CN1701944A - 光固化与熔融沉积集成的复合快速成形方法和装置 - Google Patents

光固化与熔融沉积集成的复合快速成形方法和装置 Download PDF

Info

Publication number
CN1701944A
CN1701944A CN 200510026233 CN200510026233A CN1701944A CN 1701944 A CN1701944 A CN 1701944A CN 200510026233 CN200510026233 CN 200510026233 CN 200510026233 A CN200510026233 A CN 200510026233A CN 1701944 A CN1701944 A CN 1701944A
Authority
CN
China
Prior art keywords
shaping
fusion sediment
photocuring
forming
fdm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510026233
Other languages
English (en)
Other versions
CN1295071C (zh
Inventor
刘廷章
叶冰
马静
柏静波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CNB200510026233XA priority Critical patent/CN1295071C/zh
Publication of CN1701944A publication Critical patent/CN1701944A/zh
Application granted granted Critical
Publication of CN1295071C publication Critical patent/CN1295071C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及一种光固化与熔融沉积集成的复合快速成形方法和装置。其方法包括光固化成形法和熔融沉积成形法,由所述的光固化成形法进行成形外部精细的轮廓,而由所述的熔融沉积成形法进行成形内部大块区域。其装置包括一个光固化成形系统和一个熔融沉积成形系统,该两系统之间有一个成形头自动切换系统,由一个微机控制系统协同数控该两系统及两系统间的成形头自动切换。本发明集两快速成形法优点而克服其缺点,光固化成形法成形精度高,制作细节能力强,原型表面质量好,而熔融沉积成形法选用材料范围广,原型件性能好,制作成本较低。适用于检测用具、模具、美学制品、医学机械等精密件的制造。

Description

光固化与熔融沉积集成的复合快速成形方法和装置
技术领域
涉及一种快速成形工艺的快速成形方法和装置,特别是一种光固化与熔融沉积集成的复合快速成形方法和装置。
背景技术:
快速成形制造(Rapid Prototyping & Manufacturing-RPM)技术是20世纪80年代末发展起来的一项高新制造技术,它彻底突破了传统制造模式,基于材料累加法实现任意复杂零件的整体成形,它对制造业的影响可与数控技术相媲美。最早出现的RPM方法是采用激光作为成形能源的光固化法(Stereolithography-SL),日本三菱公司于1974年申请了SL的第一个专利,但不久就放弃了;日本Nagoya Prefecture研究所的Kodama博士在1980年申请了另一个专利,但在1987年也放弃了;随后美国加利福尼亚州UVP公司的Charles Hull详细研究了采用激光光源通过选择性地固化树脂薄层来逐层累加制造三维实体的SL方法,并于1984年申请了专利(Hull C.,通过SL制作三维实体的设备,美国专利号4575330,1986年3月11日),同时,Hull和UVP的股东Raymond Freed联合创立了3D System公司开发SL的商业应用,并成为目前市场上SL成形设备的主要厂商。另一种典型的RPM方法是熔融沉积成形法(Fused Deposition Modeling-FDM),它采用常规热源作为成形能源,其成形思想由美国明尼阿波利斯的工程师Scott Crump于1988年提出,1992年开发了第一台商业机型3D-Modeler并申请了专利(Crump S.,三维实体成形设备,美国专利号5340433,1994年8月23日),其所在公司Stratasys是目前FDM设备的主要生产商。除了上述SL和FDM方法外,目前已经开发出了选择激光烧结SLS、分层实体制造LOM、掩模固化SGC等十几种RPM方法和设备,并已成功应用于产品设计检验、市场预测、工程测试、装配测试、模具制造、医学、美学等领域。
目前主要的几种快速成形工艺方法都各有特点,如下表所示:
名称  光固化法SL   激光烧结法SLS  分层实体制造法LOM 熔融沉积法FDM 掩模固化法SGC
制造商  3D,CMET公司   DTM公司  Helisys公司 Stratasys公司 Cubital公司
成形能源  激光紫外光源 激光 激光 热源 紫外光源
材料  光敏树脂   PVCs聚碳酸脂尼龙铸造蜡  纸塑料复合材料 尼龙,铸造蜡合成橡胶ABS塑料 光敏树脂
优点  公认精度最高,尺寸100mm以内为±0.1,大于100mm不超过0.5%;制作效率高;材料利用率接近100%   价格低,无气味材料,可用多种机械性能比光敏树脂更好的材料;不需夹具  制作效率高于其他方法5~10倍,原因是激光只作轮廓扫描;材料便宜无气味;成型机价格低 材料便宜无气味;不需夹具 声称精度更高;不需支撑或夹具
缺点  需要支撑材料较脆树脂材料昂贵,有气味   精度比SL低;工艺较新,发展历史较短;Z向精度较难控制  精度比SL低;需去除激光切口处的毛刺及废料;某些结构废料不易剥离;激光导致的内应力易造成翘曲;材料利用率低 精度比SL低;需要支撑;模型外表呈灰色;某些结构不易生成 设备造价高;工艺复杂;可靠性差;体积庞大
从上表可以看出,SL工艺方法存在的主要问题为:
(1)可以使用的成形材料有限,目前主要采用环氧或丙烯酸光敏树脂;
(2)由于材料的局限,成形出的原型件力学和机械性能较差,容易产生变形,影响了后续的模具制造精度;
(3)SL方法主要采用激光作为成形能源,而激光系统(包括激光器、冷却器、电源和外光路)价格及维护费用昂贵,加之树脂材料也较贵,所以制作成本较高。
而FDM存在的问题主要是:
(1)由于采用液态丝材冷却凝固成形,而丝材凝固时的直径很难精确控制,所以成形出的原型件精度和表面质量较差;
(2)某些结构不易生成。
综上所述,不同的RPM工艺方法各有千秋,但在成形精度、效率、成本、材料以及原型件性能等方面均存在这样或那样的局限性.然而随着RPM技术应用的深入,工业用户已越来越不满足于RPM目前的制作能力和原型件性能,提出了更高的要求;另一方面,随着CNC加工中心和高速加工技术飞速发展,传统制造技术的精度、表面质量、效率成本等得到很大改善,也向RPM提出了新的挑战。因此,RPM在成形精度、效率、成本、材料以及原型件性能等方面的局限性日趋突出,已经成为目前该技术的主要瓶颈问题。
发明内容
本发明的目的在于提供一种光固化与熔融沉积集成的复合快速成形方法和装置,能够有效集成典型的熔融沉积成形方法FDM和典型的光固化成形方法SL,通过二者的优势互补,实现高性能原型件的复合成形。
本发明要解决的技术问题是:
目前的快速成形技术具有技术初期的典型特点,即每一种成形方法均有其对应的成形设备,硬件结构自成体系、相对封闭,而且FDM和SL的实现机构有很大的差异性,原有的机构体系无法实现不同成形方法的互补集成,所以要实现不同快速成形方法FDM和SL的复合成形,必须解决以下技术问题:
(1)可兼容FDM和SL两种快速成形方法的硬件体系结构;
(2)FDM和SL两种方法集成的复合成形工艺及其控制方法。
为了达到上述目的,本发明的构思是:
本发明提出不同快速成形工艺过程集成的复合成形思想,它不同于FDM和SL等快速成形单体技术,也不同于以往的快速成形集成方法,采用FDM和SL两种工艺共同制作三维实体,着眼于制作工艺过程的集成,由于各快速成形方法都基于相同的分层/累加成形原理,故集成成本低,易于实现。
(1)复合成形新结构
通过对FDM和SL各成形方法的功能需求分析,评估各成形机构功能模块的通用度,提出了复合成形的新体系结构,主要由三维运动系统和成形自动切换系统组成。
SL与FDM均需三维运动系统,但采用不同的机构实现:SL通过振镜转动实现X-Y平面光路扫描,基础平台实现Z向升降运动,如图1所示;FDM将喷头安装在X-Y平面运动机构上,喷头可实现X-Y平面扫描运动和Z向升降运动,基础平台也可做Z向升降运动,如图2所示。二者原有机构很难直接集成。
如果将SL基于光学器件的刚性光路系统改造为基于光纤的柔性光路系统,则二者的运动系统可统一成X-Y平面移动机构和Z向升降平台组成的三维运动系统,唯一区别是移动机构上夹持的成形头不同,这样可方便、低成本地实现二者集成。
本发明由X-Y平面运动机构和Z向升降基础平台组成统一的三维运动系统,并将SL基于光学器件的刚性光路成形系统改造为SL柔性成形头系统,该柔性成形头系统包含成形光源、光纤组成的柔性光路系统和光聚焦头,从而使上述三维运动系统可兼容FDM与SL,如图3所示。
为了实现FDM与SL的复合成形,上面的SL柔性成形头和FDM喷头必须可自由切换,因此本发明在X-Y平面运动机构上安装一个启闭式夹持机构形成成形头自动切换系统,如图4所示。该夹持机构可以夹持或放下FDM喷头,也可夹持或放下SL成形头,从而实现不同成形头的自由切换;该夹持机构可以在X-Y平面上实现任意轨迹运动,实现FDM和SL工艺要求的扫描运动。
(2)复合成形工艺及控制方法
和SL及FDM工艺一样,复合成形工艺首先需要建立目标实体原型件的三维CAD模型,并对该模型在Z轴方向进行分层处理,得到由一系列的X-Y二维平面组成的分层轮廓数据。
其次,对于SL和FDM工艺而言,都需要进行分层轮廓的内部填充,其中FDM只需进行X方向或Y方向的单向填充,而SL则需进行X方向-Y方向的双向填充以形成十字网格。所以,复合成形工艺需要根据SL和FDM各自的工艺特点,即FDM适宜成形内部大块区域,SL适宜成形外部精细轮廓,按照合适的区域划分策略,把每层轮廓内部区域划分为SL填充区域和FDM填充区域,如图5所示;然后针对SL填充区域生成双向填充线数据,针对FDM填充区域生成单向填充线数据。
将上面生成的实体分层轮廓数据和内部填充线数据转化成数控数据,即可驱动快速成形执行机构进行分层制作。
在制作过程中,通过合理的成形过程控制方法保证复合成形工艺流程的实现。首先确定每层制作中SL和FDM工艺的启动次序,例如每层先进行FDM制作,然后进行SL制作;然后采用图6所示的控制系统,根据该次序控制成形头自动切换系统选取第一种成形头成形该区域薄层;再控制成形头自动切换系统切换第二种成形头成形该区域薄层;在成形不同区域之间的界面时,通过相应的控制策略来调节热量输出,以增强界面的再交联;如此分区域成形一层实体薄片后,控制Z向升降平台运动,制作下一层;逐层复合成形,最后制作出要求的三维实体。
根据上述发明构思,本发明采用的技术方案是:
一种光固化与熔融沉积集成的复合快速成形方法,包括光固化成形法和熔融沉积成形法,其特征在于由所述的光固化成形法进行成形外部精细的轮廓,而由所述的熔融沉积成形法进行成形内部大块区域。
上述的复合快速成形方法的操作步骤如下:
(1)建立数控数据:
①建立目标实体原型件的三维CAD模型;
②对上述模型进行分层处理,得到由一系列的X-Y二维平面组成的分层轮廓数据;
③对各分层轮廓划分出外部精细轮廓区域和内部大块填充区域;
④对上述的外部精细轮廓区域给出X方向-Y方向的双向十字形网格填充线数据,而对上述的内部大块填充区域给出X方向或Y方向的单向填充线数据。
(2)制作过程:据上述数控数据,作如下成形制作:
①在基础平台上,先从最下层开始,先采用熔融沉积法对最下层的内部大块填充区域进行熔融沉积成形,然后使光固化液体与已填充区域齐平,在光固化液体中对最下层的外部精细轮廓区域进行光固化成形;
②对最下第二层先采用熔融沉积法对该层的内部大块填充区进行熔融沉积成形,然后下降-上升基础平台,使光固化液体与新的已填充区域齐平,在光固化液体中对最下第二层的外部精细轮廓区域进行光固化成形。以上述方式逐层进行成形直至最上层而完成整体成形。
一种上述光固化与熔融沉积集成的复合快速成形方法用的装置,包括一个光固化成形系统和一个熔融沉积成形系统,其特征在于所述的光固化成形系统与熔融沉积成形系统之间有一个成形头自动切换系统,由一个微机控制系统协同数控光固化成形系统和熔融沉积成形系统以及该两系统之间成形头的自动切换。
上述的熔融沉积成形系统的结构是:有一个成形槽12,其上设置X轴运动支架9,X轴运动支架9上设置Y轴运动支架8,在Y轴运动支架上设置成形头自动切换系统7,一个熔融丝材送丝机构6将熔融丝材5送至熔融沉积成形喷头4,该成形喷头4未工作时处于成形槽12上的搁置位置14上,由微机控制系统控制而工作时自动切换到成形头自动切换系统7的启闭夹子中;所述的光固化成形系统的结构是:在上述的成形槽12中盛有光固化液15,成形槽12中设有供分层成形用的升降基础平台11,一个光源1经光纤光路系统2连接光聚焦头3,该光聚焦头未工作时处于成形槽12上的搁置位置13上,由微机控制系统控制而工作时自动切换到成形头自动切换系统7的启闭夹子中。
本发明与已有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
从成形机理来看,光固化(SL)方法采用激光等紫外光成形,而熔融沉积方法(FDM)采用热能成形,前者成形精度高,制作细节能力强,原型件表面质量好,但可用材料有限,制件力学和机械性能差,而且成本较高;后者可选用材料范围广,原型件性能好,制作成本也较低,但精度和表面质量较差。这两类成形工艺在制作能力和制件性能方面各有所长,互补性强,因此本发明采用集成方法,与原有的SL和FDM工艺方法相比,具有以下优点:(1)用FDM的低成本材料成形内部大块区域,用SL光敏树脂材料成形外部精细轮廓,可以有效降低材料成本;(2)由于复合成形过程的大部分时间采用FDM常规热源,大大降低了昂贵的激光器使用时间,所以有效降低了设备使用成本;(3)由于FDM成形效率较高,所以原型件的复合成形效率比SL工艺方法有大幅提高;(4)由于外部轮廓采用SL成形,而成形精度较差的FDM材料局限在原型件内部,所以原型件保持了SL的原有精度和表面质量,而比FDM提高很多;(5)由于原型件内部主要采用性能较好的FDM材料,所以整个原型件的力学和机械性能比SL有很大改善;(6)虽然在原型件内部不同成形区域结合界面处的材料在复杂的物理、化学反应下形成的精度、粗糙度很差,但由于局限在原型件的内部,不影响轮廓表面质量;(7)由于SL和FDM工艺采用不同的材料成形,所以这种复合成形方法自然实现了材料的集成,可以制作多材料相原型件,并可通过材料的选择实现其性能的分区域定制,这是快速成形方法与其它传统工艺(如车削、铣削、磨削等)集成所不能实现的。
综上所述,本发明可集成SL和FDM优点,在精度、效率、成本、原型件表面质量及性能等多方面优势互补,从而实现RPM技术综合性能的整体提高,高效低成本地制作高性能原型件。
本发明适用于检测用具、模具、美学制品、医学机械等精密件的制造。
附图说明
图1是光固化成形的原理图。
图2是熔融沉积成形原理图。
图3是本发明的复合成形装置的基本结构示意图。
图4是成形头自动切换系统结构示意图。
图5是成形分层截面内部区域划分示意图。
图6是微机控制系统原理框图。
具体实施方式
本发明的一个优选实施例是:
本光固化与熔融沉积集成的复合快速成形装置的结构:
本项目在数控加工中心的框架下集成已有的光固化SL(原理如图1所示)和熔融沉积成形FDM(原理如图2所示)工艺,开发在基础平台上按要求图形通过连续成形多层材料来制作预定形状的三维物理实体的方法,基本实现机构包含一个基座平台、X-Y平面运动机构、FDM成形头系统、SL成形头系统、FDM成形头与SL成形头的自动切换系统、计算机控制系统,如图3和图6所示。
(1)图3中,SL成形头系统包含光源1、光纤组成的光路系统2、光聚焦头3,其中光聚焦头待用时放置于指定初始位置13,成形槽12中盛有光固化液15,即光敏树脂,成形槽12中设置升降基础平台11,在该基础平台11上成形三维实体原型件10;
(2)图3中,FDM成形头系统包含FDM成形喷头4、FDM成形丝材5、FDM丝材送丝机构6,其中FDM成形喷头待用时放置于指定初始位置14;
(3)图3中,X-Y平面运动机构包含由电机驱动的X轴运动支架9、安装于X轴运动支架上由电机驱动的Y轴运动支架8,该机构可实现二维平面运动;
(4)图3中的成形头自动切换系统7如图4所示,由夹持机构和控制夹持机构开合的继电器组成,继电器受控于计算机控制系统。夹持机构处于夹持状态时继电器处于失电状态,夹持机构通过弹簧夹紧成形头;计算机控制继电器得电时,继电器强迫夹持机构打开处于释放状态。图3中成形头自动切换系统7安装于Y轴运动支架8上X-Y轴交点处,它通过X-Y平面运动机构可以在X-Y平面上实现任意轨迹运动。计算机控制系统可控制X-Y平面运动机构带动成形头自动切换系统7移动到初始位置13夹持或放下SL光聚焦头3,或移动到初始位置14夹持或放下FDM成形喷头4,从而实现夹子上所夹持成形头的自动切换;
(5)图3中,基础平台11包含设定尺寸的平面托板及驱动其做Z轴升降运动的电机,平面托板位于成形槽12中,通过升降运动与上面夹持机构上夹持的成形头保持设定间距。当夹子上夹持FDM成形喷头4时,FDM成形喷头可随X-Y平面运动机构按要求图形实现与基础平台11的相对平面运动,平面托板接受FDM成形喷头落下的流体材料,该流体材料自然冷却凝固成形一层实体薄片;当夹子上夹持SL光聚焦头3时,光源1发出的光线经光纤光路系统2传输到光聚焦头3形成聚焦光斑,该光斑可随X-Y平面运动机构按要求图形实现与基础平台11的相对平面运动,移动的光斑照射到平面托板上承载的光敏树脂材料液面上使其固化,从而成形一层实体薄片;
(6)计算机控制系统如图6所示,由计算机及接口电路实现,包含X-Y平面扫描控制、Z轴升降控制、成形头自动切换控制、FDM丝材送丝机构控制及其它辅助控制模块。
工艺实现步骤
(1)首先对目标实体原型件的三维CAD模型在高度方向进行分层处理,将三维模型转化成一系列的X-Y二维平面,形成三维实体的分层轮廓数据;
(2)针对每层的轮廓数据,按照合适的区域划分策略,把每层轮廓内部区域划分为SL填充区域和FDM填充区域;
合适的区域划分策略举例如下,但不排除其它方法:可以采用等距线方法,即对本层所有轮廓线向实体方向求等距线,等距线相对于轮廓线的偏移距离范围可以为1~5mm,则等距线与轮廓线之间的区域为SL填充区域,等距线之间的区域为FDM填充区域,如图5所示;也可以采用简单分区法,即针对本层所有轮廓线向实体方向作辅助矩形,矩形每条边与该轮廓线X、Y方向的极值点保持设定距离,该设定距离范围可以为1~5mm,则矩形与轮廓线之间的区域为SL填充区域,矩形之间的区域为FDM填充区域。
(3)针对SL填充区域生成X向和Y向的双向填充线数据,针对FDM填充区域生成X向或Y向的单向填充线数据;
(4)将分层轮廓数据和轮廓内部填充线数据转化成数控文件;
(5)图6计算机控制系统控制图3中的基础平台11上升一定高度,上升高度等于分层厚度(也就是FDM与SL的统一成形层厚),使当前层的制作底面与成形槽的光敏树脂液面齐平;
(6)图6计算机控制系统控制图3中的成形头自动切换系统7移动到初始位置14,夹持FDM成形喷头4,选中FDM成形头系统;然后根据FDM填充区域的填充线数据,控制X-Y平面运动机构实现要求的扫描运动,FDM成形喷头4就可在基础平台11上成形出该层FDM填充区域的实体薄片;最后计算机控制系统控制成形头自动切换系统返回初始位置14,放下FDM成形喷头4,完成本层FDM成形;
(7)图6计算机控制系统控制图3中的基础平台11下降一定高度,例如2倍成形层厚,使已成形的实体部分完全浸入光敏树脂液面下,保证树脂流平并充满未成形区域;然后控制图3中的基础平台11上升一定高度,例如一个成形层厚,使已成形的FDM实体顶部与光敏树脂液面齐平;
(8)图6计算机控制系统控制图3中的成形头自动切换系统7移动到初始位置13,夹持SL光聚焦头3,选中SL成形头系统;然后根据本层轮廓线数据和SL填充区域的填充线数据,控制X-Y平面运动机构实现要求的扫描运动,SL光聚焦头3就可在基础平台11上成形出该层SL填充区域的实体薄片;最后计算机控制系统控制成形头自动切换系统返回初始位置13,放下SL光聚焦头3,完成本层SL成形;
(9)重复(6)~(8)步骤,用同样方法制作下一层实体薄片;逐层复合成形,最后制作出要求的三维实体原型件10。

Claims (4)

1.一种光固化与熔融沉积集成的复合快速成形方法,包括光固化成形法和熔融沉积成形法,其特征在于由所述的光固化成形法进行成形外部精细的轮廓,而由所述的熔融沉积成形法进行成形内部大块区域。
2.根据权利要求1所述的光固化与熔融沉积集成的复合快速成形方法,其特征在于操作步骤如下:
(1)建立数控数据:
①建立目标实体原型件的三维CAD模型;
②对上述模型进行分层处理,得到由一系列的X-Y二维平面组成的分层轮廓数据;
③对各分层轮廓划分出外部精细轮廓区域和内部大块填充区域;
④对上述的外部精细轮廓区域给出X方向-Y方向的双向十字形网格填充线数据,而对上述的内部大块填充区域给出X方向或Y方向的单向填充线数据。
(2)制作过程:据上述数控数据,作如下成形制作:
①在基础平台上,先从最下层开始,先采用熔融沉积法对最下层的内部大块填充区域进行熔融沉积成形,然后使光固化液体与已填充区域齐平,在光固化液体中对最下层的外部精细轮廓区域进行光固化成形;
②对最下第二层先采用熔融沉积法对该层的内部大块填充区进行熔融沉积成形,然后下降一上升基础平台,使光固化液体与新的已填充区域齐平,在光固化液体中对最下第二层的外部精细轮廓区域进行光固化成形。
以上述方式逐层进行成形直至最上层而完成整体成形。
3.一种权利要求1所述光固化与熔融沉积集成的复合快速成形方法用的装置,包括一个光固化成形系统和一个熔融沉积成形系统,其特征在于所述的光固化成形系统与熔融沉积成形系统之间有一个成形头自动切换系统,由一个微机控制系统协同数控光固化成形系统和熔融沉积成形系统以及该两系统之间成形头的自动切换。
4.根据权利要求3所述的光固化与熔融沉积集成的复合快速成形装置,其特征在于所述的熔融沉积成形系统的结构是:有一个成形槽(12)其上设置X轴运动支架(9),X轴运动支架(9)上设置Y轴运动支架(8),在Y轴运动支架上设置成形头自动切换系统(7),一个熔融丝材送丝机构(6)将熔融丝材(5)送至熔融沉积成形喷头(4),该成形喷头(4)未工作时处于成形槽(12)上的搁置位置(14)上,由微机控制系统控制而工作时自动切换到成形头自动切换系统(7)的启闭夹子中;所述的光固化成形系统的结构是:在上述的成形槽(12)中盛有光固化液体(15),成形槽(12)中设有供分层成形用的升降基础平台(11),一个光源(1)经光纤光路系统(2)连接光聚焦头(3),该光聚焦头未工作时处于成形槽(12)上的搁置位置(13)上,由微机控制系统控制而工作时自动切换到成形头自动切换系统(7)的启闭夹子中。
CNB200510026233XA 2005-05-27 2005-05-27 光固化与熔融沉积集成的复合快速成形方法和装置 Expired - Fee Related CN1295071C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200510026233XA CN1295071C (zh) 2005-05-27 2005-05-27 光固化与熔融沉积集成的复合快速成形方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200510026233XA CN1295071C (zh) 2005-05-27 2005-05-27 光固化与熔融沉积集成的复合快速成形方法和装置

Publications (2)

Publication Number Publication Date
CN1701944A true CN1701944A (zh) 2005-11-30
CN1295071C CN1295071C (zh) 2007-01-17

Family

ID=35631973

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200510026233XA Expired - Fee Related CN1295071C (zh) 2005-05-27 2005-05-27 光固化与熔融沉积集成的复合快速成形方法和装置

Country Status (1)

Country Link
CN (1) CN1295071C (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548736A (zh) * 2009-09-30 2012-07-04 斯特拉塔西斯公司 基于挤出的数字制造系统中使用的带状液化器
CN103171151A (zh) * 2013-03-24 2013-06-26 韩少卿 一种3d打印成形方法以及装置
CN103182781A (zh) * 2011-12-29 2013-07-03 上海富奇凡机电科技有限公司 单喷头熔融挤压式三维打印机
CN103231513A (zh) * 2013-04-01 2013-08-07 杭州笔水画王电子科技有限公司 3d打印方法及3d打印机
CN103231514A (zh) * 2013-04-01 2013-08-07 杭州笔水画王电子科技有限公司 3d打印机
CN103371874A (zh) * 2013-07-02 2013-10-30 庆达科技股份有限公司 快速成型植牙辅助器的制造方法
CN103878981A (zh) * 2013-07-31 2014-06-25 磐纹科技(上海)有限公司 闭环控制熔融沉积成型高速3d打印机及闭环控制方法
CN104401000A (zh) * 2014-05-31 2015-03-11 福州大学 一种基于3d技术的导光板制备方法
CN104582971A (zh) * 2012-08-16 2015-04-29 斯特拉塔西斯公司 用于与增材制造系统一起使用的打印头喷嘴
CN106003731A (zh) * 2016-07-07 2016-10-12 西安鑫磊三维立体打印科技有限公司 一种制备隐形矫正中的阳模的制备方法
CN106313529A (zh) * 2015-06-15 2017-01-11 三纬国际立体列印科技股份有限公司 3d打印机的低熔点材料打印方法
CN106362209A (zh) * 2016-09-19 2017-02-01 西安交通大学 一种光固化成形及电解还原制备个性化多孔植入物的方法
CN106541570A (zh) * 2016-12-20 2017-03-29 北京化工大学 一种内外复合结构制品的快速成型装置
CN106662439A (zh) * 2014-06-05 2017-05-10 联邦科学和工业研究组织 增材制造中变形的预测及最小化
CN106738908A (zh) * 2017-01-24 2017-05-31 厦门达天电子科技有限公司 一种快速多烧结增材制造设备及方法
CN106944622A (zh) * 2017-04-14 2017-07-14 华南理工大学 一种激光选区熔化与送丝复合多材料成型装置与成型方法
CN108527851A (zh) * 2018-02-26 2018-09-14 南昌大学 一种短纤维和光敏树脂光固化复合成形装置
CN110177674A (zh) * 2016-11-16 2019-08-27 罗伯特·博世有限公司 具有提高的制造对象强度的3d打印方法
CN111531881A (zh) * 2020-04-03 2020-08-14 湖南大学 一种多方式多材料3d打印设备
CN111531880A (zh) * 2020-04-03 2020-08-14 湖南大学 一种多方式多材料光固化3d打印设备
CN112590201A (zh) * 2020-10-22 2021-04-02 南京航空航天大学 一种基于面曝光复合多材料能场约束件增材制造装置及方法
WO2022222184A1 (zh) * 2021-04-21 2022-10-27 南京航空航天大学 一种基于dlp和fdm的复合多材料增材制造装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2277632A1 (en) * 2009-07-21 2011-01-26 Fundació Privada Ascamm Device for selectively depositing molten plastic materials
TWI661929B (zh) * 2016-07-19 2019-06-11 綠點高新科技股份有限公司 三維物件的製作方法及製作該三維物件的三維列印裝置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575330A (en) * 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
US5121329A (en) * 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
CN1261293C (zh) * 2004-11-11 2006-06-28 西安交通大学 一种用于光固化快速成型工艺的树脂涂层装置

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548736B (zh) * 2009-09-30 2014-11-05 斯特拉塔西斯公司 基于挤出的数字制造系统中使用的带状液化器
CN102548736A (zh) * 2009-09-30 2012-07-04 斯特拉塔西斯公司 基于挤出的数字制造系统中使用的带状液化器
CN103182781A (zh) * 2011-12-29 2013-07-03 上海富奇凡机电科技有限公司 单喷头熔融挤压式三维打印机
CN103182781B (zh) * 2011-12-29 2016-01-13 上海富奇凡机电科技有限公司 单喷头熔融挤压式三维打印机
CN104582971A (zh) * 2012-08-16 2015-04-29 斯特拉塔西斯公司 用于与增材制造系统一起使用的打印头喷嘴
CN104582971B (zh) * 2012-08-16 2017-03-08 斯特拉塔西斯公司 用于与增材制造系统一起使用的打印头喷嘴
CN103171151A (zh) * 2013-03-24 2013-06-26 韩少卿 一种3d打印成形方法以及装置
CN103231514B (zh) * 2013-04-01 2015-03-18 杭州笔水画王电子科技有限公司 3d打印机
CN103231513B (zh) * 2013-04-01 2015-03-18 杭州笔水画王电子科技有限公司 3d打印方法及3d打印机
CN103231514A (zh) * 2013-04-01 2013-08-07 杭州笔水画王电子科技有限公司 3d打印机
CN103231513A (zh) * 2013-04-01 2013-08-07 杭州笔水画王电子科技有限公司 3d打印方法及3d打印机
CN103371874A (zh) * 2013-07-02 2013-10-30 庆达科技股份有限公司 快速成型植牙辅助器的制造方法
CN103878981A (zh) * 2013-07-31 2014-06-25 磐纹科技(上海)有限公司 闭环控制熔融沉积成型高速3d打印机及闭环控制方法
CN103878981B (zh) * 2013-07-31 2016-03-23 磐纹科技(上海)有限公司 闭环控制熔融沉积成型高速3d打印机及闭环控制方法
CN104401000A (zh) * 2014-05-31 2015-03-11 福州大学 一种基于3d技术的导光板制备方法
CN106662439B (zh) * 2014-06-05 2019-04-09 联邦科学和工业研究组织 增材制造中变形的预测及最小化
US10525630B2 (en) 2014-06-05 2020-01-07 The Boeing Company Distortion prediction and minimisation in additive manufacturing
CN106662439A (zh) * 2014-06-05 2017-05-10 联邦科学和工业研究组织 增材制造中变形的预测及最小化
CN106313529B (zh) * 2015-06-15 2018-08-31 三纬国际立体列印科技股份有限公司 3d打印机的低熔点材料打印方法
CN106313529A (zh) * 2015-06-15 2017-01-11 三纬国际立体列印科技股份有限公司 3d打印机的低熔点材料打印方法
CN106003731A (zh) * 2016-07-07 2016-10-12 西安鑫磊三维立体打印科技有限公司 一种制备隐形矫正中的阳模的制备方法
CN106362209A (zh) * 2016-09-19 2017-02-01 西安交通大学 一种光固化成形及电解还原制备个性化多孔植入物的方法
CN106362209B (zh) * 2016-09-19 2019-05-03 西安交通大学 一种光固化成形及电解还原制备个性化多孔植入物的方法
CN110177674A (zh) * 2016-11-16 2019-08-27 罗伯特·博世有限公司 具有提高的制造对象强度的3d打印方法
CN106541570B (zh) * 2016-12-20 2019-07-12 北京化工大学 一种内外复合结构制品的快速成型装置
CN106541570A (zh) * 2016-12-20 2017-03-29 北京化工大学 一种内外复合结构制品的快速成型装置
CN106738908A (zh) * 2017-01-24 2017-05-31 厦门达天电子科技有限公司 一种快速多烧结增材制造设备及方法
CN106944622A (zh) * 2017-04-14 2017-07-14 华南理工大学 一种激光选区熔化与送丝复合多材料成型装置与成型方法
CN108527851A (zh) * 2018-02-26 2018-09-14 南昌大学 一种短纤维和光敏树脂光固化复合成形装置
CN111531881A (zh) * 2020-04-03 2020-08-14 湖南大学 一种多方式多材料3d打印设备
CN111531880A (zh) * 2020-04-03 2020-08-14 湖南大学 一种多方式多材料光固化3d打印设备
CN112590201A (zh) * 2020-10-22 2021-04-02 南京航空航天大学 一种基于面曝光复合多材料能场约束件增材制造装置及方法
CN112590201B (zh) * 2020-10-22 2022-04-19 南京航空航天大学 一种基于面曝光复合多材料能场约束件增材制造装置及方法
WO2022222184A1 (zh) * 2021-04-21 2022-10-27 南京航空航天大学 一种基于dlp和fdm的复合多材料增材制造装置及方法

Also Published As

Publication number Publication date
CN1295071C (zh) 2007-01-17

Similar Documents

Publication Publication Date Title
CN1295071C (zh) 光固化与熔融沉积集成的复合快速成形方法和装置
Gibson Rapid Prototyping: a tool for product development
US20020149137A1 (en) Layer manufacturing method and apparatus using full-area curing
Beaman et al. Solid freeform fabrication: a new direction in manufacturing
CN103350508A (zh) 一种3d快速成型打印系统及方法
CN1739946A (zh) 三维打印成型设备及方法
CN111531876B (zh) 一种可实现混合材料用的多轴光固化3d打印装置及方法
CN106111985A (zh) 群扫描激光选择性烧结或固化方法及其3d成型机
KR101954438B1 (ko) 3 차원 인쇄 장치
CN101176923B (zh) 菲涅尔结构微光学元件的加工装置
CN210305757U (zh) 一种基于动态成形缸的增材制造装置
CN102350729B (zh) 一种非均质实体的制造方法及设备
CN107498856A (zh) 一种光固化树脂基复合材料零(部)件的增材制造方法及系统
CN111531875B (zh) 一种可调光源波长的高精度大面积快速3d打印装置及方法
CN1060698C (zh) 可完成多种快速原型制造工艺的多功能设备
JPH09277384A (ja) 三次元構造体の製造装置と製造方法
JPH10119136A (ja) 選択光源を用いた光造形法および該造形法によって得られる立体造形物
CN1304148C (zh) 粉末材料的选区激光汽化烧结快速薄壁成型方法
CN101344723B (zh) 微细光固化厚膜逐层自动成型方法及装置
Stender et al. From Lab to Fab—High‐Precision 3D Printing: Towards high throughputs and industrial scalability
CN103358553A (zh) 超声聚焦三维快速成型方法及装置
JPH08156109A (ja) 光造形法
CN1088640C (zh) 快速原型方法
CN111421816B (zh) 一种树脂材料匹配相应光源用的多轴光固化3d微纳加工设备及其方法
CN111421805B (zh) 一种可实现同步打印的多轴多材料多光源光固化3d快速打印装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070117