CN1666109A - 时-频域反射仪的装置及方法 - Google Patents

时-频域反射仪的装置及方法 Download PDF

Info

Publication number
CN1666109A
CN1666109A CN038160587A CN03816058A CN1666109A CN 1666109 A CN1666109 A CN 1666109A CN 038160587 A CN038160587 A CN 038160587A CN 03816058 A CN03816058 A CN 03816058A CN 1666109 A CN1666109 A CN 1666109A
Authority
CN
China
Prior art keywords
time
mentioned
frequency
signal
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN038160587A
Other languages
English (en)
Inventor
朴珍培
辛容准
陆钟宽
爱德华·J·坡尔
宋垠锡
金柱元
崔德善
成承训
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Park Jin Bae
Original Assignee
Park Jin Bae
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Park Jin Bae filed Critical Park Jin Bae
Publication of CN1666109A publication Critical patent/CN1666109A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/11Locating faults in cables, transmission lines, or networks using pulse reflection methods

Abstract

本发明涉及一种新型的在时域及频域内同时运作的高解析度反射仪的装置和方法。本方法依赖于时-频信号分析,利用了一个被一个高斯时间包络放大的尖鸣信号。该高斯包络提供时间定位,而该尖鸣信号使得被测试系统被一个覆盖一个特定频段的扫频正弦波激发。后述功能为用于测试通信电缆和系统的特殊功能。反射信号的高解析度检测由一个时-频交叉关联函数提供。一条导线/电缆上故障的高精度定位通过由该反射信号的频率偏移得到的时间延迟偏移的测量而取得的。本装置可以通过控制外围设备而对被测试导线/电缆执行一个自动诊断。本发明的时-频域反射仪可被用于广泛的要求高精度测量及测试的工业领域,如:通讯、仪表检测、材料工程、半导体以及航空航天等等。该时-频域反射仪可被直接使用在用于提高性能的商品仪器装置,如电缆检测仪及阻抗分析仪。该时-频域反射仪还可以为要求高解析度及精确度的智能配线系统及信号完整性问题提供一种改进的方案。另外,该时-频域反射仪还可以应用于时域反射仪(TDR)的传统应用领域,如地质/能源勘探、材料表面测试、雷达/声纳装置、通讯网络配线、光缆分析、远程勘探、流体管道泄漏检测、水位表等等。

Description

时-频域反射仪的装置及方法
技术领域
本发明涉及一种新的设备和方法来检测在需要高可靠性的情况下,电系统或者电子系统中的传输线或者电缆中的故障。特别是涉及一种可以根据时/频域反射技术方法学。检测和高分辨的故障定位设备,其中该时/频域反射仪方法学可以同时考虑时间和频率,然而传统的设备或者方法仅仅只能依靠单独时间或者频率。因此,本发明能够在检测和定位各种类型的电缆或者传输线的故障时保证较高的精确性。
背景技术
一些对飞机坠落事故的研究已经充分强调了电气配线及相关故障的重要性。在导线中一个很小的故障可能引起电弧,这些电弧可能会对整个系统产生非常严重的损害。这个问题不仅仅局限于商用飞机,在由复杂的线路系统组成而且安全要求非常高的系统,比如军用飞机,航天飞机,核能源飞机和非常高的建筑物等等,都可能面临线路的问题。因此为了调查和维护线路系统,高解析度的故障检测是必要的。
对于仪表和测量工程来说,电缆或者传输线中故障的检测和定位,即电缆检测仪和阻抗或者网络分析仪的应用是一件非常重要的技术工作。同时电缆或者导线生产商也需要高解析度的故障检测和定位以保证他们的产品质量。
该反射仪是线路系统中对电缆的检测和定位诊断的基础。反射仪的原理是比较被发送的参考信号和来自导体故障处或者不连续处的反射信号来检测和定位。
对于线路/电缆故障的检测,当今的现有技术大致可以分为时域分析和频域分析。在时域分析中使用时域反射仪(TDR),而在频域分析中使用频域反射仪(FDR)和驻波反射仪(SWR)。反射仪的应用被扩展到以光谱域反射仪(OFDR)而著称的光学。每一种方法学都是建立在对于参考信号和反射信号仅在时域或者仅在频域的准确分析。一些用来检测线路正常状态的基于商业电子设备的TDR在市场中可以找到。频域反射仪(FDR)和驻波反射仪(SWR)在频域中对参考信号和反射信号进行分析,并且基于SWR的系统正在发展中。
然而这些方法学存在一些技术问题,即在检测和定位故障时,由于时域反射仪和频域反射仪是依靠对反射信号仅仅在时域或者仅仅在频域进行分析,所以他们的解析度和精确度是有限的。
在TDR中,一种阶跃脉冲被应用到待测的传输线/电缆中,随后该阶跃脉冲会被任何故障的存在而被反射。然后该反射信号往返一次的时间可以根据对电波传播速率的了解而被转换为距离。这个方法的缺点是其解析度受限于脉冲波的增加时间。由于脉冲能量是在一个宽频的范围内传播的,因此TDR通常不适合用来研究电缆的射频(RF)特性,然而研究电缆的射频特性很多情况下都是非常重要的,比如当处理那些用于通信时的导线/电缆。
另一方面来说,FDR使用扫频信号来将参考或者探测信号的能量施加于目标RF频带内。FDR通过测量导体的输入波和反射波的不同相位来检测和定位导体的故障点和阻抗特性,其中,参考信号为一个正铉波。当导体中存在不匹配的时候,在两个信号之间中会有一个谐振产生。作为一种仅在频域内分析信号的方法,FDR的解析度的能力是有限的因为它的解析率是通过扫频的宽度来决定的。而且它还有一个缺点:由于噪音的存在,它对故障点的距离估算的精确度比TDR低。
发明内容
考虑到前述的缺点,本发明的目的是提供一种具有时-频域反射技术的装置,该设备可以在时域创建一个适于被测导体频域特性的输入信号。通过使用具有时/频域反射技术的设备同时在时域和在频域来研究反射信号和参考信号,从而来检测和定位故障。本发明介绍的新的方法是一种联合时-频域反射仪(TFDR)的技术,该反射仪具备上述所介绍的TDR和FDR技术中很多的优点。参考信号是一尖鸣信号,该尖鸣信号可以在目标频带上运用RF能源。为了提供时间限制,该尖鸣信号在时域内乘以一个高斯包络。参考信号的设计在时域和频域与其在现有的时域反射仪或者频域反射仪一样具有广义性:通过对时间和频率的限制,时-频域反射仪是时域反射仪和频域反射仪的混合。例如,在没有频扫而且高斯包洛持续时间太大的情况下,时-频域反射仪中的参考信号采用一个脉冲类似TDR中的参考信号的脉冲。类似地,对于高斯包洛持续时间非常小的情况下,时-频域反射仪中的参考信号会类似FDR中的扫频正铉参考信号。因此时-频域反射仪方案可以根据被测导线或者电缆的物理特性来提供灵活的应用。值得注意的是TDR的参考信号仅仅被局限于时域,然而FDR的参考信号仅仅被局限于频域。
为了检测和定位,首先需要计算参考信号和反射信号的时-频域分布。然后这两个信号的时-频分布在时域和频域被交叉关联。根据时-频域交叉关联函数的峰值可以计算出一个精确的往返传播时间,因此可以像传统的TDR技术一样计算出相应的距离。然而,对于一个高解析度的故障定位来说,测得的到达时间被可以转换为时间信息的反射信号的频率偏移补偿。对于高解析率的检测和故障定位来说,同时对待时域和频域的信息是时-频域反射仪特有的特征。而同FDR一样,本实验是在一个与该特定的被测试导线/电缆相关的RF频带内实施的。以下将详细的解释算法。
本发明的另一目的是提供时-频域反射仪的设备,通过在反射仪中使用一个新的方法来处理信号,即同时在时域和频域中创建和处理一个输入信号,本设备除了具有传统的检测和定位导体中故障的作用外,还具有很广的应用范围,例如地质/能源勘探,材料表面测试,雷达/声纳,通讯网络配线,光缆诊断,远程探测,流体管渗漏的检查,水位计等等。
为了取得上述目的,用于检测和定位的时-频域反射仪设备是由以下组件组成的:一台个人电脑(PC),用来执行一个预设好的时-频域反射仪中的主要控制程序,一个装置控制程序,该程序可以控制用来产生参考信号和采集反射信号的外部仪器设备。该系统由一个循环器,一个波形发生器和数据取得装置组成,其中为了可以自动地控制设备,该数据取得装置通过GPIB电缆直接连接到电脑上。电脑控制波形发生器去产生一个高斯包洛尖鸣信号,该信号通过循环器被传播到需要测量的电缆。这个参考信号在故障点被反射回循环器。循环器使反射信号改变方向至数据取得装置。电脑控制并且同步波形发生器和数据取得装置,计算参考信号和反射信号的时-频域分布,并且执行时-频交叉关联算法。
附图说明
图1是一个显示根据本发明的一个时-频域反射仪的控制过程的结构图。
图2是解释本发明的,显示了作为该时-频域反射仪的参考信号的一个带有高斯包洛的尖鸣信号的时-频域分布。
图3是一个根据本发明的时-频域反射仪方法的算法过程的流程图。
图4是一个根据本发明的GUI程序控制的屏幕快照的例子。
图5表示了根据本发明的Ws(t,ω)(参考信号),Ws(t-td,ω)(传输信号)和Wn(x)(t,ω)(反射信号)的时-频域分布。
图6表示了根据本发明的一个实施例对一个带有故障的同轴电缆进行测试仿真而采用的试验仿真配置。
图7显示了图6的实验中,各个信号的时-频分布的时间(a)和频率(b)的边界。(注意到,为了易于说明,各个信号均被进行了标准化,时间中心被移到了参考信号的时间中心。)
图8说明了正常和故障状态下,图6的实验中的同轴电缆在振幅(a)和相位(b)特性上的频率响应。
图9显示了有故障的同轴电缆上有故障的节点1处时间域内的反射波的波形(a)和时间域内传播的波在没有故障的节点2处的波形。
图10显示了有故障的同轴电缆上有故障的节点1处输入参考信号和反射波的时-频域交叉关联函数(a)及图9所示节点2处无故障传播的波形。
100:个人电脑(PC)                 110:设备控制程序
120:时-频域反射仪检测及估算公式  130:控制程序处理器
200:数字信号处理(DSP)            300:测试波形发生器
400:数据采集器(DAI)              500:图形用户界面程序
600:被测试电缆/导线              700:循环器
具体实施方式
下面将结合附图及实施例详细结识本发明的结构。
图1是一个显示根据本发明的时-频域反射仪装置的控制过程的结构图。
如上所述,数字100为个人电脑,是执行本发明的时-频域反射仪装置中主要程序的设备。
数字200为数字信号处理器,用来计算时-频域分布函数。
数字300为测试波形发生器,为被测导线/导体产生输入参考信号。
数字400为数据采集器,采集被测导线/导体的反射信号以及由测试波形发生器通过循环器产生的输入信号,并且将采集到的数据进行存储。
当执行检测和定位的时候,上述的测试波形发生器300产生输入参考信号——尖鸣信号。尖鸣信号是一种随着时间消逝而进行线性变化的信号。此处采用的该尖鸣信号是一种随时间频率线性升高的信号。
本发明中,尖鸣信号与高斯包洛相乘所以时-频域中的定位可以被完成(图2)。被产生的参考信号可以用下式清楚的表达:
s ( t ) = ( α / π ) 1 / 4 e - α ( t - t 0 ) 2 / 2 + jβ ( t - t 0 ) 2 / 2 + j ω 0 ( t - t 0 )
此表达式中,时间t和t0分别表示时间和初始时间,α表示高斯常数,β表示频率增加率,ω0表示角速率。
用于发生信号的参数值通过测试波形发生器300和PC100的通用接口总线(GPIB)程序来应用,而参考信号发生的操作是通过PC100来控制的。发生的输入参考信号这样被应用到被测的导线/电缆中,并在其中遇到故障,该信号的其余部分还将进一步传输。示波器从各自的信道分别捕捉到了反射信号和传输信号后,将他们显示在屏幕上,该操作也是通过接口总线(GPIB)程序来控制的。而且,被采集的数据作为一个数字文件被存储在PC100上,以便执行检测和定位算法。输入的参考信号的参数值可以在测试过程中甚至在一个触发操作中被PC100依据导线/电缆的衰减特性来修改。
处理器控制程序130通过接口总线(GPIB)电缆从电脑中接收到2个输入文件后,并将其传送给数字信号处理器200。数字信号处理器200将信号[S(t)]的信息与由示波器捕捉的数据进行比较来检测被测导线/电缆中的故障,然后使用数字信号处理程序的时-频域反射仪的检测和DSP程序的时-频域反射仪检测及估算公式120来计算并定位故障。通过使用用户界面程序500可以简单地控制电脑100和外围设备,例如监视器,键盘和按钮等等。如图4(1)所示,通过用户界面程序500可以将不同导体600的输入波、输出波等等的参数值显示在显示器上;如图4(2)所示,理想的尖鸣信号的构造可以用输入参数代替;如图4(3)(4)所示,输入信号和输出信号的波形被直观地表示出来;可视化的分析和一个结果值的表示数字可如图4(5)所示实现;整个外围设备的控制可以通过简单的键盘输入和按钮敲击来实现。
图3是一个根据本发明的时-频域反射仪方法的算法过程的流程图。如图3所示,根据本发明的时-频域反射仪方法,即根据本发明的检测及定位被测导线/电缆中的故障的方法由以下步骤组成:在被测导线/电缆通过电缆连接到系统上且系统被初始化之后,用GUI输入被测导线/电缆600的物理和电特性(S10);根据被测导线输入值估算反射波的大小和相位后,在频域内选择一个适合被测导线/电缆估算特性的频域(S11);选择一个最小的时间分布(S12),该时间分布满足在上述已选定的频域内被选择的频率和时间之间的不确定性原理;通过用选定的时间分布的高斯包洛与发生在被选择的频域内的尖鸣信号的乘积来构建一个最佳的输入参考信号(S13);在上述被建立的波形通过GPIB被传输到波形发生器300后,通过测试波形发生器300为需进行物理测试的被测导线/电缆600产生一个参考信号(S14);存储从数据采集仪400经过被测导线/电缆600的反射波波形(S15),并且与参考信号发生的步骤同步,以文件的形式传输波形到内部程序;为了一个快速运算,靠信号处理器200由接收到的波形信号计算得出一个时-频域分布函数(S16);在时-频交叉关联函数已经通过输入信号和反射波的时-频域分布函数计算得出后,根据被输入的被测导线/电缆的电磁特性检测导线/电缆600中的故障(S17);如果故障被诊断出来的话,通过时-频域相互函数定位反射波(S18);在被定位的时间延迟、反射波的频率转移被由上述定位的信号的时-频分布函数的边界计算出来,并且信号的失真已经被创建的信号的时-频域增长率补偿后,估算故障在被测导线/电缆中正确的位置(S19)。
下面将更详细地介绍本时-频域反射仪。与现有技术相比,本发明采用了一种改进的输入信号和处理方法从而具有较高的精确性。也就是说,本发明创建的输入信号是一种时间定位的尖鸣信号,其具有以下的特点:该输入信号是在时域和频域上具有高斯分布特性的驻波,所以它可以即可以在时域又可以在频域内被分析,而且具有有限带宽,其频率线性变化。由于该信号的外形具有高斯分布的特性,所以与使用脉冲波的时域反射仪(TDR)相比,该时-频域反射仪针对散射、脉冲扩散、噪音和失真而言具有较高的准确性。
再者,TDR仅在时域中解释输入波和输出波从而检测和定位被测导线/电缆的故障,而频域反射仪(FDR)和驻波波反射仪(SWR)仅在频域中分析输入波和输出波来检测和定位被测导线/电缆的故障。与这些技术相比,本发明中被创建的输入信号是既可以在时域又可以在频域中被分析,因此与只能在时域或者频域中分析信号的技术来比,本发明具有较高的准确性。
而且,本发明提供一种时-频域反射仪(TFDR),该技术在时域和频域同时分析输入信号。为了对在本发明中创建的输入信号和反射信号进行解释,本发明使用了魏格纳(Wigner)分布,该分布是一种表现信号在时域和频域分布的函数。本发明的输入信号可以用以下表达式描述:
s ( t ) = ( α / π ) 1 / 4 e - α ( t - t 0 ) 2 / 2 + jβ ( t - t 0 ) 2 + j ω 0 ( t - t 0 ) - - - - ( 1 )
其中α表示高斯分布的宽度因数,β表示频率增长率的时间系数。一个信号在时间轴上的一个时间中心(ts)及一个时间长度(Ts)可通过公式(1)得到:
ts=∫t|s(t)|2dt=t0
Figure A0381605800102
进一步,频率轴上的一个频率中心(ω0)及一个带宽(Bs)如下所示可由输入信号经傅立叶变换得到:
S ( ω ) = α π ( α - jβ ) e - ( ω - ω 0 ) 2 2 ( α - jβ ) - - - - ( 3 )
ωs=∫ω|S(ω)|2dω=ω0 B s 2 = ∫ ( ω - ω 0 ) 2 | S ( ω ) | 2 dω = α 2 + β 2 2 α - - - - ( 4 )
同样,一个反射信号在时间轴上的一个时间中心(tr)及一个时间长度(Tr),和一个反射信号在频率轴上的一个频率中心(ωr)及一个带宽(Br)可利用公式(2)及公式(4)得到。
相应地,为了使一个输入信号可被应用于一个被测试目标导线/电缆,应该通过选择该信号的参数α、β、及ω而将其设计为符合被测试导线/电缆的频率衰减特性。一个信号的一个参数确定过程包括以下步骤:
1、得到(被测试的一条导线/电缆的特性)大小及相差;
2、根据频域内的尺寸衰减选择一个最大频率;
3、根据AWG的频(带)宽及最大频率下的按频率差异的波形分流仪器选择一个最小频率;
4、在选择一个时域宽度大于上述选择的频(带)宽的倒数之后确定参数α;及
5、通过计算选定时间段内最低频率及最高频率之间的频率增长率来确定β。
为了评估该标准化时-频交叉关联函数(Csr(t))的检测与定位,该参考及反射信号的魏格纳分布将通过如下方程进行评估:
W ( t , ω ) = 1 2 π ∫ s * ( t - 1 2 τ ) s ( t + 1 2 τ ) e - jτω dτ - - - - ( 5 )
其中Ws(t,ω)表示输入信号的魏格纳分布。得到输入参考信号的魏格纳分布如下方程:
W s ( t , ω ) = 1 π e - α ( t - t 0 ) 2 - ( ω - β ( t - t 0 ) - ω 0 ) 2 / α - - - - ( 6 )
在对输入参考信号及反射信号的魏格纳分布进行评估之后,得到用于检测及定位的时-频交叉关联函数如下:
C sr ( t ) = 1 E s E r ( t ) ∫ t ′ = t - T s t ′ = t + T s ∫ W s ( t , ω ) W r ( t ′ - t , ω ) dωd t ′ - - - - ( 7 )
Es=∫∫Ws(t′,ω)dωdt E r ( t ) = ∫ t ′ = t - T s t ] = t + T s W r ( t ′ , ω ) dωdt - - - - ( 8 )
上面提供的时-频交叉关联函数测量参考信号与反射信号间的时-频分布的随时间变化的相似性。因此,该反射信号的存在将被0与1之间一个数值检测到。一条导线/电缆上的一个故障可根据这种反射信号的存在而被确认。
然而,为了对该故障进行高精度的定位,需对由导线/电缆引起的该反射信号的失真进行分析。该反射信号的失真是传统时域反射仪和频域反射仪定位误差的内在来源。而在时-频域反射仪中,由频率衰减引起的误差可由结合频率偏移对时间偏移进行的评估进行补偿。下面考虑参考信号在被测试导线/电缆内的传播。
当信号随空间变量x沿媒介传播时,波形将被媒介的传输函数H(ω,x)改变。假设u(x,t)为一个自远处观测的波形,对于一个给定初始状态,u(x,t)=s(t),u(x,t)的变化可由下式描述:
u ( x , t ) = 1 2 π ∫ S ( ω , x ) e - jωt dω - - - - ( 9 )
这样,一个频域内的一个输入信号在前进x之后可被通过一个初始输入信号与媒介传输函数的乘积表示。进一步,因为媒介的一个传输函数由α(ω)——频率衰减,及k(ω)——散射决定,可得到如下公式:
H(ω,x)=Ce-(α(ω)-jk(ω))x    C:标准化参数    (10)
因此,得到在媒介内传送了距离x的输入参考信号如下:
H ( x , t ) = 1 2 π ∫ S ( ω , x = 0 ) H ( ω , x ) e - jωt dω - - - - ( 11 )
当输入信号通过一条导线/电缆在无频率衰减的情况下传播时,被传送信号保持域初始状态相同的形状,而仅有一个时间延迟td,与在被测试导线/电缆中传播距离相对应。然而,输入参考信号在其在媒介内(如本实验中被测试导线/电缆)的传送过程中存在一个频率衰减。特别地,高频衰减在被测试导线/电缆中变得明显,此现象导致该输入信号在时间轴上时间中心及频率轴上频率中心分别移动到新的tu(x)、ωu(x),从而导致故障定位的误差。
因为输入信号被构造为一个α(ω)和k(ω)的线性部分,可以认为 α ( ω ) ≅ Aω , k ( ω ) ≅ Kω . 由此,可得到输入信号在媒介内传播时在一个新时间轴上的时间中心tu(x)如下:
t u ( x ) = ∫ t | u ( x , t ) | 2 dt - - - - ( 12 )
= Re [ ∫ S * ( ω , x ) ( - 1 j ∂ ∂ ω S ( ω , x ) ) dω ] = Kx - - - - ( 13 )
其中υ表示频率为ωu(x)时输入信号在媒介中的传播速度。同样可得到频率轴上的频率中心ωu(x),如下:
ω u ( x ) = ∫ ω | S ( ω ) | 2 dω - - - - ( 14 )
= ω 0 - α 2 + β 3 α Ax = ω 0 - δω - - - - ( 15 )
因此,被尖鸣信号的β因数和δω补偿过的延时,即实波的输入信号如下:
t d = t u ( x ) - t s + δω β = Δt + δt - - - - ( 16 )
通过总结以上得到的值,可以得到如图5所示的一个时-频域分布图。可以由以上数据得到被测试的一条导线/电缆上故障位置(df)及该被测试导线/电缆总长(dt)的相关信息如下:
d f = v · t d 2 , d t = v · t d - - - - ( 17 )
图6、7及8显示了根据本发明的一个实施例的一条被测试导线/电缆的实际实验的实验环境。图6显示了根据本发明的一个实施例的一条需要测试的被测试导线/电缆的实验的示意性构建。图7显示了图9中各个信号的时-频域分布的时域(a)及频域(b)边界。(注意到各个分布为了易于表示而进行了标准化。时间中心移动到了参考信号的时间中心处。)图8以幅度(a)及相位(b)显示了本实验中被测试导线/电缆的物理特性。
在示范性的实验中,由高级设计系统(ADS)配置了一条实际被测试的(RG)-141型号导线/电缆:一个根据本发明设计的输入参考信号被应用于被测试导线/电缆上,然后,通过按照之前介绍的处理方法处理输入信号及反射信号进行导线/电缆中故障的检测及定位的操作。
一条被测试导线/电缆的正常状态下的特性数据可以方便地由该被测试导线/电缆的制造商处得到。因此,这些数据可以被用来设计适合的输入参考信号,如依照下列参数:
尖鸣信号的时间长度:30ns
频率带宽:900MHz(100MHz-1GHz)
频率扫描:线性增长 ( β = 900 MHz 30 ns )
当上述输入信号沿该被测试导线/电缆传递时,可利用一个示波器在图9所示的节点1和节点2处分别得到反射信号及被传递信号的信息。表1中总结了利用公式(7)中该时-频交叉关联函数得到的实验结果数据。由此实验结果可以得到反射信号单独的定位,由每个信号的时-频域分布,可以得到每个信号在时间轴上的一个时间中心ts、在频率轴上的一个频率中心fs、该信号的一个时间长度Ts及一个频率带宽Bs。得到表1中数据的处理过程可总结如下:
(1)图8中所示的参考信号及反射信号的时间序列可用示波器得到。
(2)反射信号的存在由用于在时域内定位的时-频交叉关联函数确定。
(3)每个信号可通过用时-频关联函数测量输入信号与反射信号之间的相似性,并利用一个门槛值将其分类来进行定位。
(4)然后,每个被定位的信号被通过魏格纳分布在一个时-频域内进行表达,并投影在时-频轴上,以得到图10中所示结果。
(5)表1中由一个结果得到的数值将被用于时间偏移评估,此时间偏移将由频率偏移转换得到。通过实验得到的实验结果数据总结如表1:
表1:
参考信号 反射信号 传递信号
时间中心(ts,ns) 71.94  360.11  361.14
持续时间(Ts,ns) 20.17  18.30  21.05
频率中心(Fs,GHz) 0.6039  0.5352  0.5778
频率带宽(Bs,GHz) 0.3960  0.3432  0.4245
因为该被测试导线/电缆相对介电常数为εr=2.1,所以输入信号在媒介中的传播速度为:
v = c ϵ r = 3 × 10 8 2.1 = 2.07 × 10 8 ( m / sec ) - - - - ( 18 )
由输入信号在时间轴上的时间中心(ts=71.97)及反射信号在时间轴上的时间中心(tr=360.11),可以得到一个时间差Δt=360.11  71.9=288.17ns。一个故障的位置可以直接由上述得到,如下:
d = v · Δt 2 = 2.07 × 10 8 · 288.17 × 10 - 9 2 = 29.8256 ( m )
通过对由一个媒介造成的失真进行补偿而定位一个故障的方法如下:
δt是公式(16)中的δt=δf/β。
因为δf表示一个输入信号及一个反射信号的频率中心之间的差异,δf=0.6039    0.5352=0.0687(GHz)。因为β被设为3.00×1016Hz/sec,在输入信号被构造后,可以得到
δt = δf β = 0.0687 × 10 9 3.00 × 10 16 = 2.29 ( ns )
因此,由公式(16)可以得到一个结果td=Δt+δt=288.17+2.29=290.46(ns)。
由公式(17),可以得到该故障的一个定位如下:
d f = v · t d 2 = ( 2.07 × 10 8 ) · ( 290.46 × 10 - 9 ) 2 = 30.00 ( m )
因为反射信号的信息也由实验得到,可以同样方法得到该被测导线/电缆总长度的信息。
输入信号与被传递的信号之间的Δt可从表1中得到,如下
δt=361.14-71.94=289.20(ns)。类似地,输入信号与被传递信号之间的δt可由δt=δf/β得到。因为输入信号与被传递信号之间的δf为δf=0.6038-0.5778=0.0261(GHz),可以得到
δt = δf β = 0.0261 × 10 9 3.00 × 10 16 = 0.87 ( ns )
因此,dt=v·td=(2.07×108)·(290.07×10-9)=60(m)可作为一个结果得到,这可以确保得到误差小于0.2%的被测试导线/电缆上的一个故障的定位。
虽然以上参考一个具体的实施例及被测导线/电缆对本发明进行了介绍,并不意味着本发明受此示范性应用的限制,因为本时-频域反射仪的一个主要特点既是根据被测试导线/电缆而得到的参考信号的设计的灵活性。然而,只要该参考信号被设计为既在时域内同时又在频域内,均可有效地实行高解析度的检测及高精确度的定位。
工业实用性
如以上所介绍的,本发明提供了一种新型的时-频域反射(TFDR)方法,其中一个输入信号被构造为在考虑时域及频域的情况下适合于一条被测导线/电缆,然后利用一种时-频分析方法分析了被测导线/电缆上故障处的输入信号及反射信号。
时-频域反射仪是一种基于一种先进的信号处理,即时-频分析的新的仪器及测量技术。多数现有的反射仪仪器及测量装置都是或者仅基于时域或者仅基于频域来进行故障检测、定位及阻抗测量的。这就限制了精确度及解析度。然而,组合的时-频域反射仪可将反射仪同时使用于时域以及频域内,因此可以得到更高的精确度及解析度。因此,时-频域反射仪可被应用于要求高度准确的测量及测试的工业领域中,如通讯、仪表检测、材料工程、半导体以及航空航天等等。
除可用于导电设备的诊断外,它还可以被应用于要求高度安全性的系统中,如飞机及航天飞机工业、地质/能源勘探、材料表面测试、雷达/声纳装置、通讯网络配线、光缆分析、远程勘探、流体管道泄漏检测、水位表等等,以对这些系统进行实时的诊断及监控,并通过对系统进行有效的辅助自动维护而提高整体系统的稳定性。进一步,该时-频域反射仪可被直接地应用于商用仪器设备,以提高其功效,如电缆测试仪及阻抗分析仪。另外,该时-频域反射仪还可以为要求高解析度及精确度的智能配线系统及信号完整性问题提供一种改进的方案。

Claims (9)

1、一种时-频域反射仪,用于检测及定位一个导电体上故障,其特征在于该装置包括:
一条有故障或有限长度的被测试导线/电缆600;
一个强制波形发生器300,用于为前述被测试导电体产生一个已设计的时域及频域输入参考信号;
一个数据采集器400,用于存储上述参考信号及来自于上述被测试导电体600的前述反射信号,并将存储的文件传送到一台个人电脑的一个设备控制程序110;
一台个人电脑(PC)100,可进行一个预定的时-频域反射仪的主控制程序操作,还包括:
一个设备控制程序110,用于控制数据采集器,确定时间延迟、电压偏移及一个波形的取样水平,并构造一个输入信号;
一个时-频域分析控制程序120,用于分析上述参考信号及从上述导线/电缆反射的上述波形数据的时-频域;及
一个数字信号处理器控制程序130,用于接收经一个通用功能接口总线(GPIB)输入到上述数据采集器400的上述参考信号及上述反射波的上述文件,然后将其传送到一个数字信号处理器200;及
一个数字信号处理器200,用于利用一个上述时-频域分析控制程序120的DSP程序进行运算,通过计算上述反射信号的时-频域分布函数,检测并定位上述导电体上的故障。
2、根据权利要求1所述的时-频域反射仪,其特征在于由前述波形发生器300产生的前述输入参考信号为一个尖鸣信号,其具有一个带有选定时间分布及选定频域的高斯包络,其频率随时间变化。
3、根据权利要求1或2所述的时-频域反射仪,其特征在于其中所述的数据采集器400将上述输入信号及上述反射信号的数据值以文件的形式存储为两个热向量,分别表示一个时间值及一个电压值。
4、根据权利要求3所述的时-频域反射仪,其特征在于其中所述的数字信号处理器200根据来自于上述PC100的输入信号的时-频域分布函数及上述反射波形的时-频域分布函数计算时-频交叉关联函数;并进一步根据时-频域交叉关联函数计算故障的存在及位置。
5、一种时-频域反射仪方法,用于测量一个有限长度的导电体的总长度,其特征在于该方法包括以下步骤:
构成一个同时存在于一个时域及一个频域的输入信号;
产生上述构造的输入信号;
将上述产生的输入信号输入到上述导电体中;
接受来自于上述导电体的反射波形;及
将上述接收到的反射波形传送到一台个人电脑(PC)。
6、根据权利要求5所述的用于检测及定位一条导线/导电体上故障的时-频域反射仪方法,其特征在于其中所述的输入信号的时间段、频(带)宽及频率中心是考虑上述导体的衰减特性及期望的测量长度而构造的。
7、根据权利要求6所述的用于检测及定位一个导电体上故障的时-频域反射仪方法,其特征在于其中上述的输入信号为一个带有选定时间分布及选定频域的高斯包络的尖鸣信号。
8、根据权利要求5至7中任意一项所述的用于检测及定位一个导电体上故障的时-频域反射仪方法,其特征在于其中上述的时-频域反射仪方法包括以下步骤:
通过测量上述输入信号的上述反射波形,计算上述反射波形及上述输入信号的时-频分布函数;
计算上述反射波形及上述输入信号的上述时-频分布函数的时-频交叉关联函数;
根据上述时-频交叉关联函数,计算上述输入信号的时间中心与上述反射波形的时间中心的时间差;及
通过将上述导电体中波的传播速度乘以上述时间差来计算故障的位置或距离。
9、根据权利要求5至7中任意一项所述的用于检测及定位一条导线/电缆上故障的时-频域反射仪方法,其特征在于其中上述时-频域反射方法包括以下步骤:
通过测量上述输入信号的上述反射波形,计算上述反射波形及上述输入信号的时-频分布函数;
计算上述反射波形及上述输入信号的上述时-频分布函数的时-频交叉关联函数;
根据上述时-频交叉关联函数,计算上述输入信号的时间中心与上述反射波形的时间中心的时间差;
根据上述时-频交叉关联函数,定位上述输入信号及上述反射信号的时-频分布函数;
通过计算上述输入信号与上述反射信号间的频率转移来计算时间偏移,并在从上述被定位的输入信号及上述反射信号的时-频分布函数的频域得到该频率边界后,将上述输入信号及上述反射信号间的上述频率转移除以上述构造的输入信号的时-频增长率;
通过将上述时间差与上述时间偏移相加,计算一补偿时间差;及
通过将上述导电体中波的传播速度乘以上述补偿时间差,计算故障的位置或距离。
CN038160587A 2002-07-09 2003-07-07 时-频域反射仪的装置及方法 Pending CN1666109A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2002-0039788A KR100486972B1 (ko) 2002-07-09 2002-07-09 시간-주파수 영역 반사파 처리 방법
KR1020020039788 2002-07-09

Publications (1)

Publication Number Publication Date
CN1666109A true CN1666109A (zh) 2005-09-07

Family

ID=36315686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN038160587A Pending CN1666109A (zh) 2002-07-09 2003-07-07 时-频域反射仪的装置及方法

Country Status (7)

Country Link
US (1) US7337079B2 (zh)
EP (1) EP1527348A4 (zh)
JP (1) JP2005532549A (zh)
KR (1) KR100486972B1 (zh)
CN (1) CN1666109A (zh)
AU (1) AU2003246108A1 (zh)
WO (1) WO2004005947A1 (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694507A (zh) * 2009-09-30 2010-04-14 深圳市普联技术有限公司 一种专用媒体接口的测试方法及系统
CN101900776A (zh) * 2010-07-02 2010-12-01 北京航空航天大学 基于扩频反射的导线绝缘故障检测方法及装置
CN101963632A (zh) * 2009-07-24 2011-02-02 特克特朗尼克公司 在时域仪器上进行频域测量的方法
CN101216439B (zh) * 2008-01-18 2012-01-11 中国农业大学 一种土壤水分测量仪器及方法
CN102326089A (zh) * 2009-02-19 2012-01-18 Abb研究有限公司 用于测试电力分配系统的方法和电力分配系统分析器装置
CN102435913A (zh) * 2011-10-18 2012-05-02 中国民航大学 利用魏格纳数据分布矩阵检测飞机电缆故障的方法
US8332177B2 (en) 2009-06-26 2012-12-11 Hon Hai Precision Industry Co., Ltd. System and method for testing a characteristic impedance of a signal path routing of a printed circuit board
CN103250403A (zh) * 2010-12-07 2013-08-14 阿尔卡特朗讯 用于测试的方法和测试系统以及模拟前端
CN103293438A (zh) * 2012-02-29 2013-09-11 通用汽车环球科技运作有限责任公司 时域反射系统和方法
CN103337119A (zh) * 2013-06-08 2013-10-02 山东康威通信技术股份有限公司 一种铠装电缆防盗监测及定位的方法
CN103487722A (zh) * 2013-08-02 2014-01-01 深圳市智远能科技有限公司 基于tdr的分布式电缆状态检测系统
US9002291B2 (en) 2010-02-11 2015-04-07 Huawei Technologies Co., Ltd. Standing wave detection method, standing wave detection apparatus and base station
CN105308872A (zh) * 2013-06-27 2016-02-03 瑞典爱立信有限公司 用于确定金属电缆的通信特性的测试装置和方法
CN105842596A (zh) * 2016-05-24 2016-08-10 四川大学 一种高灵敏度电力电缆局部缺陷诊断方法
CN106405323A (zh) * 2016-08-19 2017-02-15 山东康威通信技术股份有限公司 基于单端口测量校准模型的电缆扫频定位分析系统和方法
CN106443338A (zh) * 2016-09-26 2017-02-22 重庆大学 叠加在慢变信号上的小扰动信号提取方法
CN106885970A (zh) * 2017-02-20 2017-06-23 大连理工大学 基于fdr法的船用低压电力电缆局部点故障检测方法
CN108333469A (zh) * 2017-01-17 2018-07-27 弗兰克公司 网络分析仪的相位相干的主单元和远程单元
CN109541403A (zh) * 2017-09-21 2019-03-29 本德尔有限两合公司 基于时域反射法定位电线上的故障位置的方法和电路布置
CN109639345A (zh) * 2018-11-22 2019-04-16 成都飞机工业(集团)有限责任公司 一种基于时域反射法tdr技术的线缆带宽测试方法
CN110691969A (zh) * 2017-04-07 2020-01-14 德克萨斯A&M大学系统 用于检测管线缺陷的反射测量装置和方法
CN110907763A (zh) * 2019-12-12 2020-03-24 重庆邮电大学 一种基于时频域反射法的电力电缆故障检测方法
CN111033279A (zh) * 2017-08-10 2020-04-17 莱尼电缆有限公司 用于确定沿着电导体的温度相关的阻抗曲线的装置和方法
CN112327094A (zh) * 2020-09-27 2021-02-05 国网上海市电力公司 一种超导电缆的故障检测方法及系统
CN113640616A (zh) * 2021-06-29 2021-11-12 四川大学 基于频域反射的时域振荡脉冲转化方法
CN114217645A (zh) * 2022-02-22 2022-03-22 深圳海润游艇码头工程有限公司 一种游艇码头智能水箱监测系统和方法
CN117607848A (zh) * 2024-01-24 2024-02-27 烟台初心航空科技有限公司 基于fdr的雷达定位测距方法

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7512503B2 (en) * 2003-05-12 2009-03-31 Simmonds Precision Products, Inc. Wire fault detection
US7295018B2 (en) 2004-04-12 2007-11-13 Fluke Corporation Correction of loss and dispersion in cable fault measurements
US20060116864A1 (en) * 2004-12-01 2006-06-01 Microsoft Corporation Safe, secure resource editing for application localization with automatic adjustment of application user interface for translated resources
US7716641B2 (en) * 2004-12-01 2010-05-11 Microsoft Corporation Method and system for automatically identifying and marking subsets of localizable resources
US7617092B2 (en) * 2004-12-01 2009-11-10 Microsoft Corporation Safe, secure resource editing for application localization
CA2508428A1 (fr) 2005-05-20 2006-11-20 Hydro-Quebec Detection, localisation et interpretation de decharge partielle
CN1863244B (zh) * 2005-10-28 2013-10-02 华为技术有限公司 传输线路的时域反射测试方法及装置
US8688759B2 (en) * 2006-06-16 2014-04-01 Bae Systems Information And Electronic Systems Integration Inc. Efficient detection algorithm system for a broad class of signals using higher-order statistics in time as well as frequency domains
US8161089B1 (en) * 2006-06-16 2012-04-17 Bae Systems Information And Electronic Systems Integration Inc. Method for detecting a broad class of signals in Gaussian noise using higher order statistics in both time and frequency domains
FR2904116B1 (fr) 2006-07-18 2008-09-12 Commissariat Energie Atomique Procede et dispositif d'analyse de reseaux de cables electriques.
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
FR2907910B1 (fr) * 2006-10-25 2009-01-16 Commissariat Energie Atomique Procede et dispositif d'analyse de reseaux de cables electriques par sequences pseudo-aleatoires
US8170152B2 (en) * 2007-07-12 2012-05-01 Bae Systems Information And Electronic Systems Integration Inc. Method and apparatus for multiple signal identification and finding the basis functions of the received signal
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
JP5524835B2 (ja) 2007-07-12 2014-06-18 ヴォルカノ コーポレイション 生体内撮像用カテーテル
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
US8222906B2 (en) * 2008-06-19 2012-07-17 Paul Francis Wyar Adaptive pulse width time domain reflectometer
US9215101B2 (en) * 2008-12-11 2015-12-15 At&T Intellectual Property I, Lp Communications link discontinuity detection systems and methods
KR101050196B1 (ko) * 2009-01-15 2011-07-19 연세대학교 산학협력단 활선 상태 선로 점검용 반사파 계측 장치
US8312390B2 (en) * 2009-06-10 2012-11-13 Microsoft Corporation Dynamic screentip language translation
KR101145267B1 (ko) * 2010-04-21 2012-05-24 고려대학교 산학협력단 임피던스 및 잡음 특성 동시 측정 시스템, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 매체
US8558552B2 (en) 2010-09-24 2013-10-15 Jds Uniphase Corporation Home network characterization method and system
US8521460B2 (en) * 2010-09-28 2013-08-27 Tektronix, Inc. Multi-domain test and measurement instrument
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
WO2013033592A1 (en) 2011-08-31 2013-03-07 Volcano Corporation Optical-electrical rotary joint and methods of use
CN102435916A (zh) * 2011-10-12 2012-05-02 南京航空航天大学 基于sopc技术的电缆故障在线检测与定位装置
FR2981752B1 (fr) * 2011-10-20 2013-11-08 Commissariat Energie Atomique Procede de reflectometrie pour la detection de defauts non francs dans un cable electrique et systeme mettant en oeuvre le procede
CN102680855A (zh) * 2012-05-15 2012-09-19 东南大学 一种基于波形复现的电缆故障检测和定位方法
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
JP2015532536A (ja) 2012-10-05 2015-11-09 デイビッド ウェルフォード, 光を増幅するためのシステムおよび方法
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
WO2014093374A1 (en) 2012-12-13 2014-06-19 Volcano Corporation Devices, systems, and methods for targeted cannulation
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
EP2934310A4 (en) 2012-12-20 2016-10-12 Nathaniel J Kemp RECONFIGURABLE OPTICAL COHERENCE TOMOGRAPHY SYSTEM BETWEEN DIFFERENT IMAGING MODES
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
CA2895502A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
JP2016506276A (ja) 2012-12-20 2016-03-03 ジェレミー スティガール, 血管内画像の位置の特定
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US9383263B2 (en) 2012-12-21 2016-07-05 Volcano Corporation Systems and methods for narrowing a wavelength emission of light
CA2895940A1 (en) 2012-12-21 2014-06-26 Andrew Hancock System and method for multipath processing of image signals
EP2936426B1 (en) 2012-12-21 2021-10-13 Jason Spencer System and method for graphical processing of medical data
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US10993694B2 (en) 2012-12-21 2021-05-04 Philips Image Guided Therapy Corporation Rotational ultrasound imaging catheter with extended catheter body telescope
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
WO2014099760A1 (en) 2012-12-21 2014-06-26 Mai Jerome Ultrasound imaging with variable line density
FR3000805A1 (fr) * 2013-01-04 2014-07-11 Commissariat Energie Atomique Procede d'analyse d'un cable par compensation de la dispersion subie par un signal lors de sa propagation au sein dudit cable
US9429463B2 (en) * 2013-03-04 2016-08-30 International Road Dynamics, Inc. System and method for measuring moving vehicle information using electrical time domain reflectometry
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
WO2014138555A1 (en) 2013-03-07 2014-09-12 Bernhard Sturm Multimodal segmentation in intravascular images
US10638939B2 (en) 2013-03-12 2020-05-05 Philips Image Guided Therapy Corporation Systems and methods for diagnosing coronary microvascular disease
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
EP2967488B1 (en) 2013-03-13 2021-06-16 Jinhyoung Park System for producing an image from a rotational intravascular ultrasound device
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
WO2014152365A2 (en) 2013-03-14 2014-09-25 Volcano Corporation Filters with echogenic characteristics
CN103412241A (zh) * 2013-07-26 2013-11-27 国家电网公司 基于单片机技术的电缆故障定位系统
JP2015075821A (ja) * 2013-10-07 2015-04-20 横河電機株式会社 状態診断方法および状態診断装置
FR3012616B1 (fr) * 2013-10-31 2019-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Methode de generation d'un signal de reflectometrie multi-porteuses pour une mise en œuvre dans un systeme distribue
JP6679480B2 (ja) * 2013-11-13 2020-04-15 シグニファイ ホールディング ビー ヴィSignify Holding B.V. ケーブルシステムにおける問題検出
CN103698662A (zh) * 2014-01-06 2014-04-02 云南电网公司昭通供电局 直流融冰架空地线故障探测方法及装置
US9432064B2 (en) 2014-02-11 2016-08-30 Introbotics Corporation System and method for automated loss testing
DE102014005698A1 (de) 2014-04-11 2015-10-15 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren sowie Vorrichtung zur ortsaufgelösten Diagnose
KR101476111B1 (ko) * 2014-09-30 2014-12-24 한국해양대학교 산학협력단 단시간 푸리에 변환기법을 이용한 탄성파 반사법 탐사자료의 개별 주파수 특성 분석 방법 및 장치
KR101579896B1 (ko) 2014-10-20 2015-12-24 연세대학교 산학협력단 다중 대역 신호를 이용한 케이블 상태 분석 시스템 및 방법
US10338124B2 (en) 2015-05-07 2019-07-02 Korea Electrical Safety Corporation Cable fault diagnosis method and system
US10684319B2 (en) * 2015-07-20 2020-06-16 International Business Machines Corporation Tuning a testing apparatus for measuring skew
US10162002B2 (en) 2015-07-20 2018-12-25 International Business Machines Corporation Tuning a testing apparatus for measuring skew
EP3187884B1 (en) * 2015-12-28 2020-03-04 Rohde&Schwarz GmbH&Co. KG A method and apparatus for processing measurement tuples
KR101770121B1 (ko) 2016-04-25 2017-09-05 한국 전기안전공사 반사파 측정법 기반 배선 네트워크 고장감시 시스템 및 그 방법
CN106129906B (zh) * 2016-06-30 2019-01-11 中国一冶集团有限公司 一种工业工程电缆工序信息处理方法
KR102014582B1 (ko) * 2016-10-31 2019-08-26 한국전력공사 반사파 처리 장치
CN106771854B (zh) * 2016-11-28 2019-11-01 中国商用飞机有限责任公司 飞机导线故障的定位方法
US10401412B2 (en) * 2016-12-16 2019-09-03 Texas Instruments Incorporated Line fault signature analysis
RU2653583C1 (ru) * 2017-04-13 2018-05-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ определения места повреждения кабельной линии
KR101886808B1 (ko) 2017-06-01 2018-08-08 연세대학교 산학협력단 케이블 전파신호 왜곡 및 감쇄 보상 필터 시스템 및 설계 방법
DE102017214996A1 (de) * 2017-08-28 2019-02-28 Siemens Aktiengesellschaft Verfahren zum Bestimmen der Entfernung einer Reflexionsstelle auf einem elektrischen Leiter
KR101926995B1 (ko) * 2017-10-24 2018-12-07 한국전력공사 지중케이블 고장위치 탐지 장치 및 그 방법
CN110324196B (zh) * 2018-03-30 2024-03-19 东莞昕钰电子通讯有限公司 缆线运作监测系统
DE102018219959A1 (de) * 2018-11-21 2020-05-28 Siemens Aktiengesellschaft Verfahren und Messanordnung zur Fehlererkennung auf elektrischen Leitungen
RU2713741C9 (ru) * 2019-05-16 2020-03-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" Способ определения положения отражённого импульса
KR102180748B1 (ko) * 2019-08-21 2020-11-19 연세대학교 산학협력단 멀티코어 케이블 결함 분류 시스템 및 방법
US11609258B2 (en) * 2020-11-27 2023-03-21 Uif (University Industry Foundation), Yonsei University Apparatus and method for detecting cable fault based on reflectometry using AI
CN112630598B (zh) * 2020-12-30 2022-03-08 南方电网科学研究院有限责任公司 长距离高压电缆故障程度检测方法及装置
US11520023B2 (en) 2021-05-10 2022-12-06 Optowaves, Inc. High-speed time-of-interference light detection and ranging apparatus
US11294040B1 (en) 2021-05-10 2022-04-05 Optowaves, Inc. Time-of-interference light detection and ranging apparatus
CN113295978B (zh) * 2021-06-09 2023-01-24 广东电网有限责任公司 电缆检测装置、方法、终端设备及计算机可读存储介质
CN114019309B (zh) * 2021-11-05 2023-03-10 国网四川省电力公司成都供电公司 一种基于频域反射技术的电缆缺陷定位方法
CN114205821B (zh) * 2021-11-30 2023-08-08 广州万城万充新能源科技有限公司 基于深度预测编码神经网络的无线射频异常检测方法
CN114441606B (zh) * 2021-12-28 2023-11-24 国网河北省电力有限公司电力科学研究院 电缆水树枝老化缺陷的定位方法及其测试方法、设备
WO2023145354A1 (ja) * 2022-01-28 2023-08-03 住友電気工業株式会社 検知装置、検知システム、伝送線および検知方法
US11892566B1 (en) 2022-09-22 2024-02-06 Optowaves, Inc. Multiplexed light detection and ranging apparatus
CN116593831B (zh) * 2023-07-19 2023-11-07 西安交通大学 一种电缆缺陷定位方法、设备及介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068614A (en) * 1990-11-05 1991-11-26 Tektronix, Inc. Swept frequency domain relectometry enhancement
US5376888A (en) 1993-06-09 1994-12-27 Hook; William R. Timing markers in time domain reflectometry systems
US5905380A (en) * 1995-05-08 1999-05-18 Eaton Corporation Electromagnetic wave, reflective type, low cost, active proximity sensor for harsh environments
JPH09152461A (ja) * 1995-11-30 1997-06-10 Asia Electron Inc 故障点標定装置及び故障点標定方法
US5751149A (en) * 1995-12-08 1998-05-12 Tempo Research Corporation Method and apparatus for high frequency time domain reflectometry
JP3359251B2 (ja) * 1996-12-11 2002-12-24 ソニー・テクトロニクス株式会社 リアルタイム信号アナライザ
KR100262754B1 (ko) * 1997-08-18 2000-08-01 박영일 통신케이블의고장위치측정장치
US6177801B1 (en) 1999-04-21 2001-01-23 Sunrise Telecom, Inc. Detection of bridge tap using frequency domain analysis
US6690320B2 (en) 2000-06-13 2004-02-10 Magnetrol International Incorporated Time domain reflectometry measurement instrument
US6668041B2 (en) * 2001-05-09 2003-12-23 Centillium Communications, Inc. Single ended line probing in DSL system
US20020085742A1 (en) 2000-12-27 2002-07-04 Bablumyan Arkady S. Multi-domain, photonic fingerprint analyzer
US6868357B2 (en) * 2001-07-07 2005-03-15 Cynthia M. Furse Frequency domain reflectometry system for testing wires and cables utilizing in-situ connectors, passive connectivity, cable fray detection, and live wire testing
KR100447572B1 (ko) * 2001-11-27 2004-09-08 주식회사 네오텍리서치 배선 시스템에서 전송선상의 신호 검증 방법
US7069163B2 (en) * 2002-04-23 2006-06-27 Utah State University Digital spread spectrum methods and apparatus for testing aircraft wiring
WO2003094765A2 (en) * 2002-05-06 2003-11-20 Enikia Llc Method and system for power line network fault detection and quality monitoring

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216439B (zh) * 2008-01-18 2012-01-11 中国农业大学 一种土壤水分测量仪器及方法
CN102326089A (zh) * 2009-02-19 2012-01-18 Abb研究有限公司 用于测试电力分配系统的方法和电力分配系统分析器装置
US8332177B2 (en) 2009-06-26 2012-12-11 Hon Hai Precision Industry Co., Ltd. System and method for testing a characteristic impedance of a signal path routing of a printed circuit board
CN101963632A (zh) * 2009-07-24 2011-02-02 特克特朗尼克公司 在时域仪器上进行频域测量的方法
CN101694507B (zh) * 2009-09-30 2013-08-21 深圳市普联技术有限公司 一种专用媒体接口的测试方法及系统
CN101694507A (zh) * 2009-09-30 2010-04-14 深圳市普联技术有限公司 一种专用媒体接口的测试方法及系统
US9002291B2 (en) 2010-02-11 2015-04-07 Huawei Technologies Co., Ltd. Standing wave detection method, standing wave detection apparatus and base station
CN101900776A (zh) * 2010-07-02 2010-12-01 北京航空航天大学 基于扩频反射的导线绝缘故障检测方法及装置
CN101900776B (zh) * 2010-07-02 2013-03-06 北京航空航天大学 基于扩频反射的导线绝缘故障检测方法及装置
CN103250403A (zh) * 2010-12-07 2013-08-14 阿尔卡特朗讯 用于测试的方法和测试系统以及模拟前端
CN103250403B (zh) * 2010-12-07 2016-07-06 阿尔卡特朗讯 用于测试的方法和测试系统以及模拟前端
CN102435913A (zh) * 2011-10-18 2012-05-02 中国民航大学 利用魏格纳数据分布矩阵检测飞机电缆故障的方法
CN103293438A (zh) * 2012-02-29 2013-09-11 通用汽车环球科技运作有限责任公司 时域反射系统和方法
CN103337119A (zh) * 2013-06-08 2013-10-02 山东康威通信技术股份有限公司 一种铠装电缆防盗监测及定位的方法
CN103337119B (zh) * 2013-06-08 2015-11-18 山东康威通信技术股份有限公司 一种铠装电缆防盗监测及定位的方法
CN105308872B (zh) * 2013-06-27 2018-06-08 瑞典爱立信有限公司 用于确定金属电缆的通信特性的测试装置和方法
CN105308872A (zh) * 2013-06-27 2016-02-03 瑞典爱立信有限公司 用于确定金属电缆的通信特性的测试装置和方法
CN103487722A (zh) * 2013-08-02 2014-01-01 深圳市智远能科技有限公司 基于tdr的分布式电缆状态检测系统
CN105842596A (zh) * 2016-05-24 2016-08-10 四川大学 一种高灵敏度电力电缆局部缺陷诊断方法
CN105842596B (zh) * 2016-05-24 2018-06-22 四川大学 一种高灵敏度电力电缆局部缺陷诊断方法
CN106405323A (zh) * 2016-08-19 2017-02-15 山东康威通信技术股份有限公司 基于单端口测量校准模型的电缆扫频定位分析系统和方法
CN106443338A (zh) * 2016-09-26 2017-02-22 重庆大学 叠加在慢变信号上的小扰动信号提取方法
CN106443338B (zh) * 2016-09-26 2019-04-02 重庆大学 叠加在慢变信号上的小扰动信号提取方法
CN108333469A (zh) * 2017-01-17 2018-07-27 弗兰克公司 网络分析仪的相位相干的主单元和远程单元
CN108333469B (zh) * 2017-01-17 2022-04-26 弗兰克公司 网络分析仪的相位相干的主单元和远程单元
CN106885970A (zh) * 2017-02-20 2017-06-23 大连理工大学 基于fdr法的船用低压电力电缆局部点故障检测方法
CN110691969B (zh) * 2017-04-07 2023-09-15 德克萨斯A&M大学系统 用于检测管线缺陷的反射测量装置和方法
CN110691969A (zh) * 2017-04-07 2020-01-14 德克萨斯A&M大学系统 用于检测管线缺陷的反射测量装置和方法
CN111033279A (zh) * 2017-08-10 2020-04-17 莱尼电缆有限公司 用于确定沿着电导体的温度相关的阻抗曲线的装置和方法
CN109541403A (zh) * 2017-09-21 2019-03-29 本德尔有限两合公司 基于时域反射法定位电线上的故障位置的方法和电路布置
CN109639345B (zh) * 2018-11-22 2021-02-26 成都飞机工业(集团)有限责任公司 一种基于时域反射法tdr技术的线缆带宽测试方法
CN109639345A (zh) * 2018-11-22 2019-04-16 成都飞机工业(集团)有限责任公司 一种基于时域反射法tdr技术的线缆带宽测试方法
CN110907763A (zh) * 2019-12-12 2020-03-24 重庆邮电大学 一种基于时频域反射法的电力电缆故障检测方法
CN112327094A (zh) * 2020-09-27 2021-02-05 国网上海市电力公司 一种超导电缆的故障检测方法及系统
CN112327094B (zh) * 2020-09-27 2024-01-23 国网上海市电力公司 一种超导电缆的故障检测方法及系统
CN113640616A (zh) * 2021-06-29 2021-11-12 四川大学 基于频域反射的时域振荡脉冲转化方法
CN114217645B (zh) * 2022-02-22 2022-05-06 深圳海润游艇码头工程有限公司 一种游艇码头智能水箱监测系统和方法
CN114217645A (zh) * 2022-02-22 2022-03-22 深圳海润游艇码头工程有限公司 一种游艇码头智能水箱监测系统和方法
CN117607848A (zh) * 2024-01-24 2024-02-27 烟台初心航空科技有限公司 基于fdr的雷达定位测距方法
CN117607848B (zh) * 2024-01-24 2024-04-09 烟台初心航空科技有限公司 基于fdr的雷达定位测距方法

Also Published As

Publication number Publication date
US20060097730A1 (en) 2006-05-11
KR100486972B1 (ko) 2005-05-03
JP2005532549A (ja) 2005-10-27
EP1527348A4 (en) 2005-11-16
US7337079B2 (en) 2008-02-26
WO2004005947A1 (en) 2004-01-15
AU2003246108A1 (en) 2004-01-23
EP1527348A1 (en) 2005-05-04
KR20040005288A (ko) 2004-01-16

Similar Documents

Publication Publication Date Title
CN1666109A (zh) 时-频域反射仪的装置及方法
CN104090214B (zh) 一种电缆故障检测及老化分析方法
US10338124B2 (en) Cable fault diagnosis method and system
US5270661A (en) Method of detecting a conductor anomaly by applying pulses along the conductor in opposite directions
Okabe et al. New aspects of UHF PD diagnostics on gas-insulated systems
Sheng et al. Partial discharge pulse propagation in power cable and partial discharge monitoring system
CN101655536B (zh) 气体绝缘组合电器局部放电检测方法
CN105424804B (zh) 一种再制造复合材质零件缺陷超声检测方法
US20150142344A1 (en) Method and apparatus for measuring partial discharge charge value in frequency domain
EP0399583A2 (en) Apparatus and method for analysing the pulse propagation for testing a pipeline or the like
KR20140120331A (ko) 부분 방전의 분석 및 위치파악 시스템
CN109490730A (zh) 电缆放电检测方法、装置、存储介质及处理器
US9880212B2 (en) Method and apparatus for spatially resolved diagnosis
KR101716877B1 (ko) 자가 압전센싱 기반의 비선형 초음파 피로균열 검사 장치 및 방법
CN103424675A (zh) 超高频天线阵列局部放电检测系统
CN107192930A (zh) 一种变压器局部放电定位方法
CN113916989A (zh) 一种电力系统高性能环氧绝缘件内部缺陷检测方法及系统
US9207192B1 (en) Monitoring dielectric fill in a cased pipeline
US20180024184A1 (en) Method for characterising a soft fault in a cable
Tang et al. A method based on SVD for detecting the defect using the magnetostrictive guided wave technique
Niroomand et al. Partial discharge localization and classification using acoustic emission analysis in power transformer
KR20130031106A (ko) 누설 전류 진단 장치 및 그 방법
CN107192902B (zh) 一种使用多高斯脉冲的线缆传导敏感度时域测试方法
Simmons et al. Determining remaining useful life of aging cables in nuclear power plants—Interim status for FY2014
US20050212524A1 (en) Electric power line on-line diagnostic method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication