CN1640018A - 在无线通信系统的反向链路中维持保持信道 - Google Patents

在无线通信系统的反向链路中维持保持信道 Download PDF

Info

Publication number
CN1640018A
CN1640018A CNA038055651A CN03805565A CN1640018A CN 1640018 A CN1640018 A CN 1640018A CN A038055651 A CNA038055651 A CN A038055651A CN 03805565 A CN03805565 A CN 03805565A CN 1640018 A CN1640018 A CN 1640018A
Authority
CN
China
Prior art keywords
field unit
information
data
base station
reverse link
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038055651A
Other languages
English (en)
Other versions
CN100425013C (zh
Inventor
小詹姆斯·A·普罗克特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IPR Licensing Inc
Original Assignee
IPR Licensing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IPR Licensing Inc filed Critical IPR Licensing Inc
Publication of CN1640018A publication Critical patent/CN1640018A/zh
Application granted granted Critical
Publication of CN100425013C publication Critical patent/CN100425013C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/287TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission when the channel is in stand-by
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/25Maintenance of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

在CDMA无线通信系统(10)的备用链路(50)中,使用各种不同的技术,以提供维持现场单元(24)和基地收发信台(18)之间的空闲模式连接的方法,以便在降低的功率水平下维持空闲模式连接。优选实施方案计算基于模函数使用现场单元标识符(62)的时隙或帧偏移量,为了在可用的时隙或偏移量之中分配现场单元保持数据传输。替代实施方案检测在物理层显式信令状态变化并且引起功率目标的变化。进一步的实施方案在预定的时间间隔中传输在现场单元(24)和BTS(基地收发信台)(18)之间协调的保持数据,因此允许功率水平得到调整。

Description

在无线通信系统的反向链路中维持保持信道
本发明的现有技术
在单点对多点的无线通信系统中,许多无线信道提供在远程的(移动的)接入或现场单元和中心位置(例如,基站或接入点)之间的连接。在码分多址(CDMA)系统中,许多不同的信道能通过将不同的代码应用于每个信号在单一的射频载波上传输。然而,即使在CDMA系统中,为对信道的访问需求如此之大,以致基站必须在多个使用者之间分配和切换信道。
理论上,CDMA型多路接入计划通常被认为,在理论上,最有效地利用射频频谱。然而,CDMA计划仅仅在个别传输的功率水平和传送时间受到精细地控制的时候才正常工作。广泛地研制的最初的CDMA语音无线系统(例如,IS95B)在上行链路上使用两种不同类型的功率控制来保证从给定的现场单元到达基站的信号不以破坏性方式干扰从其它的现场单元到达的信号。在被称为开环功率控制的第一个程序中,对适当的功率控制水平的粗略估计是由移动的现场单元本身建立的。具体地说,在呼叫建立起来之后随着移动单元在蜂窝区里面来回移动,现场单元和基站之间的路径损耗将继续改变。移动单元继续监测接收功率而且调整它的发射功率。移动单元测量从基站收到的关于正向链路信号的功率水平,然后相应地设定它的反向链路功率。因此,举例来说,如果接收功率水平比较弱,则移动单元假定它离基站比较远并且提高它的功率水平。如果情况恰恰相反,即以比较高的水平收到的信号表明移动单元比较接近基站,所以应该以降低的功率传输。
然而,由于正向链路和反向链路在不同的频率上,所以开环功率控制是不充分的而且太慢以致不能迅速补偿瑞利衰减(Rayleigh fading)。换言之,由于瑞利衰减是依频率而定的,开环功率控制不能独自在CDMA系统中完全地补偿它。因此,闭环功率控制也被用来补偿功率变动。在闭环程序中,一旦远程单元获得对业务信道的接入而且开始与基站通信,基站就不断地检测在反向链路上收到的功率水平。如果该链路质量开始恶化,基站就经由正向链路发送指令给移动单元以提高它的功率水平。如果链路质量表明在反向链路上的功率过高,基站则命令移动单元降低功率。这通常是通过基站使用在正向链路业务信道上发送的专门编码的信息向移动单元发送功率控制指令完成的。
不同于语音业务,无线数据服务的用户可以被接通,但是不主动地发送或接收数据。因此,无线数据用户可以处在“激活”模式(当前分配到用来发送或接收数据的无线的数据业务信道),“空闲”模式(可操作的,但当前不发送或接收数据)或“中断”(全然不通信)之中。举例来说,空闲用户可以刚刚发送或接收的数据业务传输并且因此似乎有可能立刻请求数据业务信道,以便进行进一步的传输。所以,保持信息可能被用来使用户保持在同步的但空闲的状态,以使在需要时分配无线的业务信道变得容易。当用户请求信道的时候,空闲状态允许用户比未被保持在同步的空闲状态的用户更快地分配到无线的业务信道。关于实现用来快速切换状态的系统的一条途径的更多的信息,请参阅授权给本申请的授予Tantivy Communications,Inc.的题为“Fast Acquisition ofTraffic channels for a Highly Variable Data Rate Reverse Link of aCDMA Wireless Communication System(快速获得CDMA无线链路通信系统的数据传输率高度可变的反向链路的业务信道)”的美国专利第6,222,832号。
所以,许多用户可以通过保持信息的周期序列被保持在空闲状态中。在空闲状态中,保持信息通常提供时间跟踪和功率控制。然而,这些保持信息通常是在空闲状态和激活状态期间以类似的功率水平发送的,以便确保基站能收到它们。不幸的是,保持信息能增加对其它激活的单元的干扰,因为它们仍然传输能量。
本发明的概述
本文中揭示的无线系统使用反向链路保持信道来维持用于许多同时激活的现场(远程或接入)单元的同步和其它状态信息。现场接入单元经过与基站的链路向用户提供数据服务,与数据网络的其它节点(例如,英特网)通信。无线链路是由一个或多个受基站管理的无线信道提供的。无线信道是由基站依据数据传输需要在多个接入终端之中动态地分配的,而且通常不保持用于单一的用户。
在优选的实施方案中,分开的保持信道连接被维持用于同步信息的传输。保持信道通常传输用来维持同步的未经调制的或导频的信号。由于保持信道不是致力于数据业务的信道,所以众多接入终端可以使用众多的时隙、选通周期和/或帧偏移量被维持在单一的保持信道上。
同步信息通常是按预定的时间间隔从每个接入终端发出的。在一个优选实施方案中,在空闲状态,同步信息是依照门控的比率发送的。在激活状态,同步信息被不断地发送,以便维持用于对应的数据业务传输的相位基准。返回功率控制信息是依照功率控制目标作为对包括功率控制和时间跟踪的数据同步信息的响应发送的。目标功率水平可以由基站使用包括收到的信号强度、收到的信号质量、载波干扰比(C/I)和信噪比(SNR)在内的诸因素确定。
更明确地说,保持信道在它不活跃地发送数据的时候被用来维持接入终端与基站同步。这样的保持信道能够同时维持众多接入终端。与每逢接入终端要发送或接受数据信息都将设立和拆毁反向链路无线电信道的情况相比,这种同步允许在需要数据业务传输的时候把数据业务信道更迅速地分配给接入终端。
依照本发明的一个方面,保持信道是通过时隙多路复用与多个接入单元共享的。明确地说,维持远程的(移动的)或所谓的现场或用户单元(SU)和基地收发信台(BTS(基地收发信台))之间的空闲模式连接的方法包括确定与特定的SU相对应的标识符(例如,MAC_ID)。标识符对于那个SU是独特的和确定的。模函数被应用于标识符,而结果用于计算帧偏移量或定义哪个时间周期被门控导通和哪个被门控切断的(时隙),在共享信道的用户之间保证时分多路复用(TDM)的性质。所以,标识符在无用信息操作方面被有效地使用,以保证可用的自由时隙(或帧偏移量)在多个用户之中的最佳分配。
因此,本发明提供在通信系统的反向链路中把特定的TDM时隙和/或帧偏移量隐含地分配给用户以便考虑到减少干扰的方法。
依照本发明的另一方面,维持现场单元和基地收发信台(BTS(基地收发信台))之间的空闲模式连接的方法包括确定反向链路状态变化需要,在包括激活的、空闲的(例如,控制保持选通的和控制保持非选通的)和不工作的(例如,静止状态)的众多状态之间。请求状态变化的指示是在物理层传输的。物理层指示被检测,而且在状态从非有效负荷或载运信号状态改变到有效负荷或载运信号状态之时,BTS(基地收发信台)中的功率控制目标被改变。
通过以这种方式改变功率控制目标和水平,干扰被减少,因为不仅同时传输导频或其它的保持的额外信息的现场单元比较少,而且那个信息是以较低的功率水平传输的。
依照本发明的其它方面,CDMA无线通信系统的反向链路使用维持现场单元和BTS(基地收发信台)站之间的空闲模式连接的方法。该方法包括确定指示保持数据的传输的预定的间隔。更明确地说,BTS(基地收发信台)和现场单元是借助保持信息或其它的方法协调的,以致预定的间隔对于两者是公用的和已知的。传输功率水平是依照预定的间隔按规则的周期进行调整的,而且保持信息是以经过调整的功率水平传输给BTS(基地收发信台)的。该信息在BTS(基地收发信台)被接收,而且指示信号质量水平的功率控制目标基准作为对经过调整的功率水平的响应在BTS(基地收发信台)被调整。然后,相继的交换发生在后来的每个周期性间隔。这在BTS(基地收发信台)提供保持数据的较高的可信度接收,同时仍然在没有数据被传输的时候允许将较低的传输功率用于保持信道。
附图简要说明
本发明的上述的和其它的目标、特征和优势从下面用相同的参考符号在不同的视图中始终表示同一部份的附图举例说明的本发明的优选实施方案的更具体的描述中将变得显而易见。这些图不必按比例绘制,而是把重点放在举例说明本发明的原则上。
图1是采用权利要求书定义的本发明的无线通信系统的示意图。
图2是无线同步信息的示意图。
图3是分时隙的反向数据信道的示意图。
图4是用来将诸用户分配到时隙之中的函数的示意图。
图5是门控的反向数据信道的图表。
图6是帧偏移量反向数据信道的图表。
图7展示空闲和激活的功率消除。
图8举例说明在BTS(基地收发信台)和现场单元之间为了以两个不同的水平维持调整点而实现的控制回路。
图9是使用模函数分配时隙来维持空闲模式连接的方法的流程表。
图10是用来通过请求和检测明显的状态变化来调整功率水平的维持空闲模式连接的方法的流程表。
图11是使用预定的间隔以经过调整的功率水平传输保持数据来维持空闲模式连接的方法的流程表。
优选实施方案的详细描述
本发明的优选实施方案的描述如下。
图1是举例说明依照本发明的某些方面支持数据信息在多重分配的通信信道上传输的无线通信系统的方框图。如同在许多无线电通信系统中那样,用户们为无线带宽分配竞争。因此,符合需要的是无线通信10是针对数据吞吐量和在某些应用中数据吞吐量的高速突发优化的。
本发明的某些方面的基础是承认现场单元在无线信道上传输的功率输出能受到这样的控制,以致它对使用同一共同的无线电空域的其它的现场单元的干扰最小。具体地说,正在发射的现场单元的功率输出水平被设定在尽可能低的水平,以致它不干扰试图与同一基站通信的其它的现场单元。
如图所示,通信系统10包括许多能够数据通信的装置,例如,个人计算机(PC)装置12-1,或者客户通常假定的其它类型设备(CPE)32,例如,便携式电脑12-2,手持式能够数据通信的无线电话12-H,个人数字助理(PDA)12-M,和未展示的其它装置,例如,寻呼机、车载远程信息处理装置等(在本文中统称为PC)。人们应该注意到PC装置12-2、...、12-h、...、12-m,每个都连接到至少一个对应的现场单元或接入终端24-1、24-2、...、24-h、...、24-m和相关联的定向天线装置16-1、16-2、...、16-h、...、16-m上。虽然术语“现场单元”主要是在本文中使用的,但是人们应该理解诸如“用户单元”、“接入单元”、“移动装置”之类的其它术语可能被其它的作者用来表示相同的设备。
位于中心的设备包括基站天线18和对应的基站20(在本文中也被称为基地收发信台(BTS(基地收发信台))),后者包括无线电收发信机和高速控制和处理能力。
基站20和相关的基础设施提供与网关22、英特网之类的网络33和网络文件服务器30的连接。通信系统10优选是按需接入的单点对多点的无线通信系统,以致PC装置12能把数据传输给网络服务器30和接收来自网络服务器30的数据,基于包括在正向链路40和相反链路50上实现的双向无线连接的逻辑连接。这就是说,在图示的单点对多点接入的无线通信系统10中,给定的基站20通常以类似于蜂巢式电话通信网络的方式支持与许多不同的现场单元24的通信。因此,系统10能提供适合CDMA无线电通信系统的架构,在那里数字信息一经请求就在多个移动的蜂巢用户和英特网之类硬件实现的网络33之间传递。
一个或多个PC装置12每个都经由电缆13通过适当的硬连线连接(例如,乙太网类型连接)接到相应的现场单元24上。
每个现场单元24允许其相关联的PC装置12使用无线通信系统接入网络文件服务器30。在反向链路50方向,也就是说,从PC12向服务器30传输的数据业务,PC装置12基于,例如,英特网协议(IP)水平网络数据包把信息传送给现场单元24。然后,现场单元24把有线成帧(即,乙太网成帧)与适当的无线连接成帧一起压缩,以致数据包能在通信系统10的无线链路上传输。然后,基于选定的无线协议,适当地格式化的无线数据包在包括反向链路50的无线信道之一上通过现场单元天线16传送到基站天线18。然后,在中心基站位置,基站20解压缩无线链路成帧的数据包并且把该数据包重新格式化成IP格式。然后,数据包选择路由通过网关22和任何数目或类型的网络33到达网络文件服务器30之类的终极目的地。
在一种应用中,PC装置12所产生的信息以TCP/IP协议为基础。因此,PC装置12有机会接入在英特网之上可得到的数字信息,例如,网页。人们应该注意到其它类型的数字信息也能基于本发明的原理在通信系统10的信道上传输。其它类型的数字信息的例子将是被使用通用数据报协议(UDP)发送的数据,例如视频和声频流等。
数据信息也能在正向链路40上从网络文件服务器30转移到PC12。在这个例证中,诸如起源于文件服务器30的IP(英特网协议)包之类的网络数据通过网关22在网络33上传送,最后到达基站20。然后,如同先前对反向链路数据传输讨论的那样,适当的无线协议成帧被添加到适合在无线正向链路40上进行数据包通信的原始数据(例如,IP包)上。然后,新成帧的数据包借助射频信号通过基站天线18和现场单元天线16传送到预期的目标现场单元24。适当的目标现场单元24将无线数据包协议层解码,而且把这一个或多个数据包转寄到完成进一步处理(例如IP层处理)的预期的PC装置12。所以,给定的PC装置12和文件服务器30在IP水平可以被看作是逻辑连接的终点。一旦连接在基站处理器20和对应的现场单元24之间建立,在PC装置12的用户就能根据需要把数据传输到文件服务器30和接收来自文件服务器30的数据。
反向链路50包括不同类型的逻辑的和/或物理的无线信道,例如,接入信道51、多样的业务信道52-1、...、52-m和保持信道53。反向链路接入信道51通常被现场单元24用来请求对基站20的连接和被基站20用来分配业务信道。例如,业务信道52能根据需要被指定给用户。然后,被指定的业务信道52在反向链路50中将有效负荷数据从现场单元24运送到基站20。
值得注意的是,在基站20和现场单元24之间给定的链路能在给定的瞬间及时具有分配给它的一条以上业务信道52。这使信息能以较高的速率转移。
保持信道53可以被用来运送诸如同步、功率控制、信道质量报告和信道请求之类的信息,以便传达数据,而且对进一步支持在反向链路50和正向链路40两者上的数字信息的传输。
正向链路40能包括被基站20用来告知现场单元24一般信息(例如,发信号告知一个或多个正向链路业务信道42已分配给它用于正向链路数据传输)的寻呼信道41。正向链路40上的业务信道42-1...42-n被用来把有效负荷信息从基站20运送到对应的目标现场单元24。
保持信道43能用来在正向链路40上把同步和功率控制信息从基站处理器20传输到现场单元24。此外,寻呼信道41能用来告知现场单元24在反向链路50方向上分配的业务信道52。
正向链路40的业务信道42能基于时分多路复用方案被多个现场单元24共享。明确地说,正向链路业务信道42被非必选地分成预定数目的周期性地重复的时隙,用于从基站20到多个现场单元24的数据包传输。人们应该理解给定的现场单元24在任何瞬间都能及时地具有多个时隙分配给它使用或没有时隙分配给它使用。
因此,现场单元24能把各种不同类型的信息在信道(例如接入信道15-1)上发送到基站20。因此,接入信道51需要支持接入请求信息从现场单元24到基站20的传输。接入请求信息能指示现场单元24的请求,例如,它需要基站连接,它是否已经被连接、它有数据准备发送和它现在需要接入高速双向通信链路。
反馈信道45是这样提供的,以致基站20能将反馈信息发送给现场单元24。至少一部分所示的反馈信道45被保留,用来把一般的信息作为广播信息传输给全体现场单元24。这些信息可以包括内务操作、呼叫建立、无线信道分配、传输代码分配和许多为了与基站20通信现场单元24需要的其它信息。
人们应该注意到这样的信息的一种类型也能被用来控制现场单元24的操作传输功率水平。在这个例证中,现场单元24能基于从基站20收到的反馈信息调整它用于后面的信息传输的功率输出水平。更明确地说,现场单元24能仰赖分别在反馈信道45或寻呼信道41上收到的反馈信息调整它的目标输出功率水平。因此,现场单元24的功率输出水平能够被这样优化,以致它对在公用的射频上传输信息的其它的现场单元24的干扰最小。
人们应该注意到现场单元20被控制在至少包括激活模式和空闲模式在内的几种主要的操作状态之一中。因此,每个接入终端24即使处于空闲模式中也必须定期地将同步信息经由保持信道53在反向链路50上发送到基站20。同步信息确定基站20同步的时间跟踪和功率控制信息,以足够维持接入终端至少处于空闲状态。
在电讯工业协会(TIA)颁布的一个被称为“CDMA2000”的无线通信标准中,功率控制测量是在BTS(基地收发信台)20进行的,与门限值进行比较,然后“向上/向下”功率控制信号被发送给现场单元24。在其它被推荐的系统【例如,第三代合伙计划2(3GPP2)推荐的英特网CDMA(“I-CDMA”)系统】中,测量是在BTS(基地收发信台)20进行的,测量结果被发送到现场单元24,然后现场单元24做出功率水平调整决定。
基站用功率控制信息经由正向链路40做出反应。功率控制信息包括管理后续信息的功率水平以允许接入终端24保持与基站20同步的功率控制指令或功率控制测量结果。功率水平是由位于基站20或现场单元24的数据或信号处理器实现的用来计算适合空闲的和激活的数据传输状态两者的目标功率水平的功率水平控制函数确定的。
人们应该注意到现场单元20被控制在几种主要的操作状态中。更具体地说,本发明在延长的空闲周期(例如当与订户单元相连接的计算机被供电但是当前未积极发送或接收数据的时候)里,在反向链路上在订户单元和基站之间有效地提供较大数量的虚拟的物理连接。这是通过发送允许基站20和现场单元24保持相位和时间同步的其它类型的控制信息实现的。
在所谓的空闲模式中,订户单元以只需要足以允许订户单元与基站保持同步的快速的数据率在反向链路保持信道53上发送同步“心跳”信号、导频信号或信息。这个信号的持续时间是通过考虑几个因素确定的,包括基站接收器中的代码锁相电路的捕捉或锁定范围、基于信道仍然可以被请求的最大延迟在内的由所需要的功率控制率和/或发送请求指示所需要的功率控制速率确定的。
正向链路40和反向链路50进一步包括当现场单元24处于激活模式的时候用来传输无线信息的数据业务信道。当接入终端24要发送或接受数据的时候,数据业务信道被基站20分配给接入终端24。数据传输状态表示是否已将数据业务信道分配给接入终端24,下面将进一步描述。当数据传输状态被激活的时候,同步信息或信号除了时间跟踪和功率控制之外还提供在数据业务信道上传输的信息的相位基准。
然而,仅仅用于时间跟踪同步和功率控制的同步信息或信号不需要与在激活的数据传输状态期间用来提供相位基准的同步信息或信号一样多的功率。所以,同步信息或信号在空闲数据传输状态中可以以降低的功率水平发送。当它也被用于相位基准的时候,将附加的功率提供给同步信息或信号。
因此,同步信息在空闲的数据传输状态中是以比激活的数据传输状态低的功率水平发送的。图2是举例说明保持信道53如何被用来发送同步信息和/或信号的一种可能的技术实现的图表。在这个实施方案中,在空闲的(数据空闲的)数据传输状态63期间,同步信息和/或信号是依照某种选通比率以某种选通方式发送的。1/4的选通比率是作为例证展示的;其它的选通比率也可以被采用。在激活的(涉及数据的)传输状态65中,同步信息和/或信号被连续地发送。这种类型的门控周期的控制被用在诸如CDMA2000之类的系统中。
在本发明的某些其它的优选实施方案中,保持信道53被这样分为时隙,以致它能被多个用户共享。图3是以这种方式将同步信号分配到时隙之中的函数的图表。这张图举例说明一个这样分时隙的反向信道;这是在I-CDMA系统中使用的方案。在这里,26毫秒的数据帧被分为一百二十八(128)个时隙70,每个时隙被唯一地分配给多达128个现场单元24当中的一个现场单元。
在这个实施方案中,为了确定将哪个用户分配给哪个时隙而进行计算。明确地说,如图4所示,用户标识符62和时隙的数目64被输入模函数60以确定用户时隙66数字。然后,作为结果产生的用户时隙66被用来将现场单元(用户)24分布在可用的时隙和/或帧偏移量之中。同样的模函数被基站20和现场单元24两者使用,以致它们适当地保持协调。计算出来的用户时隙66被用来使给定的现场单元24在反向保持信道上与特定的时隙70相匹配。
用户标识符62可能涉及单元序号或某个其它的数字,例如媒体接入控制层标识符(MAC-ID)。只要所有的用户标识符62都是不同的,用户将被相同地分布在可用的时隙之中,这本身又将减少干扰。
然而,在诸如I-CDMA之类用户们共享公用的信道代码的系统中,必须小心翼翼地保证不允许多个不同的用户24映射到同一时隙70中。所以,把序号在现场单元进入空闲模式时候分配给它们通常是必要的。
在诸如CDMA2000之类的其它系统中,现场单元20同时在不同编码的信道上传输是可能的。在这种情况下,更有可能使用MAC_ID之类的更大、更“随机”的数字来确定时隙70。
图5是或许与CDMA2000系统一起使用的门控的反向链路信道的更详细的图表。在CDMA2000中,为了均匀分配信号业务,将现场单元24分配给门控导通周期80-83。因为CDMA2000基于长代码偏移量区分用户24,所以将多个用户24分配给同一门控导通的时隙80-83不成问题。基站20的接收器仍然能通过检测它们的长代码来区分不同的用户。因此,当这样的通信系统22(例如,CDMA2000)使用门控的反向数据信道的时候,每个现场单元24也被允许有不同的选通比率。
在这里,通过模函数60产生的按模计算的用户时隙66号被用来将门控的周期之一分配给特定的用户。这样,例如,如果存在四个可能的门控导通的周期80-83,每个都有任何MAC-ID或其它的标识符将以它为模映射到特定的一个偏移量周期80-83之中的对应的模数0、1、2或3。以这种方式,现场单元24将以或多或少一致的方式分配到门控导通的周期中。图6更详细地举例说明这个概念。在使用帧偏移量反向数据信道的通信系统22中,计算出来的用户时隙66被用来确定帧偏移量90。例如,用户1可以被指定帧偏移量90=0,而用户2可以被指定帧偏移量=2。不同的帧偏移量考虑到在通信系统22之内通信的时候减少干扰。
在一个优选实施方案中,用于多个用户的保持信道53数据横跨多个帧偏移量90传播,借此允许以降低的功率水平发送保持信号数据。在其它的实施方案中,例如对于门控的业务信道,类似的方案能用来产生良好的效果。
如同前面简要地指出的那样,优选以受控的功率水平传输同步信息。功率水平是由基站20管理的而且借助功率控制信息传输给接入终端24。接入终端24通过以被基站禁止的功率水平发射作出反应。基站20计算下面进一步描述的指示接入终端应该发射的功率水平的目标功率水平。通常,功率水平是以分贝(dBm)表示有效幅射功率的,然而,其它的计量单位也可以被使用。
在本发明的一个实施方案中,当数据传输状态变成激活的(涉及数据的)65的时候,功率水平67被增加,以允许同步信息也被用于相位基准。所以,基站维持适合这些数据传输状态中每一个的目标功率水平。所谓的激活目标功率水平对应于涉及数据的传输状态;所谓的空闲目标功率水平对应于数据空闲的传输状态。
图7更详细地说明这个概念。周期46对应于数据空闲的传输状态,而周期48对应于涉及数据的传输状态。功率水平67指出同步信息的功率水平。用虚线47展示的空闲目标功率水平指出在数据空闲的传输状态期间应该用来发送同步信息的功率水平。用虚线49展示的激活目标功率水平指出在涉及数据的传输状态期间应该用来发送同步信息的功率水平。
为了获得这个最终结果,基站20为了调整空闲的和激活的目标功率水平51、52,用基站20在正向链路40上发送的功率控制信息管理接入终端24发送的信息的传输功率。然后,接入终端24维持空闲的和激活的目标功率水平51、52。明确地说,接入终端24确定数据传输状态何时改变和在激活的和空闲的传输功率水平之间转换,而且依照对应的功率水平发射。基站20确定下面进一步描述的数据传输状态的变化,并因此调整功率控制信息。
尽管数据传输状态影响传输究竟发生在激活功率水平还是空闲功率水平,但是其它的因素也影响感知的功率水平。从接入终端24到基站20的距离、其间的物体、来自其它来源的干扰和其它的因素全能影响感知的无线信息的功率水平。因此,基站20检查指示收到的信息的功率水平的收到的信号的质量,并因此计算功率控制信息。如果从接入终端24收到的信息的感知功率水平太低,基站将发射指示要以较高的功率水平发射的功率控制信息。类似地,如果从接入终端24收到的信息的感知功率水平太高,基站将发射指示要以较低的功率水平发射的功率控制信息。所以,基站通过注视目标功率水平管理从接入终端发射的信息的功率水平。
因此,当接入终端24改变数据传输状态的时候,基站将以不同的功率水平接收信息。基站确定功率水平的变化是归因于数据传输状态的改变而不是归因于上述的其它因素,并因此继续计算空闲的和激活的功率水平。接入终端24也可以在转换数据传输状态之后不理会用于预定的周期的功率控制信息。所以,接入终端可以在没有基站20的功率控制信息的情况下在激活的和空闲功率水平之间切换,而不破坏降低功率的功率同步信息的传输。
再一次参照图1,接入终端24首先确定在反向链路业务信道52上是否有准备好要传输的数据。因此,检验是为了设定或维持数据传输状态而完成的。如果没有数据等待着传输,接入终端24进入或者维持空闲的数据传输状态。如果有数据等待着传输,接入终端24进入或维持激活的数据传输状态。
在空闲的数据传输状态中,接入终端24将保持信道53上的传输功率水平设定在空闲目标功率水平。然后,接入终端确定空闲状态信息的门控比率。在空闲模式中,信息是以门控的或周期性的方式(例如,1/4、2或1)发送的,如上所述。门控比率导致在发送下一个同步信息之前周期性的延迟。
在激活的数据传输状态中,接入终端24将传输功率水平设定在激活的目标功率水平。然后,接入终端在没有门控的情况下将信息设定为连续的。
然后,接入终端24将同步信息或信号发送到基站20。基站20接收同步信息或信号并且确定数据传输状态。
检验是为了核实被确定的数据传输状态而完成的。如果数据传输状态是空闲的,那么基站计算或维持新的空闲目标功率水平。如果数据传输状态是激活的,那么基站计算新的激活目标功率水平。然后,基站20将指示计算出来的目标功率水平的功率控制信息发送到接入终端24。
接入终端24接收包括新的目标功率水平的功率控制信息。然后,接入终端24依据门控比率确定何时发送下一个同步信息或信号,而且控制回到较早的确定是否有数据已准备好在业务信道上传输的步骤。以门控的方式,接入终端24依据门控比率定期地发送同步信息或信号。因此,如同前面在图3中展示的那样,接入终端24都可以在发送下一个同步信息或信号之前等待每个逝去1.25毫秒的一个或多个功率控制组间隔。作为替代,在激活的数据传输状态中,同步信息或信号是以连续的方式发送的,也如图2所示。
基站20接收来自接入终端24的同步信息或信号。基站使用哪种度量标准来确定接入终端24的数据传输状态。当接入终端在激活和空闲之间切换数据传输状态的时候,基站依据收到它们时的同步信息或信号确定当前的数据传输状态。然后,基站20因此试图设定在功率控制信息中反映的目标功率水平。
基站20检查收到的同步信息或信号的质量水平以确定发送它的功率水平并因此确定数据传输状态究竟是空闲的还是激活的。如同前面指出的那样,接入终端24依据数据传输状态以空闲的或激活的功率水平之一发射。然而,基站20试图这样调整目标功率水平,以致接入终端的传输在基站20被无变化地接收。因此,基站20基于链路质量度量标准确定传输质量。由于除了接入终端24使用的传输功率之外接收质量水平还可能受诸如噪音、干扰和反射之类的其它因素影响,所以其它的度量标准可以被用来评估接收信号质量和确定发送功率水平。
作为替代,基站可以依照周期性的时间间隔接收分开的数据传输状态指示。这种预定的时间间隔可以如同下面描述的那样是依照门控比率或依照基站和接入终端同意的预定的时间间隔。
基站20也可以接收囊括在同步信息中的数据传输状态。囊括在同步信息中的可检测的信号是由基站检测的,并因此被用来在基站20设定数据传输状态和相关的目标功率控制水平。在另一个实施方案中,基站使用物理层状态变化来确定数据传输状态。物理层状态变化的转变是用同步信息中的信号指示的。基站如同下面描述的那样检测物理层状态变化并因此设定数据传输状态。
在替代实施方案中,其它的方法可以被用来在基站20检测数据传输状态的变化。所以,基站20依据同步信息或信号确定数据传输状态并因此设定它自己的标志。标志是在确定将在功率控制信息中设定的目标功率水平时使用的。影响目标功率水平的其它因素除了接收功率水平之外还包括C/I(载波干扰比)或SNR(信噪比)。一旦与在接入终点24的空闲的或激活的数据传输状态相对应的目标功率水平被确定下来,控制就从较早的确定数据传输状态的步骤重新开始。
图8举例说明为了将功率控制设定点维持在两个不同的水平在基站20和现场单元24之间实现的这种功率设定点控制循环。一般地说,不同的设定点与两种不同的信号类型中的每一种相关。例如,第一个导频设定点100可以与导频信道相关联,第二个门控的导频设定点110可以与门控的导频信道相关联。现场单元24或基站20要么选择导频设定点100的数值要么选择门控的导频设定点110的数值,取决于现场单元24目前正在传输的信道。这些数值是由BTS(基地收发信台)20提供给现场单元24的或者是现场单元24依据BTS(基地收发信台)20提供的参数确定的。例如,在激活这些信道之前,导频设定点或门控的导频设定点的数值可以在允许现场单元24进入激活模式之前(例如,在呼叫建立期间)在接入或寻呼信道上由BTS(基地收发信台)20提供给现场单元。这些数值是用BTS(基地收发信台)20通过它的天线、接收器(检测器)150、滤波器152和A/D转换器154获取的测量结果推演的。A/D转换器154提供的数值通常被应用于随后导致接收功率测量的毫伏分贝(dBm)的表格。其它的实施方案可以使用信噪比(SNR)或载波干扰比(C/I)来控制反向链路功率。然后,将测量结果与两个设定点110或100中任一个进行比较,取决于现场单元24将采用的传输模式。在一个优选的实施方案(CDMA2000)中,比较是在基站20进行的。在另一个优选的实施方案(I-CDMA)中,比较是在现场单元24中进行的。
在一个优选的实施方案(CDMA2000)中,测量结果与设定点的比较结果被应用于基站20中的积分器122。在另一个优选的实施方案(I-CDMA)中,测量结果与设定点的比较结果被应用于现场单元24中的积分器122。与从设定点寄存器到增益组件120的路径和从积分器122到分贝-伏特表128的路径相关联的开关118和124是依据特定的激活信道选择的。如果开关124和118被同时切换(基站20和现场单元24两者都知道存在状态变化),那么积分器122不受维持当前的传输所需要的功率水平的增加或减少的影响。分贝-伏特表128将积分器122维持的综合误差信号转换成随后能应用于数模转换器130的电压值。然后,波形发生器132产生与将被应用于相应的导频或门控导频信道的信号相关联的发射波形。然后,这些信号提供给同相(I)和正交(Q)复合调制器134并且作为信号输入提供给可变增益放大器140。然后,用于可变增益放大器的增益设定可以由DAC130提供。然后,由此产生的增益控制信号在馈送给现场单元天线之前先被馈送到输出功率放大器142。
以这种方式,人们能看到不同的功率水平设定点能怎样与不同的信道相关联。例如,设定点数值100或110每个都可以与不同的信道类型相关联。
图9是使用标识符和模函数在代码相位或帧偏移量之内分配时隙来维持空闲模式连接的方法的流程表。一旦时隙被分配,现场单元24就能在反向链路上传输信号。在诸如在3GPP2颁布的1xEV DV提议中描述的那种系统中,在正向链路上利用公用的数据包数据信道的每个激活的用户都有独特的ID。这些被称为MAC_ID。
本发明的一个实施方案使用分配给现场单元的MAC_ID在控制保持门控模式期间在反向链路上把现场单元24(用户)“混编”到特定的时分多路复用(TDM)时隙之中。MAC_ID可以被用来挑选一个用户能用于门控操作的可用的时隙或一个可用的帧偏移量。BTS(基地收发信台)20能现场与BTS(基地收发信台)20连接的时候分配MAC_ID。它们能在整个通信对话期间被使用,直到现场断开为止。由于BTS(基地收发信台)20控制所有信道的分配,所以它有时隙分配及其它的知识。
由于所有的MAC_ID都是不同的,所以将以TDMA的方式分配用户,借此减少干扰。帧偏移量可以被用来管理蜂巢位置和PSTN之间的语音线路的回程加载。帧偏移量也有偏移一些用户之间的门控导通周期的作用以致它们不相互干扰。本发明依据将哪个现场单元24分配给哪个时隙的决定提供帧偏移量的去耦。
每个现场单元24分配到一个属于该现场单元24的独特的和确定的MAC_ID。通过获取MAC_ID和把模函数应用于它,然后使用其结果要么作为帧偏移量要么作为哪个时间周期被门控导通或哪个被门控断开的定义,现场单元24用户之间的TDM性质得到保证。模是根据定义多少TDM时隙或帧偏移量定义的。模函数的结果可以被用于所有的传输,或任何有内务操信号空闲传输(导频传输)、或用户数据有效负荷传输。不同的模可以应用于不同的现场单元24,取决于它们的门控比率。通常,MAC_ID的分配考虑到TDM对反向链路的影响。MAC_IDs可以是以线性方式分配的,或者可以建立在使每个时隙中占有者的数目相等的基础上,或者通过总是这样分配下一个MAC_ID以导致对最小占用模状态的附加。MAC_ID可以定期地再次分配,以使给有较少的用户的TDM时隙的用户的峰值数目减到最少。
例如,假设门控为4(比率为1/4)的系统(如同在CDMA2000中那样)有5个在系统上的现场单元。用户1被分配到MAC_ID1,这导致用户1被分配到用1 Mod 4=1定义的门控导通周期(或帧偏移量)。用户2、3和4分别获得分配的MAC_ID2、3和4。用户5获得5mod 4=1,或与第一现场单元24相同的帧偏移量。因此,随着时间推移,现场单元24呈均匀分布,因为自由时隙的数目倾向于被平均地分配给所有竞争自由时隙的现场单元24。类似的方法可以被基站20的接收器部分用来确定哪个现场单元24在哪个特定的时隙传输。
如同在图9的流程表中展示的那样,维持远程的(移动的)或所谓的现场单元(SU)和基地收发信台(BTS(基地收发信台))之间的空闲模式连接的方法包括确定与特定的SU相对应的标识符(例如,MAC_ID),如步骤402所示。标识符对于那个SU是独特的和确定的。在步骤404中,模函数被应用于标识符,而且结果是在计算帧偏移量或定义哪个时间周期是门控导通的和哪个是门控断开的(时隙)中为了保证在发送信息的时候共享信道的用户之间的时分多路复用(TDM)性质使用的,如同在步骤406中描述的那样。
图10是为了调整功率水平通过请求和检测明显的状态变化维持空闲模式连接的方法的流程表。状态变化的检测允许依据状态将功率控制目标协调到不同的水平。例如,与没有数据存在的时候相反,当诸如C/I位(内务操作)或用户数据有效负荷之类的数据存在的时候,现场单元24在导频信道上以较高的功率水平传输是符合需要的。这能在没有数据传送的时候减少在反向链路上的现场单元24之间的干扰。因此,并非总是在BTS(基地收发信台)检测收到的数据,然后改变功率控制目标,本发明首先以信号告知物理层状态变化,然后改变功率控制目标。
以信号告知和检测状态变化可以用任何实用的方法完成,包括层1(L1)或层2(L2)发信号。如同前面简要地描述的那样,某些无线的数据系统有至少两个主要的传输状态,激活状态和空闲状态。CDMA2000在反向链路上有几种MAC状态,包括:激活状态、控制状态、保持状态和静止状态。从一种状态到另一种状态的转变是借助网络标准定义的某些信号完成的。在I-CDMA系统中,状态是激活状态、待机状态和空闲状态。这些状态是类似的,不同之处在于在CDMA中转变可以与层2发信号(使用信息)一起完成,而在I-CDMA中一些转变是借助物理层(层1)发信号请求的,例如通过在每个保持信道时隙发送“心跳”或“带请求的心跳”。
在图10所示的实施方案中,变成激活状态的状态变化是明确地以信号告知的。这种信号可以与“带请求的心跳”信号或其它方法(例如,前面讨论的从导频信号的门控模式转到非门控模式)一样在物理层建立,或者它可以作为调制信息被发送(层2)。
在这种情况下,功率控制目标在控制保持状态和激活状态之间是不同的。目标由于存在或可能存在数据有效负荷但是数据本身不需要被检测而被改变。仅仅将状态变化的指示从信号中检测出来,以便指示在功率控制目标方面的改变。在这种情况下,有可能没有数据将在新的控制保持状态中发送,而且在状态变化之时,信号和可能的有效负荷数据可以被发送。因此功率控制目标在BTS(基地收发信台)中将是不同的。
本发明优选的方法如同在步骤502中指出的那样包括确定状态变化是需要的。接下来,在步骤504,现场单元24在物理层发送用于适合状态改变的请求的指示(例如,带请求的心跳或从门控的到非门控的导频或其它)。在步骤506,检测这种状态变化,例如通过检测物理层指示。在状态从携带非有效负荷或信号的状态改变到携带有效负荷或信号的状态之时,如同在步骤508中指出的那样,在BTS(基地收发信台)20中改变功率控制目标。内务操作请求为改变状态而被检测,而且在状态从携带非有效负荷的状态改变到携带有效负荷的状态之时在BTS(基地收发信台)20中改变功率控制目标。
因此,本发明允许BTS(基地收发信台)20维持的功率控制设定点在门控周期期间改变,以致现场单元24的输出功率能除了刚刚关闭业务信道的那个之外被进一步减小。
图11是使用以经过调整的功率水平传输保持数据的预定的时间间隔来维持空闲模式连接的方法的流程表。依照前面的讨论,在建议的1xEV DV系统中,在处于控制保持状态时可能存在一些信号被定期发送的情况。这被定义为周期性的和预先安排的次级状态变化。例如,控制保持模式的一种这样的次级状态包括必须按固定的时间间隔定期发送的传输载波干扰比(C/I)信息(或其它信号)。这个时间间隔比功率控制和导频传输率慢,但是预先知道的。例如,每四个导频传输之一可以是为包括C/I信息定义的。在这种情况下,在其它的不发信号的次级状态期间自动降低导频功率将是有利的。
如流程表所示,在第一状态602中,获得用于次级状态变化的ID的预定的时间间隔。接下来,这个时间间隔如同步骤604所示的那样被传送到现场单元24和基站20两者。这能作为在移动单元和BTS(基地收发信台)之间预先安排的一致同意的和协调的条件或通过交换信息发生。然后,如同在步骤606中那样,BTS(基地收发信台)改变它在C/I周期和非C/I周期期间的功率控制目标并因此产生功率控制位。然后,如步骤608所示,以经过调整的功率水平传输信息。此外,如同在步骤610中那样,基准信号的质量水平可以被调整,以响应经过调整的功率水平传输的信息。
这种方法要求的全部是某种预先的协议,即在信号导通周期和信号断开周期之间功率传输方面的步骤是现场单元和BTS(基地收发信台)两者都知道的。以这种方式,现场单元24和BTS(基地收发信台)20都能确定周期性的和相互一致的动态目标。然后,现场单元24将自动地在“ON”周期期间按照功率控制组中的步骤或周期性的时间间隔增加它的导频功率传输。
因此,这样的周期性时间间隔将发生没有内务操作或用户有效负荷数据正在传输的时候。周期性的时间间隔通常将落在功率控制组的增量中,例如1(没有)、2、1/4、1/16等,但是可以是BTS(基地收发信台)20和现场单元24同意的任何预定的时间间隔。协调通常将呈BTS(基地收发信台)和现场单元之间的信息的形式,例如,囊括在心跳信号中、附加到功率控制信息上或作为独立的信息。其它的机制可以被本领域普通技术人员实现,以便维持BTS(基地收发信台)和现场单元之间的协调。这样的机制承认预定的周期,其中现场单元在与预定的时间间隔一致的期间按追加的功率水平传输,而BTS(基地收发信台)为了维持同步在那个时间间隔期间依照固定的步骤按比例增加目标功率控制水平。
对于特定的反向链路信道类型,功率控制目标可以基于信道当前的使用目的被改变。如果反向链路导频正在用于C/I信号,那么功率可以增大,如果它是仅仅被用于与BTS(基地收发信台)20一起维持定时和功率控制,那么功率可以减小。
诸如预定的次级状态时间间隔之类的参数可以以几种不同的方式受控(步骤604)。在CDMA2000中,协商通常发生在呼叫建立或确定BTS(基地收发信台)20和现场单元24在门控周期、发信号周期等期间怎样处理动态的功率控制步骤的服务选项期间。通常,现场单元24把能力的一览表发送给BTS(基地收发信台)20,BTS(基地收发信台)20将它与它自己的能力进行比较,而且把最小公分母发送回现场单元24。其它参数是由BTS(基地收发信台)在同步和寻呼信道上广播的。现场单元24使用这些参数确定应该怎样与BTS(基地收发信台)相互作用。
上述的实施方案包括两个功率控制水平,空闲的和激活的,作为说明。然而,可能在现场单元24和基站20之间维持多个功率水平门限值。因此,本发明如同在此描述的那样可以被用来提供多个待机或空闲状态水平,取决于在每个水平使用的发信号能力的水平,为了将干扰减到最少和维持接入终端24和基站20之间的同步。
本领域普通技术人员应该容易领会到用于在此定义的同步信息功率控制的系统和方法可以以许多种形式交付无线装置使用,包括但不限于:a)永久地储存在诸如ROM装置之类不可写入的存储媒体上的信息;b)可变更地储存在诸如软盘、磁带、光盘、RAM装置和其它的磁性和光学媒体之类可写入的存储媒体上的信息;或c)通过通信媒体传送到计算机的信息,例如,使用基带信号或宽带信号技术,如同在诸如英特网或电话调制解调器线路之类的电子网络中。操作和方法可以在处理器可执行的软件中或作为嵌在载波中的一组指令得以实现。作为替代,操作和方法可以全部或部分地体现在使用诸如专用集成电路(ASIC)、状态机、控制器或其它硬件部件或装置,或其它的硬件部件或装置、或硬件、软件和固件部件的组合之中。
尽管这项发明已参照其优选实施方案地被展示和描述,但是本领域普通技术人员将理解在形式和细节方面各种不同的改变可以在不脱离权利要求书包括的本发明的范围的情况下完成。

Claims (16)

1.一种用来在码分多址无线通信系统的反向链路中维持现场单元和基地收发信台之间的空闲模式连接的方法,其中包括:
确定与现场单元相对应的标识符;
在反向链路中把模函数应用于标识符以计算现场单元能
传输信息或信号的时隙;以及
在计算出来的时隙中把信息或信号传送到基地收发信台。
2.根据权利要求1的方法,其中计算出来的时隙是门控反向导频信道的门控导通周期之一。
3.根据权利要求1的方法,其中被计算的时隙是I-CDMA定义的128个时隙之一。
4.根据权利要求1的方法,其中标识符是MAC_ID。
5.根据权利要求1的方法,其中信息包括保持数据。
6.根据权利要求1的方法,其中信息包括使用者有效负荷数据。
7.根据权利要求1的方法,进一步包括基于在码分多址无线通信系统中定义的时分多路复用的时隙的数目定义模函数。
8.根据权利要求1的方法,其中信息的传输是至少针对只有导频传输、有内务操信号的传输和有效负荷传输之一完成的。
9.根据权利要求1的方法,进一步包括把不同的模函数应用于不同的现场单元,取决于不同的现场单元=门控率。
10.根据权利要求1的方法,进一步包括在时分多路复用对反向链路的影响方面基于使每个时隙中占用者的数目相等以与至少一种线性方式一致的方式分配关于时分多路复用对反向链路的影响的标识符,和分配下一个标识符,以造成与被占用的模数状态最小值相加。
11.根据权利要求1的方法,进一步包括定期地重新分配标识符,以便更优化地使现场单元分布在时分多路复用时隙之中。
12.一种用来在码分多址无线通信系统的反向链路中维持现场单元和基地收发信台之间的空闲模式连接的方法其中包括:确定需要在众多状态之间改变反向链路状态;在物理层传输对改变反向链路状态的请求;
在物理层检测被传输的请求;以及
在改变状态的时候在基地收发信台中改变功率控制对象。
13.根据权利要求12的方法,其中众多状态包括:激活状态、控制保持状态和静止状态。
14.根据权利要求12的方法,其中众多状态包括:激活状态、待机状态和空闲状态。
15.根据权利要求12的方法,其中传输请求步骤和检测请求步骤发生在链路层。
16.一种用来在码分多址无线通信系统的反向链路中维持现场单元和基地收发信台之间的空闲模式连接的方法,其中包括:
获得用于数据传输的预定的间隔;
在基站收发信机和现场单元之间这样协调,以致预定的间隔是两者公用的;
依照预定的间隔按规则的周期调整传输功率水平;
以经过调整的功率水平把数据从现场单元传输到基地收发信台;以及
在基地收发信台,作为对经过调整的传输功率水平的响应调整基准信号质量水平。
CNB038055651A 2002-01-08 2003-01-08 在无线通信系统的反向链路中维持保持信道 Expired - Fee Related CN100425013C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US34651102P 2002-01-08 2002-01-08
US34652502P 2002-01-08 2002-01-08
US34652702P 2002-01-08 2002-01-08
US60/346,511 2002-01-08
US60/346,525 2002-01-08
US60/346,527 2002-01-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CNA2007101369757A Division CN101094019A (zh) 2002-01-08 2003-01-08 在无线通信系统的反向链路中维持保持信道
CNA2008101693219A Division CN101431792A (zh) 2002-01-08 2003-01-08 在无线通信系统的反向链路中维持保持信道

Publications (2)

Publication Number Publication Date
CN1640018A true CN1640018A (zh) 2005-07-13
CN100425013C CN100425013C (zh) 2008-10-08

Family

ID=27407744

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038055651A Expired - Fee Related CN100425013C (zh) 2002-01-08 2003-01-08 在无线通信系统的反向链路中维持保持信道

Country Status (11)

Country Link
US (4) US8605702B2 (zh)
EP (1) EP1472808A4 (zh)
JP (7) JP4886168B2 (zh)
KR (2) KR101024875B1 (zh)
CN (1) CN100425013C (zh)
AU (1) AU2003210465B2 (zh)
BR (1) BR0306803A (zh)
CA (1) CA2474340C (zh)
MX (1) MXPA04006654A (zh)
NO (1) NO20043293L (zh)
WO (1) WO2003058829A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101438234B (zh) * 2007-01-09 2013-08-21 美国日本电气实验室公司 参数化并发软件的过程间数据流分析
TWI418180B (zh) * 2009-06-24 2013-12-01 4Ipnet Inc 無線寬頻傳輸裝置以及適用於此裝置之流量控制方法
CN104468037A (zh) * 2006-07-07 2015-03-25 高通股份有限公司 用于控制信息的动态频率分配和调制方案
CN111880457A (zh) * 2020-08-12 2020-11-03 深圳市蓝信物联科技有限公司 一种无线单火控制方法、装置及系统

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7394791B2 (en) * 1997-12-17 2008-07-01 Interdigital Technology Corporation Multi-detection of heartbeat to reduce error probability
US7079523B2 (en) * 2000-02-07 2006-07-18 Ipr Licensing, Inc. Maintenance link using active/standby request channels
US8175120B2 (en) 2000-02-07 2012-05-08 Ipr Licensing, Inc. Minimal maintenance link to support synchronization
US7936728B2 (en) 1997-12-17 2011-05-03 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US6222832B1 (en) * 1998-06-01 2001-04-24 Tantivy Communications, Inc. Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system
US9525923B2 (en) 1997-12-17 2016-12-20 Intel Corporation Multi-detection of heartbeat to reduce error probability
US7773566B2 (en) * 1998-06-01 2010-08-10 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US8134980B2 (en) * 1998-06-01 2012-03-13 Ipr Licensing, Inc. Transmittal of heartbeat signal at a lower level than heartbeat request
US8155096B1 (en) 2000-12-01 2012-04-10 Ipr Licensing Inc. Antenna control system and method
US7551663B1 (en) * 2001-02-01 2009-06-23 Ipr Licensing, Inc. Use of correlation combination to achieve channel detection
US6954448B2 (en) 2001-02-01 2005-10-11 Ipr Licensing, Inc. Alternate channel for carrying selected message types
EP2479905B1 (en) 2001-06-13 2017-03-15 Intel Corporation Method and apparatuses for transmittal of heartbeat signal at a lower level than heartbeat request
EP2405694A1 (en) 2001-06-13 2012-01-11 IPR Licensing Inc. Base station and system for coordination of wireless maintenance channel power control
CN100425013C (zh) * 2002-01-08 2008-10-08 Ipr特许公司 在无线通信系统的反向链路中维持保持信道
TW200733596A (en) 2002-10-17 2007-09-01 Interdigital Tech Corp Power control for communications systems utilizing high speed shared channels
US7408902B2 (en) * 2003-02-13 2008-08-05 Interdigital Technology Corporation Method of using a radio network controller for controlling data bit rates to maintain the quality of radio links
US7149203B2 (en) * 2003-04-04 2006-12-12 Nokia Corporation Mechanisms of control hold operation and MAC—ID assignment for CDMA2000 1×EV-DV reverse enhanced high-speed packet data channel
KR100735337B1 (ko) * 2004-03-05 2007-07-04 삼성전자주식회사 광대역 무선 접속 통신 시스템의 슬립 모드에서 주기적레인징 시스템 및 방법
KR100725773B1 (ko) * 2004-08-20 2007-06-08 삼성전자주식회사 시분할 듀플렉스 방식의 이동통신 시스템에서 단말기의상태에 따라 상향링크 전력제어방식을 적응적으로변경하기 위한 장치 및 방법
US7346011B2 (en) * 2005-04-28 2008-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling calls based on frame-offset selection
WO2006118301A1 (ja) * 2005-05-02 2006-11-09 Ntt Docomo, Inc. 送信電力制御方法、移動局、無線基地局及び無線回線制御局
EP1720264A1 (en) * 2005-05-03 2006-11-08 Siemens Aktiengesellschaft Method for reducing interference in a radio communication system
JP4671777B2 (ja) * 2005-06-17 2011-04-20 株式会社エヌ・ティ・ティ・ドコモ 共有データチャネル割り当て装置および共有データチャネル割り当て方法
US7965665B2 (en) 2005-09-30 2011-06-21 Alcatel-Lucent Usa Inc. Method of signaling traffic mode transition in a wireless communications system
JP2007195076A (ja) * 2006-01-20 2007-08-02 Nec Corp 無線通信システムとその送信電力制御方法および装置
JP4619311B2 (ja) * 2006-03-20 2011-01-26 株式会社エヌ・ティ・ティ・ドコモ 基地局、移動局および無線チャネル状態通知方法
US7929962B2 (en) 2006-05-01 2011-04-19 Alcatel-Lucent Usa Inc. Method for controlling radio communications during idle periods in a wireless system
US8295252B2 (en) * 2006-05-18 2012-10-23 Qualcomm Incorporated Interlace-based control channel balancing in a wireless communication network
JP4455541B2 (ja) * 2006-06-19 2010-04-21 株式会社エヌ・ティ・ティ・ドコモ 移動局装置および基地局装置並びに上りリンクのユーザ間同期方法
US9323311B2 (en) * 2006-06-22 2016-04-26 Broadcom Corporation Method and system for packet based signaling between A Mac and A PHY to manage energy efficient network devices and/or protocols
EP2039195B1 (en) * 2006-07-07 2015-02-18 Telefonaktiebolaget LM Ericsson (publ) Resource scheduling in wireless communication systems using beam forming
US20080032735A1 (en) * 2006-08-07 2008-02-07 Research In Motion Limited Apparatus, and associated method, for performing cell selection in a packet radio communication system
US8565195B2 (en) * 2006-08-21 2013-10-22 Nokia Corporation Apparatus, methods and computer program products providing support for packet data user continuous uplink connectivity
US8130705B2 (en) 2006-09-15 2012-03-06 Qualcomm Incorporated Method and apparatus for service capability modification
EP1976140A1 (en) * 2007-03-26 2008-10-01 Nokia Siemens Networks Gmbh & Co. Kg Method and device for reducing transmission power of packet oriented data and communication system comprising such device
US7898983B2 (en) * 2007-07-05 2011-03-01 Qualcomm Incorporated Methods and apparatus supporting traffic signaling in peer to peer communications
US8601156B2 (en) * 2007-07-06 2013-12-03 Qualcomm Incorporated Methods and apparatus related to peer discovery and/or paging in peer to peer wireless communications
US8599823B2 (en) 2007-07-06 2013-12-03 Qualcomm Incorporated Communications methods and apparatus related to synchronization with respect to a peer to peer timing structure
US8385316B2 (en) * 2007-07-06 2013-02-26 Qualcomm Incorporated Methods and apparatus related to peer to peer communications timing structure
US8385317B2 (en) * 2007-07-06 2013-02-26 Qualcomm Incorporated Methods and apparatus supporting multiple timing synchronizations corresponding to different communications peers
US8493919B2 (en) * 2007-09-21 2013-07-23 Qualcomm Incorporated Interference mitigation in a wireless communication system
US8891458B2 (en) * 2007-12-05 2014-11-18 Qualcomm Incorporated User equipment capability update in wireless communications
BRPI0821764B1 (pt) * 2007-12-20 2020-03-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Método de alinhamento de sincronismo de enlace ascendente em equipamento de usuário
JP5217525B2 (ja) * 2008-03-11 2013-06-19 富士通株式会社 無線通信装置、無線通信方法および無線通信制御プログラム
EP3654671B1 (en) 2008-03-19 2022-07-06 NEC Corporation Communication system, mobile station, base station, response decision method, resource configuration decision method, and program
US8588151B2 (en) 2008-08-08 2013-11-19 Qualcomm Incorporated Access terminal capability update
JP5359331B2 (ja) * 2009-02-05 2013-12-04 日本電気株式会社 基地局、無線通信システム、基地局の制御方法、無線通信方法、コンピュータプログラム、および移動局
US9066301B2 (en) 2009-04-08 2015-06-23 Qualcomm Incorporated Managing a reverse link transmission power level setpoint during periods of inactivity on the reverse link in a wireless communications system
US9232441B2 (en) * 2009-08-31 2016-01-05 Qualcomm Incorporated Power based rate selection
EP2339883B1 (en) * 2009-12-22 2013-03-20 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for a terminal of a wireless communication network
US9040630B2 (en) 2010-08-02 2015-05-26 Amyris, Inc. Graft copolymers of polyfarnesenes with condensation polymers
WO2012053951A1 (en) * 2010-10-21 2012-04-26 Telefonaktiebolaget L M Ericsson (Publ) Device and method for transmit power control
US9282508B2 (en) * 2010-12-29 2016-03-08 Telefonaktiebolaget L M Ericsson (Publ) Rate optimized power consumption in micro wave radio links
KR101813604B1 (ko) * 2011-06-23 2018-01-02 삼성전자주식회사 무선통신 시스템에서 프리앰블 정보 제공 방법 및 장치
WO2013028307A1 (en) 2011-08-24 2013-02-28 Amyris, Inc. Derivatives of hydrocarbon terpenes
US10049857B2 (en) * 2014-12-04 2018-08-14 Mks Instruments, Inc. Adaptive periodic waveform controller
JP7289614B2 (ja) * 2018-03-07 2023-06-12 株式会社日立製作所 通信管理方法、通信システム及びプログラム
US11013053B2 (en) * 2018-12-10 2021-05-18 Verizon Patent And Licensing Inc. Method and system for stateless network function services in 5G networks
CA3156407A1 (en) * 2019-10-31 2021-05-06 Itron, Inc. ASSIGNMENT OF DOWNLINK EVENTS IN A NETWORK
US11438837B2 (en) 2019-10-31 2022-09-06 Itron, Inc. Downlink event allocation in a network
US11363532B2 (en) 2019-10-31 2022-06-14 Itron, Inc. Downlink event allocation in a network

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516983B2 (ja) * 1987-06-19 1996-07-24 松下通信工業株式会社 無線電話装置
JPH0822100B2 (ja) * 1989-09-19 1996-03-04 日本電信電話株式会社 移動通信無線制御チャネル構成方式
US5267244A (en) * 1991-11-08 1993-11-30 Teknekron Communications Systems, Inc. Method and an apparatus for establishing the functional capabilities for wireless communications between a base unit and a remote unit
EP0582754A1 (en) * 1992-08-11 1994-02-16 Alcatel Bell-Sdt S.A. Mobile communication system with linear digital modulation means
JPH06188831A (ja) * 1992-12-16 1994-07-08 Fujitsu Ltd パーソナル通信方式
US5721762A (en) * 1993-12-01 1998-02-24 Sharp Microelectronics Technology, Inc. Shared base stations for voice and data cellular telecommunications and method
US5418813A (en) * 1993-12-06 1995-05-23 Motorola, Inc. Method and apparatus for creating a composite waveform
US5491837A (en) * 1994-03-07 1996-02-13 Ericsson Inc. Method and system for channel allocation using power control and mobile-assisted handover measurements
US6775531B1 (en) * 1994-07-21 2004-08-10 Interdigital Technology Corporation Subscriber terminal temperature regulation
JP3372135B2 (ja) * 1995-05-24 2003-01-27 ソニー株式会社 通信端末装置
US6940840B2 (en) * 1995-06-30 2005-09-06 Interdigital Technology Corporation Apparatus for adaptive reverse power control for spread-spectrum communications
JP3212238B2 (ja) * 1995-08-10 2001-09-25 株式会社日立製作所 移動通信システムおよび移動端末装置
JP3087886B2 (ja) * 1995-10-24 2000-09-11 株式会社エヌ・ティ・ティ・ドコモ Cdma移動通信の再送制御方法
JP2972586B2 (ja) * 1996-08-08 1999-11-08 日本電気株式会社 着信メッセージの送信システムおよび送信方法
US5940765A (en) * 1996-08-30 1999-08-17 Telefonaktiebolaget Lm Ericsson Radio communications systems and methods for jittered beacon transmission
CA2424556C (en) * 1997-04-17 2009-11-24 Ntt Mobile Communications Network Inc. Base station apparatus of mobile communication system
US6075792A (en) 1997-06-16 2000-06-13 Interdigital Technology Corporation CDMA communication system which selectively allocates bandwidth upon demand
FI105252B (fi) * 1997-07-14 2000-06-30 Nokia Mobile Phones Ltd Menetelmä ajan varaamiseksi matkaviestimelle
JP3655057B2 (ja) 1997-07-19 2005-06-02 松下電器産業株式会社 Cdma送信装置及びcdma送信方法
CA2248487C (en) 1997-10-31 2002-01-15 Lucent Technologies Inc. Power control for mobile wireless communication system
US7079523B2 (en) * 2000-02-07 2006-07-18 Ipr Licensing, Inc. Maintenance link using active/standby request channels
US6222832B1 (en) * 1998-06-01 2001-04-24 Tantivy Communications, Inc. Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system
SE517215C2 (sv) * 1998-03-20 2002-05-07 Ericsson Telefon Ab L M Ett system och ett förfarande relaterande till paketdatakommunikation
US6473607B1 (en) * 1998-06-01 2002-10-29 Broadcom Corporation Communication device with a self-calibrating sleep timer
US6490454B1 (en) * 1998-08-07 2002-12-03 Telefonaktiebolaget Lm Ericsson (Publ) Downlink observed time difference measurements
US6480476B1 (en) 1998-10-15 2002-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Variable sleep mode for mobile stations in a mobile communications
US6545996B1 (en) * 1998-12-10 2003-04-08 Lucent Technologies Inc. Management of wireless control channel
DE19883028T1 (de) * 1998-12-24 2002-02-14 Mitsubishi Electric Corp Numerisches Steuergerät
US6587446B2 (en) * 1999-02-11 2003-07-01 Qualcomm Incorporated Handoff in a wireless communication system
US6434367B1 (en) * 1999-06-11 2002-08-13 Lucent Technologies Inc. Using decoupled power control sub-channel to control reverse-link channel power
US6466800B1 (en) * 1999-11-19 2002-10-15 Siemens Information And Communication Mobile, Llc Method and system for a wireless communication system incorporating channel selection algorithm for 2.4 GHz direct sequence spread spectrum cordless telephone system
FR2802432B1 (fr) * 1999-12-16 2002-03-08 Vygon Connecteur a obturation automatique pour raccorder une tete d'injection de liquide a une sortie d'injection
DE60028179T2 (de) * 2000-03-14 2007-03-15 Lucent Technologies Inc. Vefahren und Mobilfunknetz zum Minimieren der RACH-Sendeleistung
JP3414357B2 (ja) * 2000-04-25 2003-06-09 日本電気株式会社 Cdma移動通信システムにおける送信電力制御方式
US7248841B2 (en) * 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
US6807160B1 (en) * 2000-06-19 2004-10-19 Lucent Technologies Inc. Transmission of mobile requests in wireless uplink system
US7120132B2 (en) * 2000-06-24 2006-10-10 Samsung Electronics Co., Ltd. Apparatus and method for synchronization of uplink synchronous transmission scheme in a CDMA communication system
US7054286B2 (en) * 2000-10-27 2006-05-30 L-3 Communications Corporation Bandwidth allocation and data multiplexing scheme for direct sequence CDMA systems
KR100433893B1 (ko) * 2001-01-15 2004-06-04 삼성전자주식회사 협대역 시분할 듀플렉싱 부호분할다중접속 통신시스템의전력 제어 방법 및 장치
US6954448B2 (en) * 2001-02-01 2005-10-11 Ipr Licensing, Inc. Alternate channel for carrying selected message types
US7130283B2 (en) * 2001-03-19 2006-10-31 Northrop Grumman Corporation Variable bandwidth satellite communication techniques
EP2405694A1 (en) * 2001-06-13 2012-01-11 IPR Licensing Inc. Base station and system for coordination of wireless maintenance channel power control
US20030040315A1 (en) * 2001-08-20 2003-02-27 Farideh Khaleghi Reduced state transition delay and signaling overhead for mobile station state transitions
WO2003036815A1 (en) * 2001-10-22 2003-05-01 Nokia Corporation Pilot channel power autotuning
CN100425013C (zh) * 2002-01-08 2008-10-08 Ipr特许公司 在无线通信系统的反向链路中维持保持信道
US8179833B2 (en) * 2002-12-06 2012-05-15 Qualcomm Incorporated Hybrid TDM/OFDM/CDM reverse link transmission
US8559406B2 (en) * 2003-06-03 2013-10-15 Qualcomm Incorporated Method and apparatus for communications of data in a communication system
EP2071738B1 (en) * 2007-12-13 2016-09-07 Alcatel-Lucent USA Inc. A picocell base station and method of adjusting transmission power of pilot signals therefrom

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104468037A (zh) * 2006-07-07 2015-03-25 高通股份有限公司 用于控制信息的动态频率分配和调制方案
CN104468037B (zh) * 2006-07-07 2018-03-16 高通股份有限公司 用于在无线通信系统中发送数据和控制信息的方法和装置
CN101438234B (zh) * 2007-01-09 2013-08-21 美国日本电气实验室公司 参数化并发软件的过程间数据流分析
TWI418180B (zh) * 2009-06-24 2013-12-01 4Ipnet Inc 無線寬頻傳輸裝置以及適用於此裝置之流量控制方法
CN111880457A (zh) * 2020-08-12 2020-11-03 深圳市蓝信物联科技有限公司 一种无线单火控制方法、装置及系统
CN111880457B (zh) * 2020-08-12 2024-03-29 深圳市蓝信物联科技有限公司 一种无线单火控制方法、装置及系统

Also Published As

Publication number Publication date
CA2474340A1 (en) 2003-07-17
AU2003210465B2 (en) 2006-11-02
KR20070055635A (ko) 2007-05-30
JP2013229889A (ja) 2013-11-07
EP1472808A4 (en) 2010-05-05
WO2003058829A3 (en) 2004-02-26
NO20043293L (no) 2004-10-04
JP4886168B2 (ja) 2012-02-29
JP5852683B2 (ja) 2016-02-03
JP2012100306A (ja) 2012-05-24
CA2474340C (en) 2015-12-01
CN100425013C (zh) 2008-10-08
JP5738350B2 (ja) 2015-06-24
JP5329635B2 (ja) 2013-10-30
EP1472808A2 (en) 2004-11-03
MXPA04006654A (es) 2005-05-27
US10805887B2 (en) 2020-10-13
JP2013078159A (ja) 2013-04-25
JP2015100116A (ja) 2015-05-28
US8605702B2 (en) 2013-12-10
JP2005518113A (ja) 2005-06-16
US10390311B2 (en) 2019-08-20
JP2012039621A (ja) 2012-02-23
AU2003210465A1 (en) 2003-07-24
KR101024875B1 (ko) 2011-03-31
US20120134341A1 (en) 2012-05-31
US20190373562A1 (en) 2019-12-05
US20140086231A1 (en) 2014-03-27
WO2003058829A2 (en) 2003-07-17
JP5329617B2 (ja) 2013-10-30
JP5450849B2 (ja) 2014-03-26
JP2014096842A (ja) 2014-05-22
KR20040073556A (ko) 2004-08-19
US20040047328A1 (en) 2004-03-11
KR101011166B1 (ko) 2011-01-26
US8582552B2 (en) 2013-11-12
BR0306803A (pt) 2004-10-26

Similar Documents

Publication Publication Date Title
CN1640018A (zh) 在无线通信系统的反向链路中维持保持信道
KR101145093B1 (ko) 피어-투-피어 통신들에서 전력을 스케일링하기 위한 방법 및 장치
JP4401569B2 (ja) 共通チャンネルソフトハンドオフを有するセルラー通信システムおよび連合された方法
KR20100139009A (ko) 무선 시스템의 제어 시그널링 방법
CN1943264A (zh) 在相移和时间片网络中的先进的切换
CN1906899A (zh) 能进行对等通信的蜂窝通信终端的传输功率电平的调节
MX2010010611A (es) Manejo de señales de referencia en sistemas moviles.
KR20070015463A (ko) 시스템 전력 소비의 감소를 위한 변경된 전력 콘트롤
CN101094019A (zh) 在无线通信系统的反向链路中维持保持信道
JP2011139500A (ja) 分散制御によるオーバーヘッドメッセージの更新
AU2007200456B2 (en) A Subscriber Unit and Base Station for a Communications System
KR20110023797A (ko) 다중 반송파를 지원하는 무선 통신 시스템에서 반송파 스위칭을 이용한 통신방법
JP2010226747A (ja) 移動通信端末、移動通信システム、基地局及び通信方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081008

Termination date: 20190108