CN1702949A - 开关电源装置 - Google Patents

开关电源装置 Download PDF

Info

Publication number
CN1702949A
CN1702949A CN 200510074035 CN200510074035A CN1702949A CN 1702949 A CN1702949 A CN 1702949A CN 200510074035 CN200510074035 CN 200510074035 CN 200510074035 A CN200510074035 A CN 200510074035A CN 1702949 A CN1702949 A CN 1702949A
Authority
CN
China
Prior art keywords
voltage
current
circuit
reference voltage
clock signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510074035
Other languages
English (en)
Other versions
CN100466438C (zh
Inventor
森吉弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Craib Innovations Ltd
Original Assignee
松下电器产业株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下电器产业株式会社 filed Critical 松下电器产业株式会社
Publication of CN1702949A publication Critical patent/CN1702949A/zh
Application granted granted Critical
Publication of CN100466438C publication Critical patent/CN100466438C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02B70/16

Abstract

提供一种能以低成本且最少的元器件数量来实现高精度的恒流下垂特性的开关电源装置。在本发明的开关电源装置中,次级占空比限制电路(12)从开关元件(1)不动作的时刻开始,在使变压器(110)的次级绕组(110B)中开始流动的次级电流的导通占空比为一定的规定值的时刻输出时钟信号(set_2)。另外,若负载(132)加重,次级电流的导通占空比达到规定值时,则时钟信号选择电路(13)选择时钟信号(set_2)并输出。其结果,若负载(132)加重,则使直流输出电压VO下降,输出特性为恒流下垂特性。另外这时,若元件电流检测信号VCL的电压达到过电流保护基准电压VLIMIT,则由于漏极电流控制电路(5)输出决定开关元件(1)不动作的不动作信号,因此使次级电流的峰值电流维持在一定值。

Description

开关电源装置
技术领域
本发明涉及作为输出特性具有恒流下垂特性的开关电源装置。
背景技术
过去具有恒流下垂特性的开关电源装置作为例如充电器用的电源装置使用。也就是说,具有恒流下垂特性的开关电源装置能够利用其恒流下垂特性以恒流对电池等进行充电。
过去,为了实现恒流下垂特性是这样构成的,例如在开关电源装置的次级侧设置检测输出电流用的电阻即输出电流检测电阻、控制流过该输出电流检测电阻的电流使其保持恒定用的恒流控制电路、以及将该恒流控制电路的信号向初级侧传递用的光耦合器,当输出电流达到一定值以及以上时,恒流控制电路就工作。
但是,恒流控制电路或光耦合器价格高,另外若使用恒流控制电路或光耦合器,则元器件数量增加。因此,在上述的现有结构中,不能实现开关电源装置的小型化或低成本。另外,在上述现有的结构中,由于在输出电流检测电阻、恒流控制电路、光耦合器中产生功率损耗,因此不能实现节能和高效。
另一方面,还提出了以下方法,即当开关电源装置的次级侧的输出电压降低到为某一个或多个规定的输出电压时,使初级侧的过电流保护检测电平下降,通过这样改善下垂特性,使得在短路等的过载时输出电流不会过大(参照例如特开平6-149396号公报)。
但是,该现有的方法的目的在于,通过使初级侧的过电流保护检测电平随着输出电压的下降而下降,来限制在短路等过载时的输出电流的峰值,对开关电源装置进行安全保护,以防止短路等的极度的过载。因此,在该现有的方法中,不能控制输出电压下垂时的输出电流来实现恒流下垂特性。因而,用该现有的方法来改善下垂特性的开关电源装置不能作为充电器来使用。另外,在以初级侧的过电流保护检测电平来限制输出电流的峰值并使输出电压下垂的情况下,由于下垂特性受到振荡频率误差、变压器的电感误差的影响,因此整个下垂特性产生非常大的误差,使实现恒流下垂特性非常困难。
另一方面过去就提出过以下方法,即过载时流过开关元件的电流达到初级侧的过电流保护检测电平之后,使振荡频率下降,通过这样力图实现恒流下垂特性(参照例如特开2002-300777号公报)。
但是,用该现有的方法也同样,由于下垂特性受到振荡频率误差、变压器的电感误差的影响,因此整个下垂特性产生非常大的误差,使实现恒流下垂特性非常困难。
发明内容
本发明是鉴于上述问题而提出来的,其目的在于提供一种开关电源装置,该开关电源装置能不用恒流控制电路、光耦合器、以及输出电流检测电阻,进而,该下垂特性不受振荡频率误差、变压器的电感误差的影响,能以低成本且最少的元器件数量来实现高精度的恒流下垂特性。
为了达到上述目的,本发明的开关电源装置是这样控制开关元件的开关动作,使得从开关元件不动作(turn off)的时刻起在次级绕组开始流过的次级电流的导通占空比达到规定值的情况下,使次级电流的导通占空比维持在该规定值,同时使次级电流的峰值电流值维持在一定值。
本发明的开关电源装置具有以下特点,包括具有初级绕组、次级绕组、以及辅助绕组的变压器;利用开关动作对输入上述初级绕组的直流输入电压进行开关控制的开关元件;对利用上述开关元件的开关动作而在上述次级绕组产生的次级交流电压进行整流且滤波、以生成直流输出电压的输出电压生成部;对利用上述开关元件的开关动作而在上述辅助绕组产生的辅助交流电压进行整流且滤波、以生成与上述直流输出电压成正比的辅助电源电压的辅助电源部;以及控制上述开关元件的开关动作的控制电路,上述控制电路这样控制上述开关元件的开关动作,使得在上述开关元件不动作之后在上述次级绕组开始流过的次级电流的导通占空比达到规定值的情况下,使上述次级电流的导通占空比维持在该规定值,同时使上述次级电流的峰值电流值维持在一定值。
另外,本发明的开关电源装置具有以下特点,上述控制电路包括:内部电路用电源;将由上述直流输入电压产生的电流和由上述辅助电压产生的电流中的一个电流向上述内部电路用电源供给、并使上述内部电路用电源的电压为一定值的调节器;根据上述辅助电源电压与稳定用基准电压之差生成误差电压信号的误差放大器;检测流过上述开关元件的电流并输出成为与其电流值对应的电压的元件电流检测信号的元件电流检测电路;输出决定上述开关元件动作(turn on)的第1时钟信号的振荡器;当上述元件电流检测信号的电压达到上述误差电压信号的电压和过电流保护基准电压中较低的电压时、输出决定上述开关元件不动作的信号的元件电流控制电路;当上述误差电压信号的电压超过上述过电流保护基准电压时、根据其差值来缩短上述第1时钟信号的周期的振荡频率调整电路;根据上述辅助交流电压来检测上述次级电流结束流动的时刻的次级电流截止检测电路;检测从上述开关元件不动作的时刻到上述次级电流结束流动时刻为止的期间、并输出决定上述开关元件的动作的第2时钟信号使得上述次级电流的导通占空比为上述规定值的次级占空比限制电路;输入上述第1时钟信号和上述第2时钟信号、并当上述次级电流的导通占空比没有达到上述规定值时输出上述第1时钟信号、而当达到上述规定值时输出上述第2时钟信号的时钟信号选择电路;以及开关控制电路,上述开关控制电路内含若从上述时钟信号选择电路输入上述第1或第2时钟信号则处于置位状态、若从上述元件电流控制电路输入决定上述开关元件的不动作的信号则处于复位状态的触发器,根据上述触发器的状态来控制上述开关元件的开关动作,当上述次级电流的导通占空比达到上述规定值时,上述时钟信号选择电路就选择上述第2时钟信号,以使上述次级电流的导通占空比维持在上述规定值,同时当上述元件电流检测信号的电压达到上述过电流保护基准电压时,上述元件电流控制电路就输出决定上述开关元件不动作的信号,使上述次级电流的峰值电流值维持在一定值。
另外,本发明的开关电源装置具有以下特点,上述时钟信号选择电路输入来自上述振荡器的上述第1时钟信号和来自上述次级占空比限制电路的上述第2时钟信号,输出上述两种时钟信号中的周期较长的时钟信号。
另外,本发明的开关电源装置具有以下特点,上述次级占空比限制电路输出上述第2时钟信号,使得上述次级电流的导通占空比为50%左右。
另外,本发明的开关电源装置具有以下特点,上述调节器在上述开关元件的开关动作开始之前,向上述内部电路用电源供给由上述第1直流电压产生的电流,同时也向上述辅助电源部供给,在上述开关元件的开关动作开始之后,停止向上述辅助电源部供给电流,若上述辅助电源电压下降至一定值之下,则向上述内部电路用电源供给由上述第1直流电压产生的电流,若上述辅助电源电压为一定值以及以上,则向上述内部电路用电源供给由上述辅助电源电压产生的电流。
本发明的开关电源装置具有以下特点,上述控制电路包括由以下单元构成的轻载间歇振荡控制电路,其中有轻载用基准电压源,上述轻载用基准电压源设定第1基准电压和比上述第1基准电压高的高电位的第2基准电压,若上述误差电压信号的电压下降并达到上述第1基准电压时,则其输出电压从上述第1基准电压向上述第2基准电压转换,若上述误差电压信号的电压上升并达到上述第2基准电压时,则其输出电压从上述第2基准电压向上述第1基准电压转换;将上述误差电压信号的电压与上述轻载用基准电压源的输出电压进行比较的轻载用比较器;以及时钟信号控制电路,上述时钟信号控制电路接受上述轻载用比较器得到的比较结果,若上述误差电压信号的电压降低并达到上述第1基准电压时,则使从上述时钟信号选择电路向上述触发器的上述第1或第2时钟信号的输出停止,若上述误差电压信号的电压上升并达到上述第2基准电压时,则使从上述时钟信号选择电路向上述触发器的上述第1或第2时钟信号的输出再开始。
另外,本发明的开关电源装置具有以下特点,上述第1基准电压是上述过电流保护基准电压的15%左右,上述第2基准电压是上述过电流保护基准电压的20%左右。
另外,本发明的开关电源装置具有以下特点,上述控制电路包括若上述辅助电源电压小于设定值、则根据其差值来降低上述过电流保护基准电压的过电流保护基准电压调整电路。
另外,本发明的开关电源装置具有以下特点,上述过电流保护基准电压调整电路设定的设定值设定在上述稳定用基准电压的30%左右。
另外,本发明的开关电源装置具有以下特点,上述过电流保护基准电压调整电路这样调整上述过电流保护基准电压,使得其最小值为20%左右。
另外,本发明的开关电源装置具有以下特点,上述开关元件和上述控制电路在同一半导体基板上形成,作为具有在上述直流输入电压与上述开关元件之间的两个连接端、上述控制电路与上述辅助电源电压之间的连接端、以及上述次级电流截止检测电路的输入端的半导体装置而构成。
根据本发明,能够不用次级侧的恒流控制电路、输出电流检测电阻、以及光耦合器,能够以低成本、最少元器件数量而且最小功耗来实现高精度的恒流下垂特性。因此,能以很少的元器件数量构成高精度的充电器用开关电源,能够实现充电器用开关电源的低成本、小型化、节能化。
另外,在恒流区域中,由于通过使流过开关元件的电流的峰值电流值为一定,能使次级电流的峰值电流值为一定,控制次级电流的导通占空比为一定,因此能形成恒定的输出电流,能实现恒流下垂特性。进而,由于输出电流的恒流值不受振荡频率或变压器的电感的误差的影响,整个特性的误差非常小,能实现高精度的恒流下垂特性。
另外,轻载时,由于形成流过开关元件的电流的峰值电流值减小的间歇振荡,因此能够抑制轻载时的输出电压上升,降低功耗,也能实现待机时的节能化。
另外,过载时,由于流过开关元件的电流的峰值电流值随着输出电压的下降而下降,控制次级电流的导通占空比为一定,因此能够实现输出电压越低、输出电流也越小的フ字形保护功能,能够构成安全性高的电源装置。
另外,关于开关元件和控制电路,由于能设置在同一半导体内,因此容易实现单片化。因而,通过将主要的电路元器件设置在单一半导体内,能够减少构成电路用的元器件数量,能够容易地实现小型化和轻量化,进而降低成本。
附图说明
图1是表示本发明实施方式的开关电源装置一构成例的方框图。
图2是表示本实施方式的开关电源装置中的开关电源装置控制用半导体装置的一构成例的方框图。
图3是表示本实施方式的开关电源装置中的次级电流截止检测电路和次级占空比限制电路的一构成例的方框图。
图4是表示本实施方式的开关电源装置中的时钟信号选择电路的一构成例的方框图。
图5是表示本实施方式的开关电源装置中的振荡器和振荡频率调整电路的一构成例的方框图。
图6是表示本实施方式的开关电源装置中的过电流保护基准电压调整电路的一构成例的方框图。
图7是本实施方式的开关电源装置中的输出电压-输出电流特性的一例的示意图。
图8是表示本实施方式的开关电源装置中的轻载时的动作时序图。
图9是表示本实施方式的开关电源装置中的恒压区域1的动作时序图。
图10是表示本实施方式的开关电源装置中的恒压区域2的动作时序图。
图11是表示本实施方式的开关电源装置中的恒压区域2和恒流区域的边界区域的动作时序图。
图12是表示本实施方式的开关电源装置中的恒流区域的动作时序图。
图13是表示本实施方式的开关电源装置中的フ字形保护区域(过载时)的动作时序图。
具体实施方式
以下,参照附图来具体说明本发明实施方式的开关电源装置。
图1表示本实施方式的开关电源装置一构成例的方框图。
图1中,开关电源装置控制用半导体装置100由开关元件1和控制开关元件1的开关动作的控制电路构成。
另外,半导体装置100的外部输入端有四端,其中包括开关元件1的输入端(DRAIN端)、辅助电源电压输入端(VCC端)、次级电流截止时刻检测端(TR端)、以及开关元件1的输出端即控制电路的GND端(SOURCE端)。
变压器110具有初级绕组110A、次级绕组110B、以及辅助绕组110C。初级绕组110A和次级绕组110B的极性相反,该开关电源装置为反激型。
辅助绕组110C与由二极管120和电容器121构成的整流滤波电路相连。该整流滤波电路用作为半导体装置100的辅助电源部。也就是说,辅助电源部对通过开关元件1的开关动作而在辅助绕组110C产生的交流电压(辅助侧交流电压)进行整流并滤波,生成辅助电源电压VCC,加在VCC端上。辅助绕组110C与次级绕组110B的极性相同,辅助电源电压VCC与直流输出电压V0成正比。
另外,辅助绕组110C经二极管122与电阻123、124相连,该电阻123、124的连接点与TR端相连。
如后所述,TR端上施加的电压(以下称为TR端电压VTR)用于检测通过开关元件1的开关动作而流过次级绕组110B的次级电流结束流动的时刻(以下称为截止时刻)。
次级绕组110B与由二极管130和电容器131构成的整流滤波电路相连。该整流滤波电路用作为该开关电源装置的输出电压生成部。也就是说,输出电压生成部对通过开关元件1的开关动作而在次级绕组110B产生的交流电压(次级侧交流电压)进行整流并滤波,生成直流输出电压VO,加在负载132上。
图2是表示构成本实施方式的开关电源装置的开关电源装置控制用半导体装置100的一构成例的方框图。
图2中,调节器2从DRAIN端或VCC端中的某一端向半导体装置100的内部电路用电源VDD供电,使内部电路用电源VDD的电压稳定在一定值。
即,调节器2在开关元件1的开关动作开始之前,从DRAIN端向内部电路用电源VDD供电,同时从DRAIN端经VCC端向辅助电源部的电容器121供电,使内部电路用电源VDD和辅助电源电压VCC的电压上升。然后,调节器2当内部电路用电源VDD的电压达到一定值时,将向NAND电路20的输出信号从低电平转换到高电平,开始开关元件1的开关动作。
当开关元件1的开关动作开始之后,调节器2停止从DRAIN端向VCC端供电。另外,开关动作开始后的向内部电路用电源VDD的电流供给端根据辅助电源电压VCC的值来决定。
也就是说,若通过开关元件1的开关动作使辅助电源电压VCC达到一定值及其以上时,则调节器2从VCC端向内部电路用电源VDD供电。根据该结构来减少半导体装置100的功耗。
另一方面,若在恒流区域的直流输出电压V0下降时等辅助电源电压VCC下降至一定值以下时,调节器2从DRAIN端向内部电路用电源VCC供电。
通过这样动作,调节器2使内部电路用电源VDD稳定在一定值。
误差放大器3将稳定用基准电压与辅助电源电压VCC进行比较,根据其差值来生成误差电压信号VEAO。
漏极电流检测电路(元件电流检测电路)4检测流过开关元件1的电流(漏极电流)ID,并将成为与其电流值对应的电压的元件电流检测信号VCL向漏极电流控制电路(元件电流控制电路)5输出。
对漏极电流控制电路5输入作为基准电压的过电流保护基准电压VMILIT和从误差放大器3输出的误差电压信号VEAO。若元件电流检测信号VCL的电压达到过电流保护基准电压VLINIT和误差电压信号VEAO的电压中较低的电压时,漏极电流控制电路5向AND电路18输出决定开关元件1关闭的信号(这里为高电平信号)。
振荡器6向时钟信号选择电路13输出决定开关元件1动作的时钟信号set_1(第1时钟信号)。该时钟信号set_1的频率决定轻载时恒流区域的开关元件1的振荡频率。
若从误差放大器3输出的误差电压信号VEAO的电压超过过电流保护基准电压VLIMIT,则振荡频率调整电路7根据其差值来提高时钟信号set_1的频率(缩短周期)。也就是说,振荡频率调整电路7只在误差电压信号VEAO的电压比过电流保护基准电压VLIMIT高的情况下,向振荡器6输出成为与该电压差对应的电流值的信号,使得随着该电压差的加大来提高时钟信号set_1的频率。根据该结构,即使负载132加重,也能使直流输出电压V0稳定在一定值。
由比较器9、基准电压源10、以及AND电路14构成的轻载间歇振荡控制电路8根据从误差放大器3输出的误差电压信号VEAO的电压,停止/再开始从时钟信号选择电路13输出的时钟信号向触发器15的置位端的输入,使开关元件1的开关动作停止/再开始,使开关元件1间歇振荡。
比较器(轻载用比较器)9将从误差放大器3输出的误差电压信号VEAO的电压与从基准电压源10输出的电压VR进行比较,向基准电压源10和AND电路14输出表示该比较结果的输出信号。
在基准电压源(轻载用基准电压源)10设定基准电压VR1(第1基准电压)和比该基准电压VR1高的高电位的基准电压VR2(第2基准电压),基准电压源10根据比较器9的输出信号,向比较器9的反相输入端提供基准电压VR1和基准电压VR2的其中之一的电压。
也就是说,当误差电压信号VEAO的电压降低并达到基准电压VR1,比较器9的输出信号从高电平向低电平翻转时,基准电压源10将向比较器9的反相输入端提供的电压从基准电压VR1向基准电压VR2转换,当误差电压信号VEAO的电压上升并达到基准电压VR2,比较器9的输出信号从低电平向高电平翻转时,基准电压源10将向比较器9的反相输入端提供的电压从基准电压VR2向基准电压VR1转换。
如上构成的轻载间歇振荡控制电路8对误差电压信号VEAO的电压与从基准电压源10输出的基准电压VR1进行比较,若误差电压信号VEAO的电压下降并达到基准电压VR1时,则向AND电路14输出低电平的信号,停止时钟信号向触发器15的置位端输入,通过这样使开关元件1的开关动作停止。另外,轻载间歇振荡控制电路8对误差电压信号VEAO的电压与从基准电压源10输出的基准电压VR2进行比较,若误差电压信号VEAO的电压上升并达到基准电压VR2时,则向AND电路14输出高电平的信号,使时钟信号再开始向触发器15的置位端输入,通过这样使开关元件1的开关动作再开始。
与TR端相连的次级电流截止检测电路11根据TR端电压VTR(辅助侧交流电压)来检测次级电流的截止时刻,在开关元件1断开之后到检测出次级电流截止时刻为止的期间(即次级电流流动期间)中向振荡器6和次级占空比限制电路12输出成为高电平的输出信号D2_on。
在反激型的开关电源装置中,在开关元件1的导通期间,变压器110的初级绕组110A中流过电流,在变压器110中存储能量,在开关元件1的截止期间,放出存储的能量,变压器110的次级绕组110B中流过次级电流。然后,当次级电流变为零时,因变压器110的电感和开关元件1的寄生电容而产生谐振现象。该谐振现象出现在变压器110的各个绕组。次级电流截止检测电路11通过检测开关元件1不动作之后辅助绕组110C的电压波形出现的下降沿,来检测次级电流的截止时刻。
将次级电流截止检测电路11的输出信号D2_on作为输入的次级占空比限制电路12检测从开关元件1不动作的时刻到次级电流的截止时刻为止的期间,并在次级电流的导通占空比为一定的规定值的时刻,向时钟信号选择电路13输出决定开关元件1动作的信号set_2。
也就是说,次级占空比限制电路12的输出信号set_2成为决定开关元件1动作的时钟信号(第2时钟信号),使得次级电流的导通占空比维持在规定值,其频率随着流过载132的电流增加、次级电流的导通期间(流过次级电流的期间)延长而下降。该时钟信号set_2的频率决定恒流区域和フ字形保护区域的开关元件1的振荡频率。还有,次级电流的导通占空比的规定值例如为50%左右(最好为50%)。
将振荡器6的输出信号set_1和次级占空比限制电路12的输出信号set_2作为输入的时钟信号选择电路13向AND电路14输出频率较低的信号。
也就是说,当负载较轻、第1时钟信号set_1的频率比第2时钟信号set_2的频率低时(或以下时),时钟信号选择电路13输出第1时钟信号set_1。另一方面,当负载加重、利用振荡频率调整电路7使第1时钟信号set_1的频率为第2时钟信号set_2的频率及其以上(或高于)时,时钟信号选择电路13输出第2时钟信号set_2。
因此,当次级电流的导通占空比小于规定值时,时钟信号选择电路13向AND电路14输出第1时钟信号set_1。另一方面,若负载加重、次级电流的导通占空比达到规定值时,时钟信号选择电路13向AND电路14输出第2时钟信号set_2,使次级电流的导通占空比维持在规定值。
AND电路14将来自从时钟信号选择电路13的输出信号(时钟信号)和轻载间歇振荡控制电路8内的比较器9的输出信号作为输入,将输出信号向触发器15的置位端输出(置位信号set)。
这里,时钟信号控制电路由时钟信号选择电路13和AND电路14构成。
也就是说,时钟信号控制电路当次级电流的导通占空比小于规定值时,输出来自振荡器6的时钟信号set_1,若次级电流的导通占空比达到规定值时,则输出来自次级占空比限制电路12的时钟信号set_2。
另外,时钟信号控制电路接受轻载间歇振荡控制电路8内的比较器9得到的比较结果,若误差电压信号VEAO的电压下降并达到基准电压VR1时,则停止向触发器15的第1或第2时钟信号set_1、set_2的输出,若误差电压信号VEAO的电压上升并达到基准电压VR2时,则再开始向触发器15输出第1或第2时钟信号set_1、set_2。
这样,当轻载时,时钟信号控制电路根据比较器9的输出信号,停止/再开始开关元件1的开关动作,使开关元件1进行间歇振荡动作。
触发器15若经AND电路14向其置位端输入时钟信号set_1或时钟信号set_2,则在其上升沿时刻处于置位状态。另一方面,触发器15若经AND电路18向其复位端输入来自漏极电流控制电路5的决定开关元件1不动作的信号时,则处于复位状态。触发器15将与置位/复位状态相对应的输入信号向NAND电路20输出。
这里,开关控制电路由触发器15、NAND电路20、以及栅极驱动器21来构成。开关控制电路根据触发器15的置位/复位状态来控制开关元件1的开关动作(反复导通/截止动作)。
若辅助电源电压VCC低于设定值,则过电流保护基准电压调整电路16随着其下降,使过电流保护基准电压VLIMIT也下降。根据该结构,在负载短路时等的过载时,流过开关元件1的漏极电流ID的峰值电流值随着直流输出电压VO的下降而下降,次级电流的导通占空比为一定的规定值。
因而,根据该开关电源装置,在负载短路时等的过载时,直流输出电压VO越下降,能将输出电流IO抑制得越小,能实现安全性高的フ字形保护。
在使开关元件1动作的动作脉冲信号从栅极驱动器21输出之后的设定时间的期间内,导通时的关闭脉冲发生电路17向AND电路18输出低电平信号。
因而,根据该开关电源装置,能够防止因动作时的峰值电流而产生的误检测动作。
AND电路18将漏极电流控制电路5的输出信号和导通时的关闭脉冲发生电路17的输出信号作为输入,将输出信号向触发器15的复位端输出。
当半导体装置100的温度达到设定温度及其以上时,过热保护电路19向NAND电路20输出低电平信号,以停止开关元件1的开关动作。
NAND电路20将调节器2的输出信号、触发器15的输出信号、过热保护电路19的输出信号作为输入,将输出信号向栅极驱动器21输出。
将NAND电路20的输出信号作为输入的栅极驱动器21向开关元件1的控制端(栅极端)输出控制开关元件1的开关动作的动作脉冲信号。开关元件1按照来自栅极驱动器21的动作脉冲信号,进行反复导通/截止动作的开关动作。
开关元件1通过进行开关动作,对输入变压器110的初级绕组110A的直流输入电压VIN进行开关控制,并在次级绕组110B产生次级侧交流电压,同时在辅助绕组110C产生辅助侧交流电压。
如上所述,控制电路这样控制开关元件1的开关动作,它使流过开关元件1的漏极电流ID的峰值电流值为根据过电流保护基准电压VLIMIT决定的电流值的一定值,若开关元件1动作之后在变压器110的次级绕组110B中开始流过的次级电流的导通占空比达到规定值时,次级电流的导通占空比维持在该规定值。根据该控制电路,能够不用次级侧的恒流控制电路、输出电流检测电阻、以及光耦合器,能以低成本、最少的元器件数量且最小功率损耗来实现高精度的恒流下垂特性。
因而,根据该开关电源装置,能以较少的元器件数量构成高精度的充电器用开关电源,能实现充电器用开关电源的低成本、小型化、以及节能化。
另外,通过将开关元件1和其控制电路形成在同一半导体基板上来构成半导体装置100,能够减少构成电路用的元器件数量,能够很容易实现小型化和轻量化,进而降低成本。
图3是表示构成本实施方式的开关电源装置的开关电源装置控制用半导体装置100的一部分的次级电流截止检测电路11和次级占空比限制电路12的一构成例的方框图。
次级电流截止检测电路11由比较器22、单脉冲信号发生电路23和24、以及触发器25构成,各个元件如图3所示进行连接。
将栅极驱动器21的输出信号作为输入的单脉冲信号发生电路24在栅极驱动器21的输出信号即动作脉冲信号的下降沿(开关元件1不动作的时刻)产生单脉冲信号,向触发器25的置位端输入。
比较器22将TR端电压VTR与基准电压进行比较,检测TR端电压VTR的下降沿,即开关元件1不动作之后的辅助绕组110C的电压波形出现的下降沿,将输出信号向单脉冲信号发生电路23输出。这样,次级电流截止检测电路11检测次级电流的截止时刻。
将比较器22的输出信号作为输入的单脉冲信号发生电路23,在TR端电压VTR低于基准电压的时刻(次级电流的截止时刻),产生单脉冲信号,向触发器25的复位端输入。因此,在开关元件1不动作之后的TR端电压VTR的最初的下降沿时刻(次级电流的截止时刻),将触发器25的输出信号和反相输出信号翻转。
根据如上结构,在开关元件1不动作到次级电流结束流动期间,即流过次级电流期间(次级电流的导通期间),触发器25的输出信号为高电平,反相输出信号为低电平。然后,在次级电流的截止时刻中,触发器25的输出信号和反相输出信号翻转,在向开关元件1输入下一动作脉冲信号,在开关元件1变为不动作为止的期间(不流过次级电流期间),输出信号变为低电平,反相输出信号变为高电平。
次级占空比限制电路12由反相电路26、AND电路27、36、恒流源28、开关29、30、31、N沟道MOSFET32、33、电容器34、比较器35、以及单脉冲信号发生电路37构成,各个元件如图3所示进行连接。
开关29、30利用次级电流截止检测电路11内的触发器25的输出信号和反相输出信号进行导通和截止。然后,通过该开关29、30的动作进行电容器34的充放电。
也就是说,在开关元件1不动作之后到次级电流结束流动的期间(流过次级电流期间),由于触发器25的输出信号为高电平,反相输出信号为低电平,因此开关29导通,开关30截止,利用恒流源28的恒流I2对电容器34进行充电,使电容器34的电压VC2上升。另一方面,在次级电流结束流动之后到下一个动作脉冲信号输入、开关元件1变为不动作的期间(次级电流不流过期间),由于开关29截止,开关30导通,因此电容器34放电。这时的放电电流由恒流源28的恒流I2和由N沟道MOSFET32、33构成的电流镜电路来决定。
另外,将栅极驱动器21的输出信号作为输入的反相电路26在开关元件1的截止期间输出高电平信号。
将触发器25的反相输出信号和反相电路26的输出信号作为输入的AND电路27在次级电流不流过期间且开关元件的截止期间,使开关31导通,并对N沟道MOSFET32的漏极端施加基准电压(VA-α)。
因而,在开关29截止、开关30导通、以及开关31导通期间,即次级电流不流过期间且开关元件1截止期间,电容器34的电压VC2保持在基准电压(VA-α)。也就是说,在电容器34的放电期间,形成该电压VC2保持在一定值(VA-α)的期间。根据这样结构,开关元件1的动作时的电容器34的放电开始电压得以固定。
比较器35将电容器34的电压VC2与基准电压VA进行比较,向AND电路36输出信号(比较结果)。当电容器34的电压VC2低于基准电压VA时,比较器35的输出为高电平信号,当电容器34的电压VC2高于基准电压VA时,比较器35的输出为低电平信号。
AND电路36将触发器25的反相输出信号和比较器35的输出信号作为输入,将输出信号向单脉冲信号发生电路37输出。
单脉冲信号发生电路37在AND电路36的输出信号从低电平向高电平翻转的时刻,即次级电流不流过期间中电容器34的电压VC2下降至基准电压VA以下的时刻,向时钟信号选择电路13输出单脉冲信号(时钟信号)set_2。
根据如上结构,当开关元件1动作时以基准电压(VA-α)固定的电容器34与开关元件1的动作同时开始放电。而且,电容器34在开关元件1不动作的时刻从放电转换到充电,在流过次级电流期间充电,在次级电流的截止时刻再次从充电转换到放电。然后,当电容器34的电压VC2再次下降至基准电压VA以下时,单脉冲信号发生电路37输出单脉冲信号(时钟信号)set_2。
因而,输出单脉冲信号set_2,使得在次级电流的导通占空比为规定值的时刻开关元件1动作。
这样,次级占空比限制电路12向时钟信号选择电路13输出使次级电流的导通占空比为规定值的时钟信号set_2。
图4是表示构成本实施方式的开关电源装置的开关电源装置控制用半导体装置100的一部分的时钟信号选择电路13的一构成例的方框图。
时钟选择电路13由单脉冲信号发生电路38、39、44、0R电路40、触发器41、42、以及AND电路43构成,各个元件如图4所示进行连接。
将栅极驱动器21的输出信号作为输入的单脉冲信号发生电路38,在栅极驱动器21的输出信号即动作脉冲信号的下降沿(开关元件1不动作的时刻)产生单脉冲信号,向OR电路40输入。
另外,将轻载间歇振荡控制电路8内的比较器9的输出信号作为输入的单脉冲信号发生电路39,在比较器9的输出信号的上升沿,即轻载间歇振荡期间的开关元件1的开关动作再开始的时刻,产生单脉冲信号,向OR电路40输入。
OR电路40将输出信号向触发器41、42的复位端输入。即,OR电路40在开关元件1不动作的时刻,或轻载间歇振荡期间的开关元件1的开关动作再开始的时刻,向触发器41、42的复位端输入高电平。
关于触发器41,是向其置位端输入振荡器6的输出信号(时钟信号set_1),向其复位端输入OR电路40的输出信号,将输出信号向AND电路43输出。
关于触发器42,是向其置位端输入次级占空比限制电路12的输出信号(时钟信号set_2),向其复位端输入OR电路40的输出信号,将输出信号向AND电路43输出。
AND电路43将触发器41、42的输出信号作为输入,将输出信号向单脉冲信号发生电路44输出。
单脉冲信号发生电路44在AND电路43的输出信号从低电平向高电平翻转的时刻向AND电路14输出单脉冲信号set。也就是说,单脉冲信号发生电路44在时钟信号set_1和时钟信号set_2这两个时钟信号都上升之后才输出单脉冲信号set。
根据如上结构,时钟信号选择电路13向AND电路14输出振荡器6的输出信号set_1和次级占空比限制电路12的输出信号set_2中频率低的信号。
因而,当次级电流的导通占空比小于规定值时,时钟信号选择电路13将第1时钟信号set_1向AND电路14输出。另一方面,若次级电流的导通占空比达到规定值时,时钟信号选择电路13向AND电路14输出第2时钟信号set_2,并使次级电流的导通占空比维持在该规定值。
图5是表示构成本实施方式的开关电源装置的开关电源装置控制用半导体装置100的一部分的振荡器6和振荡频率调整电路7的一构成例的方框图。
振荡器6由比较器45、基准电压源46、电容器47、单脉冲信号发生电路48、反相电路49、AND电路50、恒流源51、开关52、53、54、以及N沟道MOSFET55、56构成,各个元件如图5所示进行连接。
比较器45将电容器47的电压VC1与基准电压源46的基准电压进行比较,若电容器47的电压VC1低于基准电压,则输出低电平,若电容器47的电压VC1高于基准电压,则输出高电平。
在基准电压源46设定根据比较器45的输出信号转换的两个不同的基准电压V1、V2,基准电压V2比基准电压V1要高。关于基准电压源46的基准电压,当比较器45的输出信号从高电平向低电平翻转时,从基准电压V1转换到基准电压V2,当从低电平向高电平翻转时,从基准电压V2转换到基准电压V1。
若电容器47的电压VC1低于基准电压V1,则比较器45的输出信号从高电平向低电平翻转,开关52导通,开关53截止,恒流源51的恒流I1对电容器47进行充电,使电容器47的电压VC1上升。然后,若电容器47的电压VC1高于基准电压V2,则比较器45的输出信号从低电平向高电平翻转,开关52截止,开关53导通,电容器47放电。这时的放电电流由恒流源51的恒流I1和N沟道MOSFET55、56构成的电流镜电路决定。
这样,开关52、53利用比较器45的输出信号进行导通、截止,并对电容器47进行充放电,电容器47的电压VC1成为在两个基准电压V1、V2之间振荡的波形。
另外,AND电路50将次级电流截止检测电路11内的触发器25的输出信号D2_on和比较器45的输出信号作为输入,在输出信号D2_on为高电平期间即在流过次级电流期间,开关54导通,对N沟道MOSFET55的漏极端施加基准电压VB。
因而,若电容器47的电压VC1在放电期间下降至基准电压VB,则次级电流结束流动之前保持在基准电压VB。
单脉冲信号发生电路48在比较器45的输出信号从高电平向低电平翻转的时刻,也就是说在电容器47从放电期间向充电期间转换的时刻,输出单脉冲信号(时钟信号)set_1。
如上所述,电容器47的电压VC1在流过次级电流期间,不会低于基准电压VB。也就是说只要次级电流不结束流动,就不会输出单脉冲信号set_1。即,该开关电源装置一定是以不连续模式动作的。
根据如上结构,振荡器6向时钟信号选择电路13输出决定开关元件1的振荡频率的时钟信号set_1。
振荡频率调整电路7由NPN晶体管57、58、电阻59、60、P沟道MOSFET61、62、63、64、67、68、以及N沟道MOSFET65、66构成,各个元件如图5所示进行连接。
向NPN晶体管57的基极端输入误差电压信号VEAO。因此,流过N沟道MOSFET66的电流成为与误差电压信号VEAO的电压成正比的电流。还有,由P沟道MOSFET61、62构成电流镜电路,由N沟道MOSFET65、66构成电流镜电路。
另一方面,向NPN晶体管58的基极端输入过电流保护基准电压VLIMIT。因此,流过P沟道MOSFET64的电流成为与过电流保护基准电压VLIMIT成正比的电流。还有,由P沟道MOSFET63、64构成电流镜电路。
当流过N沟道MOSFET66的电流小于流过P沟道MOSFET64的电流时,由P沟道MOSFET67、68构成的电流镜电路中没有电流流过。另一方面,当流过N沟道MOSFET66的电流大于流过P沟道MOSFET64的电流时,流过N沟道MOSFET66的电流与流过P沟道MOSFET64的电流之差的电流流过由P沟道MOSFET67、68构成的电流镜电路。然后,将流过P沟道MOSFET68与恒流源51的恒流I1相加,使电容器47的充放电周期缩短。
因而,若误差电压信号VEAO的电压高于过电流保护基准电压VLIMIT,则从振荡器6输出的时钟信号set_1的频率也提高,其差越大,频率越高。
根据如上结构,振荡频率调整电路7只在误差电压信号VEAO的电压高于过电流保护基准电压VLIMIT时,向振荡器6输出成为与该电压差对应的电流值的信号,若误差电压信号VEAO的电压高于过电流保护基准电压VLIMIT,则从振荡器6输出的时钟信号set_1的频率随着其差值的加大而上升。
图6是表示构成本实施方式的开关电源装置的开关电源装置控制用半导体装置100的一部分的过电流保护基准电压调整电路16的一构成例的方框图。
过电流保护基准电压调整电路16由电阻69、70、73、86、比较器71、NPN晶体管72、P沟道MOSFET74、75、84、85、N沟道MOSFET76、77、79、80、82、83、恒流源78、81、以及开关87构成。各个元件如图6所示进行连接。
比较器71将由电阻69和电阻70分压的辅助电源电压VCC与基准电压进行比较,若辅助电源电压VCC低于设定值,则输出高电平,使开关87导通。
另外,由电阻69和电阻70分压的辅助电源电压VCC通过NPN晶体管72和电阻73变换为与辅助电源电压VCC成正比的电流I6。
该电流I6流过由P沟道MOSFET74、75构成的电流镜电路和由N沟道MOSFET76、77构成的电流镜电路。
当辅助电源电压VCC低于设定值时,由于开关87导通,因此恒流源78设定的恒流I4流过开关87,恒流I4与电流I6之差的电流流过由N沟道MOSFET79、80构成的电流镜电路。进而,对恒流源81设定的恒流I5减去恒流I4与电流I6之差的电流而得到的电流I7流过由N沟道MOSFET82、83构成的电流镜电路和由P沟道MOSFET84、85构成的电流镜电路。
然后,由电流I7和电阻86的电阻值R1得到的电压作为过电流保护基准电压VLIMIT输出。即过电流保护基准电压VLIMIT如下式所示。
VLIMIT=R1×I7=R1×(I5-(I4-I6))
由于电流I6是与辅助电源电压VCC成正比的电流,因此过电流保护基准电压VLIMIT成为与辅助电源电压VCC成正比的电压。
只是,当由电阻69、70分压的辅助电源电压VCC高于比较器71的基准电压时,由于开关87截止,因此流过电阻86的电流与恒流源81设定的恒流I5相等。
因而,当辅助电源电压VCC为设定值及其以上时,过电流保护基准电压VLIMIT为恒定,若辅助电源电压VCC低于设定值,则过电流保护基准电压VLIMIT随着辅助电源电压VCC的下降而降低。
这样,过电流保护基准电压调整电路16只当辅助电源电压VCC低于设定值时,随着辅助电源电压VCC的下降而使过电流保护基准电压VLIMIT降低。
以下说明如上构成的开关电源装置的动作。
开关动作开始之前,若对该开关电源装置的输入端输入例如商用交流电源经过整流且滤波的直流输入电压VIN,则该直流输入电压VIN经变压器110的初级绕组110A,加在半导体装置100的DRAIN端。调节器2从DRAIN端向内部电路用电源VDD供给由直流输入电压VIN产生的电流,同时经VCC端向辅助电源部的电容器121供给由直流输入电压VIN产生的电流,使内部电路用电源VDD和辅助电源电压VCC的电压上升。若内部电路用电源VDD的电压达到一定值,则开关元件1开始开关动作。
若开关元件1开始开关动作,则向变压器110的各个绕组供给能量,在次级绕组110B和辅助绕组110C产生交流电压,并流过电流。
次级绕组110B产生的功率(次级侧交流电压和次级电流)由二极管130和电容器131进行整流和滤波,变成直流功率(直流输出电压VO和输出电流IO),向负载132供给。
辅助绕组110C产生的功率(辅助侧交流电压和辅助侧电流)由二极管120和电容器121进行整流和滤波,用作为半导体110的辅助电源。由于辅助绕组110C的极性与次级绕组110B相同,因此辅助电源电压VCC成为与直流输出电压VO成正比的电压。
若开关元件1开始开关动作,则直流输出电压VO和辅助电源电压VCC上升。若辅助电源电压VCC上升,则误差放大器3的误差电压信号VEAO的电压下降。若误差电压信号VEAO的电压下降,则漏极电流控制电路5这样控制开关元件1,使得流过开关元件1的漏极电流ID下降。通过加上这样的负反馈,使直流输出电压VO稳定。也就是说,辅助电源电压VCC还用于直流输出电压VO的稳定。
另外,辅助绕组110C产生的辅助侧交流电压由二极管122进行整流,由电阻123和电阻124分压,向TR端输入。若流过次级绕组110B的次级电流为零,则引起由变压器110的电感和开关元件1的寄生电容产生的谐振现象。次级电流截止检测电路11检测开关元件1不动作之后的辅助绕组110C的电压波形出现的下降沿,检测次级电流的截止时刻。
调节器2在开关动作开始之后,停止向辅助电源部供电,若辅助电源电压VCC达到一定值及其以上,则从VCC端向内部电路用电源VDD供给由辅助电源电压VCC产生的电流。因而,该开关电源装置能够降低通常动作时的半导体装置100产生的功耗。
另一方面,若辅助电源电压VCC下降至一定值之下,则调节器2从DRAIN端向内部电路用电源VDD供给由直流输入电压VIN产生的电流。
开关元件1根据经NAND电路20和栅极驱动器21输入的触发器15的输出信号进行开关动作。
对触发器15的置位端,经时钟信号选择电路13和AND电路14输入振荡器6的输出信号(单脉冲信号)set_1或次级占空比限制电路12的输出信号(单脉冲信号)set_2中的某一个信号。若对触发器15的置位端将输出信号set_1或输出信号set_2进行输入,则对开关元件1输入动作脉冲信号,开关元件1动作。
另一方面,对触发器15的复位端经AND电路18输入导通时关闭脉冲发生电路17和漏极电流控制电路5的输出信号。若漏极电流检测电路4的元件电流检测信号VCL的电压达到过电流保护基准电压VLIMIT和误差电压信号VEAO的电压中的较低的电压时,输出漏极电流控制电路5的输出信号。因而,若漏极电流ID达到由误差电压信号VEAO的电压或过电流保护基准电压VLIMIT所决定的电流值时,开关元件1不动作。
如上所述,该开关电源装置的基本动作是以振荡频率固定的峰值电流控制方式进行的动作。另外,关于开关元件1开始开关动作、并且直流输出电压VO稳定之后的动作,则如图7所示,因流过载132的输出电流IO的状态不同而不同。
以下,按照负载132从轻载到重载变化的顺序,分成<(1)轻载时>、<(2)恒压区域1>、<(3)恒压区域2>、<(4)恒压区域2和恒流区域的边界区域>、<(5)恒流区域>、<(6)フ字形保护区域>的各个状态来说明该开关电源装置的动作。
<(1)轻载时>
图8是表示该开关电源装置在<轻载时>的各个部分动作的时序图。所谓<轻载时>,是指从误差放大器3输出的误差电压信号VEAO的电压低于从基准电压源10输出的基准电压VR时的区域。
还有,在图8~13中,VCC表示辅助电源电压。VD表示开关元件1的输入端即DRAIN端的电压。ID表示漏极电流(即元件电流检测信号VCL的电压)。ID2表示流过次级侧二极管130的电流。VTR表示TR端电压。VEAO表示误差电压信号的电压。VR表示基准电压源10的基准电压。VC1表示振荡器6内的电容器47的电压。set_1表示振荡器6输出的时钟信号(单脉冲信号)。VC2表示次级占空比限制电路12内的电容器34的电压。set_2表示次级占空比限制电路12输出的时钟信号(单脉冲信号)。set表示向触发器15的置位端输入的置位信号(AND电路14的输出信号)。reset表示向触发器15的复位端输入的复位信号(AND电路18的输出信号)。VG表示开关元件的控制端(栅极端)的电压。
当流过载132的输出电流IO很小时,由于流过次级绕组110B的电流也很小,次级电流流通的期间也很短,因此输出次级占空比限制电路12的输出信号(单脉冲信号)set_2的时刻比输出振荡器6的输出信号(单脉冲信号)set_1的时刻要快。由此,对触发器15的置位端输入振荡器6的输出信号set_1(置位信号set)。
另一方面,若流过载132的输出电流IO下降,则直流输出电压VO和辅助电源电压VCC稍微上升。若随着辅助电源电压VCC上升,误差电压信号VEAO的电压而下降,则漏极电流控制电路5控制开关元件1,使得漏极电流ID减小。
这时,若误差电压信号VEAO的电压达到基准电压源10设定的两个基准电压VR1、VR2中的低电位侧的基准电压VR1时,轻载间歇振荡控制电路8内的比较器9的输出信号为低电平,并向AND电路14输入,向触发器15的置位端输入的置位信号set为低电平。因而,在双稳态对谐振荡电路15的置位端不输入决定开关元件1的动作的时钟信号,开关元件1的开关动作停止。另外,这时,基准电压源10的基准电压VR同时从基准电压VR1向高电位侧的基准电压VR2转换。
若开关元件1的开关动作停止,则由于经变压器110供给的能量停止,因此直流输出电压VO和辅助电源电压VCC渐渐下降。若辅助电源电压VCC下降,则误差电压信号VEAO的电压上升,但由于基准电压源10的基准电压VR成为高电位侧的基准电压VR2,因此置位信号set仍然维持低电平不变,开关元件1的开关动作不能立即再开始。
若直流输出电压VO和辅助电源电压VCC进一步下降,误差电压信号VEAO的电压达到基准电压VR2时,比较器9的输出信号变为高电平,并向AND电路14输入,利用振荡器6的输出信号set_1再开始开关元件1的开关动作。另外,这时,基准电压源10的基准电压VR同时从基准电压VR2向低电位侧的基准电压VR1转换。
开关元件1的开关动作再开始时的误差电压信号VEAO的电压为基准电压VR2,流过开关元件1的漏极电流ID大于开关动作停止时的电流。因而,直流输出电压VO和辅助电源电压VCC上升,误差电压信号VEAO的电压下降。然后,若误差电压信号VEAO的电压达到基准电压VR1时,开关元件1的开关动作再次停止。
这样,当流过载132的输出电流IO很小时,开关元件1的开关动作成为反复停止/再开始的间歇振荡动作。该开关动作的停止期间和再开始期间取决于直流输出电压VO和辅助电源电压VCC的上升和下降的速度。也就是说,由于流向负载132的输出电流IO越小,直流输出电压VO和辅助电源电压VCC的上升得越快,下降得越慢,因此开关元件1的开关动作停止期间延长。
如上所述,<轻载时>的该开关电源装置的动作成为以开关元件1的开关动作反复停止/再开始的间歇振荡控制方式进行的动作,流向负载132的输出电流IO越小,开关元件1的开关动作停止期间越长。因而,根据该开关电源装置,能够减少<轻载时>的开关元件1的开关动作产生的损耗,能改善功耗和效率。另外,通过该间歇振荡控制,能抑制<轻载时>的直流输出电压VO的上升。
还有,在间歇振荡控制时,开关元件1的振荡频率下降。因此,若振荡频率进入音频带时,通常能听到变压器的磁致伸缩噪音。但是,在该开关电源装置中,由于能将间歇振荡控制时的漏极电流ID的峰值电流值以基准电压VR1和基准电压VR2决定的电流值能控制得较低,因此实际上听不到磁致伸缩噪音。由此,根据该开关电源装置,不用考虑变压器的磁致伸缩噪音的影响,能充分降低间歇振荡的频率,能大幅度地减少待机时的功耗。
例如,只要将基准电压源10的第1基准电压VR1和第2基准电压VR2分别设定在过电流保护基准电压VLIMIT的15%左右(最好为15%)和20%左右(最好为20%),则间歇振荡控制时的漏极电流ID的峰值电流值就足够小,听不到变压器的磁致伸缩噪音。
<(2)恒压区域1>
图9是表示该开关电源装置在<恒压区域1>的各个部分的动作时序图。所谓该<恒压区域1>,是指从误差放大器3输出的误差电压信号VEAO的电压高于从基准电压源10输出的基准电压VR且低于过电流保护基准电压VLIMIT的区域。
若流过载132的输出电流IO大于轻载,直流输出电压VO比轻载时稍微低一些,误差电压信号VEAO的电压处于高于基准电压VR且低于过电流保护基准电压VLIMIT的状态,则轻载间歇振荡控制电路8内的比较器9的输出信号变为高电平,并向AND电路14输入。
另外,在该<恒压区域1>中,由于流过次级绕组110B的次级电流很小,流过次级电流的期间很短,因此输出次级占空比限制电路12的输出信号set_2的时刻比输出振荡器6的输出信号set_1的时刻要快。因此,对触发器15的置位端输入振荡器6的输出信号set_1(置位信号set)。
因而,在<恒压区域1>中,由于来自振荡器6的时钟信号set_1成为置位信号set,将从漏极电流检测电路4输出的元件电流检测信号VCL的电压与误差电压信号VEAO的电压进行比较而输出的漏极电流控制电路5的输出信号成为复位信号reset,因此该开关电源装置脱离了间歇振荡控制状态,处于以固定振荡频率的峰值电流控制方式进行动作的状态。
<(3)恒压区域2>
图10是表示该开关电源装置<恒压区域2>的各个部分的动作时序图。所谓该<恒压区域2>,是指从误差放大器3输出的误差电压信号VEAO的电压高于过电流保护基准电压VLIMIT的区域。
若流过载132的输出电流IO大于<恒压区域1>,直流输出电压VO比<恒压区域1>稍微低一些,误差电压信号VEAO的电压高于过电流保护基准电压VLIMIT,则漏极电流控制电路5将漏极电流检测电路4输出的元件电流检测信号VCL的电压与过电流保护基准电压VLIMIT进行比较。因而,在恒压区域2中,流过开关元件1的漏极电流ID的峰值电流值用以过电流保护基准电压VLIMIT所决定的电流值固定。
另外,在该<恒压区域2>中,流过次级绕组110B的次级电流虽达到最大值,但由于次级电流的导通占空比没有达到用次级占空比限制电路12设定的规定值,因此输出次级占空比限制电路12的输出信号set_2的时刻比输出振荡器6的输出信号set_1的时刻要快。因此,对触发器15的置位端输入振荡器6的输出信号set_1(置位信号set)。
进而,在
误差电压信号VEAO的电压>过电流保护基准电压VLIMIT
的状态下,
振荡频率调整电路7根据误差电压信号VEAO的电压与过电流保护基准电压VLIMIT之差,向振荡器6输出提高开关元件1的振荡频率的信号。
这样,在<恒压区域2>中,由于负载越重、振荡频率越高的时钟信号set_1成为置位信号set,将元件电流检测信号VCL的电压与过电流保护基准电压VLIMIT进行比较而输出的漏极电流控制电路5的输出信号成为复位信号reset,因此该开关电源装置成为以固定峰值电流的振荡频率控制方式进行动作的状态。
还有,若流过载132的输出电流IO加大,则开关元件1的振荡频率虽提高,但由于在从次级电流截止检测电路11向振荡器6输出的输出信号D2_on为高电平的期间,从振荡器6不输出下一个单脉冲信号set_1,因此次级电流结束流动之后产生下一个动作脉冲信号。也就是说,该开关电源装置成为不连续模式动作。
<(4)恒压区域2和恒流区域的边界区域>
图11是表示该开关电源装置<恒压区域2和恒流区域的边界区域>的各个部分的动作时序图。所谓该<恒压区域2和恒流区域的边界区域>,是指从误差放大器3输出的误差电压信号VEAO的电压高于过电流保护基准电压VLIMIT、且从振荡器6输出的第1时钟信号set_1与从次级占空比限制电路12输出的第2时钟信号set_2的上升沿时刻为同时的区域,即,次级电流的导通占空比是达到设定值的区域。
在<恒压区域2>中,流过开关元件1的漏极电流ID的峰值电流值用以过电流保护基准电压VLIMIT所决定的电流值固定,振荡频率调整电路7控制振荡器6,使得随着负载加重,时钟信号set_1的振荡频率提高。因而,在<恒压区域2>中,若流过载132的输出电流IO加大,则时钟信号set_1的振荡频率提高,次级电流的导通占空比提高。
然后,若次级电流的导通占空比达到次级占空比限制电路12设定的规定值,则次级占空比限制电路12的输出信号(单脉冲信号)set_2与振荡器6的输出信号(单脉冲信号)set_1的输出时刻相等。因而,在该<恒压区域2和恒流区域的边界区域>中,次级电流的导通占空比达到用次级占空比限制电路12设定的规定值。
还有,由于该开关电源装置为不连续模式动作,因此向负载132供给的能量能用直流输出电压VO、输出电流IO、变压器110的初级绕组110A的电感Lp、漏极电流ID的峰值电流值Ip、以及开关元件1的振荡频率fosc表示如下,
VO×IO=(1/2)×Lp×Ip×Ip×fosc                  …(1)
在该<恒压区域2和恒流区域的边界区域>中,由于误差电压信号VEAO的电压高于过电流保护基准电压VLIMIT,因此漏极电流ID的峰值电流值Ip用以过电流保护基准电压VLIMIT所决定的电流值固定。也就是说,当漏极电流ID达到以过电流保护基准电压VLIMIT所决定的电流值时,开关元件1不动作。然后,由于开关元件1不动作并且在次级绕组110B中开始流过次级电流时的电流值、即次级电流的峰值电流值成为用变压器110的初级绕组110A与次级绕组110B的匝数比来决定的电流值,因此为一定。
在直流输出电压VO为一定的情况下,由于次级电流的倾斜度也为一定,因此次级电流的峰值电流值为一定时的次级电流流过的期间一直为恒定。因而,在该<恒压区域2和恒流区域的边界区域>中,次级电流流过的期间一直为一定。其结果,在<恒压区域2和恒流区域的边界区域>中,时钟信号set_2的振荡频率一直为一定值。也就是说,由于在<恒压区域2和恒流区域的边界区域>中时钟信号set_1与时钟信号set_2的振荡频率相等,因此开关元件1的振荡频率fosc一直为一定值。
另外,当变压器110的初级绕组110A的电感Lp变化时,由于次级电流的倾斜度也变化,因此当次级电流的峰值电流值为一定时,若电感Lp加大,则次级电流的倾斜度也变大,流过次级电流的期间也加长。其结果,时钟信号set_2的振荡频率下降。也就是说,由于在<恒压区域2和恒流区域的边界区域>中时钟信号set_1与时钟信号set_2的振荡频率相等,因此若电感Lp加大,则开关元件1的振荡频率fosc下降。另一方面,与此相反,若电感Lp减小,则开关元件1的振荡频率fosc提高。
如上所述,在<恒压区域2和恒流区域的边界区域>中,由于变压器110的初级绕组110A的电感Lp与开关元件1的振荡频率fosc的乘积为一定,因此根据上述(1)式的关系,输出电流IO为一定。因而,<恒压区域2和恒流区域的边界区域>中的输出电流IO不受到变压器的电感值与振荡频率的误差的影响。
<(5)恒流区域>
图12是表示该开关电源装置在<恒流区域>的各个部分的动作时序图。所谓该<恒流区域>,是指从误差放大器3输出的误差电压信号VEAO的电压高于过电流保护基准电压VLIMIT、且利用次级占空比限制电路12输出的时钟信号set_2来进行开关元件1的开关动作的区域。
若加重载132,使得流过载132的输出电流IO大于<恒压区域2和恒流区域的边界区域>的输出电流IO,则如上所述,由于次级电流的峰值电流值和次级电流的导通占空比已经为一定,向次级绕组110B供给的能量为最大,因此直流输出电压VO下降。
若直流输出电压VO下降,则次级电流的倾斜度加大,流过次级电流的期间延长,输出次级占空比限制电路12的输出信号(单脉冲信号)set_2的时刻比输出振荡器6的输出信号(单脉冲信号)set_1的时刻要慢。因此,从时钟信号选择电路13将输出信号set_2输出。
由于将输出信号set_2输出,使得次级电流的导通占空比为一定的规定值,因此将次级电流的导通占空比控制在规定值不变,开关元件1的振荡频率下降。
因而,随着负载加重,次级电流的峰值电流值和次级电流的导通占空比仍保持为一定,而开关元件1的振荡频率下降。
这时,当次级电流的导通占空比为规定值时,若设次级电流的导通占空比为D2,次级电流的峰值电流值为I2p,则输出电流IO用下式表示。
IO=(1/2)×I2p×D2                               …(2)
由于流过开关元件1的漏极电流的峰值电流值用以过电流保护基准电压VLIMIT所决定的电流值进行控制,因此次级电流的峰值电流值I2p为一定。因而,根据该开关电源装置,与变压器110的初级绕组110A的电感Lp及开关元件1的振荡频率fosc无关,能够得到一定的输出电流IO,能得到误差很小、高精度的恒流下垂特性。
<(6)フ字形保护区域>
图13是表示该开关电源装置在<フ字形保护区域>中的各个部分的动作时序图。所谓该<フ字形保护区域>,是在<恒流区域>中辅助电源装置VCC低于过电流保护基准电压调整电路16设定的电压值、并通过过电流保护基准电压调整电路16对过电流保护基准电压VLIMIT进行调整的区域。
在<恒流区域>中,若负载132的负载加重,则随之保持一定的输出电流IO不变而直流输出电压Vo和辅助电源电压VCC不断下垂。而这里,若辅助电源电压VCC低于过电流保护基准电压调整电路16设定的电压值,则过电流保护基准电压调整电路16随着辅助电源电压VCC的下降,使过电流保护基准电压VLIMIT降低。
由此,由于流过开关元件1的漏极电流ID的峰值电流值与流过次级绕组110B的次级电流的峰值电流值下降,因此按照上式(2),输出电流IO也降低。根据该动作,由于直流输出电压VO下降时的输出电流IO降低,因此能在负载短路时等的过载时将输出电流IO抑制得很小,能实现安全性高的フ字形保护。
例如,将过电流保护基准电压调整电路16的设定值设定在<恒压区域>中稳定时的辅助电源电压VCC的30%左右(稳定用基准电压的30%左右。最好是30%)。根据这样的设定,由于直流输出电压VO充分下垂后能使输出电流IO降低,因此能充分确保充电器的恒流下垂区域,并能充分降低负载短路时等的过载时的输出电流IO。
另外,例如过电流保护基准电压调整电路16这样构成,使得能调整过电流保护基准电压VLIMIT到其最大值的20%左右(最好为20%)。这样的话,由于负载短路时的输出电流IO也为恒流下垂区域的输出电流IO的20%左右,因此能将负载短路时等的过载时的输出电流IO抑制得足够小,能实现安全性高的フ字形保护。
另外,若直流输出电压VO下降,则由于次级电流的导通占空比控制在规定值,因此开关元件1的振荡频率降低。通常若振荡频率降低,进入音频带,则能听到变压器的磁致伸缩噪音,但在该开关电源装置中,若直流输出电压VO降低,振荡频率下降,则由于漏极电流ID的峰值电流值和次级电流的峰值电流值也下降,因此能抑制振荡频率的下降,能防止进入音频带。另外,即使在进入了音频带的情况下,由于漏极电流ID和次级电流的峰值电流值非常小,因此实际上能够听不到磁致伸缩噪音。
如上所述,根据本实施方式,能够不用次级侧的恒流控制电路、输出电流检测电阻、以及光耦合器,能够以低成本、最少元器件数量及最小功耗来实现高精度的恒流下垂特性。因此,能够以很少的元器件数量构成高精度的充电器用开关电源,能够实现充电器用开关电源的低成本、小型化、节能化。
另外,在恒流区域中,通过使漏极电流的峰值电流值和次级电流的峰值电流值为恒定,能使次级电流的导通占空比控制在规定值,以实现恒流下垂特性。进而,由于输出电流的恒流值不受振荡频率或变压器的电感的误差的影响,整个特性的误差非常小,能实现高精度的恒流下垂特性。
另外,轻载时,由于变成减小漏极电流的峰值电流值的间歇振荡,因此能够抑制轻载时的输出电压上升,降低功耗,也能实现待机时的节能化。
另外,过载时,由于使漏极电流的峰值电流值随着输出电压的下降而下降,将次级电流的导通占空比控制在规定值,因此能够实现输出电压越小、输出电流也越小的フ字形保护功能,能够构成安全性高的电源装置。
另外,关于开关元件和控制电路,由于能设置在同一半导体内,因此容易实现单片化。因而,通过将主要的电路元器件设置在单一半导体内,能够减少构成电路用的元器件数量,能够容易地实现小型化和轻量化,进而降低成本。
如上所述,本实施方式的开关电源装置能以低成本且最少的元器件数量实现高精度的恒流下垂特性,对手机或数码照相机等便携式装置用充电器等很有用。

Claims (11)

1.一种开关电源装置,其特征在于,包括
具有初级绕组、次级绕组、以及辅助绕组的变压器;
利用开关动作对输入所述初级绕组的直流输入电压进行开关控制的开关元件;
对利用所述开关元件的开关动作而在所述次级绕组产生的次级交流电压进行整流且滤波、以生成直流输出电压的输出电压生成部;
对利用所述开关元件的开关动作而在所述辅助绕组产生的辅助交流电压进行整流且滤波、以生成与所述直流输出电压成正比的辅助电源电压的辅助电源部;
以及控制所述开关元件的开关动作的控制电路,
所述控制电路这样控制所述开关元件的开关动作,使得在所述开关元件不动作之后在所述次级绕组开始流过的次级电流的导通占空比达到规定值的情况下,使所述次级电流的导通占空比维持在该规定值,同时使所述次级电流的峰值电流值维持在一定值。
2.如权利要求1所述的开关电源装置,其特征在于,
所述控制电路包括:
内部电路用电源;
将由所述直流输入电压产生的电流和由所述辅助电压产生的电流中的一个电流向所述内部电路用电源供给、并使所述内部电路用电源的电压为一定值的调节器;
根据所述辅助电源电压与稳定用基准电压之差生成误差电压信号的误差放大器;
检测流过所述开关元件的电流并输出成为与其电流值对应的电压的元件电流检测信号的元件电流检测电路;
输出决定所述开关元件动作的第1时钟信号的振荡器;
当所述元件电流检测信号的电压达到所述误差电压信号的电压和过电流保护基准电压中较低的电压时、输出决定所述开关元件不动作的信号的元件电流控制电路;
当所述误差电压信号的电压超过所述过电流保护基准电压时、根据其差值来缩短所述第1时钟信号的周期的振荡频率调整电路;
根据所述辅助交流电压来检测所述次级电流结束流动的时刻的次级电流截止检测电路;
检测从所述开关元件不动作的时刻到所述次级电流结束流动时刻为止的期间、并输出决定所述开关元件动作的第2时钟信号使得所述次级电流的导通占空比为所述规定值的次级占空比限制电路;
输入所述第1时钟信号和所述第2时钟信号、并当所述次级电流的导通占空比没有达到所述规定值时输出所述第1时钟信号、而当达到所述规定值时输出所述第2时钟信号的时钟信号选择电路;
以及开关控制电路,所述开关控制电路内含若从所述时钟信号选择电路输入所述第1或第2时钟信号则处于置位状态、若从所述元件电流控制电路输入决定所述开关元件不动作的信号,则处于复位状态的触发器,根据所述触发器的状态来控制所述开关元件的开关动作,
当所述次级电流的导通占空比达到所述规定值时,所述时钟信号选择电路就选择所述第2时钟信号,以使所述次级电流的导通占空比维持在所述规定值,同时当所述元件电流检测信号的电压达到所述过电流保护基准电压时,所述元件电流控制电路就输出决定所述开关元件不动作的信号,使所述次级电流的峰值电流值维持在一定值。
3.如权利要求2所述的开关电源装置,其特征在于,
所述时钟信号选择电路输入来自所述振荡器的所述第1时钟信号和来自所述次级占空比限制电路的所述第2时钟信号,输出所述两种时钟信号中的周期较长的时钟信号。
4.如权利要求2所述的开关电源装置,其特征在于,
所述次级占空比限制电路输出所述第2时钟信号,使得所述次级电流的导通占空比为50%左右。
5.如权利要求2所述的开关电源装置,其特征在于,
所述调节器
在所述开关元件的开关动作开始之前,向所述内部电路用电源供给由所述第1直流电压产生的电流,同时也向所述辅助电源部供给,
在所述开关元件的开关动作开始之后,停止向所述辅助电源部供给电流,若所述辅助电源电压下降至一定值之下,则向所述内部电路用电源供给由所述第1直流电压产生的电流,若所述辅助电源电压为一定值以及以上,则向所述内部电路用电源供给由所述辅助电源电压产生的电流。
6.如权利要求2所述的开关电源装置,其特征在于,
所述控制电路包括由以下单元构成的轻载间歇振荡控制电路,其中有
轻载用基准电压源,所述轻载用基准电压源设定第1基准电压和比所述第1基准电压高的高电位的第2基准电压,若所述误差电压信号的电压下降并达到所述第1基准电压时,则其输出电压从所述第1基准电压向所述第2基准电压转换,若所述误差电压信号的电压上升并达到所述第2基准电压时,则其输出电压从所述第2基准电压向所述第1基准电压转换;
将所述误差电压信号的电压与所述轻载用基准电压源的输出电压进行比较的轻载用比较器;
以及时钟信号控制电路,所述时钟信号控制电路接受所述轻载用比较器得到的比较结果,若所述误差电压信号的电压降低并达到所述第1基准电压时,则使从所述时钟信号选择电路向所述触发器的所述第1或第2时钟信号的输出停止,若所述误差电压信号的电压上升并达到所述第2基准电压时,则使从所述时钟信号选择电路向所述触发器的所述第1或第2时钟信号的输出再开始。
7.如权利要求6所述的开关电源装置,其特征在于,
所述第1基准电压是所述过电流保护基准电压的15%左右,所述第2基准电压是所述过电流保护基准电压的20%左右。
8.如权利要求2所述的开关电源装置,其特征在于,
所述控制电路包括若所述辅助电源电压小于设定值、则根据其差值来降低所述过电流保护基准电压的过电流保护基准电压调整电路。
9.如权利要求8所述的开关电源装置,其特征在于,
所述过电流保护基准电压调整电路设定的设定值设定在所述稳定用基准电压的30%左右。
10.如权利要求8所述的开关电源装置,其特征在于,
所述过电流保护基准电压调整电路这样调整所述过电流保护基准电压,使得其最小值为20%左右。
11.如权利要求2至10中的任何一项所述的开关电源装置,其特征在于,
所述开关元件和所述控制电路在同一半导体基板上形成,作为具有在所述直流输入电压与所述开关元件之间的两个连接端、所述控制电路与所述辅助电源电压之间的连接端、以及所述次级电流截止检测电路的输入端的半导体装置而构成。
CNB2005100740350A 2004-05-24 2005-05-24 开关电源装置 Expired - Fee Related CN100466438C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004152638 2004-05-24
JP2004152638 2004-05-24
JP2004290856 2004-10-04

Publications (2)

Publication Number Publication Date
CN1702949A true CN1702949A (zh) 2005-11-30
CN100466438C CN100466438C (zh) 2009-03-04

Family

ID=35632514

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100740350A Expired - Fee Related CN100466438C (zh) 2004-05-24 2005-05-24 开关电源装置

Country Status (1)

Country Link
CN (1) CN100466438C (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330256A (zh) * 2007-03-23 2008-12-24 电力集成公司 调节二极管导通占空比的方法和装置
CN101562397A (zh) * 2009-05-27 2009-10-21 成都芯源系统有限公司 基于第三绕组检测的双模式恒电流控制方法及其电路
CN101552560B (zh) * 2009-01-13 2011-06-22 成都芯源系统有限公司 一种开关稳压电路及其控制方法
CN102315785A (zh) * 2010-06-30 2012-01-11 新能微电子股份有限公司 逆向变换系统及其反馈控制装置与方法
CN102684503A (zh) * 2012-05-03 2012-09-19 香港应用科技研究院有限公司 具有可变切换频率控制和工作周期调整的反激式转换器
CN101350560B (zh) * 2007-04-23 2013-03-20 技领半导体(上海)有限公司 实现输出端电压恒定的功率变换器及方法
US8498132B2 (en) 2007-03-23 2013-07-30 Power Integrations, Inc. Method and apparatus for regulating a diode conduction duty cycle
CN101017381B (zh) * 2006-02-07 2013-12-25 美国快捷半导体有限公司 具有恒定电流输出的初级侧稳压电源系统
CN105553303A (zh) * 2015-12-25 2016-05-04 无锡硅动力微电子股份有限公司 用于原边反馈ac-dc开关电源的待机控制系统
CN111614264A (zh) * 2015-05-01 2020-09-01 虹冠电子工业股份有限公司 开关电源及其改进

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011067746A (ja) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd 静電霧化装置
US9478977B2 (en) * 2014-05-27 2016-10-25 Skyworks Solutions, Inc. Overcurrent protection device and overcurrent protection method for electronic modules

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371962B2 (ja) * 2000-12-04 2003-01-27 サンケン電気株式会社 Dc−dcコンバ−タ
JP4122721B2 (ja) * 2001-04-09 2008-07-23 サンケン電気株式会社 スイッチング電源

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017381B (zh) * 2006-02-07 2013-12-25 美国快捷半导体有限公司 具有恒定电流输出的初级侧稳压电源系统
CN101330256A (zh) * 2007-03-23 2008-12-24 电力集成公司 调节二极管导通占空比的方法和装置
US8498132B2 (en) 2007-03-23 2013-07-30 Power Integrations, Inc. Method and apparatus for regulating a diode conduction duty cycle
CN101350560B (zh) * 2007-04-23 2013-03-20 技领半导体(上海)有限公司 实现输出端电压恒定的功率变换器及方法
CN101552560B (zh) * 2009-01-13 2011-06-22 成都芯源系统有限公司 一种开关稳压电路及其控制方法
CN101562397A (zh) * 2009-05-27 2009-10-21 成都芯源系统有限公司 基于第三绕组检测的双模式恒电流控制方法及其电路
CN101562397B (zh) * 2009-05-27 2014-02-12 成都芯源系统有限公司 基于第三绕组检测的双模式恒电流控制方法及其电路
CN102315785A (zh) * 2010-06-30 2012-01-11 新能微电子股份有限公司 逆向变换系统及其反馈控制装置与方法
CN102684503A (zh) * 2012-05-03 2012-09-19 香港应用科技研究院有限公司 具有可变切换频率控制和工作周期调整的反激式转换器
US8780590B2 (en) 2012-05-03 2014-07-15 Hong Kong Applied Science & Technology Research Institute Company, Ltd. Output current estimation for an isolated flyback converter with variable switching frequency control and duty cycle adjustment for both PWM and PFM modes
CN102684503B (zh) * 2012-05-03 2014-10-15 香港应用科技研究院有限公司 具有可变切换频率控制和工作周期调整的反激式转换器
CN111614264A (zh) * 2015-05-01 2020-09-01 虹冠电子工业股份有限公司 开关电源及其改进
CN111614264B (zh) * 2015-05-01 2021-08-10 虹冠电子工业股份有限公司 开关电源及其改进
CN105553303A (zh) * 2015-12-25 2016-05-04 无锡硅动力微电子股份有限公司 用于原边反馈ac-dc开关电源的待机控制系统
CN105553303B (zh) * 2015-12-25 2017-11-17 无锡硅动力微电子股份有限公司 用于原边反馈ac‑dc开关电源的待机控制系统

Also Published As

Publication number Publication date
CN100466438C (zh) 2009-03-04

Similar Documents

Publication Publication Date Title
CN1702949A (zh) 开关电源装置
CN1858981A (zh) 电源调整电路及半导体器件
CN1302610C (zh) Dc-dc变换器
CN1346535A (zh) Dc-dc变换器
CN1860671A (zh) 开关电源装置
CN101034846A (zh) 电容器充电装置
CN1220321C (zh) 开关电源装置
CN1241317C (zh) 开关电源装置
CN1249904C (zh) 开关电源
CN100345364C (zh) 电源单元及具有该单元的电源系统
CN1280976C (zh) 开关电源装置
CN1303749C (zh) 开关电源设备
CN1193488C (zh) 缓冲电路和使用该缓冲电路的功率变换器
CN1595759A (zh) 电池充电控制电路、电池充电设备和电池充电控制方法
CN1701496A (zh) 功率因数改善电路
CN1677824A (zh) 开关电源控制用半导体装置
CN1452306A (zh) 电荷泵电路和电源电路
CN1885704A (zh) 开关电源装置
CN1732614A (zh) 开关电源电路
CN1270441A (zh) 压电逆变器
CN1198485C (zh) 荧光灯点亮装置以及荧光灯点亮用信号发生装置
CN1780512A (zh) 发光二极管驱动用半导体电路及具有它的发光二极管驱动装置
CN1926752A (zh) 多输出电流谐振型dc-dc变换器
CN1992494A (zh) 直流-直流变换器和直流-直流变换器控制电路
CN2562101Y (zh) 磁控管驱动电源

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: KELAIBO INNOVATION CO., LTD.

Free format text: FORMER OWNER: MATSUSHITA ELECTRIC INDUSTRIAL CO, LTD.

Effective date: 20141212

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20141212

Address after: American California

Patentee after: Craib Innovations Ltd

Address before: Osaka Japan

Patentee before: Matsushita Electric Industrial Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090304

Termination date: 20160524