine MACF cytoskeletal protein. STSs and GSSs.complete sequence. Human DNA sequence from clone RP1-6182 on chromosome 6p11.2-12.3 Contains isoforms1 and 3 of BPAG1(bullous pemphi9oid antigen 1 (230/240kD).an exon of agene similar to murine MACF cytoskeletal protein. STSs and GSSs,complete sequence.  Homo sapiens    Mycobacterium  tuberculosis  Mycobacterium  tuberculosis  Homo sapiens  Corynebacterium  glutamicum  Mycobacterium  tuberculosis  Mycobacterium leprae    Corynebacterium glutamicu  Mus musculus      Mus musculus    Leishmania major    Homo sapiens        Homo sapiens       40,828   58,418   40,496   39,826 100,000   37,710   39,626   88,854 41,489     38,005   39,869   34,930       34,634         27-OCT-   1998   17-Jun-98     17-Jun-98     8-Jan-98   17-Jun-98     17-Jun-98     09-MAR-   1995   25-Apr-96   27-MAY-   1998     30-Sep-98     15-DEC-   1999   17-DEC-   1999       17-DEC-   1999
Example
Example 1: Corynebacterium glutamicum ATCC 13032 genomic DNA preparation All
Corynebacterium glutamicum (ATCC 13032) was cultured in BHI medium (Difco) in 30 ℃ vigorous shaking overnight. The cells were collected by centrifugation, the supernatant discarded, cells were resuspended in 5ml Buffer I (original culture volume of 5% - all that is to 100ml volume of culture Volume calculation) in. Composition of Buffer I: 140.34g / l sucrose, 2.46g / l MgSO4×7 H 2O,10ml/l KH 2PO 4Solution (100g / l, KOH adjusted to PH6.7), 50g / l M12 Concentrate (10g / l (NH4) 2SO 4,lg/l NaCl,2g/l MgSO 4×7H 2O,0.2g/l CaCl 20.5 g / l yeast extract (Difco)), 10ml / l trace elements mixture (200mg / l FeSO4×H 2O, 10mg/l ZnSO 4×7H 2O,3mg/l MnCl 2×4H 2O,30mg/l H 3BO 3,20mg/l CoCl 2×6H 2O,lmg/l NiCl 2×6H 2O,3mg/l Na 2MoO 4×2H 2O), 500mg / l Complexing agent (EDTA or citrate), 100ml / l vitamin mixture (0.2mg / l biotin, 0.2mg / l folic acid, 20mg / l p-amino benzoic acid, 20mg / l riboflavin, 40mg / l panthothenate, 140mg / l nicotinic acid, 40mg / l hydrochloric acid, pyridoxal, 200mg / l myo-inositol). Hang Floating lysozyme was added to a final concentration of 2.5mg/ml. 37 ℃ for about four hours later, the cells Wall is degraded, and the resulting protoplasts were collected by centrifugation. Precipitate was washed with 5ml buffer I once, With 5ml TE buffer (10mM Tris-HCl, lml EDTA, pH8) wash. Precipitate was washed with 4 ml TE buffer, resuspended, and add 0.5ml SDS solution (10%) and 0.5ml NaCl solution (5M). Proteinase K added to a final concentration of 200μg/ml, suspension was incubated at 37 ℃ about 18 Hours. DNA with phenol, phenol - chloroform - isoamyl alcohol, chloroform - isoamyl alcohol extracted according to standard procedures Purification was then added 1/50 volume of 3M sodium acetate and 2 volumes of ethanol at -20 ℃ Incubate for 30 minutes, using the SS34 rotor (Sorvall) from a high-speed centrifuge 12,000 rpm Heart for 30 minutes, precipitated DNA. The DNA was dissolved in a 1ml TE containing 20μg/ml RNaseA Buffer in 1000ml TE buffer, dialyzed at 4 ℃ for at least 3 hours. During this time, Changing the buffer solution 3 times. Each dialyzed DNA solution 0.4ml, 0.4ml 2M LiCl and added 0.8ml of ethanol. At -20 ℃ for 30 min, centrifuged (13,000 rpm, Biofuge Fresco, Heraeus, Hanau, Germany) collect DNA. DNA pellet was thawed in TE buffer. DNA prepared according to the procedure used for all purposes, including the genomic southern hybridization and Library building. ...
O), 500mg / l Complexing agent (EDTA or citrate), 100ml / l vitamin mixture (0.2mg / l biotin, 0.2mg / l folic acid, 20mg / l p-amino benzoic acid, 20mg / l riboflavin, 40mg / l panthothenate, 140mg / l nicotinic acid, 40mg / l hydrochloric acid, pyridoxal, 200mg / l myo-inositol). Hang Floating lysozyme was added to a final concentration of 2.5mg/ml. 37 ℃ for about four hours later, the cells Wall is degraded, and the resulting protoplasts were collected by centrifugation. Precipitate was washed with 5ml buffer I once, With 5ml TE buffer (10mM Tris-HCl, lml EDTA, pH8) wash. Precipitate was washed with 4 ml TE buffer, resuspended, and add 0.5ml SDS solution (10%) and 0.5ml NaCl solution (5M). Proteinase K added to a final concentration of 200μg/ml, suspension was incubated at 37 ℃ about 18 Hours. DNA with phenol, phenol - chloroform - isoamyl alcohol, chloroform - isoamyl alcohol extracted according to standard procedures Purification was then added 1/50 volume of 3M sodium acetate and 2 volumes of ethanol at -20 ℃ Incubate for 30 minutes, using the SS34 rotor (Sorvall) from a high-speed centrifuge 12,000 rpm Heart for 30 minutes, precipitated DNA. The DNA was dissolved in a 1ml TE containing 20μg/ml RNaseA Buffer in 1000ml TE buffer, dialyzed at 4 ℃ for at least 3 hours. During this time, Changing the buffer solution 3 times. Each dialyzed DNA solution 0.4ml, 0.4ml 2M LiCl and added 0.8ml of ethanol. At -20 ℃ for 30 min, centrifuged (13,000 rpm, Biofuge Fresco, Heraeus, Hanau, Germany) collect DNA. DNA pellet was thawed in TE buffer. DNA prepared according to the procedure used for all purposes, including the genomic southern hybridization and Library building. ...
Use as in Example l, prepared as described in DNA, in accordance with the known and well established in Method (see, for example Sambrook, J.et al. (1989) "Molecular Cloning: A Laboratory Manual "Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, or Ausubel, FMet al. (1994) "Current Protocols in Molecular Bilogy ", John wiley & Sons.), Can be constructed cosmid library and plasmid library.
Use as in Example l, prepared as described in DNA, in accordance with the known and well established in Method (see, for example Sambrook, J.et al. (1989) "Molecular Cloning: A Laboratory Manual "Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, or Ausubel, FMet al. (1994) "Current Protocols in Molecular Bilogy ", John wiley & Sons.), Can be constructed cosmid library and plasmid library....
Use as in Example l, prepared as described in DNA, in accordance with the known and well established in Method (see, for example Sambrook, J.et al. (1989) "Molecular Cloning: A Laboratory Manual "Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, or Ausubel, FMet al. (1994) "Current Protocols in Molecular Bilogy ", John wiley & Sons.), Can be constructed cosmid library and plasmid library....
According to standard methods as in Example 2 using the genomic library as described, can be DNA sequencing, especially with the use of ABI377 chain termination sequencing method (see, for example, Fleischman, RDet al. (1995) "Whole-genome Random Sequencing and Assembly of Haemophilus Influenzae Rd., Science ,269:496-512). Use with Has the following nucleotide sequence sequencing primers: 5'-GGAAACAGTATGACCATG-3 'or 5'-GTAAAACGACGGCCAGT-3 '.
Example 4: In vivo mutagenesis
By E. coli or other microorganisms (e.g., bacteria or the like in some Bacillus The yeast Saccharomyces cerevisiae) plasmid (or other vector) DNA passaged for glutamic acid In vivo mutagenesis of Corynebacterium, wherein the microorganism to maintain the integrity of their genetic information capacity has been Damage. Typical mutant gene in the DNA repair system with mutations (e.g., mutHLS, mutD, mutT, etc.; references see Rupp, WD (1996) DNA repair mechanisms, in: Escherichia coli and Salmonella, p.2277-2294, ASM: Washington.). This These strains for skilled people is well known. The use of these strains are described in, for example, Greener, A.and Callahan, M. (1994) Strategies 7:32-34 in. ...
By E. coli or other microorganisms (e.g., bacteria or the like in some Bacillus The yeast Saccharomyces cerevisiae) plasmid (or other vector) DNA passaged for glutamic acid In vivo mutagenesis of Corynebacterium, wherein the microorganism to maintain the integrity of their genetic information capacity has been Damage. Typical mutant gene in the DNA repair system with mutations (e.g., mutHLS, mutD, mutT, etc.; references see Rupp, WD (1996) DNA repair mechanisms, in: Escherichia coli and Salmonella, p.2277-2294, ASM: Washington.). This These strains for skilled people is well known. The use of these strains are described in, for example, Greener, A.and Callahan, M. (1994) Strategies 7:32-34 in. ...
Corynebacterium and Brevibacterium species contain endogenous spontaneously replicated plasmid (such as for example, pHM1519 or pBL1) (review see, for example, Martin, JFet al. (1987) Biotechnology ,5:137-146). Escherichia coli and Corynebacterium glutamicum shuttle vector, can be E. coli using standard carriers easy to build (Sambrook, J.et al. (1989) "Molecular Cloning: A Laboratory Manual" Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press or Ausubel, FMet al. (1994) "Current Protocols in Molecular Bilogy", John Wiley & Sons.), I.e. in which the Corynebacterium glutamicum added replication fork and a suitable starting point mark. The origin of replication, excellent Is selected from Corynebacterium and Brevibacterium species isolated endogenous plasmid obtained. For these species turn The special-purpose markup kanamycin resistance gene (e.g., from Tn5 or Tn903 Those transposon kanamycin resistance gene) or chloramphenicol resistance gene (Winnacker, EL (1987) "From Genes to Clones-Introduction to Gene Technology, VCH, Weinheim). In building a variety of wild-type shuttle vector literature, there are many examples of these wear Shuttle vector in E. coli and Corynebacterium glutamicum copied, can be used for various purposes and , Including gene overexpression (see reference, for example, Yoshihama, M.et al. (1985) J.Bacteriol.162 :591-597, Martin JFet al. (1987) Biotechnology, 5: 137-146 and Eikmanns, BJet a;. (1991) Gene ,102:93-98). ...
Using standard methods of interest can be cloned into the shuttle vector, and can be With the introduction of the hybrid containing Corynebacterium glutamicum strains. Transformation of Corynebacterium glutamicum can be Protoplast transformation (Kastsumata, R.et al. (1984) J.Bacteriol.159306-311), electrical Chuan Kong (Lieb1, E.et al. (1989) FEMS Microbiol.Letters ,53:399-303) to achieve, When using a special carrier is used, can also be combined action (for example, in Sch_fer, A et al. (1990) J.Bacteriol.172 :1663-1666) implementation. Can also be prepared from Corynebacterium glutamicum plasmid DNA (using standard methods known in the art) and transformed into E. coli, and the wear Corynebacterium glutamicum shuttle vector from transformed into E. coli. This conversion step can use a standard square Method, but using Mcr-deficient E. coli strains, such as NM522 (Gough & Murray (1983) J.Mol.Biol.166 :1-19) is advantageous. ...
Using standard methods of interest can be cloned into the shuttle vector, and can be With the introduction of the hybrid containing Corynebacterium glutamicum strains. Transformation of Corynebacterium glutamicum can be Protoplast transformation (Kastsumata, R.et al. (1984) J.Bacteriol.159306-311), electrical Chuan Kong (Lieb1, E.et al. (1989) FEMS Microbiol.Letters ,53:399-303) to achieve, When using a special carrier is used, can also be combined action (for example, in Sch_fer, A et al. (1990) J.Bacteriol.172 :1663-1666) implementation. Can also be prepared from Corynebacterium glutamicum plasmid DNA (using standard methods known in the art) and transformed into E. coli, and the wear Corynebacterium glutamicum shuttle vector from transformed into E. coli. This conversion step can use a standard square Method, but using Mcr-deficient E. coli strains, such as NM522 (Gough & Murray (1983) J.Mol.Biol.166 :1-19) is advantageous. ...
In addition to use of other plasmid replication can also be achieved through the integration of genomic gene over The amount of expression. Corynebacterium glutamicum or Brevibacterium or Corynebacterium other species genome integration, Known methods can be achieved, for example genomic regions homologous recombination, restriction endonuclease Enzyme mediated integration (REMI) (see, for example, DE Patent 19823834), or through the By using a transposon. Regulatory regions can also be modified (e.g., promoter, repressor, and / or Enhancer), through the use of targeted loci method (for example, homologous recombination) or based on random events Method (for example transposon mutagenesis or REMI) a sequence modified insert or deletion to adjust The activity of genes of interest. A nucleic acid as a transcription terminator sequences can be inserted into the present Description of one or more genes coding region 3 '; Such terminators are well known in the technology, And are described, for example, Winnacker, EL (1987) From Genes to Clones- Introduction to Gene Technology.VCH: Weinheim in. ...
In addition to use of other plasmid replication can also be achieved through the integration of genomic gene over The amount of expression. Corynebacterium glutamicum or Brevibacterium or Corynebacterium other species genome integration, Known methods can be achieved, for example genomic regions homologous recombination, restriction endonuclease Enzyme mediated integration (REMI) (see, for example, DE Patent 19823834), or through the By using a transposon. Regulatory regions can also be modified (e.g., promoter, repressor, and / or Enhancer), through the use of targeted loci method (for example, homologous recombination) or based on random events Method (for example transposon mutagenesis or REMI) a sequence modified insert or deletion to adjust The activity of genes of interest. A nucleic acid as a transcription terminator sequences can be inserted into the present Description of one or more genes coding region 3 '; Such terminators are well known in the technology, And are described, for example, Winnacker, EL (1987) From Genes to Clones- Introduction to Gene Technology.VCH: Weinheim in. ...
Transforming a host cell by the activity of the mutant proteins observation relies on the fact that the projection Variable with the wild-type protein protein in a similar manner, and similar quantitative expression. Identified mutations base Due to the transcriptional level (for the gene product of translation of mRNA quantitative indicators) to be a useful way Method is a Northern blot (see reference, for example, Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York), which designed for binding The primers of interest marked with a detectable tag (usually radioactive or chemiluminescent A), so that, when the culture of the organism is extracted total RNA, running gel electrophoresis, transferred To a stable medium and incubated with this probe, combined with the number of probe binding and it indicates that the gene presence and amount of mRNA. This information is mutated gene transcription level of evidence. You can use several Method was prepared from Corynebacterium glutamicum total cell RNA, which is technically known, for example, As described in Bormann, ERet al. (1992) Mol.Microbiol.6 :317-326 in. ...
Transforming a host cell by the activity of the mutant proteins observation relies on the fact that the projection Variable with the wild-type protein protein in a similar manner, and similar quantitative expression. Identified mutations base Due to the transcriptional level (for the gene product of translation of mRNA quantitative indicators) to be a useful way Method is a Northern blot (see reference, for example, Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York), which designed for binding The primers of interest marked with a detectable tag (usually radioactive or chemiluminescent A), so that, when the culture of the organism is extracted total RNA, running gel electrophoresis, transferred To a stable medium and incubated with this probe, combined with the number of probe binding and it indicates that the gene presence and amount of mRNA. This information is mutated gene transcription level of evidence. You can use several Method was prepared from Corynebacterium glutamicum total cell RNA, which is technically known, for example, As described in Bormann, ERet al. (1992) Mol.Microbiol.6 :317-326 in. ...
Example 7: Genetic modification of the growth of Corynebacterium glutamicum - Media and culture conditions
Of genetically modified Corynebacterium glutamicum can be cultured in a synthetic or natural growth medium. For Corynebacterium glutamicum various growth medium are known and are readily available (Lieb, et al. (1989) Appl.Microbiol.Biotechno. ,32:205-210; von der Osten et al. (1998) Biotechnology Letters ,11:11-16; Patent DE 4,120,867; Liebl (1992) "The Genus Corynebacterium, in: Procaryotes, Volume II, Balows, A. et al., eds.Springer-Verlag). These media contain one or more of carbon, nitrogen, Inorganic salts, vitamins and trace elements. Preferred carbon sources are sugars, such as monosaccharides, disaccharides or Polysaccharides. For example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, Lactose, maltose, sucrose, raffinose, starch or cellulose, can be used as a good source of carbon. Complex compound can also be provided to the medium sugars, refined sugars such as molasses, or other Byproducts. Improve the mixture of different carbon sources is also beneficial. Other available carbon sources of alcohol And organic acids such as methanol, ethanol, acetic acid or lactic acid. Typically an organic or inorganic nitrogen Nitrogen compounds, or compounds containing these substances. Representative of the nitrogen sources include ammonia or Ammonium salts such as NH ...4Of genetically modified Corynebacterium glutamicum can be cultured in a synthetic or natural growth medium. For Corynebacterium glutamicum various growth medium are known and are readily available (Lieb, et al. (1989) Appl.Microbiol.Biotechno. ,32:205-210; von der Osten et al. (1998) Biotechnology Letters ,11:11-16; Patent DE 4,120,867; Liebl (1992) "The Genus Corynebacterium, in: Procaryotes, Volume II, Balows, A. et al., eds.Springer-Verlag). These media contain one or more of carbon, nitrogen, Inorganic salts, vitamins and trace elements. Preferred carbon sources are sugars, such as monosaccharides, disaccharides or Polysaccharides. For example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, Lactose, maltose, sucrose, raffinose, starch or cellulose, can be used as a good source of carbon. Complex compound can also be provided to the medium sugars, refined sugars such as molasses, or other Byproducts. Improve the mixture of different carbon sources is also beneficial. Other available carbon sources of alcohol And organic acids such as methanol, ethanol, acetic acid or lactic acid. Typically an organic or inorganic nitrogen Nitrogen compounds, or compounds containing these substances. Representative of the nitrogen sources include ammonia or Ammonium salts such as NH ...4) 2SO 4、NH 4OH, nitrates, urea, amino acids or Complex nitrogen sources, such as corn steep liquor, soybean flour, soy protein, yeast extract, meat Extract or others.
Can be included in the medium inorganic compounds, including hydrochloride, phosphate or a sulfur Salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper or iron. Chelating agents may be added to Medium to maintain metal ions in solution. Particularly useful chelating agents include dihydroxybenzene Phenols, such as catechol and protocatechuate, or organic acids, such as citric acid. A typical medium Also contains growth factors, such as vitamins and growth promoters, examples of which include biotin, Riboflavin, thiamine, folic acid, niacin, pantothenate and pyridoxine alcohol. Growth factors and salts frequently from Complex medium components such as yeast extract, molasses, corn steep liquor, and other ingredients. The exact composition of the media compounds depends strongly on the immediate experiment and for each specific Case specific decision. Information about media optimization by the textbook "Applied Microbiol.Physiology, A Practical Approach "(eds.PMRhodes, PF Stanbury, IRL Press (1997) pp.53-73, ISBN 0 19 963577 3) "in can also be from Commercial vendors selective growth medium, such as standard 1 (Merck) or BHI (Grain heart infusion, DIFCO) or others. ...
Can be included in the medium inorganic compounds, including hydrochloride, phosphate or a sulfur Salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper or iron. Chelating agents may be added to Medium to maintain metal ions in solution. Particularly useful chelating agents include dihydroxybenzene Phenols, such as catechol and protocatechuate, or organic acids, such as citric acid. A typical medium Also contains growth factors, such as vitamins and growth promoters, examples of which include biotin, Riboflavin, thiamine, folic acid, niacin, pantothenate and pyridoxine alcohol. Growth factors and salts frequently from Complex medium components such as yeast extract, molasses, corn steep liquor, and other ingredients. The exact composition of the media compounds depends strongly on the immediate experiment and for each specific Case specific decision. Information about media optimization by the textbook "Applied Microbiol.Physiology, A Practical Approach "(eds.PMRhodes, PF Stanbury, IRL Press (1997) pp.53-73, ISBN 0 19 963577 3) "in can also be from Commercial vendors selective growth medium, such as standard 1 (Merck) or BHI (Grain heart infusion, DIFCO) or others. ...
Culture conditions were determined for each experiment. Temperature should be at 15 ℃ to 45 ℃ range. The temperature can be kept constant, or changes in the experiment. PH of the medium in the range of 5 to 8.5, Preferably at about 7.0, and can be added medium to maintain the buffer. For this Object of a representative buffer is potassium phosphate buffer. Synthetic buffers such as MOPS, HEPES, ACES and others, can also be used instead or in combination. You can also Growth process by adding NaOH or NH4OH% EF% BC% 8C% E4% BB% A5% E7% BB% B4% E6% 8C% 81% E7% A8% B3% E5% AE% 9A% E7% 9A% 84% E5% 9F% B9% E5% 85% BBpH% E3% 80% 82% E5% A6% 82% E6% 9E% 9C% 0A% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% E4% BD% BF% E7% 94% A8% E5% 83% 8F% E6% 98% AF% E9% 85% B5% E6% AF% 8D% E6% 8F% 90% E5% 8F% 96% E7% 89% A9% E8% BF% 99% E6% A0% B7% E7% 9A% 84% E5% A4% 8D% E6% 9D% 82% E5% 9F% B9% E5% 85% BB% E5% 9F% BA% E7% BB% 84% E5% 88% 86% EF% BC% 8C% E5% 8F% AF% E4% BB% A5% E5% 87% 8F% E5% B0% 91% E6% B7% BB% E5% 8A% A0% E7% BC% 93% E5% 86% B2% E6% B6% B2% E7% 9A% 84% E5% BF% 85% 0A% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% E8% A6% 81% E6% 80% A7% EF% BC% 8C% E8% BF% 99% E6% 98% AF% E5% 9B% A0% E4% B8% BA% E8% AE% B8% E5% A4% 9A% E5% A4% 8D% E6% 9D% 82% E5% 8C% 96% E5% 90% 88% E7% 89% A9% E5% 85% B7% E6% 9C% 89% E5% BE% 88% E5% BC% BA% E7% 9A% 84% E7% BC% 93% E5% 86% B2% E8% 83% BD% E5% 8A% 9B% E8% BF% 99% E4% B8% 80% E4% BA% 8B% E5% AE% 9E% E3% 80% 82% E5% A6% 82% E6% 9E% 9C% E4% BD% BF% 0A% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% E7% 94% A8% E5% 8F% 91% E9% 85% B5% E7% BD% 90% E5% 9F% B9% E5% 85% BB% E5% BE% AE% E7% 94% 9F% E7% 89% A9% EF% BC% 8C% E4% B9% 9F% E5% 8F% AF% E4% BB% A5% E4% BD% BF% E7% 94% A8% E6% B0% A8% E6% B0% 94% E6% 8E% A7% E5% 88% B6pH% E3% 80% 82
Incubation time is usually in the range of hours to days. This time is to allow the selection of Accumulate in the liquid medium the maximum amount of product. However, growth experiments published in a variety of containers , For example microtiter plates, glass tubes, glass flasks or glass or a different size Metal fermenter. In order to screen large numbers of clones should microorganism cultured in a baffle or not A baffle microtiter plates, glass tubes or shake flasks. Preferably use 100ml flask, 10% (volume) of the desired medium. Should be placed on a shaker flask shaking (amplitude 25 mm M), the speed range of 100-300rpm. Can be kept moist air to reduce evaporation losses; Or, mathematically corrected for evaporation losses. ...
Incubation time is usually in the range of hours to days. This time is to allow the selection of Accumulate in the liquid medium the maximum amount of product. However, growth experiments published in a variety of containers , For example microtiter plates, glass tubes, glass flasks or glass or a different size Metal fermenter. In order to screen large numbers of clones should microorganism cultured in a baffle or not A baffle microtiter plates, glass tubes or shake flasks. Preferably use 100ml flask, 10% (volume) of the desired medium. Should be placed on a shaker flask shaking (amplitude 25 mm M), the speed range of 100-300rpm. Can be kept moist air to reduce evaporation losses; Or, mathematically corrected for evaporation losses. ...600Value of 0.5-1.5 inoculated medium can pass By introducing the plate from the CM salt Corynebacterium glutamicum cell suspension, or by adding to the Bacterial liquid preculture implementation.
Example 8: In vitro analysis of protein function mutations
Kinetic parameters of the enzyme activity and determination of technically been well established for. Any After a change of a given enzyme activity measurement experiment, must be suitable for the specific activity of wild type enzyme Sex, it is entirely in the ability of skilled in the art within. Summary of comments on the enzyme and on the knot Structure, dynamics, principles, methods, applications and determine the number of instances of explicit details of the activity can be In the example found in the following references: Dixon, M., and Webb, EC, (1979) Enzymes. Longmans: London; Fersht, (1985) Enzyme Structure and Mechanism.Freeman: New York; Walsh, (1979) Enzymatic Reaction Mechanisms.Freeman: San Francisco; Price, NC, Stevens, L. (1982) Fundamentals of Enzymology.Oxford Univ.Press: Oxford; Boyer, P.D., ed. (1983) The Enzymes, 3 ...rd ed.Academic Press:New York; Bisswanger,H.,(1994)Enzymkinetik,2 nd ed.VCH:Weinheim(ISBN 3527300325); Bergmeyer,H.U.,Bergmeyer,J.,Graβ1,M.,eds.(1983-1986)Methods of Enzymatic Analysis,3 rd ed.,vol.I-XII,Verlag Chemie:Weinheim;and Ullmann’s Encyclopedia of Industrial Chemistry(1987)vol.A9,“Enzymes”.VCH:Weinheim,p.352- 363。
Kinetic parameters of the enzyme activity and determination of technically been well established for. Any After a change of a given enzyme activity measurement experiment, must be suitable for the specific activity of wild type enzyme Sex, it is entirely in the ability of skilled in the art within. Summary of comments on the enzyme and on the knot Structure, dynamics, principles, methods, applications and determine the number of instances of explicit details of the activity can be In the example found in the following references: Dixon, M., and Webb, EC, (1979) Enzymes. Longmans: London; Fersht, (1985) Enzyme Structure and Mechanism.Freeman: New York; Walsh, (1979) Enzymatic Reaction Mechanisms.Freeman: San Francisco; Price, NC, Stevens, L. (1982) Fundamentals of Enzymology.Oxford Univ.Press: Oxford; Boyer, P.D., ed. (1983) The Enzymes, 3 ...
Membrane transport protein activity can be determined such as those described in Gennis, RB (1989) "Pores, Channels and Transporters", in Biomembrane, Molecular Structure and Function, Springer: Heidelberg, p.85-137; 199-234; and 270-322 in white that These techniques.
Example 9: production of mutant proteins to effect the desired product analysis
Genetically modified Corynebacterium glutamicum for the desired compound (such as amino acids) produced role Can be estimated, that is, through the appropriate conditions (for example, those described above) has been modified growth Microorganisms, and the increase of the desired product (e.g., amino acids) the production of medium and / or Cell components. These analytical techniques for the skilled person is well known conventional techniques, including spectral Analysis, thin layer chromatography, various staining methods, enzymatic methods and microbiological methods, and such high Performance liquid chromatography (Ullman, Encyclopedia of Industrial Chemistry, vol.A2, p.89-90 and p.443-613, VCH: Weinheim (1985); Fallon, A.et al., (1987) "Applications of HPLC in Biochemistry "in: Laboratory Techniques in Biochemistry and Molecular Biology, vol.17; Rehm et al. (1993) Biotechnology, vol.3, Chapter III: "Product recovery and purification ", page 469-714, VCH: Weinheim; Belter, PAet al. (1988) Bioseparations: downstream processing for biotechnology, John Wiley and Sons; Kennedy, JFand Cabral, JMS (1992) Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz, JAand Henry, JD (1988) Biochemical separations, in: Ulmann's Encyclopedia of Industrial Chemistry, vol.B3, Chapter 11, page 1-27, VCH: Weinheim; and Dechow, FJ (1989) Separation and purification techniques in biotechnology, Noyes Publications) chromatography such analysis. ...
In addition to the determination of the final fermentation products, the desired compound can also be used for the production of metabolic Other components pathway analysis, such as intermediates and by-products, to determine the total raw compound Production efficiency. Analysis methods include nutrient levels in the medium (for example, sugars, hydrocarbons, nitrogen, Phosphate and other ions) determination of composition and growth of the biomass measurement biosynthetic pathway Common analysis of the production of metabolites, as well as the determination of the gas produced by fermentation. These assays The standard method outlined in Applied Microbial Physiology, A Practical Approach, P. M.Rhodes and PFStanbury, eds., IRL Press, p.103-163; and 165-192 (ISBN: 0199635773) and references cited. ...
In addition to the determination of the final fermentation products, the desired compound can also be used for the production of metabolic Other components pathway analysis, such as intermediates and by-products, to determine the total raw compound Production efficiency. Analysis methods include nutrient levels in the medium (for example, sugars, hydrocarbons, nitrogen, Phosphate and other ions) determination of composition and growth of the biomass measurement biosynthetic pathway Common analysis of the production of metabolites, as well as the determination of the gas produced by fermentation. These assays The standard method outlined in Applied Microbial Physiology, A Practical Approach, P. M.Rhodes and PFStanbury, eds., IRL Press, p.103-163; and 165-192 (ISBN: 0199635773) and references cited. ...
Corynebacterium glutamicum cells from the culture supernatant or the recovery of the desired product, can be Through a variety of methods known in the art. If the desired product is not secreted by cells, it It can be from the medium by low speed centrifugation cells were collected, lysed by standard techniques, such as Mechanical force or ultrasound. Cell debris was removed by centrifugation, retaining the supernatant containing the soluble protein For further purification the desired compound. If the product is secreted from the cells of Corynebacterium glutamicum, Then use the low-speed centrifugation to remove cells from the culture medium, supernatant retained for further purification.
Corynebacterium glutamicum cells from the culture supernatant or the recovery of the desired product, can be Through a variety of methods known in the art. If the desired product is not secreted by cells, it It can be from the medium by low speed centrifugation cells were collected, lysed by standard techniques, such as Mechanical force or ultrasound. Cell debris was removed by centrifugation, retaining the supernatant containing the soluble protein For further purification the desired compound. If the product is secreted from the cells of Corynebacterium glutamicum, Then use the low-speed centrifugation to remove cells from the culture medium, supernatant retained for further purification....
Purification methods known in the art is very large, the above purification method does not mean just Bureau Limited thereto. These purification methods are described in, for example, Bailey, JE & Ollis, DFBiochmical Engineering Fundamentals, McGraw-Hill: New York (1986) in.
Purification methods known in the art is very large, the above purification method does not mean just Bureau Limited thereto. These purification methods are described in, for example, Bailey, JE & Ollis, DFBiochmical Engineering Fundamentals, McGraw-Hill: New York (1986) in....
Purification methods known in the art is very large, the above purification method does not mean just Bureau Limited thereto. These purification methods are described in, for example, Bailey, JE & Ollis, DFBiochmical Engineering Fundamentals, McGraw-Hill: New York (1986) in....
Sequence comparison between two sequences and determination of percent homology, are known in the technical Surgery, you can use mathematical algorithms to complete, for example Karlin and Altschul (1990) Proc. Natl.Acad.Sci.USA 87:2264-68 in algorithms, the algorithm in Karlin and Altschul (1993) Proc.Natl.Acad Sci.USA 90:5873-77 has changed. The op- Law is integrated in Altschul, et al. (1990) J Mol.Biol.215 :403-10 in NBLAST and XBLAST program (version 2.0) in. BLAST nucleotide search can NBLAST Program, score = 100, wordlength = 12, can be obtained with the present invention, the nucleic acid molecule MP Homologous nucleotide sequences. Protein BLAST search program can XBLAST, score = 50, wordlength = 3, can be obtained with the present invention, homologous protein amino MP Acid sequence. For comparison purposes, in order to obtain a gap sequence alignment, can be used to describe In Altschul et al., (1997) Nucleic Acids Res.25 (17) :3389-3402 the Gapped BLAST. When using BLAST and Gapped BLAST programs, the person skilled in the art that For a specific sequence to be analyzed how to optimize the program (for example, XBLAST and NBLAST) of Parameters. ...
Sequence comparison between two sequences and determination of percent homology, are known in the technical Surgery, you can use mathematical algorithms to complete, for example Karlin and Altschul (1990) Proc. Natl.Acad.Sci.USA 87:2264-68 in algorithms, the algorithm in Karlin and Altschul (1993) Proc.Natl.Acad Sci.USA 90:5873-77 has changed. The op- Law is integrated in Altschul, et al. (1990) J Mol.Biol.215 :403-10 in NBLAST and XBLAST program (version 2.0) in. BLAST nucleotide search can NBLAST Program, score = 100, wordlength = 12, can be obtained with the present invention, the nucleic acid molecule MP Homologous nucleotide sequences. Protein BLAST search program can XBLAST, score = 50, wordlength = 3, can be obtained with the present invention, homologous protein amino MP Acid sequence. For comparison purposes, in order to obtain a gap sequence alignment, can be used to describe In Altschul et al., (1997) Nucleic Acids Res.25 (17) :3389-3402 the Gapped BLAST. When using BLAST and Gapped BLAST programs, the person skilled in the art that For a specific sequence to be analyzed how to optimize the program (for example, XBLAST and NBLAST) of Parameters. ...
Percentage between two amino acid sequences homologous to the GCG software package can be used (http://www.gcg.com is provided) in the GAP program, use Blosum 62 matrix Or PAM 250 matrix, gap component 12,10,8,6 or 4, the length of component 2, 3 or In 4. Percentage between two nucleic acid sequence homology can be used in the package GCG GAP Program, using the standard parameters such as the length of the gap component 50 and component 3.
Gene sequences of the invention between the sequences in Genbank comparative analysis techniques can be used Techniques known in the art (see, for example, Bexevanis and Ouellette, eds. (1998) Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. John Wiley and Sons: New York). Gene sequences of the present invention, three steps of the square Method and compare sequences in Genbank. In the first step of the present invention, each of a sequence of Relative to the nucleotide sequence in Genbank BLASTN analysis (eg, local sequence alignment Analysis), to retain the highest matching 500 for further analysis. Then this 500 matches for FASTA search (for example, a combination of local and worldwide comparative sequence analysis, in which the limited Sequence region sequence comparison). Next, each of the present invention, and FASTA sequences The three highest matching, using the GAP program in the GCG software package (using standard parameters) into the OK Golden World sequence comparison. To get the correct result, the length from the Genbank sequence selected, Technically well known methods using the query sequence length adjustment. The results of the analysis are listed in Table 4. Medium. Although this result, each gene of the present invention with respect to each of Genbank Conducted according to a single GAP (worldwide) analysis of the result is the same, but the relative The large database GAP (worldwide) analysis, the required computing time is greatly reduced. Not Cutoff values ​​obtained over a sequence alignment of the sequence of the present invention, in Table 4 show that the lack of sequence Ratio information. Skilled in the art to understand the deeper, listed in Table 4, the heading "% homology (GPA) "under the GAP percentage sequence homology comparison is based on the European digital format Listed, of which ',' on behalf of the decimal point. For example, the value in the column "40,345" represents "40.345 percent." ...
Gene sequences of the invention between the sequences in Genbank comparative analysis techniques can be used Techniques known in the art (see, for example, Bexevanis and Ouellette, eds. (1998) Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. John Wiley and Sons: New York). Gene sequences of the present invention, three steps of the square Method and compare sequences in Genbank. In the first step of the present invention, each of a sequence of Relative to the nucleotide sequence in Genbank BLASTN analysis (eg, local sequence alignment Analysis), to retain the highest matching 500 for further analysis. Then this 500 matches for FASTA search (for example, a combination of local and worldwide comparative sequence analysis, in which the limited Sequence region sequence comparison). Next, each of the present invention, and FASTA sequences The three highest matching, using the GAP program in the GCG software package (using standard parameters) into the OK Golden World sequence comparison. To get the correct result, the length from the Genbank sequence selected, Technically well known methods using the query sequence length adjustment. The results of the analysis are listed in Table 4. Medium. Although this result, each gene of the present invention with respect to each of Genbank Conducted according to a single GAP (worldwide) analysis of the result is the same, but the relative The large database GAP (worldwide) analysis, the required computing time is greatly reduced. Not Cutoff values ​​obtained over a sequence alignment of the sequence of the present invention, in Table 4 show that the lack of sequence Ratio information. Skilled in the art to understand the deeper, listed in Table 4, the heading "% homology (GPA) "under the GAP percentage sequence homology comparison is based on the European digital format Listed, of which ',' on behalf of the decimal point. For example, the value in the column "40,345" represents "40.345 percent." ...
Sequence of the invention can also be used for DNA microarray (DNA array design, methods, and The application of technology are well known and described, for example, Schena, M.te al. (1995) Science 270: 467-470; Wodicka, L.et al. (1997) Nature Biotechnology 15:1359-1367; DeSaizieu, A.et al. (1998) Nature Biotechnology 16:45-48; and DeRisi, JL et al. (1997) Science 278:680-686) Construction and application.
DNA microarrays using a solid or flexible supports, including nitrocellulose, nylon Dragon, glass, silicon or other materials. Nucleic acid molecules can be connected in an orderly manner on the surface. Suitable marker, the other nucleic acid or nucleic acid mixture can be hybridized with the immobilized nucleic acid molecules, Tag can be used to monitor and measure the area of ​​hybrid molecules determine separate signal strength. This method Allows the simultaneous quantification of the nucleic acid sample, or for all or a mixture of nucleic acids with the selected Right or absolute number. Thus, DNA micro-array allows multiple (up to 6800 or more) Similar analysis of a nucleic acid expression (see, e.g., Schena, M. (1996) BioEssays 18 (5): 427-431). ...
DNA microarrays using a solid or flexible supports, including nitrocellulose, nylon Dragon, glass, silicon or other materials. Nucleic acid molecules can be connected in an orderly manner on the surface. Suitable marker, the other nucleic acid or nucleic acid mixture can be hybridized with the immobilized nucleic acid molecules, Tag can be used to monitor and measure the area of ​​hybrid molecules determine separate signal strength. This method Allows the simultaneous quantification of the nucleic acid sample, or for all or a mixture of nucleic acids with the selected Right or absolute number. Thus, DNA micro-array allows multiple (up to 6800 or more) Similar analysis of a nucleic acid expression (see, e.g., Schena, M. (1996) BioEssays 18 (5): 427-431). ...
A nucleic acid microarray can also be as in the Wodicka, L.et al. (1997) Nature Biotechnology 15:1359-1367 describes oligonucleotides synthesized in situ building. Through photos Phase plate method, the matrix can be accurately determined area exposed to light. The protecting group is light Unstable, and thus be activated and subjected to nucleotide addition, but disguised and seeing the light district Domain without any modification. Protection and activation of the next light cycle, allowing to determine the location of different Oligonucleotide synthesis. The present invention can be determined by a small region on the microarray by solid-phase oligo Nucleotide synthesis and synthesis.
Nucleotides in the sample or a mixture of the nucleic acid molecule of the present invention can be used with microarray Hybridization. You can mark them according to the standard method of nucleic acid molecules. Simply put, the nucleic acid molecule (case If, mRNA molecules or DNA molecule) can be labeled with the isotope or a fluorescent nucleoside Acid binding is marked, for example, reverse transcriptase or DNA synthesis. Labeled nucleic acid microarray Hybridization is described (for example, in Schena, M.et al. (1995) supra; Wodicka, L.et al. (1997), supra; and DeSaizieu A.et al. (1998), supra IN). Hybrid molecule detection To fit a specific and quantitative binding tag. Radioactive label can be detected, for example, Schena, M.et al. (1995) supra described, but also can detect fluorescence, for example, Shalon et al. (1996) Gemone Research 6:639-645 approach. ...
Nucleotides in the sample or a mixture of the nucleic acid molecule of the present invention can be used with microarray Hybridization. You can mark them according to the standard method of nucleic acid molecules. Simply put, the nucleic acid molecule (case If, mRNA molecules or DNA molecule) can be labeled with the isotope or a fluorescent nucleoside Acid binding is marked, for example, reverse transcriptase or DNA synthesis. Labeled nucleic acid microarray Hybridization is described (for example, in Schena, M.et al. (1995) supra; Wodicka, L.et al. (1997), supra; and DeSaizieu A.et al. (1998), supra IN). Hybrid molecule detection To fit a specific and quantitative binding tag. Radioactive label can be detected, for example, Schena, M.et al. (1995) supra described, but also can detect fluorescence, for example, Shalon et al. (1996) Gemone Research 6:639-645 approach. ...
Example 13: Analysis of cell population dynamics of proteins (proteomics)
Gene of the invention, the composition and method can be used to study protein interactions groups And dynamics, called "proteomics." Protein of interest groups, including, but not Bureau Limited to, all of Corynebacterium glutamicum protein groups (eg, proteins, and other organisms Comparison group), in a special environment or metabolic conditions (e.g., fermentation in temperature or By low temperature or high pH or low pH) that are active protein, or a specific growth or Developmental stages by those proteins are active.
You can use a variety of well-known technical analysis of protein groups, such as gel electrophoresis. Cell protein Quality can be obtained such as cracking or extract can also be separated from each other using a variety of electrophoretic techniques Away. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separation of proteins, it is A large extent based on their molecular weight. Polyacrylamide gel isoelectric focusing electrophoresis (IEF- PAGE) through such little (which reflects not only the amino acid sequence, and screening of protein translation Translation modification) separation of proteins. A more preferred method of protein analysis, IEF-PAGE And SDS-PAGE with a continuous, known as 2-D-gel electrophoresis (for example, in Hermann et al. (1998) Electrophoresis 19:3217-3221; Fountoulakis et al. (1998) Electrophoresis 19:1193-1202; Langen et al. (1997) Electrophoresis 18: 1184-1192; Antelmann et al. (1997) Electrophoresis18 :1451-1463 described in Above). ...
You can use a variety of well-known technical analysis of protein groups, such as gel electrophoresis. Cell protein Quality can be obtained such as cracking or extract can also be separated from each other using a variety of electrophoretic techniques Away. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separation of proteins, it is A large extent based on their molecular weight. Polyacrylamide gel isoelectric focusing electrophoresis (IEF- PAGE) through such little (which reflects not only the amino acid sequence, and screening of protein translation Translation modification) separation of proteins. A more preferred method of protein analysis, IEF-PAGE And SDS-PAGE with a continuous, known as 2-D-gel electrophoresis (for example, in Hermann et al. (1998) Electrophoresis 19:3217-3221; Fountoulakis et al. (1998) Electrophoresis 19:1193-1202; Langen et al. (1997) Electrophoresis 18: 1184-1192; Antelmann et al. (1997) Electrophoresis18 :1451-1463 described in Above). ...35S-methionine,35S- Cysteine,14C-labeled amino acids,15N-amino acid,15NO 3Or15NH 4 +Or13C-labeled Mind amino acids), can make these cells before the separation of protein labeled protein. Category Like, can also be a fluorescent tag. According to the aforementioned technique can be extracted, isolated and separate these Labeled protein.
Proteins using these techniques show, by measuring a dye or a mark used as a feed Further analysis. The number of specific proteins may be used such as an optical method for quantitative determination, And may be in the same or another on a gel on the gel ratio of the number of other proteins Compared. By, for example optical comparator, spectroscopic analysis, gel image analysis and scanning, or through the By using photographic film or the display of proteins on the gel for comparison. These technologies Technically known.
To determine the characteristics of a specific protein can be determined using direct sequence or other criteria Technologies. For example, you can use the N-and / or C-terminal amino acid sequencing (e.g., Edman degradation), And mass spectrometry (MALDI or ESI particular techniques (see, for example, Langen et al. (1997) Electrophoresis 18:1184-1192)). Protein sequences provided herein may be These techniques for Corynebacterium glutamicum protein identification.
The information obtained by these techniques can be used to compare the protein present, activity, different Biological conditions (for example, other conditions in the different organisms, fermentation time points, medium Conditions, or biological environment) modification between different samples of the various modes. The resulting number of these tests It can be used alone, or combined with other technologies used in various applications, such as comparing special Specified circumstances (such as metabolism) various organisms act to increase the production of fine chemicals Strains production capacity, or to increase the efficiency of fine chemical production.
Equivalent statement
Skilled in the art will recognize, or be able to determine using only routine experimentation, this Described at a particular embodiment of the present invention, there are many equivalents. The following claims are intended to package Containing such equivalents.

Claims (33)

1 Corynebacterium glutamicum isolated nucleic acid molecule which contains selected from SEQ ID NO: 3 - 1155 with an odd sequence number for each listed nucleic acid sequence or complementary sequence, provided that the nucleic acid Molecules do not include any of those listed in Table 1 F-indicated genes.
2 An isolated nucleic acid molecule coding for the molecule is selected from SEQ ID NO :4-1156 per One with an even number of amino acid sequence listed in SEQ ID NO or its complementary sequence, provided that the nucleic acid molecule does not Including any of those listed in Table 1 F-indicated genes.
3 encoding a polypeptide isolated naturally occurring allelic variant of a nucleic acid molecule, the polypeptide package Selected from the group containing SEQ ID NO :4-1156 with an even sequence number for each listed amino acid sequence or Complementary sequences, provided the nucleic acid molecule does not include any of those listed in Table 1 F-indicated genes.
4 An isolated nucleic acid molecule comprising a nucleotide sequence, the sequence of SEQ ID NO: 3 - 1155 either an odd sequence number are listed in the nucleotide sequence of the complete or complementary sequences thereof with at least Identity of 50%, provided that the nucleic acid molecule does not include any of those listed in Table 1 F-indicated base Result.
5 isolated comprising SEQ ID NO :3-1155 in any one of SEQ ID number listed nuclear Or a nucleotide sequence complementary to a sequence of at least 15 consecutive nucleotides of a nucleic acid molecule fragments, the conditions This nucleic acid molecule does not include any of those listed in Table 1 F-indicated genes.
6 An isolated nucleic acid molecule comprises the nucleic acid molecule of any one of claims 1-5 in the nucleic acid Molecule encoding a heterologous polypeptide and nucleotide sequences.
7 contains any one of claims 1-6 in a vector nucleic acid molecule.
8 The vector of claim 7, the vector is an expression vector.
9 expression vector according to claim 8 transfected host cells.
10 The host cell according to claim 9, wherein the cell is a microorganism.
11 The host cell according to claim 10, wherein the cell belongs to the genus Corynebacterium or Brevibacterium Genera.
12 The host cell according to claim 9, wherein the expression of said nucleic acid molecule, resulting in the fine Cells regulate the production of fine chemicals.
13 The host cell of claim 12, wherein said fine chemical is selected from the following physical Quality: organic acids, protein source of amino acids, non-protein source of amino acids, purine and pyrimidine bases Group, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic Compounds, vitamins, cofactors, polyketides, and enzymes.
14 for producing a polypeptide, comprising culturing in a suitable host according to claim 9 Cells, thereby producing the polypeptide.
15 containing the selected separation SEQ ID NO :4-1156 with an even sequence number for each listed Acid sequence of a polypeptide, provided that the amino acid sequence listed in Table 1, not by any The gene coding for F-marked.
16 containing the selected separation SEQ ID NO :4-1156 with an even sequence number for each listed Acid sequence of the polypeptide allelic variants of naturally occurring polypeptide, the condition that the ammonia Amino acid sequence listed in Table 1, not by any of the gene coding for F-marked.
17 An isolated polypeptide encoded by a nucleic acid molecule, the nucleic acid molecule comprises a nucleotide sequence SEQ ID NO :3-1155 sequence of any one of an odd number of the nucleic acid sequences listed in full at least Identity of 50%, provided that the nucleic acid molecule does not include any of those listed in Table 1 F-marked nuclear Acid molecules.
18 An isolated polypeptide, the polypeptide comprises the amino acid sequence of SEQ ID NO :4-1156 of Either with an even sequence number are listed in full at least 50% amino acid sequence identity, condition The amino acid sequence listed in Table 1, not by any of the gene coding for F-marked.
19 An isolated polypeptide comprising the polypeptide comprises SEQ ID NO :4-1156 either an even The amino acid sequence listed in SEQ ID polypeptide fragments not by the condition that the amino acid sequence in Table 1 Any listed in the gene coding for F-marked, wherein said polypeptide fragment comprising the amino acid sequence to maintain The biological activity of the polypeptide column.
20. To any one of claims 15 to 19 in isolated polypeptide further comprises a heterologous Amino acid sequence.
21 The method of production of fine chemicals, comprising culturing a cell according to claim 9, thereby generating Health fine chemicals.
22 The method of claim 21, wherein said method further comprising the culture from said In the step of recovery of fine chemicals.
23 The method of claim 21, wherein said cell belongs to the genus Corynebacterium or Brevibacterium Genera.
24. The method of claim 21, wherein said cell is selected from the following strains: Corynebacterium glutamicum Bacteria, Corynebacterium Lux, lily Corynebacterium, Corynebacterium acetoacidophilum Corynebacterium, Corynebacterium vinegar Valley, Addicted acetyl Corynebacterium, Corynebacterium ammoniagenes, Corynebacterium fujiokense, Corynebacterium nitrilophilus, Brevibacterium ammoniagenes, Brevibacterium butanicum, differences Brevibacterium, yellow Brevibacterium, the His Brevibacterium ketoglutarate Brevibacterium, Brevibacterium ketosoreductum, Brevibacterium lactofermentum, Brevibacterium, Brevibacterium wax solution and strains listed in Table 3.
25. The method of claim 21, wherein said vector expressing the nucleic acid molecule, resulting in the Cells regulate the production of fine chemicals.
26 The method of claim 21, wherein said fine chemical substance selected from the following materials: Organic acids, non-protein source of amino acids, purine and pyrimidine bases, nucleosides, nucleotides, fatty Quality, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors Son, polyketide compounds and enzymes.
27 The method of claim 21, wherein said fine chemical is an amino acid.
28. The method of claim 27, wherein said amino acid is selected from the following amino acid: lysine Acid, glutamic acid, glutamine, alanine, aspartic acid, glycine, serine, threonine, Methionine, cysteine​​, valine, leucine, isoleucine, arginine, proline, Histidine, tyrosine, phenylalanine, tryptophan.
29 The method of production of fine chemicals, comprising culturing such cells, the cellular genes Genomic DNA was inserted into any one of claims 1-6 in which the nucleic acid molecule changed.
30. Diagnosis of Corynebacterium diphtheria in subjects presence or activity, the method comprising detecting the test By the nucleic acid molecule of claims 1-5 or a polypeptide of claims 15 to 19 in the molecule at least one of The presence of substances, to diagnose subjects Corynebacterium diphtheria presence or activity.
31. Least one selected from SEQ ID NO :3-1155 with an odd sequence number for each listed nucleic acid The sequence of the host cell nucleic acid molecule, wherein the nucleic acid molecules are destroyed.
32 selected from the group comprising SEQ ID NO :3-1155 with an odd sequence number for each listed nucleic acid The sequence of the host cell nucleic acid molecule, wherein the nucleic acid molecule contains one or more of SEQ ID NO :3-1155 sequence of any one of an odd number of the nucleic acid sequence listed as compared to a nucleic acid modification.
33 selected from the group comprising SEQ ID NO :3-1155 with an odd sequence number for each listed nucleic acid The sequence of the host cell nucleic acid molecule, wherein the nucleic acid molecule regulating region of the molecule with respect to the wild Wild-type regulatory regions were modified.
CNA2005100759145A 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding metabolic pathway proteins Pending CN1715413A (en)

Applications Claiming Priority (59)

Application Number Priority Date Filing Date Title
US14103199P 1999-06-25 1999-06-25
US60/141031 1999-06-25
DE19930476.9 1999-07-01
US60/142101 1999-07-02
DE19942088.2 1999-07-03
DE19931428.4 1999-07-08
DE19931510.8 1999-07-08
DE19931434.9 1999-07-08
DE19931632.5 1999-07-08
DE19931541.8 1999-07-08
DE19931435.7 1999-07-08
DE19931478.0 1999-07-08
DE19931415.2 1999-07-08
DE19931634.1 1999-07-08
DE19931457.8 1999-07-08
DE19931592.2 1999-07-08
DE19931420.9 1999-07-08
DE19931419.5 1999-07-08
DE19931443.8 1999-07-08
DE19931418.7 1999-07-08
DE19931636.8 1999-07-08
DE19931573.6 1999-07-08
DE19931453.5 1999-07-08
DE19931465.9 1999-07-08
DE19931424.1 1999-07-08
DE19932125.6 1999-07-09
DE19932130.2 1999-07-09
DE19932228.7 1999-07-09
DE19932230.9 1999-07-09
DE19932126.4 1999-07-09
DE19932229.5 1999-07-09
DE19932227.9 1999-07-09
DE19932186.8 1999-07-09
DE19932206.6 1999-07-09
DE19933006.9 1999-07-14
DE19932922.2 1999-07-14
DE19933005.0 1999-07-14
DE19932926.5 1999-07-14
DE19932928.1 1999-07-14
DE19933004.2 1999-07-14
US60/148613 1999-08-12
DE19940764.9 1999-08-27
DE19940765.7 1999-08-27
DE19940832.7 1999-08-27
DE19940766.5 1999-08-27
DE19941394.0 1999-08-31
DE19941396.7 1999-08-31
DE19941378.9 1999-08-31
DE19941380.0 1999-08-31
DE19941379.7 1999-08-31
DE19942086.6 1999-09-03
DE19942129.3 1999-09-03
DE19942079.3 1999-09-03
DE19942087.4 1999-09-03
DE19942076.9 1999-09-03
DE19942095.5 1999-09-03
DE19942077.7 1999-09-03
DE19942124.2 1999-09-03
US60/187970 2000-03-09

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN00811981A Division CN1371417A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in carbon metabolism

Publications (1)

Publication Number Publication Date
CN1715413A true CN1715413A (en) 2006-01-04

Family

ID=34078496

Family Applications (12)

Application Number Title Priority Date Filing Date
CNA2006101058946A Pending CN1962870A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
CNA2006100024016A Pending CN1807634A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in carbon metabolism and energy production
CNA2005100712558A Pending CN1766111A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
CNA2006101074012A Pending CN1920040A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in carbon metabolism and energy production
CNA2007101033017A Pending CN101078016A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding stress, resistance and tolerance proteins
CNA2007100051605A Pending CN101074441A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
CNA2005100759145A Pending CN1715413A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding metabolic pathway proteins
CNA2007101033036A Pending CN101082050A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
CNA200710005154XA Pending CN101082049A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
CNA2005101164688A Pending CN1800397A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
CNA2007101033021A Pending CN101078017A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding stress, resistance and tolerance proteins
CNA2006101074050A Pending CN1990868A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport

Family Applications Before (6)

Application Number Title Priority Date Filing Date
CNA2006101058946A Pending CN1962870A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
CNA2006100024016A Pending CN1807634A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in carbon metabolism and energy production
CNA2005100712558A Pending CN1766111A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
CNA2006101074012A Pending CN1920040A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in carbon metabolism and energy production
CNA2007101033017A Pending CN101078016A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding stress, resistance and tolerance proteins
CNA2007100051605A Pending CN101074441A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport

Family Applications After (5)

Application Number Title Priority Date Filing Date
CNA2007101033036A Pending CN101082050A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
CNA200710005154XA Pending CN101082049A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
CNA2005101164688A Pending CN1800397A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
CNA2007101033021A Pending CN101078017A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding stress, resistance and tolerance proteins
CNA2006101074050A Pending CN1990868A (en) 1999-06-25 2000-06-23 Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport

Country Status (2)

Country Link
CN (12) CN1962870A (en)
ZA (5) ZA200200584B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683666A (en) * 2021-08-23 2021-11-23 黑龙江伊品生物科技有限公司 Engineering bacterium obtained by YH66-RS07020 gene modification and application thereof in preparation of valine
CN116590202A (en) * 2023-07-12 2023-08-15 欧铭庄生物科技(天津)有限公司滨海新区分公司 Corynebacterium glutamicum and application thereof in fermentation production of L-leucine

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207931A1 (en) * 2017-05-12 2018-11-15 三井化学株式会社 Recombinant microorganism, production method of pyridoxamine, or salt thereof, using recombinant microorganism, and production method of pyridoxal, or salt thereof, using recombinant microorganism
EP3456833A1 (en) * 2017-09-18 2019-03-20 Evonik Degussa GmbH Method for the fermentative production of l-amino acids
EP3467099A1 (en) * 2017-10-05 2019-04-10 Evonik Degussa GmbH Method for the fermentative production of l-amino acids
CN108359669B (en) * 2018-02-13 2020-04-07 江南大学 Corynebacterium promoter and application thereof
BR112021001800A2 (en) * 2018-07-31 2021-05-04 Bayer Aktiengesellschaft Nucleic acids encoding enhanced transaminase proteins
CN109097361B (en) * 2018-08-28 2020-02-14 江南大学 Promoter, vector thereof and application thereof
WO2020194311A1 (en) * 2019-03-28 2020-10-01 Ramot At Tel-Aviv University Ltd. Methods for modifying translation
CN110423829A (en) * 2019-08-15 2019-11-08 广州市疾病预防控制中心(广州市卫生检验中心) A kind of fluorescent PCR kit detecting Bacterium diphtheriae
KR102153534B1 (en) * 2019-09-02 2020-09-09 씨제이제일제당 주식회사 A novel promoter and preparation method of amino acids using thereof
CN111019958A (en) * 2019-12-11 2020-04-17 宁波大学 Over-expression UTP-glucose-1-phosphate-uridine transferase gene and construction method and application of recombinant engineering bacteria thereof
CN111394291B (en) * 2020-03-27 2022-03-15 江南大学 Method for producing L-glutamic acid by fermentation of recombinant corynebacterium glutamicum
CN111635454B (en) * 2020-06-04 2021-12-28 江南大学 Method for screening arginine high-producing strain by using biosensor
CN112266891B (en) * 2020-10-15 2023-10-31 内蒙古伊品生物科技有限公司 Recombinant strain for producing L-amino acid and construction method and application thereof
CN111961635B (en) * 2020-08-07 2023-09-01 内蒙古伊品生物科技有限公司 Recombinant strain for producing L-lysine and construction method and application thereof
CN112725253B (en) * 2020-12-30 2023-01-06 宁夏伊品生物科技股份有限公司 Recombinant strain for modifying gene BBD29_14900 and construction method and application thereof
CN112646767B (en) * 2020-12-30 2022-08-09 宁夏伊品生物科技股份有限公司 Strain with enhanced L-glutamic acid productivity and construction method and application thereof
KR102287111B1 (en) * 2021-01-25 2021-08-06 씨제이제일제당 주식회사 Novel deoxyguanosinetriphosphate triphosphohydrolase variant and a method for producing L-tryptophan using the same
CN113661245B (en) * 2021-01-26 2023-05-05 Cj第一制糖株式会社 Novel urease-helper protein variants and method for producing L-valine using the same
KR102314882B1 (en) * 2021-01-29 2021-10-19 씨제이제일제당 (주) Novel membrane protein TerC variant and a method for producing L-lysine using the same
CN114729340B (en) * 2021-01-29 2023-06-23 Cj第一制糖株式会社 Novel DAHP synthase variants and method for producing L-lysine using the same
CN113846019B (en) * 2021-03-05 2023-08-01 海南师范大学 Marine nannochloropsis targeted epigenomic genetic control method
KR102281369B1 (en) * 2021-04-07 2021-07-22 씨제이제일제당 (주) Novel dihydrolipoamide acetyltransferase variant and a method for producing L-valine using the same
KR102306009B1 (en) * 2021-04-07 2021-09-27 씨제이제일제당 (주) Novel WhiB family transcriptional regulator WhcA variant and a method for producing L-valine using the same
KR102303747B1 (en) * 2021-04-12 2021-09-16 씨제이제일제당 (주) Novel major facilitator superfamily permease variant and a method for producing L-lysine using the same
CN114181288B (en) * 2022-02-17 2022-05-03 北京中科伊品生物科技有限公司 Process for producing L-valine, gene used therefor and protein encoded by the gene
CN114907459B (en) * 2022-03-14 2024-08-06 宁夏伊品生物科技股份有限公司 Engineering bacterium for high-yield arginine and construction method and application thereof
CN114507273B (en) * 2022-03-14 2024-05-07 宁夏伊品生物科技股份有限公司 YH66_07020 protein and application of related biological material thereof in improving arginine yield
CN114941005B (en) * 2022-05-24 2023-08-11 绵阳师范学院 Recombinant expression vector, genetically engineered bacterium for degrading phenol and application of genetically engineered bacterium
CN116004501A (en) * 2023-01-10 2023-04-25 呼伦贝尔东北阜丰生物科技有限公司 NADP-ferredoxin reductase mutant and application thereof in production of glutamic acid
CN117512029B (en) * 2024-01-03 2024-03-29 地奥集团成都药业股份有限公司 Culture medium and method for improving glutamine yield and metabonomic analysis method
CN117946954B (en) * 2024-03-26 2024-06-14 天津科技大学 Leucine production strain, construction method and application thereof
CN118291567B (en) * 2024-05-09 2024-10-08 张家港市华天药业有限公司 Fermentation process for improving yield of glutathione

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683666A (en) * 2021-08-23 2021-11-23 黑龙江伊品生物科技有限公司 Engineering bacterium obtained by YH66-RS07020 gene modification and application thereof in preparation of valine
CN116590202A (en) * 2023-07-12 2023-08-15 欧铭庄生物科技(天津)有限公司滨海新区分公司 Corynebacterium glutamicum and application thereof in fermentation production of L-leucine
CN116590202B (en) * 2023-07-12 2023-09-12 欧铭庄生物科技(天津)有限公司滨海新区分公司 Corynebacterium glutamicum and application thereof in fermentation production of L-leucine

Also Published As

Publication number Publication date
CN1800397A (en) 2006-07-12
ZA200200645B (en) 2004-07-26
CN1766111A (en) 2006-05-03
CN101078016A (en) 2007-11-28
ZA200200646B (en) 2004-10-27
CN1807634A (en) 2006-07-26
CN101078017A (en) 2007-11-28
CN101082049A (en) 2007-12-05
ZA200200585B (en) 2004-10-27
CN101074441A (en) 2007-11-21
CN1962870A (en) 2007-05-16
CN1920040A (en) 2007-02-28
ZA200200584B (en) 2004-10-27
CN1990868A (en) 2007-07-04
ZA200200647B (en) 2004-09-29
CN101082050A (en) 2007-12-05

Similar Documents

Publication Publication Date Title
US7439050B2 (en) Corynebacterium glutamicum genes encoding diaminopimelate epimerase
CN1715413A (en) Corynebacterium glutamicum genes encoding metabolic pathway proteins
US7510854B2 (en) Corynebacterium glutamicum genes encoding metabolic pathway proteins
US20070161091A1 (en) Corynebacterium glutamicum genes encoding proteins involved in genetic stability, gene expression, and protein secretion and folding
EP1261718B1 (en) Corynebacterium glutamicum genes encoding metabolic pathway proteins
US20070111230A1 (en) Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
US20070015252A1 (en) Corynebacterium glutamicum genes encoding regulatory proteins
US20070077576A1 (en) Corynebacterium glutamicum genes encoding stress, resistance and tolerance proteins
US20070015251A1 (en) Corynebacterium glutamicum genes encoding phosphoenolpyruvate: sugar phosphotransferase system proteins
US20060269975A1 (en) Corynebacterium glutamicum genes encoding proteins involved in DNA replication, protein synthesis, and pathogenesis
EP1246922B1 (en) Corynebacterium glutamicum genes encoding phosphoenolpyruvate: sugar phosphotransferase system proteins
CA2592965A1 (en) Corynebacterium glutamicum genes encoding metabolic pathway proteins
CN101054592A (en) Corynebacterium glutamicum gene encoding hpr of phosphoenolpyruvate:sugar phosphotransferase system
US20080096211A1 (en) Corynebacterium glutamicum genes encoding proteins involved in genetic stability, gene expression, and protein secretion and folding
AU783709B2 (en) Corynebacterium glutamicum genes encoding metabolic pathway proteins
CN1451047A (en) Corynebacterium glutamicum genes encoding stress resistance and tolerance proteins
AU2006200807A1 (en) Coryneracterium glutamicum genes encoding metabolic pathway proteins
AU2007202378A1 (en) Coryneracterium glutamicum genes encoding metabolic pathway proteins
AU2007202317A1 (en) Corynebacterium glutamicum genes encoding phosphoenolpyruvate: sugar phosphotransferase system proteins
AU2007203042A1 (en) Corynebacterium glutamicum genese encoding proteins involved in carbon metabolism and energy production
EP1702980A1 (en) Corynebacterium glutamicum gene encoding Hpr of phosphoenolpyruvate:sugar phosphotransferase system
AU2007202394A1 (en) Corynebacterium glutamicum genes encoding stress, resistance and tolerance proteins
CA2585184A1 (en) Corynebacterium glutamicum genes encoding stress, resistance and tolerance proteins
AU2006252111A1 (en) Corynebacterium glutamicum genes encoding metabolic pathway proteins

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication