WO2022222184A1 - 一种基于dlp和fdm的复合多材料增材制造装置及方法 - Google Patents

一种基于dlp和fdm的复合多材料增材制造装置及方法 Download PDF

Info

Publication number
WO2022222184A1
WO2022222184A1 PCT/CN2021/091529 CN2021091529W WO2022222184A1 WO 2022222184 A1 WO2022222184 A1 WO 2022222184A1 CN 2021091529 W CN2021091529 W CN 2021091529W WO 2022222184 A1 WO2022222184 A1 WO 2022222184A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
fdm
optical
dlp
mechanical
Prior art date
Application number
PCT/CN2021/091529
Other languages
English (en)
French (fr)
Inventor
沈理达
吴海东
杨钰隆
刘富玺
张寒旭
谢德巧
赵剑峰
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2022222184A1 publication Critical patent/WO2022222184A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/214Doctor blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/236Driving means for motion in a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials

Definitions

  • the invention belongs to the technical field of three-dimensional printing, and in particular relates to a composite multi-material additive manufacturing device and method based on DLP and FDM.
  • the invention provides a composite multi-material additive manufacturing device and method based on DLP and FDM.
  • the actions between the processes are continuous, the forming time is saved, the cost is reduced, the material can be switched by a simple processing method, the equipment space is effectively saved, and the realization of Multi-material composite additive manufacturing has good application prospects in multi-material composite processing.
  • the present invention adopts the following technical solutions:
  • a composite multi-material additive manufacturing device based on DLP and FDM including a DLP light-mechanical surface exposure part on the upper layer, an FDM two-dimensional mobile switchable printing nozzle system on the middle layer, and a liftable mobile printing platform system on the lower layer.
  • the upper, middle and lower steps are connected by mechanical parts;
  • the DLP photomechanical surface exposure part of the upper layer includes: the exposure device motor 21 is fixed on the side support plate 25 through the exposure device motor base 16, the toothed connecting plate is fixed on the moving connecting plate, and the toothed pressing plate 17 is used through the belt to use the exposure device motor. 21 for transmission, the motion connecting plate is connected with the two optical-mechanical platform connecting ribs 22, the optical-mechanical platform connecting ribs 22 are connected with the slider connecting plate 18 and the optical-mechanical platform 23, the slider connecting plate 18 is connected with the slider, the sliding The block cooperates with the guide rail 19 installed on the side support plate to realize the longitudinal movement of the platform, the surface exposure system 6 is installed on the optical-mechanical platform 23, and the optical-mechanical platform 23 and the optical-mechanical platform connecting rib 22 move together;
  • the surface exposure system 6 includes: an optical-mechanical fixing plate 1, an optical-mechanical horizontal adjustment plate 2, an optical-mechanical 3, an optical-mechanical longitudinal adjustment plate 4, and an optical-mechanical mounting base 5; the optical-mechanical 3 is fixedly installed on the optical-mechanical fixing plate 1, The optical-mechanical fixing plate 1 is installed on the optical-mechanical horizontal adjustment plate 2, the optical-mechanical horizontal adjustment plate 2 is installed on the side of the optical-mechanical longitudinal adjustment plate 4, and the bottom of the optical-mechanical longitudinal adjustment plate 4 is installed on the upper surface of the optical-mechanical installation fixing base 5;
  • the FDM two-dimensional movable and convertible printing nozzle system in the middle layer includes: the top frame 12 is fixed on the bottom frame 33 through four column brackets 15 to ensure a certain rigidity, and the x-direction motor 14 provides power for the movement of the FDM printing device in the x and y directions. And the y-direction motor 44 is connected to the top frame 12 through the motor base 13, and the x-direction guide rail 20 is installed on the top frame 12 and is equipped with the corresponding x-direction slider 10, and the y-direction guide rail 36 is provided at the connection of the x-direction slider 10.
  • the y-direction guide rails 36 are equipped with corresponding y-direction sliders 37, and the FDM two-dimensional moving convertible printing nozzles are installed on the y-direction sliders 37 to realize the two-dimensional movement of the FDM two-dimensional printing nozzles in the horizontal direction.
  • the FDM two-dimensional movable and convertible printing nozzles include: a nozzle converter 39 and a detachable nozzle 41; Distributed and installed on the nozzle changer 39, each nozzle can face the forming substrate 28 when it is switched to the processing position;
  • the elevating mobile printing platform system includes: the elevating platform motor 24 that provides power for the movement of the elevating platform is connected with the side support plate 25 through the elevating platform motor base 26, and the ball screw transmission device 7 forms a motion relationship with the motor 24, Drive the printing platform to achieve longitudinal movement;
  • the printing platform includes: a ball screw transmission device 7, a screw nut coupling block 8, a motion connection plate 9, a forming substrate pull rod a27, a forming substrate pull rod b29, and a forming substrate 28;
  • the pull rod b29 is connected to the motion connecting plate 9, the motion connecting plate 9 is connected with the ball screw transmission device 7 through the screw nut connecting block 8, and the lifting platform motor 24 drives the ball screw transmission device 7 to move, so that the movement is transmitted and finally
  • the longitudinal movement of the forming substrate 28 is realized, the screw nut connecting block 8 and the moving connecting plate 9 are fixedly connected by bolts, and the moving connecting plate 9, the forming substrate pulling rod a27 and the forming substrate pulling rod b29 form a fixed connection in turn to ensure the overall rigidity. There will be no obvious shaking or tilting during operation.
  • the forming base plate 28 is fixedly connected with the forming base plate pull rod b29 through bolts. precision;
  • the scraper 42 is installed on the scraper fixing plate, and the scraper fixing plate is installed on the scraper guide rail 43 with the slider.
  • the scraper motor 34 that provides power for the scraper drives the scraper 42 to move through the belt drive;
  • the material liquid tank 30 is fixed by three long bolts On the bottom trough base 32, the material liquid tank is leveled horizontally by adjusting the tightening degree of the three bolts.
  • the upper surface of the material liquid tank 30 should be slightly higher than the upper surface of the forming substrate 28 to ensure that the scraper 42 can be smoothly
  • the material in the liquid tank is scraped onto the molding substrate 28 for photo-curing treatment.
  • the tank base 32 is installed on the bottom plate frame 33 through four material tank base columns 31 to ensure overall stability; the two lower reinforcement plates 35 and Two support rods 45 connect the bottom plate frame 33 and the bottom plate 46 together to provide support for the entire device.
  • the surface exposure system 6 adopts the DLP UV digital projection technology to selectively project the surface light source into the material liquid tank 30 to solidify and form the lower layer; switch between different wire materials;
  • the material liquid tank 30 is equipped with heating and cooling devices to ensure that the temperature in the material liquid tank meets the requirements.
  • a multi-material composite additive manufacturing method using the above device comprising the following steps:
  • the preset information in step (2) includes: material selection, positioning, and placement mode
  • the liquid photocurable material contained in the liquid tank is a liquid polymer material added with ceramics, metal particles or fibers as a strengthening phase, and the strengthening phase ratio is not more than 15%;
  • the nozzle converter 19 can be rotated according to actual needs to convert different wire materials, so as to realize the diversity of processing materials.
  • the present invention provides a composite multi-material additive manufacturing device and method based on DLP and FDM. Compared with the prior art, the present invention has the following advantages:
  • the method of the present invention is beneficial to the development of composite multi-material additive manufacturing equipment, provides an integrated manufacturing method for realizing composite multi-material forming, and solves the problem that traditional processing methods are difficult to achieve multi-material integrated gradient processing;
  • the present invention uses DLP surface exposure light curing technology, combined with FDM fused deposition technology to complete composite additive manufacturing of multiple materials, using surface exposure technology and fused deposition technology molding materials as the matrix, by integrating the two technical means into the same
  • the machine is used to realize the integration of composite processing of various materials
  • the present invention adopts simple switching of processing methods, realizes multi-material composite processing, effectively saves equipment space, and operates continuously between processes, saving forming time and reducing It has a good application prospect in multi-material composite processing and so on, which opens up a new research field for additive manufacturing.
  • FIG. 1 is a model diagram of a device structure in an embodiment of the present invention, wherein a is a front view, and b is a side view;
  • FIG. 2 is a schematic diagram of the upper layer structure in the embodiment of the present invention, wherein a is a front view, and b is a left view;
  • FIG. 3 is a schematic diagram of a middle-layer nozzle converter in an embodiment of the present invention.
  • Fig. 4 is the schematic diagram of middle and lower layers in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of surface exposure processing in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a fused deposition replacement process in an embodiment of the present invention.
  • 1 is the optical-mechanical fixing plate
  • 2 is the optical-mechanical horizontal adjustment plate
  • 3 is the optical-mechanical
  • 4 is the optical-mechanical longitudinal adjustment plate
  • 5 is the optical-mechanical installation fixing base
  • 6 is the surface exposure system
  • 7 is the ball screw Transmission device
  • 8 is the screw nut connection block
  • 9 is the motion connection block
  • 10 is the x-direction slider
  • 11 is the connecting plate
  • 12 is the top frame
  • 13 is the motor seat
  • 14 is the x-direction motor
  • 15 is the column bracket
  • 16 is the motor base of the exposure device
  • 17 is the toothed platen
  • 18 is the slider connecting plate
  • 19 is the side support plate guide rail
  • 20 is the x-direction guide rail
  • 21 is the exposure device motor
  • 22 is the optical machine platform connecting rib
  • 23 is Optical machine platform
  • 24 is the lifting platform motor
  • 25 is the side support plate
  • 26 is the lifting platform motor base
  • 27 is the forming substrate drawbar a
  • 28 is
  • a composite multi-material additive manufacturing device based on DLP and FDM includes a DLP light-mechanical surface exposure part on the upper layer, an FDM two-dimensional mobile switchable printing nozzle system in the middle layer, and a liftable mobile printing platform on the lower layer.
  • System, the three layers are connected by mechanical components in an upper, middle and lower ladder configuration;
  • the exposure part of the DLP photomechanical surface on the upper layer includes: the exposure device motor 21 is fixed on the side support plate 25 through the exposure device motor base 16 , the toothed connecting plate is fixed on the moving connecting plate, and the toothed pressing plate 17 is used.
  • the motor 21 of the exposure device is used for transmission through the belt.
  • the motion connecting plate is connected with the two optical-mechanical platform connecting ribs 22.
  • the optical-mechanical platform connecting ribs 22 are connected with the slider connecting plate 18 and the optical-mechanical platform 23.
  • the slider connecting plate 18 is connected with The slider is connected, and the slider cooperates with the guide rail 19 installed on the side support plate to realize the longitudinal movement of the platform.
  • the surface exposure system 6 is installed on the optical-mechanical platform 23, and the optical-mechanical platform 23 and the optical-mechanical platform connecting rib 22 are common sports;
  • the surface exposure system 6 includes: an optical-mechanical fixing plate 1, an optical-mechanical horizontal adjustment plate 2, an optical-mechanical 3, an optical-mechanical longitudinal adjustment plate 4, and an optical-mechanical mounting base 5; the optical-mechanical 3 is fixedly installed on the optical-mechanical fixing plate 1, The optical-mechanical fixing plate 1 is installed on the optical-mechanical horizontal adjustment plate 2, the optical-mechanical horizontal adjustment plate 2 is installed on the side of the optical-mechanical longitudinal adjustment plate 4, and the bottom of the optical-mechanical longitudinal adjustment plate 4 is installed on the upper surface of the optical-mechanical installation fixing base 5;
  • the FDM two-dimensional movable and convertible printing nozzle system in the middle layer includes: the top frame 12 is fixed on the bottom frame 33 through four column brackets 15 to ensure a certain rigidity, and the x-direction motor 14 provides power for the movement of the FDM printing device in the x and y directions. And the y-direction motor 44 is connected to the top frame 12 through the motor base 13, and the x-direction guide rail 20 is installed on the top frame 12 and is equipped with the corresponding x-direction slider 10, and the y-direction guide rail 36 is provided at the connection of the x-direction slider 10.
  • the y-direction guide rails 36 are equipped with corresponding y-direction sliders 37, and the FDM two-dimensional moving convertible printing nozzles are installed on the y-direction sliders 37 to realize the two-dimensional movement of the FDM two-dimensional printing nozzles in the horizontal direction.
  • the FDM two-dimensional movable and switchable printing nozzle includes: a nozzle converter 39 and a detachable nozzle 41;
  • the detachable nozzles 41 are evenly distributed and installed on the nozzle converter 39, and each nozzle can face the forming substrate 28 when it is switched to the processing position;
  • the elevating mobile printing platform system includes: the elevating platform motor 24 that provides power for the movement of the elevating platform is connected with the side support plate 25 through the elevating platform motor base 26, and the ball screw transmission device 7 forms a motion relationship with the motor 24, Drive the printing platform to achieve longitudinal movement;
  • the printing platform includes: a ball screw transmission device 7, a screw nut coupling block 8, a motion connection plate 9, a forming substrate pull rod a27, a forming substrate pull rod b29, and a forming substrate 28; the forming substrate 28 is formed by forming
  • the base plate pull rod a27 and the forming base plate pull rod b29 are connected to the motion connection plate 9, and the motion connection plate 9 is connected with the ball screw transmission device 7 through the screw nut connecting block 8, and the lifting platform motor 24 drives the ball screw transmission device 7 to move, Thereby, the movement is transmitted and the longitudinal movement of the forming base plate 28 is finally realized.
  • the screw nut connecting block 8 and the motion connecting plate 9 are fixedly connected by bolts, and the moving connecting plate 9, the forming base plate pull rod a27 and the forming base plate pull rod b29 form a fixed connection in sequence,
  • the forming base plate 28 is fixedly connected with the forming base plate pull rod b29 through bolts, and the forming base plate 28 is adjusted in the horizontal direction by adjusting the tightening degree of the bolts. level, to ensure the accuracy of the printed samples;
  • the scraper 42 is installed on the scraper fixing plate, and the scraper fixing plate is installed on the scraper guide rail 43 with the slider.
  • the scraper motor 34 that provides power for the scraper drives the scraper 42 to move through the belt drive;
  • the material liquid tank 30 is fixed by three long bolts On the bottom trough base 32, the material liquid tank is leveled horizontally by adjusting the tightening degree of the three bolts.
  • the upper surface of the material liquid tank 30 should be slightly higher than the upper surface of the forming substrate 28 to ensure that the scraper 42 can be smoothly
  • the material in the liquid tank is scraped onto the molding substrate 28 for photo-curing treatment.
  • the tank base 32 is installed on the bottom plate frame 33 through four material tank base columns 31 to ensure overall stability; the two lower reinforcement plates 35 and Two support rods 45 connect the bottom plate frame 33 and the bottom plate 46 together to provide support for the entire device.
  • the surface exposure system 6 adopts the DLP UV digital projection technology to selectively project the surface light source into the material liquid tank 30 to solidify and form the lower layer;
  • the material liquid tank 30 is equipped with heating and cooling devices to ensure that the temperature in the material liquid tank meets the requirements.
  • a multi-material composite additive manufacturing method using the above device comprising the following steps:
  • the liquid photocurable material contained in the material liquid tank 30 is a liquid polymer material added with ceramics, metal particles or fibers as a reinforcement phase, and the reinforcement phase ratio does not exceed 15%.
  • the device and method for composite multi-material additive manufacturing based on DLP and FDM of the present invention adopts the combination of DLP light curing and FDM fused deposition modeling technology to realize multi-material composite additive manufacturing processing.
  • the invention effectively utilizes the forming space, the design of the rotating structure, saves the forming space, reduces the cost, and has a compact structure of the whole system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)

Abstract

一种基于DLP和FDM的复合多材料增材制造装置,包括上层的DLP光机面曝光部分、中层的FDM二维移动可转换打印喷头系统和下层的可升降移动打印平台系统,三层之间通过机械部件连接呈上中下阶梯配置。以及一种采用上述装置进行复合多材料增材制造的方法,在通过DLP光机对光敏树脂进行曝光加工成型之后,对加工平面进行精准定位再切换加工方法,根据设计或者是结构需求用FDM喷头进行余下的加工,同时可以运用喷头转换器进行不同材料的替换加工过程,实现材料的转换;如此往复工作,便可实现多材料的梯度增材制造。上述装置和方法采用DLP光固化和FDM熔融沉积成型技术相结合,实现多材料的复合增材加工;通过采用简单的加工方法切换,有效节省设备空间,工序之间动作连贯,节约了成形时间,降低了成本。

Description

一种基于DLP和FDM的复合多材料增材制造装置及方法 技术领域
本发明属于三维打印技术领域,尤其涉及一种基于DLP和FDM的复合多材料增材制造装置及方法。
背景技术
随着增材制造技术、材料技术、航空航天、生物医学等多种学科的不断发展、以及人民生活水平的不断提高,人们对多材料复合加工及其应用的问题愈加关注,对能够实现多材料复合加工的设备装置的需求也越来越强烈,同时其在多领域如航空航天领域和生物医学领域的应用前景也推动其向前发展,多材料复合加工技术及设备势必将成为推动多领域发展的重要一步。然而目前通过增材制造技术无论是同种加工方法加工不同种材料,或是不同种加工方法加工异种材料的发展都比较艰难,其主要原因在于不同材料具有不同的物理化学性质,当用不同材料来制造同一种工件时常引起较大的制造难度和误差。
针对现有增材制造技术可加工的材料和技术,想要实现多材料如金属、陶瓷或者是树脂等具有不同性质的材料的复合打印,需要解决精确的控制材料切换定位,异种材料结合强度提升以及减小误差提升表面质量等问题。
发明内容
本发明提供一种基于DLP和FDM的复合多材料增材制造装置及方法,工序之间动作连贯,节约了成形时间,降低了成本,可以采用简单的加工方法切换材料,有效节省设备空间,实现多材料复合增材制造,在多材料复合加工等方面有着良好的应用前景。
为实现以上目的,本发明采用以下技术方案:
一种基于DLP和FDM的复合多材料增材制造装置,包括上层的DLP光机面曝光部分、中层的FDM二维移动可转换打印喷头系统和下层的可升降移动打印平台系统,三层之间通过机械部件连接呈上中下阶梯配置;
上层的DLP光机面曝光部分包括:曝光装置电机21通过曝光装置电机座16固定在侧支板25上,齿形连接板固定在运动连接板上并运用齿形压板17通过皮带利用曝光装置电机21进行传动,运动连接板与两块光机平台连接筋22相连接,光机平台连接筋22与滑块连接板18和光机平台23相连接,滑块连接 板18与滑块相连接,滑块与安装在侧支板的导轨19相配合,实现平台的纵向移动,面曝光系统6安装在光机平台23上,随光机平台23与光机平台连接筋22共同运动;
面曝光系统6包括:光机固定板1、光机水平调节板2、光机3、光机纵向调节板4、光机安装固定底座5;光机3固定安装在光机固定板1上,光机固定板1安装于光机水平调节板2上,光机水平调节板2安装于光机纵向调节板4侧面,光机纵向调节板4底部安装于光机安装固定底座5的上表面;
中层的FDM二维移动可转换打印喷头系统包括:顶框12通过四根立柱支架15固定在底板边框33上,确保一定的刚度,为FDM打印装置x和y方向运动提供动力的x向电机14和y向电机44通过电机座13与顶框12相连接,同时在顶框12上安装x向导轨20并配备相应的x向滑块10,y向导轨36设置在x向滑块10的连接板上,y向导轨36配备相应的y向滑块37,FDM二维移动可转换打印喷头安装于y向滑块37上,实现FDM二维打印喷头在水平方向的二维运动。
所述FDM二维移动可转换打印喷头包括:喷头转换器39、可拆卸喷头41;喷头转换器39安装在与y向滑块37相连接的直角板38上,多个可拆卸喷头41均匀地分布安装在喷头转换器39上,每一个喷头转换到加工位置时均可以正对成型基板28;
所述可升降移动打印平台系统包括:为可升降打印平台运动提供动力的升降平台电机24通过升降平台电机座26与侧支板25相连接,滚珠丝杠传动装置7与电机24形成运动关系,带动打印平台实现纵向运动;
所述打印平台包括:滚珠丝杠传动装置7、丝杠螺母联接块8、运动连接板9、成型基板拉杆a27、成型基板拉杆b29、成型基板28;成型基板28通过成型基板拉杆a27和成型基板拉杆b29接到运动连接板9上,运动连接板9通过丝杠螺母连接块8与滚珠丝杠传动装置7相连接,升降平台电机24带动滚珠丝杠传动装置7运动,从而使运动进行传递最终实现成型基板28的纵向移动,丝杠螺母联接块8与运动连接板9通过螺栓形成固定连接,运动连接板9、成型基板拉杆a27以及成型基板拉杆b29依次形成固定连接,保证整体刚度,确保装置运行过程中不会出现明显的晃动或倾摆,成型基板28通过螺栓与成型基板拉杆b29 形成固定连接,通过调整螺栓的旋紧程度来对成型基板28进行水平方向的调平,保证打印样品的精度;
刮刀42安装在刮刀固定板上,刮刀固定板安装于带有滑块的刮刀导轨43上,为刮刀提供动力的刮刀电机34通过皮带传动带动刮刀42运动;材料液槽30是通过三根长螺栓固定在下方的料槽基台32上的,通过调节三根螺栓的旋紧程度为材料液槽进行水平方向调平,材料液槽30上表面应略高于成型基板28上表面,保证刮刀42可以顺利将液槽中的材料刮至成型基板28上从而进行光固化处理,料槽基台32通过四根料槽基台立柱31安装在底板边框33上保证整体稳定性;两块下加强板35和两根支撑杆45将底板边框33和底板46连接在一起,为整个装置提供支撑。
以上所述结构中,面曝光系统6采用DLP紫外数字投影技术,选择性的将面光源投射到材料液槽30中在下置层固化成形;所述FDM二维移动可转换打印喷头通过利用喷头转换器进行不同丝材的切换;
材料液槽30配备加热、散热装置,保证材料液槽内温度满足要求。
一种采用上述装置多材料复合增材制造方法,包括以下步骤:
(1)运用计算机中的三维建模软件建立所需加工的三维模型,模型尺寸大小满足不超过打印装备能够打印的最大尺寸的要求即可,建模完成后保存为STL文件,对模型文件按照不同材料区域需要满足的要求进行分区,不同区域选择不同的加工方式;
(2)将处理好的模型文件导入系统中,系统根据预先设定好的信息选择对应的加工方式;
(3)用本装置进行加工制造时将下置层的成型基板28置于装有足够量A材料47的材料液槽30中,接通面曝光系统6中的光机3,对A材料47进行逐层光固化,完成A材料47的面曝光光固化成形,当需要成形B材料时,下置层的成型基板28提升至可拆卸喷头41下方,在A材料47已成形的基础上进行B材料49的叠加复合加工,如果需要进行不同丝材的转换加工,可以根据实际需求转动喷头转换器39进行不同丝材的转换,如此循环往复完成复合多材料的增材制造加工。
以上所述步骤中,步骤(2)中预先设定好的信息包括:材料选择、定位、摆 放方式;
步骤(3)中液槽内盛放的液态光固化材料为添加陶瓷、金属颗粒或纤维作为强化相的液态高分子材料,强化相比例不超过15%;
在FDM加工的过程中可以根据实际需求转动喷头转换器19进行不同丝材的转换,实现加工材料的多样性。
有益效果:本发明提供了一种基于DLP和FDM的复合多材料增材制造装置及方法,与现有技术相比,本发明具有以下优点:
(1)本发明方法有利于复合多材料的增材制造装备的开发,为实现复合多材料成形提供一体化制造方法,解决了传统加工方法难以实现多材料一体化梯度加工的难题;
(2)本发明利用DLP面曝光光固化技术,结合FDM熔融沉积技术,完成多种材料复合增材制造,以面曝光技术和熔融沉积技术成型材料为基体,通过将两种技术手段集成到同一机器上来实现多种材料复合加工一体化;
(3)将增材制造技术拓展到能场约束结构件的制造,本发明采用简单的加工方法切换,实现多材料复合加工,有效节省设备空间,工序之间动作连贯,节约了成形时间,降低了成本,在多材料复合加工等方面有着良好的应用前景,为增材制造开辟了一个新的研究领域。
附图说明
图1是本发明实施例中装置结构模型图,其中,a为主视图,b为侧视图;
图2是本发明实施例中上层结构示意图,其中,a为主视图,b为左视图;
图3是本发明实施例中中层喷头转换器示意图;
图4是本发明实施例中下层示意图;
图5是本发明实施例中面曝光加工示意图;
图6是本发明实施例中熔融沉积接替加工示意图;
图7是本发明实施例中多材料复合一体化增材制造加工样件;
图中:1为光机固定板,2为光机水平调节板,3为光机,4为光机纵向调节板,5为光机安装固定底座,6为面曝光系统,7为滚珠丝杠传动装置,,8为丝杠螺母连接块,9为运动连接块,10为x向滑块,11为连接板,12为顶框,13为电机座,14为x向电机,15为立柱支架,16为曝光装置电机座,17为齿 形压板,18为滑块连接板,19为侧支板导轨,20为x向导轨,21为曝光装置电机,22为光机平台连接筋,23为光机平台,24为升降平台电机,25为侧支板,26为升降平台电机座,27为成型基板拉杆a,28为成型基板,29为成型基板拉杆b,30为材料液槽,31为料槽基台立柱,32为料槽基台,33为底板边框,34为刮刀电机,35为下加强板,36为y向导轨,37为y向滑块,38为直角板,39为喷头转换器,40为连接块,41为可拆卸喷头,42为刮刀,43为刮刀导轨,44为y向电机,45为支撑杆,46为底板,47为A材料实体,48为液态材料,49为B材料实体。
具体实施方式
下面结合具体实施例与附图对本发明作进一步的说明:
如图1所示,一种基于DLP和FDM的复合多材料增材制造装置,包括上层的DLP光机面曝光部分、中层的FDM二维移动可转换打印喷头系统和下层的可升降移动打印平台系统,三层之间通过机械部件连接呈上中下阶梯配置;
如图2所示,上层的DLP光机面曝光部分包括:曝光装置电机21通过曝光装置电机座16固定在侧支板25上,齿形连接板固定在运动连接板上并运用齿形压板17通过皮带利用曝光装置电机21进行传动,运动连接板与两块光机平台连接筋22相连接,光机平台连接筋22与滑块连接板18和光机平台23相连接,滑块连接板18与滑块相连接,滑块与安装在侧支板的导轨19相配合,实现平台的纵向移动,面曝光系统6安装在光机平台23上,随光机平台23与光机平台连接筋22共同运动;
面曝光系统6包括:光机固定板1、光机水平调节板2、光机3、光机纵向调节板4、光机安装固定底座5;光机3固定安装在光机固定板1上,光机固定板1安装于光机水平调节板2上,光机水平调节板2安装于光机纵向调节板4侧面,光机纵向调节板4底部安装于光机安装固定底座5的上表面;
中层的FDM二维移动可转换打印喷头系统包括:顶框12通过四根立柱支架15固定在底板边框33上,确保一定的刚度,为FDM打印装置x和y方向运动提供动力的x向电机14和y向电机44通过电机座13与顶框12相连接,同时在顶框12上安装x向导轨20并配备相应的x向滑块10,y向导轨36设置在x向滑块10的连接板上,y向导轨36配备相应的y向滑块37,FDM二维移动可 转换打印喷头安装于y向滑块37上,实现FDM二维打印喷头在水平方向的二维运动。
如图3所示,所述FDM二维移动可转换打印喷头包括:喷头转换器39、可拆卸喷头41;喷头转换器39安装在与y向滑块37相连接的直角板38上,多个可拆卸喷头41均匀地分布安装在喷头转换器39上,每一个喷头转换到加工位置时均可以正对成型基板28;
所述可升降移动打印平台系统包括:为可升降打印平台运动提供动力的升降平台电机24通过升降平台电机座26与侧支板25相连接,滚珠丝杠传动装置7与电机24形成运动关系,带动打印平台实现纵向运动;
如图4所示,所述打印平台包括:滚珠丝杠传动装置7、丝杠螺母联接块8、运动连接板9、成型基板拉杆a27、成型基板拉杆b29、成型基板28;成型基板28通过成型基板拉杆a27和成型基板拉杆b29接到运动连接板9上,运动连接板9通过丝杠螺母连接块8与滚珠丝杠传动装置7相连接,升降平台电机24带动滚珠丝杠传动装置7运动,从而使运动进行传递最终实现成型基板28的纵向移动,丝杠螺母联接块8与运动连接板9通过螺栓形成固定连接,运动连接板9、成型基板拉杆a27以及成型基板拉杆b29依次形成固定连接,保证整体刚度,确保装置运行过程中不会出现明显的晃动或倾摆,成型基板28通过螺栓与成型基板拉杆b29形成固定连接,通过调整螺栓的旋紧程度来对成型基板28进行水平方向的调平,保证打印样品的精度;
刮刀42安装在刮刀固定板上,刮刀固定板安装于带有滑块的刮刀导轨43上,为刮刀提供动力的刮刀电机34通过皮带传动带动刮刀42运动;材料液槽30是通过三根长螺栓固定在下方的料槽基台32上的,通过调节三根螺栓的旋紧程度为材料液槽进行水平方向调平,材料液槽30上表面应略高于成型基板28上表面,保证刮刀42可以顺利将液槽中的材料刮至成型基板28上从而进行光固化处理,料槽基台32通过四根料槽基台立柱31安装在底板边框33上保证整体稳定性;两块下加强板35和两根支撑杆45将底板边框33和底板46连接在一起,为整个装置提供支撑。
以上所述结构中,面曝光系统6采用DLP紫外数字投影技术,选择性的将面光源投射到材料液槽30中在下置层固化成形;所述FDM二维移动可转换打 印喷头通过利用喷头转换器进行不同丝材的切换;材料液槽30配备加热、散热装置,保证材料液槽内温度满足要求。
一种采用上述装置多材料复合增材制造方法,包括以下步骤:
(1)运用计算机中的三维建模软件建立所需加工的三维模型,模型尺寸大小满足不超过打印装备能够打印的最大尺寸的要求即可,建模完成后保存为STL文件,对模型文件按照不同材料区域需要满足的要求进行分区,不同区域选择不同的加工方式;
(2)将处理好的模型文件导入系统中,系统根据预先设定好的信息(材料选择、定位、摆放方式)选择对应的加工方式,整个过程根据编程可实现自动切换工位调整加工位置;
(3)用本装置进行加工制造时将下置层的成型基板28置于装有足够量A材料47的材料液槽30中,如图5所示,接通面曝光系统6中的光机3,对A材料47进行逐层光固化,完成A材料47的面曝光光固化成形,当需要成形B材料时,下置层的成型基板28提升至可拆卸喷头41下方,如图6所示,在A材料47已成形的基础上进行B材料49的叠加复合加工,如果需要进行不同丝材的转换加工,可以根据实际需求转动喷头转换器39进行不同丝材的转换,如此循环往复完成复合多材料的增材制造加工。
步骤(3)中材料液槽30内盛放的液态光固化材料为添加陶瓷、金属颗粒或纤维作为强化相的液态高分子材料,强化相比例不超过15%。
综上所述,本发明基于DLP和FDM的复合多材料增材制造装置及方法,采用DLP光固化和FDM熔融沉积成型技术相结合,实现多材料的复合增材制造加工。本发明高效地利用了成型空间,旋转结构的设计,节约了成形空间,降低了成本,整个系统结构紧凑。
以下所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (10)

  1. 一种基于DLP和FDM的复合多材料增材制造装置,其特征在于,包括上层的DLP光机面曝光部分、中层的FDM二维移动可转换打印喷头系统和下层的可升降移动打印平台系统,三层之间通过机械部件连接呈上中下阶梯配置;
    上层的DLP光机面曝光部分包括:曝光装置电机(21)通过曝光装置电机座(16)固定在侧支板(25)上,齿形连接板固定在运动连接板上并运用齿形压板(17)通过皮带利用曝光装置电机(21)进行传动,运动连接板与两块光机平台连接筋(22)相连接,光机平台连接筋(22)与滑块连接板(18)和光机平台(23)相连接,滑块连接板(18)与滑块相连接,滑块与安装在侧支板的导轨(19)相配合,实现平台的纵向移动,面曝光系统(6)安装在光机平台(23)上,随光机平台(23)与光机平台连接筋(22)共同运动;
    中层的FDM二维移动可转换打印喷头系统包括:顶框(12)通过四根立柱支架(15)固定在底板边框(33)上,确保一定的刚度,为FDM打印装置x和y方向运动提供动力的x向电机(14)和y向电机(44)通过电机座(13)与顶框(12)相连接,同时在顶框(12)上安装x向导轨(20)并配备相应的x向滑块(10),y向导轨(36)设置在x向滑块(10)的连接板上,y向导轨(36)配备相应的y向滑块(37),FDM二维移动可转换打印喷头安装于y向滑块(37)上,实现FDM二维打印喷头在水平方向的二维运动;
    下层的可升降移动打印平台系统包括:为可升降打印平台运动提供动力的升降平台电机(24)通过升降平台电机座(26)与侧支板(25)相连接,滚珠丝杠传动装置(7)与电机(24)形成运动关系,带动打印平台实现纵向运动。
  2. 根据权利要求1所述的基于DLP和FDM的复合多材料增材制造装置,其特征在于,面曝光系统(6)包括:光机固定板(1)、光机水平调节板(2)、光机(3)、光机纵向调节板(4)、光机安装固定底座(5);光机(3)固定安装在光机固定板(1)上,光机固定板(1)安装于光机水平调节板(2)上,光机水平调节板(2)安装于光机纵向调节板(4)侧面,光机纵向调节板(4)底部安装于光机安装固定底座(5)的上表面。
  3. 根据权利要求1所述的基于DLP和FDM的复合多材料增材制造装置,其特征在于,所述打印平台包括:滚珠丝杠传动装置(7)、丝杠螺母联接块(8)、运动连接板(9)、成型基板拉杆a(27)、成型基板拉杆b(29)、成型基板(28); 成型基板(28)通过成型基板拉杆a(27)和成型基板拉杆b(29)接到运动连接板(9)上,运动连接板(9)通过丝杠螺母连接块(8)与滚珠丝杠传动装置(7)相连接,升降平台电机(24)带动滚珠丝杠传动装置(7)运动,从而使运动进行传递最终实现成型基板(28)的纵向移动,丝杠螺母联接块(8)与运动连接板(9)固定连接,运动连接板(9)、成型基板拉杆a(27)以及成型基板拉杆b(29)依次形成固定连接,成型基板(28)与成型基板拉杆b(29)通过螺栓形成固定连接,通过调整螺栓的旋紧程度来对成型基板(28)进行水平方向的调平,保证打印样品的精度。
  4. 根据权利要求1或3所述的基于DLP和FDM的复合多材料增材制造装置,其特征在于,所述FDM二维移动可转换打印喷头包括:喷头转换器(39)、可拆卸喷头(41);喷头转换器(39)安装在与y向滑块(37)相连接的直角板(38)上,多个可拆卸喷头(41)均匀地分布安装在喷头转换器(39)上,每一个喷头转换到加工位置时均可以正对打印平台中的成型基板。
  5. 根据权利要求1或3所述的基于DLP和FDM的复合多材料增材制造装置,其特征在于,下层的可升降移动打印平台系统包括:刮刀(42)安装在刮刀固定板上,刮刀固定板安装于带有滑块的刮刀导轨(43)上,为刮刀提供动力的刮刀电机(34)通过皮带传动带动刮刀(42)运动;材料液槽(30)是通过三根长螺栓固定在下方的料槽基台(32)上的,通过调节三根螺栓的旋紧程度为材料液槽进行水平方向调平,材料液槽(30)上表面应略高于成型基板(28)上表面,保证刮刀(42)可以顺利将液槽中的材料刮至成型基板(28)上从而进行光固化处理,料槽基台(32)通过四根料槽基台立柱(3)安装在底板边框(33)上保证整体稳定性。
  6. 根据权利要求1所述的基于DLP和FDM的复合多材料增材制造装置,其特征在于,所述装置最下方采用两块下加强板35和两根支撑杆45将底板边框33和底板46连接在一起,为整个装置提供支撑。
  7. 根据权利要求1或2所述的基于DLP和FDM的复合多材料增材制造装置,其特征在于,面曝光系统(6)采用DLP紫外数字投影技术,选择性的将面光源投射在下置层固化成形。
  8. 根据权利要求4所述的基于DLP和FDM的复合多材料增材制造装置,其特 征在于,所述FDM二维移动可转换打印喷头通过利用喷头转换器进行不同丝材的切换。
  9. 根据权利要求1或2所述的基于DLP和FDM的复合多材料增材制造装置,其特征在于,材料液槽(30)配备加热、散热装置,保证材料液槽内温度满足要求。
  10. 一种采用权利要求1-9任一项所述装置的复合多材料增材制造方法,其特征在于,包括以下步骤:
    (1)运用计算机中的三维建模软件建立所需加工的三维模型,模型尺寸大小满足不超过打印装备能够打印的最大尺寸的要求即可,建模完成后保存为STL文件,对模型文件按照不同材料区域需要满足的要求进行分区,不同区域选择不同的加工方式;
    (2)将处理好的模型文件导入系统中,系统根据预先设定好的信息选择对应的加工方式;
    (3)用本装置进行加工制造时将下置层的成型基板(28)置于装有足够量A材料(47)的材料液槽(30)中,接通面曝光系统(6)中的光机(3),对A材料(47)进行逐层光固化,完成A材料(47)的面曝光光固化成形,当需要成形B材料时,下置层的成型基板(28)提升至可拆卸喷头(41)下方,在A材料(47)已成形的基础上进行B材料(49)的叠加复合加工,如果需要进行不同丝材的转换加工,可以根据实际需求转动喷头转换器(39)进行不同丝材的转换,如此循环往复完成复合多材料的增材制造加工。
PCT/CN2021/091529 2021-04-21 2021-04-30 一种基于dlp和fdm的复合多材料增材制造装置及方法 WO2022222184A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110429259.8 2021-04-21
CN202110429259.8A CN113290846B (zh) 2021-04-21 2021-04-21 一种基于dlp和fdm的复合多材料增材制造装置及方法

Publications (1)

Publication Number Publication Date
WO2022222184A1 true WO2022222184A1 (zh) 2022-10-27

Family

ID=77320016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091529 WO2022222184A1 (zh) 2021-04-21 2021-04-30 一种基于dlp和fdm的复合多材料增材制造装置及方法

Country Status (2)

Country Link
CN (1) CN113290846B (zh)
WO (1) WO2022222184A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115070898A (zh) * 2022-06-10 2022-09-20 苏州大学 基于dlp的陶瓷3d打印硬件控制系统
CN116394513A (zh) * 2023-03-03 2023-07-07 南京航空航天大学 一种面向太空在轨制造的多材料增材制造系统与方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701944A (zh) * 2005-05-27 2005-11-30 上海大学 光固化与熔融沉积集成的复合快速成形方法和装置
US20070186496A1 (en) * 2004-03-19 2007-08-16 Recticel Panel assembly and method for its production
WO2018103529A1 (zh) * 2016-12-05 2018-06-14 珠海天威飞马打印耗材有限公司 金属三维打印装置及其打印方法
CN108527851A (zh) * 2018-02-26 2018-09-14 南昌大学 一种短纤维和光敏树脂光固化复合成形装置
CN110355999A (zh) * 2019-06-29 2019-10-22 浙江大学 Dlp复合挤出式3d打印机
CN111747765A (zh) * 2020-07-06 2020-10-09 南京理工大学 一种连续纤维增韧陶瓷基复合材料的制备方法及专用设备
CN111823576A (zh) * 2020-07-22 2020-10-27 青岛科技大学 一种基于熔融沉积与光固化技术的复合3d打印技术

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110039773B (zh) * 2019-05-08 2020-07-28 清华大学 一种复合式工艺的三维打印机及其打印方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070186496A1 (en) * 2004-03-19 2007-08-16 Recticel Panel assembly and method for its production
CN1701944A (zh) * 2005-05-27 2005-11-30 上海大学 光固化与熔融沉积集成的复合快速成形方法和装置
WO2018103529A1 (zh) * 2016-12-05 2018-06-14 珠海天威飞马打印耗材有限公司 金属三维打印装置及其打印方法
CN108527851A (zh) * 2018-02-26 2018-09-14 南昌大学 一种短纤维和光敏树脂光固化复合成形装置
CN110355999A (zh) * 2019-06-29 2019-10-22 浙江大学 Dlp复合挤出式3d打印机
CN111747765A (zh) * 2020-07-06 2020-10-09 南京理工大学 一种连续纤维增韧陶瓷基复合材料的制备方法及专用设备
CN111823576A (zh) * 2020-07-22 2020-10-27 青岛科技大学 一种基于熔融沉积与光固化技术的复合3d打印技术

Also Published As

Publication number Publication date
CN113290846B (zh) 2022-10-21
CN113290846A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2022222184A1 (zh) 一种基于dlp和fdm的复合多材料增材制造装置及方法
WO2021017129A1 (zh) 一种增材制造装置及成形方法
CN105437547B (zh) 一种连续下沉式高效3d打印方法及设备
CN107379520A (zh) 一种基于fdm打印技术的光固化3d打印机
CN204451225U (zh) Lcd屏幕选择性光固化3d打印机
CN108724430A (zh) 一种陶瓷光固化3d打印系统及方法
CN111531875B (zh) 一种可调光源波长的高精度大面积快速3d打印装置及方法
CN207327621U (zh) 一种用于3d打印机上的l形支撑平台
CN109719954A (zh) 一种dlp光固化增材制造表面质量提高方法
CN111531881A (zh) 一种多方式多材料3d打印设备
CN207128271U (zh) 一种基于fdm打印技术的光固化3d打印机
CN206011737U (zh) 一种基于ldi技术的激光3d打印机
CN107053668B (zh) 一种纤维复合材料的制备方法及其专用设备
JP2004042546A (ja) 機能性材料の積層造形方法
CN114378918B (zh) 陶瓷的增材制造设备和陶瓷的增材制造方法
CN106945269B (zh) 一种自然流动连续补充dlp光固化装置与方法
CN209999695U (zh) 光固化设备的调平系统
JPH0295831A (ja) 三次元形状の形成方法および装置
CN210590588U (zh) 一种大型粉床喷液粘结式3d打印机
CN216182821U (zh) 一种组合式光固化3d打印机
CN217944347U (zh) 一种基于dlp光固化技术的复合材料打印装置
CN209920536U (zh) 一种3d打印设备
CN211467501U (zh) 一种三维打印机高精度三维空间传动机构
CN117962063B (zh) 一种用于多陶瓷复合材料的光固化增材制造设备及方法
CN111421816A (zh) 一种树脂材料匹配相应光源用的多轴光固化3d微纳加工设备及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937411

Country of ref document: EP

Kind code of ref document: A1