CN1645103A - Microfriction testers - Google Patents

Microfriction testers Download PDF

Info

Publication number
CN1645103A
CN1645103A CN 200510023642 CN200510023642A CN1645103A CN 1645103 A CN1645103 A CN 1645103A CN 200510023642 CN200510023642 CN 200510023642 CN 200510023642 A CN200510023642 A CN 200510023642A CN 1645103 A CN1645103 A CN 1645103A
Authority
CN
China
Prior art keywords
cantilever
fixed
bending beam
dimensional
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510023642
Other languages
Chinese (zh)
Other versions
CN1297813C (en
Inventor
程先华
王梁
上官倩芡
白涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiao Tong University
Original Assignee
Shanghai Jiao Tong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiao Tong University filed Critical Shanghai Jiao Tong University
Priority to CNB2005100236424A priority Critical patent/CN1297813C/en
Publication of CN1645103A publication Critical patent/CN1645103A/en
Application granted granted Critical
Publication of CN1297813C publication Critical patent/CN1297813C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种微摩擦测试装置,二维位移平台上固定的二维测力传感器采用悬臂结构,相互垂直的卧式弯曲梁和立式弯曲梁通过连接块固定在一起,卧式弯曲梁和立式弯曲梁均由两平行弹性体组成,悬臂一端固定,另一端悬臂前端上固定有被测圆柱与摩擦头,被测圆柱正上方的非接触位移传感器的探头由刚性悬梁固定在二维移动平台上。立式弯曲梁上粘贴有应变片用于对摩擦力的测量,载荷的测量则通过位移传感器间接实现。本发明能同时测量微毫牛级载荷和摩擦力,无需采用高精度微位移平台就能实现载荷的高分辨率加载,同时保证了测力精度。

Figure 200510023642

A micro-friction test device, the two-dimensional force sensor fixed on the two-dimensional displacement platform adopts a cantilever structure, and the horizontal bending beam and the vertical bending beam perpendicular to each other are fixed together by connecting blocks, and the horizontal bending beam and the vertical bending beam are composed of two Composed of parallel elastic bodies, one end of the cantilever is fixed, and the measured cylinder and friction head are fixed on the front end of the cantilever at the other end. The probe of the non-contact displacement sensor directly above the measured cylinder is fixed on the two-dimensional mobile platform by a rigid cantilever. Strain gauges are pasted on the vertical bending beam to measure friction, and the load is measured indirectly through displacement sensors. The invention can simultaneously measure micronewton-level load and frictional force, realize high-resolution loading of load without using a high-precision micro-displacement platform, and ensure force measurement accuracy at the same time.

Figure 200510023642

Description

微摩擦测试装置Micro friction test device

技术领域technical field

本发明涉及一种微摩擦测试装置,尤其涉及一种用于评定各种表面纳米润滑膜(或涂层)摩擦学性能的球盘式微摩擦测试装置。The invention relates to a micro-friction test device, in particular to a ball-on-disk type micro-friction test device for evaluating the tribological properties of various surface nano-lubricating films (or coatings).

背景技术Background technique

随着微机电系统(MEMS)应用日益广泛,其体现出来的摩擦磨损问题也越来越突出。控制改善微机械表面特性是改善其微摩擦学性能的有效途径,通过表面纳米膜(或涂层)可以大幅降低磨损与粘着现象发生,从而提高微机械的使用寿命。微摩擦测试对于评估这些表面润滑膜的摩擦学性能有重要意义。然而现有摩擦磨损实验设备,如销盘式摩擦磨损试验机、四球摩擦磨损试验机等普遍工作在牛级以上,均达不到微摩擦测试所需的毫牛级精度。文献[杨明楚,雒建斌,温诗铸.磁记录微观摩擦学性能测试仪的研制.清华大学学报(自然科学版),2000,40(8):36-40]和[黎海文,贾宏光,吴一辉,等.微摩擦测试仪力传感器的研究.光学精密工程,2002,10(4),388-391]中提到的微摩擦测试仪都是采用在弹性体上贴应变片,利用电阻应变效应将载荷和摩擦引起的弹性体应变转化为电阻变化,继而通过电桥进一步转换成电压信号,从而间接测出载荷和摩擦力的大小。在这些测试装置中,载荷的加载是通过改变弹性体的应变大小实现的,但是由于弹性体应变量极其小,为获得较高的载荷加载分辨率需采用昂贵的高精度微米级位移平台才能实现,例如采用压电陶瓷伸缩管实现微位移,这就造成成本提高;另外,运动平台的水平度需达到很高,这样才能避免微摩擦测试中载荷幅度变化不至于太大。With the increasing application of micro-electromechanical systems (MEMS), the problems of friction and wear are becoming more and more prominent. Controlling and improving the surface characteristics of micromachines is an effective way to improve their microtribological properties. Surface nanofilms (or coatings) can greatly reduce the occurrence of wear and adhesion, thereby improving the service life of micromachines. Microfriction testing is of great significance for evaluating the tribological properties of lubricating films on these surfaces. However, the existing friction and wear test equipment, such as pin-on-disk friction and wear testing machine, four-ball friction and wear testing machine, etc. generally work above the Newton level, and none of them can reach the millinew level precision required for micro-friction testing. Literature [Yang Mingchu, Luo Jianbin, Wen Shizhu. Development of Magnetic Recording Microscopic Tribological Performance Tester. Journal of Tsinghua University (Natural Science Edition), 2000, 40(8): 36-40] and [Li Haiwen, Jia Hongguang, Wu Yihui, etc. Micro friction tester force sensor research. Optical precision engineering, 2002, 10 (4), 388-391] mentioned in the micro friction tester are all used to paste strain gauges on the elastic body, using the resistance strain effect to The elastic body strain caused by the load and friction is converted into a change in resistance, and then further converted into a voltage signal through the bridge, thereby indirectly measuring the magnitude of the load and friction. In these test devices, the loading of the load is achieved by changing the strain of the elastic body. However, due to the extremely small strain of the elastic body, it is necessary to use an expensive high-precision micron-scale displacement platform to obtain a high load loading resolution. , such as the use of piezoelectric ceramic telescopic tubes to achieve micro-displacement, which increases the cost; in addition, the level of the motion platform needs to be very high, so as to avoid the change of the load amplitude in the micro-friction test from being too large.

发明内容Contents of the invention

本发明的目的在于针对上述问题,提供一种经济实用的微摩擦测试装置,不仅能同时测量微毫牛级的摩擦力和法向载荷,而且具有较高的载荷加载分辨率。The purpose of the present invention is to solve the above problems and provide an economical and practical micro-friction testing device, which can not only measure the friction force and normal load of piconew level at the same time, but also has a higher load loading resolution.

为实现这样的目的,本发明所采用的技术方案是:二维位移平台上固定一个采用悬臂结构的二维测力传感器,二维测力传感器中,相互垂直的卧式弯曲梁和立式弯曲梁通过连接块固定在一起,卧式弯曲梁和立式弯曲梁均由两平行弹性体组成,悬臂一端固定,另一端为悬臂前端,悬臂前端上固定有被测圆柱与摩擦头。被测圆柱正上方安装有非接触位移传感器的探头,由刚性悬梁固定在二维移动平台上。立式弯曲梁上粘贴有应变片用于对摩擦力的测量,载荷的测量则通过位移传感器间接实现。In order to achieve such a purpose, the technical solution adopted in the present invention is: a two-dimensional force sensor adopting a cantilever structure is fixed on the two-dimensional displacement platform, and in the two-dimensional force sensor, the horizontal bending beam and the vertical bending beam perpendicular to each other pass through The connecting blocks are fixed together. Both the horizontal bending beam and the vertical bending beam are composed of two parallel elastic bodies. One end of the cantilever is fixed, and the other end is the front end of the cantilever. The measured cylinder and the friction head are fixed on the front end of the cantilever. The probe of the non-contact displacement sensor is installed directly above the measured cylinder, which is fixed on the two-dimensional mobile platform by a rigid suspension beam. Strain gauges are pasted on the vertical bending beam to measure friction, and the load is measured indirectly through displacement sensors.

本发明中,可在水平方向和垂直方向实现微位移的二维位移平台上固定一个二维测力传感器。二维测力传感器采用弹性体悬臂结构,包括由卧式弯曲梁、连接块、立式弯曲梁等组成的悬臂及悬臂正上方的刚性悬梁和位移传感器探头。立式弯曲梁和卧式弯曲梁分别由两平行弹性体组成,正方体连接块在长度方向连接相互垂直的立式弯曲梁和卧式弯曲梁,组成悬臂主体结构。四片应变片对称粘贴于立式弯曲梁任一弹性体的正反面,并组成全桥电路,位置紧靠二维移动平台。悬臂端作为悬臂的自由端与卧式弯曲梁相连。悬臂端底部固定有摩擦球,顶部的被测圆柱作为其上方位移传感器探头的参考被测面。位移传感器探头位于刚性悬梁的一端,刚性悬梁的另一端固定在二维移动平台上。与调速电机同轴相连的样品台上用于放置摩擦测试样品。In the present invention, a two-dimensional force measuring sensor can be fixed on the two-dimensional displacement platform capable of realizing micro-displacement in the horizontal direction and the vertical direction. The two-dimensional force sensor adopts an elastic cantilever structure, including a cantilever composed of a horizontal bending beam, a connecting block, a vertical bending beam, a rigid cantilever directly above the cantilever, and a displacement sensor probe. The vertical curved beam and the horizontal curved beam are respectively composed of two parallel elastic bodies, and the cube connection block connects the vertical curved beam and the horizontal curved beam perpendicular to each other in the length direction to form the main structure of the cantilever. Four pieces of strain gauges are symmetrically pasted on the front and back of any elastic body of the vertical bending beam, and form a full-bridge circuit, and the position is close to the two-dimensional mobile platform. The cantilever end is connected to the horizontal bending beam as the free end of the cantilever. A friction ball is fixed at the bottom of the cantilever end, and the measured cylinder at the top serves as the reference measured surface of the displacement sensor probe above it. The displacement sensor probe is located at one end of the rigid suspension beam, and the other end of the rigid suspension beam is fixed on the two-dimensional mobile platform. The sample stage connected coaxially with the speed-regulating motor is used to place friction test samples.

摩擦实验时,调速电机带动样品台作球盘式摩擦运动,调节二维移动平台的垂直微调旋钮可改变悬臂上的卧式弯曲梁的应变大小,从而改变作用在待测样品上的载荷大小。摩擦球受到载荷和摩擦力的同时作用,立式弯曲梁和卧式弯曲梁均发生应变变形,位移传感器探头与被测圆柱的距离也发生变化,其中立式弯曲梁仅受摩擦力作用发生应变变形,位移传感器探头与被测圆柱的距离仅与载荷大小有关。利用电阻应变效应将摩擦力引起的弹性应变片应变转化为应变片电阻变化,继而通过电桥进一步转换成电压信号,从而间接测出载荷和摩擦力的大小;利用非接触位移传感器探头到被测圆柱端面的距离可间接得到载荷大小。During the friction test, the speed-regulating motor drives the sample table to perform ball-on-disk frictional motion. Adjusting the vertical fine-tuning knob of the two-dimensional mobile platform can change the strain of the horizontal bending beam on the cantilever, thereby changing the load on the sample to be tested. . The friction ball is under the simultaneous action of load and friction, both the vertical bending beam and the horizontal bending beam are strained and deformed, and the distance between the displacement sensor probe and the measured cylinder also changes, and the vertical bending beam is only strained by friction Deformation, the distance between the displacement sensor probe and the measured cylinder is only related to the load. Use the resistance strain effect to convert the elastic strain gauge strain caused by friction into the resistance change of the strain gauge, and then further convert it into a voltage signal through the bridge, so as to indirectly measure the magnitude of the load and friction force; use the non-contact displacement sensor probe to the measured The distance between the cylindrical end faces can indirectly obtain the magnitude of the load.

本发明采用非接触位移传感器测量载荷大小,无需采用高精度微位移平台就能实现载荷的高分辨率加载,同时保证了测力精度。二维测力传感器被固定在二维移动平台上,通过二维移动平台上的水平和垂直微调旋钮可改变载荷大小和摩擦接触点位置,不仅能同时测量微毫牛级载荷和摩擦力,而且具有较高的载荷加载分辨率。The invention uses a non-contact displacement sensor to measure the size of the load, can realize high-resolution loading of the load without using a high-precision micro-displacement platform, and simultaneously ensures the force measurement accuracy. The two-dimensional load cell is fixed on the two-dimensional mobile platform, and the load size and the position of the friction contact point can be changed through the horizontal and vertical fine-tuning knobs on the two-dimensional mobile platform. It has a high load loading resolution.

本发明结构简单,可靠性好,同时成本低,可广泛应用于各种薄膜(或涂层)微摩擦性能评估测试。The invention has the advantages of simple structure, good reliability and low cost, and can be widely used in evaluation tests of micro-friction properties of various thin films (or coatings).

附图说明Description of drawings

图1是本发明的结构原理图。Fig. 1 is a schematic diagram of the structure of the present invention.

图1中,1.水平微调旋钮,2.二维位移平台,3.垂直微调旋纽,4.刚性悬梁,5.位移传感器探头,6.样品,7.样品台,8.调速电机,13.卧式弯曲梁,14.连接块,15.立式弯曲梁。In Figure 1, 1. Horizontal fine-tuning knob, 2. Two-dimensional displacement platform, 3. Vertical fine-tuning knob, 4. Rigid suspension beam, 5. Displacement sensor probe, 6. Sample, 7. Sample stage, 8. Speed-regulating motor, 13. Horizontal curved beam, 14. Connecting block, 15. Vertical curved beam.

图2是本发明的二维测力传感器立体结构示意图。Fig. 2 is a schematic diagram of the three-dimensional structure of the two-dimensional load cell of the present invention.

图2中,4.刚性悬梁,5.位移传感器探头,9.固定端,10.被测圆柱,11.摩擦球,12.悬臂端,13.卧式弯曲梁,14.连接块,15.立式弯曲梁,16.应变片In Fig. 2, 4. rigid cantilever beam, 5. displacement sensor probe, 9. fixed end, 10. measured cylinder, 11. friction ball, 12. cantilever end, 13. horizontal bending beam, 14. connection block, 15. Vertical bending beam, 16. Strain gauge

具体实施方式Detailed ways

下面结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing.

本发明的结构原理如图1所示,二维位移平台2通过左下的水平微调旋钮1和顶部的垂直微调旋纽3在水平方向和垂直方向实现微位移,二维位移平台2的一侧固定二维测力传感器。二维测力传感器的结构包括由卧式弯曲梁13、连接块14、立式弯曲梁15等组成的悬臂及悬臂正上方的刚性悬梁4和位移传感器探头5。刚性悬梁4一端固定在二维移动平台上,另一端放置位移传感器探头5。与调速电机8同轴相连的样品台7上放置摩擦测试样品6。The structural principle of the present invention is shown in Figure 1, the two-dimensional displacement platform 2 realizes micro-displacement in the horizontal direction and the vertical direction through the horizontal fine-tuning knob 1 on the lower left and the vertical fine-tuning knob 3 on the top, and one side of the two-dimensional displacement platform 2 is fixed Two-dimensional load cell. The structure of the two-dimensional force sensor includes a cantilever composed of a horizontal bending beam 13, a connecting block 14, a vertical bending beam 15, and a rigid cantilever 4 directly above the cantilever and a displacement sensor probe 5. One end of the rigid suspension beam 4 is fixed on the two-dimensional mobile platform, and the displacement sensor probe 5 is placed on the other end. The friction test sample 6 is placed on the sample stage 7 coaxially connected with the speed regulating motor 8 .

本发明中二维测力传感器采用弹性体悬臂结构,如图2所示。立式弯曲梁15和卧式弯曲梁13分别由两平行弹性体组成,正方体连接块14在长度方向连接相互垂直的立式弯曲梁15和卧式弯曲梁13,组成悬臂主体结构。四片应变片16对称粘贴于立式弯曲梁15任一弹性体的正反面,并组成全桥电路,位置紧靠连接二维移动平台2的固定端9。悬臂端12作为悬臂的自由端与卧式弯曲梁13相连。悬臂端12底部固定有摩擦球11,顶部的被测圆柱10作为其上方位移传感器探头5的参考被测面。位移传感器探头5位于刚性悬梁4的一端,刚性悬梁4的另一端固定在二维移动平台上。In the present invention, the two-dimensional load cell adopts an elastic body cantilever structure, as shown in FIG. 2 . The vertical curved beam 15 and the horizontal curved beam 13 are respectively composed of two parallel elastic bodies, and the cube connection block 14 connects the vertical curved beam 15 and the horizontal curved beam 13 perpendicular to each other in the length direction to form a cantilever main structure. Four strain gauges 16 are symmetrically pasted on the front and back of any elastic body of the vertical bending beam 15 to form a full-bridge circuit, and the position is close to the fixed end 9 connected to the two-dimensional mobile platform 2 . The cantilever end 12 is connected with the horizontal bending beam 13 as the free end of the cantilever. A friction ball 11 is fixed at the bottom of the cantilever end 12 , and the measured cylinder 10 at the top serves as a reference measured surface of the displacement sensor probe 5 above it. The displacement sensor probe 5 is located at one end of the rigid suspension beam 4, and the other end of the rigid suspension beam 4 is fixed on a two-dimensional mobile platform.

下面给出本发明微摩擦测试装置的工作原理。The working principle of the micro-friction testing device of the present invention is given below.

摩擦测试样品6放置在与调速电机8同轴相连的样品台7上。调速电机8带动样品台7作球盘式摩擦运动,调节二维移动平台2的垂直微调旋钮3可改变悬臂9上的卧式弯曲梁13的应变大小,从而改变作用在待测样品6上的载荷大小。非接触位移传感器探头5与被测圆柱10距离变化反映了载荷变化情况。摩擦实验时,摩擦球11受到载荷和摩擦力的同时作用,立式弯曲梁15和卧式弯曲梁13均发生应变变形,位移传感器探头5与被测圆柱10的距离也发生变化,其中立式弯曲梁15仅受摩擦力作用发生应变变形,位移传感器探头5与被测圆柱10的距离仅与载荷大小有关。这就说明:一定的摩擦力对应立式弯曲梁15的一定应变大小;一定的载荷对应位移传感器探头5与被测圆柱10的一定距离。因而,可利用电阻应变效应将摩擦力引起的弹性应变片16应变转化为应变片电阻变化,继而通过电桥进一步转换成电压信号,从而间接测出载荷和摩擦力的大小;利用非接触位移传感器探头5到被测圆柱10端面的距离可间接得到载荷大小。The friction test sample 6 is placed on the sample stage 7 coaxially connected with the speed regulating motor 8 . The speed-regulating motor 8 drives the sample table 7 to perform a ball-on-disc frictional motion, and adjusting the vertical fine-tuning knob 3 of the two-dimensional mobile platform 2 can change the strain of the horizontal bending beam 13 on the cantilever 9, thereby changing the effect on the sample 6 to be tested. load size. The change of the distance between the non-contact displacement sensor probe 5 and the measured cylinder 10 reflects the change of the load. During the friction test, the friction ball 11 is subjected to the simultaneous action of load and friction force, the vertical bending beam 15 and the horizontal bending beam 13 both undergo strain deformation, and the distance between the displacement sensor probe 5 and the measured cylinder 10 also changes, and the vertical bending beam 15 also changes. The bending beam 15 is only deformed by friction, and the distance between the displacement sensor probe 5 and the measured cylinder 10 is only related to the magnitude of the load. This means that a certain frictional force corresponds to a certain strain of the vertical bending beam 15 ; a certain load corresponds to a certain distance between the displacement sensor probe 5 and the measured cylinder 10 . Therefore, the resistance strain effect can be used to convert the strain of the elastic strain gauge 16 caused by friction into the resistance change of the strain gauge, and then further converted into a voltage signal through the electric bridge, thereby indirectly measuring the magnitude of the load and friction force; using a non-contact displacement sensor The distance from the probe 5 to the end face of the measured cylinder 10 can indirectly obtain the magnitude of the load.

在本发明的一个实施例中,立式弯曲梁15由长40mm、宽10mm、厚0.34mm的两平行弹性体组成,两平行弹性体间距2mm;卧式弯曲梁13由长30mm、宽为10mm、厚0.1mm的两平行弹性体组成,两平行弹性体间距2mm。连接相互垂直的立式弯曲梁15和卧式弯曲梁13的正方体连接块14的边长为10mm,非接触位移传感器探头5的型号为北京鸿基点科技发展有限公司生产的ST-1-05,位于被测圆柱10的正上方1.5mm。ST-1-05位移传感器具有1.5mm的较大线性距离,即载荷从零到最大,二维位移平台12的垂直位移可达1.5mm,采用普通的位移平台,便可实现高分辨率的载荷加载。In one embodiment of the present invention, the vertical curved beam 15 is composed of two parallel elastic bodies with a length of 40mm, a width of 10mm, and a thickness of 0.34mm, and the distance between the two parallel elastic bodies is 2mm; the horizontal curved beam 13 is composed of a length of 30mm and a width of 10mm , two parallel elastic bodies with a thickness of 0.1 mm, and the distance between the two parallel elastic bodies is 2 mm. The side length of the square connection block 14 connecting vertical curved beams 15 and horizontal curved beams 13 perpendicular to each other is 10 mm, and the model of the non-contact displacement sensor probe 5 is ST-1-05 produced by Beijing Hongjidian Technology Development Co., Ltd. Located 1.5mm directly above the measured cylinder 10. The ST-1-05 displacement sensor has a large linear distance of 1.5mm, that is, the load is from zero to the maximum, and the vertical displacement of the two-dimensional displacement platform 12 can reach 1.5mm. Using an ordinary displacement platform, a high-resolution load can be achieved load.

Claims (1)

1、一种微摩擦测试装置,其特征在于二维位移平台(2)通过水平微调旋钮(1)和垂直微调旋纽(3)在水平方向和垂直方向实现微位移,二维位移平台(2)一侧固定的二维测力传感器中,正方体连接块(14)在长度方向连接相互垂直的立式弯曲梁(15)和卧式弯曲梁(13),组成悬臂主体结构,立式弯曲梁(15)和卧式弯曲梁(13)分别由两平行弹性体组成,四片应变片(16)对称粘贴于立式弯曲梁(15)任一弹性体的正反面,并组成全桥电路,位置紧靠二维移动平台(2),悬臂端(12)作为悬臂的自由端与卧式弯曲梁(13)相连,悬臂端(12)的底部固定有摩擦球(11),悬臂端(12)顶部固定有被测圆柱(10),被测圆柱(10)正上方的位移传感器探头(5)位于刚性悬梁(4)的一端,刚性悬梁(4)的另一端固定在二维移动平台上,摩擦测试样品(6)放置在与调速电机(8)同轴相连的样品台(7)上。1. A micro-friction test device, characterized in that the two-dimensional displacement platform (2) realizes micro-displacement in the horizontal direction and the vertical direction through the horizontal fine-tuning knob (1) and the vertical fine-tuning knob (3), and the two-dimensional displacement platform (2 ) in the two-dimensional load cell fixed on one side, the cube connecting block (14) connects vertical bending beams (15) and horizontal bending beams (13) perpendicular to each other in the length direction to form the main structure of the cantilever, and the vertical bending beam (15) and the horizontal bending beam (13) are respectively composed of two parallel elastic bodies, and four strain gauges (16) are symmetrically pasted on the positive and negative sides of any elastic body of the vertical bending beam (15), and form a full-bridge circuit, The position is close to the two-dimensional mobile platform (2), and the cantilever end (12) is connected with the horizontal bending beam (13) as the free end of the cantilever. The bottom of the cantilever end (12) is fixed with a friction ball (11), and the cantilever end (12 ) is fixed on the top of the measured cylinder (10), the displacement sensor probe (5) directly above the measured cylinder (10) is located at one end of the rigid suspension beam (4), and the other end of the rigid suspension beam (4) is fixed on the two-dimensional mobile platform , the friction test sample (6) is placed on the sample stage (7) coaxially connected with the speed regulating motor (8).
CNB2005100236424A 2005-01-27 2005-01-27 Microfriction testers Expired - Fee Related CN1297813C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100236424A CN1297813C (en) 2005-01-27 2005-01-27 Microfriction testers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100236424A CN1297813C (en) 2005-01-27 2005-01-27 Microfriction testers

Publications (2)

Publication Number Publication Date
CN1645103A true CN1645103A (en) 2005-07-27
CN1297813C CN1297813C (en) 2007-01-31

Family

ID=34875925

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100236424A Expired - Fee Related CN1297813C (en) 2005-01-27 2005-01-27 Microfriction testers

Country Status (1)

Country Link
CN (1) CN1297813C (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832901A (en) * 2010-05-21 2010-09-15 西安交通大学 Contact-type frictional interface stick-slip characteristic on-line detection device
CN101520406B (en) * 2009-04-08 2011-02-09 东华大学 Bionic sensor for fabric dynamic friction test
CN101975745A (en) * 2010-10-28 2011-02-16 哈尔滨工业大学 Metal foil plate micro-forming friction factor testing device
CN101017129B (en) * 2006-11-17 2011-03-09 中国矿业大学 Multifunctional micro friction wear testing machine
CN102169072A (en) * 2011-01-27 2011-08-31 黄河水利水电开发总公司 Test device for simulating and testing abrasion resistance of coating
CN102426152A (en) * 2011-11-21 2012-04-25 华南农业大学 A Metal Wood Friction Test Bench
CN102636429A (en) * 2012-05-02 2012-08-15 中国矿业大学 Friction control method of magnetic micro-nano texture surface and device
CN102998254A (en) * 2012-11-20 2013-03-27 清华大学 Micro friction measuring device
CN102116722B (en) * 2009-12-31 2013-04-03 中国科学院金属研究所 High-speed high-temperature multifunctional friction and abrasion tester
CN103234848A (en) * 2013-04-18 2013-08-07 西安交通大学 Device for testing nano scratch and friction stick-slip properties of film surfaces
CN104266966A (en) * 2014-10-23 2015-01-07 珠海格力电器股份有限公司 Bar code adhesive force detection device
CN105716981A (en) * 2016-04-13 2016-06-29 中国石油大学(北京) Vertical reciprocating friction-wear testing machine with magnetic shielding function
CN106092882A (en) * 2016-08-25 2016-11-09 中国电子科技集团公司第四十四研究所 For testing the tester of pipe cap lens sealing strength
CN106644201A (en) * 2017-02-24 2017-05-10 福建省莆田市衡力传感器有限公司 Hemispherical head friction sensor
CN107290276A (en) * 2017-06-14 2017-10-24 中船重工海声科技有限公司 Turn round frictional testing machine
CN107991205A (en) * 2018-01-17 2018-05-04 合肥工业大学 A kind of reciprocating high temperature friction and wear testing machine of micro linear
CN108398347A (en) * 2018-06-04 2018-08-14 西南交通大学 Inching gear and fretting test device
CN108534937A (en) * 2018-06-04 2018-09-14 西南交通大学 Friction test equipment and collecting method under electrochemical environment
CN108645447A (en) * 2018-06-04 2018-10-12 西南交通大学 Fine motion friction test equipment and collecting method
CN108693060A (en) * 2018-04-12 2018-10-23 郑州磨料磨具磨削研究所有限公司 A kind of Medical abrasive wheel piece mill stroke method for testing performance and detection device
CN108731920A (en) * 2017-08-21 2018-11-02 西安工业大学 Frictional wear test device
CN108955956A (en) * 2018-07-12 2018-12-07 北京大学 Frictional resistance measuring system and method based on flexible micro- beam
CN108982269A (en) * 2018-06-04 2018-12-11 西南交通大学 Friction test equipment and collecting method under atmosphere
CN109060520A (en) * 2018-06-26 2018-12-21 沈阳理工大学 Micro- folding cantilever beam of special device for testing stiffness and test method
CN109269978A (en) * 2018-11-16 2019-01-25 西南科技大学 Measure the measuring device and measuring method of adhesion strength between solid liquid interface under electric field
CN109540720A (en) * 2018-12-20 2019-03-29 蚌埠学院 Abrasion of grinding wheel detection device and its detection method
CN109668682A (en) * 2018-04-30 2019-04-23 交通运输部公路科学研究所 A kind of side-friction calibrating installation and calibration method
CN109668664A (en) * 2018-12-03 2019-04-23 大连理工大学 A kind of milli ox grade mantle friction force measuring device
CN110220810A (en) * 2019-06-27 2019-09-10 西南交通大学 Reciprocating sliding friction measures test platform
WO2022189923A1 (en) * 2021-03-08 2022-09-15 Universidade Do Minho Device and method for measuring friction and adhesion forces between two surfaces in contact for polymer replication processes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101178345B (en) * 2007-12-05 2010-11-03 西南交通大学 Twisting or micro-moving frictional wear test device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1227984A1 (en) * 1983-09-29 1986-04-30 Bort Anatolij S Microtribometer
JPH0989693A (en) * 1995-09-25 1997-04-04 Denso Corp Method and apparatus for measuring extremely small frictional force
JP3261451B2 (en) * 1999-03-10 2002-03-04 独立行政法人産業技術総合研究所 Cantilever for detecting frictional force
US6446486B1 (en) * 1999-04-26 2002-09-10 Sandia Corporation Micromachine friction test apparatus
CN2524233Y (en) * 2002-01-21 2002-12-04 张淑美 Micro-force sensor
CN2539963Y (en) * 2002-04-19 2003-03-12 华南理工大学 Measuring device for testing microfrictional force

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017129B (en) * 2006-11-17 2011-03-09 中国矿业大学 Multifunctional micro friction wear testing machine
CN101520406B (en) * 2009-04-08 2011-02-09 东华大学 Bionic sensor for fabric dynamic friction test
CN102116722B (en) * 2009-12-31 2013-04-03 中国科学院金属研究所 High-speed high-temperature multifunctional friction and abrasion tester
CN101832901A (en) * 2010-05-21 2010-09-15 西安交通大学 Contact-type frictional interface stick-slip characteristic on-line detection device
CN101975745A (en) * 2010-10-28 2011-02-16 哈尔滨工业大学 Metal foil plate micro-forming friction factor testing device
CN102169072B (en) * 2011-01-27 2013-03-20 黄河水利水电开发总公司 Test device for simulating and testing abrasion resistance of coating
CN102169072A (en) * 2011-01-27 2011-08-31 黄河水利水电开发总公司 Test device for simulating and testing abrasion resistance of coating
CN102426152B (en) * 2011-11-21 2013-05-01 华南农业大学 Metal-timber friction test platform
CN102426152A (en) * 2011-11-21 2012-04-25 华南农业大学 A Metal Wood Friction Test Bench
CN102636429A (en) * 2012-05-02 2012-08-15 中国矿业大学 Friction control method of magnetic micro-nano texture surface and device
CN102998254A (en) * 2012-11-20 2013-03-27 清华大学 Micro friction measuring device
CN102998254B (en) * 2012-11-20 2015-04-15 清华大学 Micro friction force measuring device
CN103234848A (en) * 2013-04-18 2013-08-07 西安交通大学 Device for testing nano scratch and friction stick-slip properties of film surfaces
CN104266966A (en) * 2014-10-23 2015-01-07 珠海格力电器股份有限公司 Bar code adhesive force detection device
CN105716981A (en) * 2016-04-13 2016-06-29 中国石油大学(北京) Vertical reciprocating friction-wear testing machine with magnetic shielding function
CN106092882A (en) * 2016-08-25 2016-11-09 中国电子科技集团公司第四十四研究所 For testing the tester of pipe cap lens sealing strength
CN106644201A (en) * 2017-02-24 2017-05-10 福建省莆田市衡力传感器有限公司 Hemispherical head friction sensor
CN107290276A (en) * 2017-06-14 2017-10-24 中船重工海声科技有限公司 Turn round frictional testing machine
CN107290276B (en) * 2017-06-14 2023-07-11 中船重工海声科技有限公司 Rotary friction testing machine
CN108731920A (en) * 2017-08-21 2018-11-02 西安工业大学 Frictional wear test device
CN107991205A (en) * 2018-01-17 2018-05-04 合肥工业大学 A kind of reciprocating high temperature friction and wear testing machine of micro linear
CN108693060A (en) * 2018-04-12 2018-10-23 郑州磨料磨具磨削研究所有限公司 A kind of Medical abrasive wheel piece mill stroke method for testing performance and detection device
CN109668682A (en) * 2018-04-30 2019-04-23 交通运输部公路科学研究所 A kind of side-friction calibrating installation and calibration method
CN108982269A (en) * 2018-06-04 2018-12-11 西南交通大学 Friction test equipment and collecting method under atmosphere
CN108398347A (en) * 2018-06-04 2018-08-14 西南交通大学 Inching gear and fretting test device
CN108645447A (en) * 2018-06-04 2018-10-12 西南交通大学 Fine motion friction test equipment and collecting method
CN108645447B (en) * 2018-06-04 2024-02-13 西南交通大学 Micro friction test equipment and data acquisition method
CN108534937A (en) * 2018-06-04 2018-09-14 西南交通大学 Friction test equipment and collecting method under electrochemical environment
CN109060520A (en) * 2018-06-26 2018-12-21 沈阳理工大学 Micro- folding cantilever beam of special device for testing stiffness and test method
CN109060520B (en) * 2018-06-26 2020-10-27 沈阳理工大学 Device and method for testing rigidity of micro-folding cantilever beam
CN108955956A (en) * 2018-07-12 2018-12-07 北京大学 Frictional resistance measuring system and method based on flexible micro- beam
CN109269978A (en) * 2018-11-16 2019-01-25 西南科技大学 Measure the measuring device and measuring method of adhesion strength between solid liquid interface under electric field
CN109269978B (en) * 2018-11-16 2024-01-30 西南科技大学 Measuring device and measuring method for measuring adhesion force between solid-liquid interfaces under electric field
CN109668664A (en) * 2018-12-03 2019-04-23 大连理工大学 A kind of milli ox grade mantle friction force measuring device
CN109540720A (en) * 2018-12-20 2019-03-29 蚌埠学院 Abrasion of grinding wheel detection device and its detection method
CN109540720B (en) * 2018-12-20 2024-03-01 蚌埠学院 Detection method of grinding wheel abrasion detection device
CN110220810B (en) * 2019-06-27 2021-11-05 西南交通大学 Reciprocating sliding friction measurement test platform
CN110220810A (en) * 2019-06-27 2019-09-10 西南交通大学 Reciprocating sliding friction measures test platform
WO2022189923A1 (en) * 2021-03-08 2022-09-15 Universidade Do Minho Device and method for measuring friction and adhesion forces between two surfaces in contact for polymer replication processes

Also Published As

Publication number Publication date
CN1297813C (en) 2007-01-31

Similar Documents

Publication Publication Date Title
CN1297813C (en) Microfriction testers
CN102288501B (en) Precision nano-indentation test device
CN202903617U (en) In-situ three-point bending test device
CN100458388C (en) Two-dimension force transducer with small measuring range
CN101226121B (en) Precision charger for material nano metric bending mechanical properties test
CN111272535B (en) Fretting sliding composite friction and wear test system and operation method thereof
CN102331370A (en) In-situ high-frequency fatigue material mechanical test platform under scanning electron microscope based on stretching/compressing mode
CN102967453B (en) Rotor test bed with online torque excitation and torque measurement function
CN203405372U (en) Flexible hinged in-situ nano-indentation scoring material mechanical properties testing platform
CN204255775U (en) Material twin shaft static and dynamic performance on-line testing platform under service temperature
CN101520389A (en) Super-precision trans-scale in-situ nanometer indentation marking test system
CN203337493U (en) In-situ indentation mechanical testing device based on tension-compression and fatigue combined load mode
CN102818688B (en) Loading device and method of vibration test of imitating flexible member
CN108760548A (en) Micro-nano impression/the cut test device of two-pass combination drive
CN2828774Y (en) Two-dimensional force/force moment sensor
CN102353576B (en) Small-size test device for mechanical and electrical coupling characteristics
CN103234848A (en) Device for testing nano scratch and friction stick-slip properties of film surfaces
CN204374047U (en) A kind of micro tribology measurement mechanism
CN102506688A (en) Resistance strain thickness measuring device and measurement method thereof
CN1916579A (en) 2D force sensor of dynamic friction testing for fabric
CN110455656A (en) Micromechanical comb tooth structure and detection method for precision action/sensing dual-mode integration
CN1687737A (en) Equipment for testing compression load and displacement of scalling rope for cars
CN101140158A (en) Capacitance method test device for electrostrictive material properties
CN209877891U (en) Voltage type displacement sensor calibration device based on grating
CN202057559U (en) In-situ micro-nanoscale indentation testing device based on double-displacement detection

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070131

Termination date: 20100301