CN1639621A - 液晶显示装置 - Google Patents

液晶显示装置 Download PDF

Info

Publication number
CN1639621A
CN1639621A CNA038055686A CN03805568A CN1639621A CN 1639621 A CN1639621 A CN 1639621A CN A038055686 A CNA038055686 A CN A038055686A CN 03805568 A CN03805568 A CN 03805568A CN 1639621 A CN1639621 A CN 1639621A
Authority
CN
China
Prior art keywords
mentioned
liquid crystal
delay
phase shift
shift films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038055686A
Other languages
English (en)
Other versions
CN100368896C (zh
Inventor
宫地弘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN1639621A publication Critical patent/CN1639621A/zh
Application granted granted Critical
Publication of CN100368896C publication Critical patent/CN100368896C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

在垂直取向模式的液晶盒11与偏振片12之间,配置面内方向的延迟为Rp[nm]的正的单轴性膜14,在该膜14与偏振片12之间,配置厚度方向的延迟为Rn[nm]的负的单轴性膜15。进而,当假定各偏振片12、13的基材膜的厚度方向的延迟为Rtac[nm],与上述Rp相关的参数α1[nm]为35+(R1c/80-4)2×3.5+(360-R1c)×Rtac/850,与上述Rn相关的参数β1[nm]为R1c-1.9×Rtac时,上述Rp被设定为上述α1的80%~120%,上述Rn被设定为上述β1的60%~90%。

Description

液晶显示装置
技术领域
本发明涉及垂直取向方式的液晶显示装置。
背景技术
迄今,液晶显示装置被广泛地用作文字处理器和计算机的画面,近年来,作为电视画面急速地得到普及。这些液晶显示装置的多数采用TN(扭曲向列)模式,但在该液晶显示装置中,当从斜方向看时,存在对比度容易降低、灰度特性容易反转之类的问题。
因此,近年来,为了提高斜视角特性,VA(垂直取向)模式的液晶显示装置变得令人注目。该模式的液晶显示装置的液晶盒系将具有负的介质各向异性的向列液晶与垂直取向膜组合起来构成的。
此外,例如在日本国登录专利第2947350号(发行日:1999年9月13日)及日本国公开专利公报特开2000-39610(公开日:2000年2月8日)中,如图16和图17所示,公开了为了在光学上补偿黑显示时的液晶盒111的光学各向异性而在液晶盒111与偏振片112之间配置了双轴性膜116的液晶显示装置101,或者在液晶盒111与偏振片112之间配置了正的单轴性膜114、在该正的单轴性膜114与偏振片112之间配置了负的单轴性膜115的液晶显示装置101a。
在上述结构中,从斜方向看液晶分子垂直取向的液晶盒111时,尽管液晶盒111将与极角对应的相位差给予透射光,但如果恰当地设定各膜116(114·115)的延迟,则可用各膜116(114·115)补偿该相位差。因此,从正面方向看时,即,与液晶分子维持透射光的偏振状态时大致同样地可进行黑显示。其结果是,可防止从斜方向看时的漏光,可提高对比度,同时可抑制着色及灰度退降的发生。
但是,时至今日,在期待更宽视角、高显示品位的液晶显示装置的状况下,要求改善从斜方向看时的着色及灰度退降,但在使用了在上述日本国登录专利第2947350号及日本国公开专利公报特开2000-39610中所述的延迟的各膜116(114·115)的情况下,不一定能说是充分的,尚留有改善的余地。
鉴于上述课题,本发明是在垂直取向模式的液晶显示装置中考察了偏振片的基材膜对适合于抑制从斜方向看时的着色及灰度退降的各膜的延迟的影响所得到的结果,其目的在于,可靠地提供一边将从斜方向看时的对比度在实用上维持在充分高的值、一边将着色及灰度退降抑制在实用上容许范围内的液晶显示装置。
发明的公开
为了达到上述目的,本发明的液晶显示装置是具备:设置了在夹持液晶的同时使该液晶的液晶分子大致垂直于表面而取向的2块基板的液晶盒;配置在该液晶盒的两侧,使各自的吸收轴相互正交地配置的2块偏振片;在上述两偏振片的一方与上述液晶盒之间配置的、具有正的单轴各向异性的第1延迟膜;以及在该偏振片与第1延迟膜之间配置的、具有负的单轴各向异性的第2延迟膜,在上述两偏振片上设置了被配置成其光轴与上述基板大致垂直的、具有负的单轴各向异性的基材膜,上述第1延迟膜的滞后轴被配置成从上述液晶看时与同一侧的上述偏振片的吸收轴正交的、上述第2延迟膜的光轴被配置成与上述基板大致垂直的液晶显示装置,其特征在于采取了以下方法。
即,当假定上述第1延迟膜的面内方向的延迟为Rp[nm]、上述第2延迟膜的厚度方向的延迟为Rn[nm]、上述基材膜的厚度方向的延迟为Rtac[nm]、上述液晶的厚度方向的延迟为Rlc[nm],假定与上述Rp相关的参数α[nm]为α=35+(Rlc/80-4)2×3.5+(360-Rlc)×Rtac/850,与上述Rn相关的参数β[nm]为β=Rlc-1.9×Rtac时,上述延迟Rp被设定为上述α的80%以上且120%以下的值,同时上述延迟Rn被设定为上述β的60%以上且90%以下的值。
在上述结构的液晶显示装置中,与基板大致垂直地取向的液晶分子尽管对从基板的法线方向入射的光不给予相位差,但对从斜方向入射的光却给予与极角(偏离法线方向的倾斜角)对应的相位差,因而如果没有第1和第2延迟膜,则本来应被出射侧的偏振片吸收的光不被完全地吸收。其结果是,发生漏光并使对比度下降,同时着色及灰度退降发生了。
与此相对照,在上述结构中,由于设置了上述第1和第2延迟膜,所以上述液晶所给予的、对应于极角的相位差用两延迟膜来补偿。其结果是,防止了从斜方向看时的漏光,提高了对比度,同时可防止着色及灰度退降的发生。
但是,在决定上述两延迟膜的延迟时,在无基材膜的情况下通过仅仅从具有最佳的上述第1和第2延迟膜的厚度方向的延迟减去上述基材膜所具有的厚度方向的延迟,在要求从斜方向看时的着色及灰度退降的进一步受到抑制的状况下,不一定能说是充分的。
因此,本申请的发明人将从斜方向看垂直取向模式的液晶显示装置时的对比度在实用上维持在充分高的值不变,为了进一步抑制着色及灰度退降,经反复研究的结果是,发现基材膜的厚度方向的延迟与上述第1和第2延迟膜的厚度方向的延迟并不起同样的作用,特别是,在将具有正的单轴各向异性的第1延迟膜的面内方向的延迟Rp设定成使上述对比度为最大时,发现依赖于液晶所具有的延迟是否超过360[nm],上述延迟Rp对上述基材膜的厚度方向的延迟的依赖性发生逆转,并且发现以对比度为最大的上述各延迟为基准,借助于在规定的范围内进行设定,可有效地抑制着色及灰度退降,使本发明得以完成。
在本发明的液晶显示装置中,根据上述基材膜和液晶的厚度方向的延迟Rtac和Rlc,而且,将从斜方向看时的对比度在实用上维持在充分高的值不变,在可容许着色及灰度退降的范围内,设定上述延迟Rp和Rn。由此,与将基材膜的厚度方向的延迟与上述第1和第2延迟膜的厚度方向的延迟进行同等处理的情况不同,能够可靠地得到在从上述斜方向看时的对比度在实用上被维持在充分高的值,而且着色及灰度退降被抑制在容许范围内的液晶显示装置。
另外,在特别要求生产率提高的情况下,除上述结构外,希望上述液晶的厚度方向的延迟Rlc被设定在324[nm]至396[nm]的范围内,上述第1延迟膜的面内方向的延迟Rp被设定在30.7[nm]至41.7[nm]的范围内。
如果上述延迟Rlc被设定在该范围内,则上述延迟Rp对上述基材膜的厚度方向的延迟的依赖性减少。因此,即使基材膜在制造过程中发生分散,基材膜的厚度方向的延迟发生变化,通过将上述Rp设定在上述范围内,还是可将该延迟Rp设定在上述α的80%~120%的范围内。其结果是,即使是基材膜的厚度方向的延迟发生分散的情况,也可使用相同的上述第1延迟膜,可提高生产率。
此外,在特别要求抑制上述着色及灰度退降的情况下,除上述结构外,希望上述延迟Rp被设定为上述α的90%以上且110%以下的值,同时上述延迟Rn被设定为上述β的65%以上且85%以下的值。由此,可得到进一步抑制了从斜方向看时的着色及灰度退降的液晶显示装置。
另外,在特别要求抑制上述着色及灰度退降和提高生产率这两方面的情况下,除上述结构外,希望上述液晶的厚度方向的延迟Rlc被设定在342[nm]至378[nm]的范围内,上述第1延迟膜的面内方向的延迟Rp被设定在33.3[nm]至38.6[nm]的范围内。
如果上述延迟Rlc和Rp被设定在该范围内,则即使基材膜在制造过程中发生分散,基材膜的厚度方向的延迟发生变化,还是可将上述延迟Rp设定在上述α的90%~110%的范围内。其结果是,即使是基材膜的厚度方向的延迟发生分散的情况,也可使用相同的上述第1延迟膜,可提高生产率。
本发明的其它的目的、特征和优点可通过以下所示的记述而得到充分的理解。另外,本发明的利益可参照附图在下面的说明中变得明白。
附图的简单说明
图1是表示本发明的实施形态的图,是表示液晶显示装置的主要部分结构的示意图。
图2是表示在上述液晶显示装置中设置的液晶盒的图,是表示未施加电压状态的示意图。
图3是表示在上述液晶显示装置中设置的液晶盒的图,是表示施加电压状态的示意图。
图4是表示上述液晶盒的结构例的图,是表示像素电极附近的平面图。
图5是表示在上述液晶显示装置中设置的正的单轴性膜的面内方向的延迟和负的单轴性膜的厚度方向的延迟的最佳范围的图,是用对各自相关参数的相对值表示各延迟的附图。
图6是表示本发明的实施例的图,是对于液晶盒与偏振片的组合表示上述各延迟的最佳值的实验结果的附图。
图7是表示在液晶显示装置中对比度的评价方法的附图。
图8是表示本发明的另一实施形态的图,是表示液晶显示装置的主要部分结构的示意图。
图9是表示在上述液晶显示装置中设置的双轴性膜的面内方向的延迟和厚度方向的延迟的最佳范围的图,是用对各自相关参数的相对值表示各延迟的附图。
图10是表示上述液晶显示装置的变例的图,是表示液晶显示装置的主要部分结构的示意图。
图11是表示本发明的实施例的图,是对于液晶盒与偏振片的组合表示上述各延迟的最佳值的实验结果的附图。
图12是表示上述各液晶显示装置的另一结构例的图,是表示液晶盒的像素电极的斜视图。
图13是表示上述各液晶显示装置的又一结构例的图,是表示液晶盒的像素电极附近的平面图。
图14是表示上述各液晶显示装置的又一结构例的图,是表示液晶盒的像素电极的斜视图。
图15是表示上述各液晶显示装置的再一结构例的图,是表示液晶盒的像素电极和对置电极的斜视图。
图16是表示现有技术的图,是表示液晶显示装置的主要部分结构的示意图。
图17是表示另一现有技术的图,是表示液晶显示装置的主要部分结构的示意图。
实施发明的最佳形态
(第1实施例)
依据图1至图7说明本发明的一种实施形态如下。再有,细节将在后面述及,本发明也可应用于另外的液晶盒,但在以下,作为优选的一例,说明多畴取向的液晶盒。
如图1所示,本实施形态的液晶显示装置1系层叠垂直取向(VA)方式的液晶盒11、配置于该液晶盒11的两侧的偏振片12·13、配置于一块偏振片12与液晶盒11之间的正的单轴性膜(第1延迟膜)14、以及配置于该正的单轴性膜14与偏振片12之间的负的单轴性膜(第2延迟膜)15而构成。
如图2所示,上述液晶盒11具备设置了与像素对应的像素电极21a(后述)的TFT(薄膜晶体管)基板11a、设置了对置电极21b的对置基板11b、以及由被两基板11a·11b夹持、具有负的各向异性的向列液晶构成的液晶层11c。再有,本实施形态的液晶显示装置1可进行彩色显示,在上述对置基板11b上形成与各像素的颜色对应的滤色层。
此外,在形成了上述像素电极21a的TFT基板11a上,在液晶层11c侧的表面上形成垂直取向膜22a。同样,在形成了上述对置电极21b的对置基板11b的液晶层11c侧的表面上,形成垂直取向膜22b。由此,在上述两电极21a·21b之间未施加电压的状态下,配置于两基板11a·11c之间的液晶层11c的液晶分子M与上述基板11a·11b表面垂直地取向。另外,如果在两电极21a·21b之间施加电压,则液晶分子M从沿着上述基板11a·11b的法线方向的状态(未施加电压状态)以与所施加电压对应的倾角倾斜(参照图3)。再有,由于两基板11a·11b相向,除了特别需要区别的情况外,将各自的法线方向和面内方向仅仅称为法线方向和面内方向。
在这里,本实施形态的液晶盒11是多畴取向的液晶盒,各像素被分割成多个范围(畴),取向方向,即施加电压时液晶分子M倾斜时的方位(倾角的面内分量)被控制成在各畴之间不同。
具体地说,如图4所示,在上述像素电极21a上,其剖面形状呈山形、面内形状呈大致弯曲成直角的锯齿形的突起列23a...被形成为条状。同样,在上述对置电极21b上,其法线方向的形状呈山形、面内形状呈大致上弯曲成直角的锯齿形的突起列23b...被形成为条状。这两个突起列23a·23b的面内方向的间隔被配置成突起列23a的斜面的法线与突起列23b的斜面的法线大体上一致。另外,在上述像素电极21a和对置电极21b上涂敷感光性树脂,通过在光刻工序中进行加工,形成上述各突起列23a·23b。
在这里,在突起列23a的附近,液晶分子以垂直于斜面的方式取向。此外,在施加电压时,突起列23a附近的电场倾斜成与突起列23a的斜面平行。在这里,液晶分子的长轴在垂直于电场的方向倾斜,利用液晶的连续性,远离突起列23a的斜面的液晶分子也在与斜面附近的液晶分子同样的方向取向。同样地,在施加电压时,突起列23b附近的电场倾斜成与突起列23b的斜面平行。在这里,液晶分子的长轴在垂直于电场的方向倾斜,利用液晶的连续性,远离突起列23b的斜面的液晶分子也在与斜面附近的液晶分子同样的方向取向。
其结果是,在各突起列23a...和23b...中,如将角部C以外的部分称为线部,则在突起列23a的线部L23a与突起列23b的线部L23b之间的区域,施加电压时的液晶分子的取向方向的面内分量与从线部L23a到线部23b的方向的面内分量一致。
在这里,各突起部23a·23b在角部C大致上弯曲成直角。因此,液晶分子的取向方向在像素内被分割成4部分,在像素内,可形成液晶分子的取向方向互不相同的畴D1~D4。
另一方面,图1所示的偏振片12·13分别具备偏振膜12a·13b、作为保持偏振膜12a·13a的基材膜的三乙酰基纤维素(TAC)膜12b·13b。上述两个TAC膜12a·13a具有负的单轴光学各向异性,各自的光轴被设定成与液晶盒11的法线方向大体上一致。另外,上述两偏振片12·13被配置成偏振片12的吸收轴AA12与偏振片13的吸收轴AA13正交。进而,两偏振片12·13被配置成各自的吸收轴AA12·AA13与施加电压时上述各畴D1~D4的液晶分子的取向方向的面内分量成45度的角度。
另外,在液晶盒11的一个面上层叠的正的单轴性膜14当假定膜面内方向的折射率为nxp和nyp、法线方向的折射率为nzp时是具有nxp>nyp=nzp而成的特性的光学各向异性膜,当假定膜厚为dp时,面内方向的延迟Rp如下式(1)所示进行计算,
Rp=dp·(nxp-nyp)            ...(1)
此外,正的单轴性膜14的滞后轴SL14被配置成从液晶盒11看时与同一侧的偏振片12的吸收轴AA12正交。
另一方面,在液晶盒11的另一个面上层叠的负的单轴性膜15当假定膜面内的折射率为nxn和nyn、法线方向的折射率为nzn时是具有nxn=nyn>nzn而成的特性的光学各向异性膜,当假定膜厚为dn时,厚度方向的延迟Rn如下式(2)所示进行计算,
Rn=dn·{(nxn-nyn)/2-nzn}    ...(2)
另外,负的单轴性膜15的光轴被配置成与液晶盒11的法线方向大体上一致。
在上述结构的液晶显示装置1中,在像素电极21a与对置电极21b之间施加电压的期间,如图3所示,液晶盒11的液晶分子仅以与电压对应的角度对法线方向倾斜取向。由此,对通过液晶盒11的光给予与电压对应的相位差。
在这里,两偏振片12·13的吸收轴AA12·AA13被配置成相互正交,细节将在后面述及,当如图2所示,液晶盒11的液晶分子沿法线方向取向时,正的单轴性膜14和负的单轴性膜15被构成为,补偿液晶盒11给予透射光的相位差。
因此,向出射侧的偏振片(例如12)入射的光成为与液晶盒11所给予的相位差对应的椭圆偏振光,该入射光的一部分通过偏振片12。其结果是,根据所施加电压可控制来自偏振片12的出射光量,灰度显示成为可能。
此外,在上述液晶盒11中,在像素内形成液晶分子的取向方向互不相同的畴D1~D4。因此,从与属于某个畴(例如D1)的液晶分子的取向方向平行的方向看液晶盒11的结果时,即使是该液晶分子不能将相位差给予透射光的情况,其余的畴(此时为D2~D4)的液晶分子也能将相位差给予透射光。因此,各畴彼此之间可相互进行光学上的补偿。其结果是,可改善从斜方向看液晶盒11时的显示品位,扩展视角。
另一方面,在像素电极21a与对置电极21b之间未施加电压的期间,如图2所示,液晶盒11的液晶分子处于垂直取向状态。在该状态下(未施加电压时),从法线方向入射到液晶盒11的光没有被各液晶分子给予相位差,在维持偏振状态不变时通过液晶盒11。其结果是,向出射侧的偏振片(例如12)入射的光成为与偏振片12的吸收轴AA12大致平行的方向的线偏振光,不能通过偏振片12。其结果是,液晶显示装置1能显示黑色图像。
这里,对从斜方向入射到液晶盒11中的光,由液晶分子给予与液晶分子的取向方向之间的角度,即入射光与液晶盒11的法线方向之间的角度(极角)对应的相位差。因此,如果没有正的单轴性膜14和负的单轴性膜15,则入射到偏振片12上的光成为与极角对应的椭圆偏振光,其一部分通过偏振片12。其结果是,尽管原来应显示黑色图像、为垂直取向状态,漏光还是发生了,在显示的对比度降低的同时,有可能发生着色及灰度退降。
可是,在图1所示的结构中,由于设置了正的单轴性膜14和负的单轴性膜15,如果恰当地设定各自的延迟,则液晶盒11可抵消对应于极角而给予的相位差。其结果是,可防止漏光,提高从斜方向看时的对比度,同时可防止着色及灰度退降。
这里,在本实施例的液晶显示装置1中,为了得到在实际使用上维持充分高的对比度、同时表现出良好的色调和良好的灰度特性的液晶显示装置,更详细地说,为了使从斜方向看时的对比度在10以上,在实用上保持充分高的值、同时使来自上述方向的观察者几乎感觉不到着色和灰度退降,设定正的单轴性膜14和负的单轴性膜15的延迟如下。
具体地说,如果假定TAC膜12b·13b的厚度方向的延迟为Rtac[nm],与上述延迟Rp相关的参数α1[nm]如下式(3)所示,
α1=35+(Rlc/80-4)2×3.5+(360-Rlc)×Rtac/850    ...(3)
则设定正的单轴性膜14的面内方向的延迟Rp为α1的80%以上且120%以下的值。
另外,如果假定液晶盒11的厚度方向的延迟为Rlc[nm],与上述延迟Rn相关的参数β1[nm]如下式(4)所示,
β1=Rlc-1.9×Rtac                              ...(4)
则设定负的单轴性膜15的厚度方向的延迟Rn为β1的60%以上且90%以下的值。
这样,通过以上述参数α1·β1为基准,将上述延迟Rp·Rn设定在图5所示的范围A1内,能够可靠地得到从斜方向看液晶显示装置1时的对比度在10以上,在实用上保持充分高的值、同时来自上述斜方向的观察者几乎感觉不到着色和灰度退降,具有良好的视角特性的液晶显示装置1。
此外,比上述范围A1的外围部靠内部的一方虽然减少了由上述观察者掌握的着色和灰度退降,但特别是如图5所示的范围A2那样,通过将上述延迟Rp设定为上述α1的90%以上且110%以下的值,同时将上述延迟Rn设定为上述β1的65%以上且85%以下的值,可进一步实现具有良好的视角特性的液晶显示装置1。
再有,在该区域A2内,上述着色和灰度退降的改善效果未被上述观察者识别到,上述着色和灰度退降的改善效果实质上正在饱和。因此,通过在该区域A2内进行设定,可实现具有相同程度的良好的显示品位的液晶显示装置1。另外,如果将上述延迟Rp设定为与上述α1相同,将上述延迟Rn设定为与上述β1相同,则从斜方向看时的对比度为最大。进而,如果将上述延迟Rp设定为上述α1的80%~120%,将上述延迟Rn设定为上述β1的85%~90%,则可将着色和灰度退降抑制在容许范围内,而且与上述区域A2相比,可提高对比度。
这里,从上式(3)可知,正的单轴性膜14的面内方向的延迟Rp的最佳值是按照TAC膜12b·13b的厚度方向的延迟Rtac增加还是减少,随液晶盒11的厚度方向的延迟Rlc而变化。而且,上述液晶盒11的延迟Rlc以360[nm]为界,最佳的上述延迟Rp对上述延迟Rtac的依赖性发生逆转。
因此,通过将液晶盒11的厚度方向的延迟Rlc设定为360[nm],不管上述延迟Rtac如何,可将正的单轴性膜14的面内方向的延迟Rp固定在35.9[nm]。
另外,如果上述延迟Rlc在324[nm]至396[nm]的范围,上述延迟Rp在30.7[nm]~41.7[nm]的范围,如果上述延迟Rtac为一般的值,即为30[nm]~80[nm]左右,则上述延迟Rp被纳入上述α1的80%~120%的范围。其结果是,通过将上述延迟Rn设定为上述β1的60%~90%,能够可靠地得到从斜方向看液晶显示装置1时的对比度在10以上,在实用上保持充分高的值、同时来自上述斜方向的观察者几乎感觉不到着色和灰度退降,具有良好的视角特性的液晶显示装置1。
因此,在重视提高生产率的情况下,希望将液晶盒11的厚度方向的延迟Rlc设定在324[nm]至396[nm]的范围,而且正的单轴性膜14的面内方向的延迟Rp设定在30.7[nm]~41.7[nm]的范围。
由此,即使是在上述延迟Rtac随TAC膜12b·13b的制造分散性变动的情况下,也可应用面内方向的延迟Rp为相同值的正的单轴性膜14,实现具有上述良好的视角特性的液晶显示装置1。其结果是,即使在TAC膜12b·13b有制造分散性的情况下,也可固定正的单轴性膜14的种类,提高生产率。
此外,在重视生产率的提高和更良好的视角特性这两方面的情况下,希望将上述延迟Rlc设定在342[nm]至378[nm]的范围,将上述延迟Rp设定在33.3[nm]至38.6[nm]的范围。这时,如果上述延迟Rtac为一般的值,即为30[nm]~80[nm]左右,则上述延迟Rp被纳入上述α1的90%~110%的范围。因此,通过将延迟Rn设定为上述β1的65%~85%,可实现上述区域A2内的液晶显示装置1,即,具有极其良好的视角特性的液晶显示装置1。另外,这时,即使是上述延迟Rtac随TAC膜12b·13b的制造分散性而变动的情况,也可固定正的单轴性膜14的种类,提高生产率。
(实施例1)
在本实施例中,作为液晶盒11,液晶层11c的折射率各向异性Δn为0.08,准备了厚度(盒厚dlc)分别为3.0[μm]、4.0[μm]和5.0[μm]的液晶盒,即厚度方向的延迟Rlc(=dlc·Δn)分别为240[nm]、320[nm]和400[nm]的液晶盒。另外,作为TAC膜12b·13b,准备了厚度方向的延迟Rtac分别为0[nm]、30[nm]、50[nm]、80[nm]的TAC膜。此外,对于上述各液晶盒11和TAC膜12b·13b的每一种组合,求得从斜方向看时的对比度为最大的Rp和Rn。其结果是,得到了图6所示的实验结果。
再有,在测定对比度时,实际使用液晶显示装置1时的视角是与液晶盒11的法线的夹角(极角),其范围为0度~60度,由于极角越大,对比度就越低,所以如图7所示,从极角为60度的方向测定对比度。另外,由于以偏振膜12a·13a的吸收轴AA12·AA13为基准,在45度的方位对比度最低,所以以两吸收轴AA12·AA13为基准,从45度的方位(面内的方向)测定对比度。
由此,如图1所示,按照在负的单轴性膜15与液晶盒11之间配置了正的单轴性膜14的层叠顺序,当正的单轴性膜14的面内方向的延迟Rp与上述参数α1相同,负的单轴性膜15的厚度方向的延迟Rn与上述β1参数相同时,可确认得到最大的对比度的液晶显示装置1。另外,从上述实验结果,可计算上述式(3)和式(4)。
此外,可以确认,在上述准备好的液晶盒11的情况下,如果是上述准备好的一般的TAC膜12b·13b(Rtac=30、50、80[nm]),则在正的单轴性膜14的面内方向的延迟Rp的最佳值为35~49[nm],在液晶盒11的厚度为3.0[μm]和4.0[μm]的情况,即液晶盒11的厚度方向的延迟Rlc为240[nm]和320[nm]的情况下,上述延迟Rp的最佳值伴随上述延迟Rtac的增加而增加。另外,也可以确认,在液晶盒11的厚度为5.0[μm](上述延迟Rlc为400[nm])的情况下,上述延迟Rp的最佳值伴随上述延迟Rtac的增加而减少。
此外,通过将液晶盒11的厚度方向的延迟Rlc设定为360[nm],可以确认,即使上述延迟Rtac发生变化,从上述斜方向看时的对比度为最大的上述延迟Rp也几乎为恒定。
此外,一边使上述延迟Rp和Rn各改变5%,一边观察者从上述斜方向对各液晶显示装置1的着色和灰度退降进行了评价。特别是,作为着色现象的有无,观察者在上述斜方向评价了白色移至黄色或泛蓝色的色移现象的有无;作为灰度退降的有无,观察者评价了明亮区域的灰度退降导致影像的表现力降低的现象的有无。
由此,还可以确认,即使液晶盒11的厚度方向的延迟Rlc和TAC膜12b·13b的延迟Rtac是上述值中的任何值,只要上述延迟Rp为上述参数α1的80%以上且120%以下的值,而且,上述延迟Rn为上述参数β1的60%以上且90%以下的值,则上述斜方向(极角60度)的对比度也超过10,在实用上维持了充分的对比度。进而,可以确认,如果上述延迟Rp和Rn被设定在上述范围,则来自上述斜方向的观察者几乎感觉不到着色和灰度退降,液晶显示装置1表现出良好的视角特性。另外,当上述延迟Rp小于参数α1的80%或大于其120%时,以及上述延迟Rn小于参数β1的60%或大于其90%时,来自上述斜方向的观察者例如明确地确认了白色移至黄色或泛蓝色的着色现象,或者明亮区域中的灰度退降导致影像的表现力降低的现象,观察者还确认了不能容许着色和灰度退降的现象。
此外,可以确认,即使液晶盒11的厚度方向的延迟Rlc和TAC膜12b·13b的延迟Rtac是上述值中的任何值,只要上述延迟Rp为上述参数α1的90%以上且110%以下的值,而且,上述延迟Rn为上述参数β1的65%以上且85%以下的值,则与上述延迟Rp为上述参数α1的80%~90%或110%~120%,或者,上述延迟Rn为上述参数β1的60%~65%或85%~90%的情况相比,由来自上述斜方向的观察者掌握的着色和灰度退降减少了。
另外,可以确认,只要上述延迟Rp为上述参数α1的90%以上且110%以下的值,而且,上述延迟Rn为上述参数β1的65%以上且85%以下的值,则上述着色和灰度退降的改善效果实质上已趋于饱和,来自上述斜方向的观察者在各延迟Rp和Rn被设定于该范围的多个液晶显示装置1之间无法确认着色和灰度退降的不同,从而得到相同程度的良好的显示品位。
再有,可以确认,上述区域A2中的延迟Rp的中心值为从上述斜方向看时对比度为最大的上述延迟Rp(=α1)的100%(同一值)。另一方面,可以确认,上述区域A2中的延迟Rn的中心值为从上述斜方向看时对比度为最大的上述延迟Rn(=β1)的75%,将负的单轴性膜15的厚度方向的延迟Rn设定为比对比度的最佳值β1小的一方可改善着色现象和灰度退降。
另外,可以确认,如果将上述延迟Rp设定为上述α1的80%~120%,将上述延迟Rn设定为上述β1的85%~90%,则可将着色和灰度退降抑制在容许范围内,而且,与上述区域A2相比,可提高对比度。
进而,通过将液晶盒11的延迟Rlc设定为324[nm]~396[nm],将正的单轴性膜14的面内方向的延迟Rp设定为30.7[nm]~41.7[nm],可以确认,如果上述延迟Rtac为一般的值,则从斜方向看液晶显示装置1时的对比度在10以上,来自上述斜方向的观察者几乎感觉不到着色和灰度退降。另外,可以确认,如果上述延迟Rlc为342[nm]至378[nm],上述延迟Rp为33.3[nm]~38.6[nm],则来自上述斜方向的观察者在着色和灰度退降方面无法识别与上述延迟Rp·Rn被设定为区域A2内的值的各液晶显示装置1的不同。
(第2实施形态)
本实施形态的液晶显示装置1a类似于图1所示的液晶显示装置1的结构,但不用正的单轴性膜14和负的单轴性膜15,而是如图8所示,在液晶盒11与偏振片12之间层叠双轴性膜(延迟膜)16。
上述双轴性膜16当假定膜面内方向的折射率为nx2和ny2、法线方向的折射率为nz2时是具有nx2>ny2>nz2而成的特性的光学各向异性膜,当假定膜厚为d2时,面内方向的延迟Rxy和厚度方向的延迟Rz分别如下式(5)和式(6)所示进行计算,
Rxy=d2·(nx2-ny2)           ...(5)
Rz=d2·{(nx2-ny2)/2-nz2}    ...(6)
另外,双轴性膜16的面内滞后轴SL16被配置成从液晶盒11看时与同一侧的偏振片12的吸收轴AA12正交。
即使是这种情况,当从斜方向看液晶分子垂直取向的液晶盒11时,由于液晶盒给予透射光的相位差被双轴性膜16补偿,如果适当地设定双轴性膜16的延迟,则可提高从斜方向看时的对比度。
此外,在本实施例的液晶显示装置1a中,作为斜的视角的显示品位,为了得到在实用上维持充分高的对比度、同时表现出良好的色调和良好的灰度特性的液晶显示装置,更详细地说,为了使从斜方向看时的对比度在10以上,在实用上保持充分高的值、同时使来自上述方向的观察者几乎感觉不到着色和灰度退降,设定双轴性膜16的延迟如下。
具体地说,如果假定TAC膜12b·13b的厚度方向的延迟为Rtac[nm],与上述面内方向的延迟Rxy相关的参数α2[nm]如下式(7)所示,
α2=85-0.09×Rlc-Rtac/20                ...(7)
则设定双轴性膜16的面内方向的延迟Rxy为α2的80%以上且120%以下的值。
另外,如果假定液晶盒11的厚度方向的延迟为Rlc[nm],与上述延迟Rz相关的参数β2[nm]如下式(8)所示,
β2=1.05×Rlc-1.9×Rtac                 ...(8)
则设定双轴性膜16的厚度方向的延迟Rz为β2的60%以上且90%以下的值。
这样,通过将以上述参数α2·β2为基准,将上述延迟Rxy·Rz设定在图9所示的范围A1内,能够可靠地得到从斜方向看液晶显示装置1a时的对比度在10以上,在实用上保持充分高的值、同时来自上述斜方向的观察者几乎感觉不到着色和灰度退降,具有良好的视角特性的液晶显示装置1a。
此外,比上述范围A1的外围部靠内部的一方虽然减少了由上述观察者掌握的着色和灰度退降,但特别是如图9所示的范围A2那样,通过将上述延迟Rxy设定为上述α2的90%以上且110%以下的值,同时将上述延迟Rz设定为上述β2的65%以上且85%以下的值,可进一步实现具有良好的视角特性的液晶显示装置1a。
再有,在该区域A2内,上述着色和灰度退降的改善效果未被上述观察者识别到,上述着色和灰度退降的改善效果实质上正在饱和。因此,通过在该区域A2内进行设定,可实现具有相同程度的良好的显示品位的液晶显示装置1a。另外,如果将上述延迟Rxy设定为与上述α2相同,将上述延迟Rz设定为与上述β2相同,则从斜方向看时的对比度为最大。进而,如果将上述延迟Rxy设定为上述α2的80%~120%,将上述延迟Rz设定为上述β2的85%~90%,则可将着色和灰度退降抑制在容许范围内,而且,与上述区域A2相比,可提高对比度。
另外,如图10所示的液晶显示装置1b那样,可将图8的双轴性膜16分割成双轴性膜16a和16b这2块,将两双轴性膜16a和16b配置在液晶盒11的两侧。再有,这时,双轴性膜16a和16b与权利要求范围内所述的第1和第2延迟膜相对应。
这时,双轴性膜16a被配置成其面内方向的滞后轴SL16a与从液晶盒11看时同一侧的偏振片12的吸收轴AA12正交。同样,双轴性膜16b的滞后轴SL16b被配置成与从液晶盒11看时同一侧的偏振片13的吸收轴AA13正交。即使是这种情况,通过将各双轴性膜16a·16b的面内方向的延迟Rxya和Rxyb设定为上述双轴性膜16的面内方向的延迟Rxy的一半,将各双轴性膜16a·16b的厚度方向的延迟Rza·Rzb设定为上述双轴性膜16的厚度方向的延迟Rz的一半,可得到同样的效果。
具体地说,当假定TAC膜12b·13b的厚度方向的延迟为Rtac[nm],假定与上述面内方向的延迟Rxya和Rxyb相关的参数α3[nm]如下式(9)所示时,
α3=42.5-0.045×Rlc-Rtac/40                 ...(9)
双轴性膜16a·16b的面内方向的延迟Rxya和Rxyb分别被设定为α3的80%以上且120%以下的值。
另外,当假定液晶盒11的厚度方向的延迟为Rlc[nm],假定与上述延迟Rza和Rzb相关的参数β3[nm]如下式(10)所示时,
β3=0.525×Rlc-0.95×Rtac                   ...(10)
双轴性膜16a·16b的厚度方向的延迟Rza和Rzb分别被设定为β3的60%以上且90%以下的值。
由此,与液晶显示装置1a同样地,能够可靠地得到从斜方向看液晶显示装置1b时的对比度在10以上,在实用上保持充分高的值、同时来自上述斜方向的观察者几乎感觉不到着色和灰度退降,具有良好的视角特性的液晶显示装置1b。
此外,与上述液晶显示装置1a同样地,在比上述范围A1的外围部更靠内部的一方,上述观察者掌握的着色和灰度退降减少了,而特别是如图9所示的范围A2那样,通过分别将上述延迟Rxya·Rxyb设定为上述α3的90%以上且110%以下的值,同时将上述延迟Rza·Rzb设定为上述β3的65%以上且85%以下的值,还可实现具有良好的视角特性的液晶显示装置1b。
再有,与上述液晶显示装置1a同样地,在该区域A2内,上述着色和灰度退降的改善效果未被上述观察者识别到,上述着色和灰度退降的改善效果实质上正在饱和。因此,通过在该区域A2内进行设定,可实现具有相同程度的良好的显示品位的液晶显示装置1b。另外,如果将上述延迟Rxya·Rxyb设定为与上述α3相同,将上述延迟Rza·Rzb设定为与上述β3相同,则从斜方向看时的对比度为最大。进而,如果将上述延迟Rxya·Rxyb设定为上述α3的80%~120%,将上述延迟Rza·Rzb设定为上述β3的85%~90%,则可将着色和灰度退降抑制在容许范围内,而且,与上述区域A2相比,可提高对比度。
(实施例2)
在本实施例中,准备与上述实施例1同样的液晶盒11和TAC膜12b·13b,对于两者的组合的每一种,求得从与实施例1相同的斜方向看时的对比度为最大的Rxy和Rz。由此,得到了图11所示的实验结果。
如图8所示,按照在液晶盒11与偏振片12·13的一方(在本图的情形,为偏振片12)之间配置了双轴性膜16的层叠顺序,可以确认,当双轴性膜16的面内方向的延迟Rxy与上述参数α2相同,双轴性膜16的厚度方向的延迟Rz与上述参数β2相同时,得到最大的对比度的液晶显示装置1a。另外,通过用一次方程近似上述实验结果,可算出上述式(7)和(8)。
进而,还可以确认,在上述准备好的液晶盒11的情况下,如果是上述准备好的一般的TAC膜12b·13b(Rtac=30、50、80[nm]),则面内方向的延迟Rxy的最佳值为45~65[nm],尽管延迟Rtac是厚度方向的延迟,但对双轴性膜16的面内方向的延迟Rxy有影响,因而不能单纯地处理TAC膜12b·13b的影响。
此外,使上述延迟Rxy和Rz各改变5%,同时观察者从上述斜方向对各液晶显示装置1a的着色和灰度退降进行了评价。特别是,作为着色现象的有无,观察者在上述斜方向评价了白色移至黄色或泛蓝色的色移现象的有无;作为灰度退降的有无,观察者评价了明亮区域的灰度退降导致影像的表现力降低的现象的有无。
由此,还可以确认,即使液晶盒11的厚度方向的延迟Rlc和TAC膜12b·13b的延迟Rtac是上述值中的任何值,只要上述延迟Rxy为上述参数α2的80%以上且120%以下的值,而且,上述延迟Rz为上述参数β2的60%以上且90%以下的值,则上述斜方向(极角60度)的对比度也超过10,在实用上维持了充分的对比度。进而,可以确认,如果上述延迟Rxy和Rz被设定在上述范围,则来自上述斜方向的观察者几乎感觉不到着色和灰度退降,液晶显示装置1a表现出良好的视角特性。另外,当上述延迟Rxy小于参数α2的80%或大于其120%时,以及上述延迟Rz小于参数β2的60%或大于其90%时,来自上述斜方向的观察者例如明确地确认了白色移至黄色或泛蓝色的着色现象,或者明亮区域中的灰度退降导致影像的表现力降低的现象,还确认了观察者不能容许着色和灰度退降的现象。
此外,可以确认,即使液晶盒11的厚度方向的延迟Rlc和TAC膜12b·13b的延迟Rtac是上述值中的任何值,只要上述延迟Rxy为上述参数α2的90%以上且110%以下的值,而且,上述延迟Rz为上述参数β2的65%以上且85%以下的值,则与上述延迟Rxy为上述参数α2的80%~90%或110%~120%,或者,上述延迟Rz为上述参数β2的60%~65%或85%~90%的情况相比,由来自上述斜方向的观察者掌握的着色和灰度退降减少了。
另外,可以确认,只要上述延迟Rxy为上述参数α2的90%以上且110%以下的值,而且,上述延迟Rz为上述参数β2的65%以上且85%以下的值,上述着色和灰度退降的改善效果实质上已趋于饱和,来自上述斜方向的观察者在各延迟Rxy和Rz被设定于该范围的多个液晶显示装置1之间无法确认着色和灰度退降的不同,从而得到相同程度的良好的显示品位。
再有,可以确认,上述区域A2中的延迟Rxy的中心值为从上述斜方向看时对比度为最大的上述延迟Rxy(=α2)的100%(同一值)。另一方面,可以确认,上述区域A2中的延迟Rz的中心值为从上述斜方向看时对比度为最大的上述延迟Rz(=β2)的75%,将双轴性膜16的厚度方向的延迟Rz设定为比对比度的最佳值β2小的一方可改善着色现象和灰度退降。
另外,可以确认,如果将上述延迟Rxy设定为80%~120%,将上述延迟Rz设定为85%~90%,则能将着色和灰度退降抑制在容许范围内,而且,与上述区域A2相比,可提高对比度。
另外,如图10所示的液晶显示装置1b那样,即使对于将双轴性膜16分割成2块的结构,也可以确认,即使上述延迟Rlc和Rtac是上述值中的任何值,只要在上述斜视角(极角60度)中用于得到最大对比度的延迟Rxya·Rxyb、Rza·Rzb为图11的液晶显示装置1a的值的一半,只要以α3和β3而不是以上述α2和β2为基准,则在与上述液晶显示装置1a同样的范围内,可得到同样的效果。具体地说,通过将上述延迟Rxya·Rxyb设定为上述α3的80%~120%,将上述延迟Rza·Rzb设定为上述β3的60%~90%,从上述斜视角(极角60度)看时,可将着色和灰度退降抑制在容许范围内。另外,当上述延迟Rxya·Rxyb在上述α3的90%~110%时,以及上述延迟Rza·Rzb在上述β3的65%~85%的范围内,在上述斜视角中的着色和灰度退降的改善效果趋于饱和,得到相同程度的良好的显示品位的液晶显示装置1b。进而,上述延迟Rxya·Rxyb在上述α3的80%~120%,而且上述延迟Rza·Rzb在上述β3的85%~90%的范围内,可将上述斜视角下的着色和灰度退降抑制在容许范围内,同时可提高对比度。
再有,在上述第1和第2实施形态中,说明了使液晶盒11如图2至图4那样构成,将像素中的液晶分子的取向方向分割成4个的情形,但不限于此。例如,即使按照图12和图13所示的结构等其它的结构,将取向方向分为四个部分,也能得到同样的效果。
具体地说,在图12所示的使用了像素电极21a的液晶盒中,省略掉图4所示的突起列23a·23b,在像素电极21a处设置四棱锥状的突起24。再有,该突起24也与上述突起列23a一样,可通过在像素电极21a上涂敷感光树脂,用光刻工序进行加工而形成。
在该结构中,在突起24的附近,液晶分子也与各斜面垂直地进行取向。此外,在施加电压时,突起24的部分的电场在与突起24的斜面平行的方向倾斜。其结果是,在施加电压时,液晶分子的取向角度的面内分量变得与最近斜面的法线方向的面内分量(方向P1、P2、P3或P4)相等。因此,像素区被分割成倾斜时的取向方向互不相同的4个畴D1~D4。其结果是,得到与图2至图4的结构的液晶盒11同样的效果。
再有,例如在形成40英寸这样的大型液晶电视机的情况下,各像素的尺寸变得大至1mm见方左右,在像素电极21a上仅各设置1个突起24,取向制约力很弱,取向有变得不稳定的可能性。因此,希望在各像素电极21a上设置多个突起24。
此外,例如,如图13所示,在对置基板11b的对置电极21b上设置沿上下方向(在面内与大致为方形的像素电极21a的某条边平行的方向)对称地连结Y字形的狭缝而成的取向控制窗25,也可实现多畴取向。
在该结构中,在对置基板11b的表面之中、取向控制窗25正下方的区域,即使施加电压,也产生不了使液晶分子倾斜那种程度的电场,液晶分子垂直地取向。另一方面,在对置基板11b的表面之中、取向控制窗25周围的区域,随着接近于对置基板11b,发生了避开取向控制窗25而扩展那样的电场。在这里,液晶分子的长轴在垂直于电场的方向倾斜,液晶分子的取向方向的面内分量如图中的箭头所示的那样,变得与取向控制窗25的各边大致垂直。因此,即使是该结构,也可将像素中的液晶分子的取向方向分割成4个,得到与图2至图4的结构的液晶盒11同样的效果。
另外,在上述中,说明了将取向方向分为四个部分的情形,但如图14和图15所示,即使用辐射状取向的液晶盒11,也能得到同样的效果。
具体地说,在图14所示的结构中,设置大致呈半球状的突起26,以代替图12所示的突起24。这时,在突起26的附近,液晶分子也呈与突起26的表面垂直的取向。此外,在施加电压时,突起26的部分的电场在与突起26的表面平行的方向倾斜。其结果是,在施加电压使液晶分子倾斜时,液晶分子在面内方向容易以突起26为中心而呈辐射状倾斜,液晶盒11的各液晶分子可呈辐射状倾斜取向。再有,上述突起26也用与上述突起24同样的工序形成。另外,与上述突起24同样地,在取向制约力不足的情况下,希望在各像素电极21a上设置多个突起26。
另外,在图1 5所示的结构中,在像素电极21a处形成圆形狭缝27,以代替图12所示的突起24。由此,在施加电压时,在像素电极21a的表面之中、狭缝27正上方的区域,产生不了使液晶分子倾斜那种程度的电场。因此,在该区域,即使在施加电压时,液晶分子也垂直地取向。另一方面,在像素电极21a的表面之中、狭缝27附近的区域,随着电场在厚度方向向狭缝27接近,该电场避开狭缝27而倾斜扩展。在这里,液晶分子的长轴在垂直的方向倾斜,由于液晶的连续性,远离狭缝27的液晶分子也在同样的方向取向。因此,在对像素电极21a施加电压时,各液晶分子的取向方向的面内分量如图中的箭头所示的那样,以狭缝27为中心呈辐射状扩展取向,即,能够以狭缝27的中心为轴呈轴对称取向。在这里,由于上述电场的倾斜随施加电压而改变,故液晶分子的取向方向的基板法线方向分量(倾斜角度)可受施加电压控制。再有,如果施加电压增加,则对基板法线方向的倾斜角增大,各液晶分子与显示画面大致平行,而且,在面内呈辐射状取向。另外,与上述突起26同样地,在取向制约力不足的情况下,希望在各像素电极21a上设置多个狭缝27。
可是,如上所述,说明了像素中的液晶分子的取向方向被分割的情况,但即使是取向未分割的液晶盒(单畴的液晶盒),也能得到大致同样的效果。
这时,在像素电极21a·对置电极22b处,不设置突起列23a等而各自平坦地形成。进而,在单畴取向的液晶盒的情况下,与多畴取向或辐射状倾斜取向的液晶盒不同,在制造工序中设置摩擦工序,液晶层11c的液晶分子的摩擦方向被设定成在两基板11a·11b上成为反平行。另外,液晶盒11和偏振片12·13被配置成上述摩擦方向与偏振片12·13的吸收轴AA12·AA13呈45度角。即使在这时,在未施加电压时,像素的液晶分子也与图2的情形一样,在基板法线方向(垂直)取向。因此,通过采用与上述各实施形态同样的偏振片12·13和延迟片(14~16、16a·16b),得到了同样的效果。
但是,对图1和图8所示的液晶显示装置1·1a而言,由于配置在从液晶盒11到一块偏振片12上的构件的光学特性与配置在从液晶盒11到另一块偏振片13上的构件的光学特性不一致,所以从左方位或右方位看液晶盒11时的对比度与从上方位或下方位看液晶盒11时的对比度有互不相同的可能性。因此,在这些液晶显示装置1·1a中,在要求上下左右的视角特性取得平衡的情况下,希望采用分为四个部分的取向及辐射状取向等,采用各像素的液晶分子的取向方向被分割为4个方向以上的液晶盒。
另外,如上所述,虽然以液晶盒11的液晶层11c具有负的介质各向异性的情况为例进行了说明,但不限于此。即使是具有正的介质各向异性的情况,与图2一样,只要在黑显示时是液晶分子垂直于液晶盒11的基板而垂直取向的液晶盒,就能取得同样的效果。
这时,例如,如在IPS(面内转换)模式中采用的梳齿电极结构那样,通过采用在与基板平行的方向产生电场的电极,在与基板平行的方向对液晶层11c施加电场。即使是这种情况,在未施加电压时(无电场时),像素的液晶分子也与图2一样,沿垂直于基板的方向取向。因此,通过采用与上述各实施形态同样的偏振片12·13和延迟片(14~16、16a·16b,可取得同样的效果。
如上所述,本发明的液晶显示装置具有如下的结构:假定在两偏振片中的一块偏振片与液晶盒之间配置、具有正的单轴各向异性的第1延迟膜的面内方向的延迟为Rp[nm],在上述偏振片与第1延迟膜之间配置、具有负的单轴各向异性的第2延迟膜的厚度方向的延迟为Rn[nm],上述偏振片的基材膜的厚度方向的延迟为Rtac[nm],上述液晶的厚度方向的延迟为Rlc[nm],与上述Rp相关的参数α[nm]为α=35+(Rlc/80-4)2×3.5+(360-Rlc)×Rtac/850,与上述Rn相关的参数β[nm]为β=Rlc-1.9×Rtac时,上述延迟Rp被设定为上述α的80%以上且120%以下的值,同时上述延迟Rn被设定为上述β的60%以上且90%以下的值。
按照这些结构,由于第1和第2延迟膜的延迟被设定在上述范围,所以与将基材膜的厚度方向的延迟与上述第1和第2延迟膜的厚度方向的延迟进行同等处理的情况不同,取得了能可靠地得到在从斜方向看时的对比度在实用上维持在充分高的值,而且着色和灰度退降被抑制在容许范围内的液晶显示装置这样的效果。
如上所述,本发明的液晶显示装置除上述结构外,具有如下的结构:上述液晶的厚度方向的延迟Rlc被设定在324[nm]至396[nm]的范围,上述第1延迟膜的面内方向的延迟Rp被设定在30.7[nm]至41.7[nm]的范围。
因此,即使基材膜在制造过程中发生分散,基材膜的厚度方向的延迟发生变化,通过将上述延迟Rlc和Rp设定在上述范围,可将该延迟Rp设定在上述α的80%~120%的范围。其结果是,即使是基材膜的厚度方向的延迟发生分散的情况,也取得了可采用相同的上述第1延迟膜,可提高生产率这样的效果。
如上所述,本发明的液晶显示装置除上述结构外,还具有如下的结构:上述延迟Rp被设定为上述α的90%以上且110%以下的值,同时上述延迟Rn被设定为上述β的65%以上且85%以下的值。由此,取得了能得到在从斜方向看时的着色和灰度退降受到进一步抑制的液晶显示装置这样的效果。
如上所述,本发明的液晶显示装置除上述结构外,还具有如下的结构:上述液晶的厚度方向的延迟Rlc被设定在342[nm]至378[nm]的范围,上述第1延迟膜的面内方向的延迟Rp被设定在33.3[nm]至38.6[nm]的范围。
因此,即使基材膜在制造过程中发生分散,基材膜的厚度方向的延迟发生变化,通过将上述延迟Rlc和Rp设定在上述范围,可将该延迟Rp设定在上述α的90%~110%的范围。其结果是,即使是基材膜的厚度方向的延迟发生分散的情况,也取得了可采用相同的上述第1延迟膜,可提高生产率这样的效果。
如上所述,本发明的液晶显示装置具有如下的结构:假定在两偏振片中的一块偏振片与液晶盒之间配置、具有双轴各向异性的延迟膜的延迟为Rxy[nm],在上述延迟膜的厚度方向的延迟为Rz[nm],上述基材膜的厚度方向的延迟为Rtac[nm],上述液晶的厚度方向的延迟为Rlc[nm],与上述Rxy相关的参数α[nm]为α=85-0.09×Rlc-Rtac/20,与上述Rz相关的参数β[nm]为β=1.05×Rlc-1.9×Rtac时,上述延迟Rxy被设定为上述α的80%以上且120%以下的值,同时上述延迟Rz被设定为上述β的60%以上且90%以下的值。
如上所述,本发明的液晶显示装置具有如下的结构:假定在液晶盒的两侧配置、具有双轴各向异性的第1和第2延迟膜的的面内方向的延迟为Rxy[nm],厚度方向的延迟为Rz[nm],与上述Rxy相关的参数α[nm]为α=42.5-0.045×Rlc-Rtac/40,与上述Rz相关的参数β[nm]为β=0.525×Rlc-0.095×Rtac时,上述第1和第2延迟膜的延迟Rxy被设定为上述α的80%以上且120%以下的值,同时上述第1和第2延迟膜的延迟Rz被设定为上述β的60%以上且90%以下的值。
在上述各结构的液晶显示装置中,由于上述延迟Rxy、Rz被设定如上,所以与将基材膜的厚度方向的延迟与上述延迟膜,或者上述第1和第2延迟膜的厚度方向的延迟进行同等处理的情况不同,取得了能可靠地得到在从斜方向看时的对比度在实用上维持在充分高的值,而且着色和灰度退降被抑制在容许范围内的液晶显示装置这样的效果。
如上所述,本发明的液晶显示装置除上述各结构外,还具有如下的结构:上述延迟Rxy被设定为上述α的90%以上且110%以下的值,同时上述延迟Rz被设定为上述β的65%以上且85%以下的值。其结果是,取得了能得到在从斜方向看时的着色和灰度退降受到进一步抑制的液晶显示装置这样的效果。
如上所述,本发明的液晶显示装置有如下的结构:不管上述各延迟膜是否具有双轴各向异性,上述液晶都具有负的介质各向异性。
按照该结构,通过施加大致垂直于基板的电场,与可使沿基板的法线方向取向的液晶分子依据电场强度而倾斜、具有正的介质各向异性的情形相比,取得了可简化电极的结构这样的效果。
本发明的液晶显示装置是具备:设置了在夹持液晶的同时使该液晶的液晶分子大致垂直于表面而取向的2块基板的液晶盒;配置在该液晶盒的两侧,使各自的吸收轴相互正交地配置的2块偏振片;在上述两偏振片的一方与上述液晶盒之间配置的、具有正的单轴各向异性的第1延迟膜;以及在该偏振片与第1延迟膜之间配置的、具有负的单轴各向异性的第2延迟膜,在上述两偏振片上设置了被配置成其光轴与上述基板大致垂直的、具有负的单轴各向异性的基材膜,上述第1延迟膜的滞后轴被配置成从上述液晶看时与同一侧的上述偏振片的吸收轴正交的、上述第2延迟膜的光轴被配置成与上述基板大致垂直的液晶显示装置,其特征在于采取了以下方法。
即,假定上述第1延迟膜的面内方向的延迟为Rp[nm],上述第2延迟膜的厚度方向的延迟为Rn[nm],上述基材膜的厚度方向的延迟为Rtac[nm],上述液晶的厚度方向的延迟为Rlc[nm],与上述Rp相关的参数α[nm]为α=35+(Rlc/80-4)2×3.5+(360-Rlc)×Rtac/850,与上述Rn相关的参数β[nm]为β=Rlc-1.9×Rtac时,上述延迟Rp被设定为上述α的80%以上且120%以下的值,同时上述延迟Rn被设定为上述β的60%以上且90%以下的值。
在上述结构的液晶显示装置中,尽管大致垂直于基板取向的液晶分子对从基板的法线方向入射的光不给予相位差,但由于对从斜方向入射的光,给予与极角(与法线方向的倾斜角)对应的相位差,如果没有第1和第2延迟膜,原来应被出射侧的偏振片吸收的光未完全被吸收。其结果是,发生了漏光,使对比度降低,同时发生了着色和灰度退降。
与此相对照,在上述结构中,由于设置了上述第1和第2延迟膜,上述液晶依据极角而给予的相位差被两延迟膜补偿。其结果是,可防止从斜方向看时的漏光,提高对比度,同时防止着色和灰度退降的发生。
但是,在决定上述两延迟膜的延迟时,仅通过从在没有基材膜的情况下具有最佳的上述第1和第2延迟膜的厚度方向的延迟减去具有上述基材膜的厚度方向的延迟,在从斜方向看时的要求进一步抑制着色和灰度退降的状况下,不可以说一定的充分的。
因此,本申请的发明人发现,将从斜方向看垂直取向模式的液晶显示装置时的对比度在实用上维持在充分高的值不变,为了进一步抑制着色和灰度退降,反复研究的结果是,基材膜的厚度方向的延迟与上述第1和第2延迟膜的厚度方向的延迟并不起同等的作用,特别是,当将具有正的单轴各向异性的第1延迟膜的面内方向的延迟膜Rp设定为使上述对比度成为最大时,根据液晶所具有的延迟是否超过360[nm],上述延迟Rp对上述基材膜的厚度方向的延迟的依赖关系发生逆转,并且,通过以对比度为最大的上述各延迟为基准,在规定的范围内进行设定,发现可有效地抑制着色和灰度退降,使本发明得以完成。
在本发明的液晶显示装置中,根据上述基材膜和液晶的厚度方向的延迟Rtac和Rlc,而且,将从斜方向看时的对比度在实用上维持在充分高的值不变,在可以容许着色和灰度退降的范围内,设定上述延迟Rp和Rn。由此,与将基材膜的厚度方向的延迟与上述第1和第2延迟膜的厚度方向的延迟进行同等处理的情况不同,能可靠地得到在从上述斜方向看时的对比度在实用上维持在充分高的值,而且着色和灰度退降被抑制在容许范围内的液晶显示装置。
另外,在特别要求提高生产率的情况下,除上述结构外,希望上述液晶的厚度方向的延迟Rlc被设定在324[nm]至396[nm]的范围内,上述第1延迟膜的面内方向的延迟Rp被设定在30.7[nm]至41.7[nm]的范围内。
如果上述延迟Rlc被设定在该范围内,则上述延迟Rp对上述基材膜的厚度方向的延迟的依赖性减少。因此,即使基材膜在制造过程中发生分散,基材膜的厚度方向的延迟发生变化,通过将上述Rp设定在上述范围内,还是可将该延迟Rp设定在上述α的80%~120%的范围内。其结果是,即使是基材膜的厚度方向的延迟发生分散的情况,也可用相同的上述第1延迟膜,可提高生产率。
此外,在特别要求抑制上述着色及灰度退降的情况下,除上述结构外,希望上述延迟Rp被设定为上述α的90%以上且110%以下的值,同时上述延迟Rn被设定为上述β的65%以上且85%以下的值。由此,可得到进一步抑制了从斜方向看时的着色及灰度退降的液晶显示装置。
另外,在特别要求抑制上述着色及灰度退降和提高生产率这两方面的情况下,除上述结构外,希望上述液晶的厚度方向的延迟Rlc被设定在342[nm]至378[nm]的范围内,上述第1延迟膜的面内方向的延迟Rp被设定在33.3[nm]至38.6[nm]的范围内。
如果上述延迟Rlc和Rp被设定在该范围内,则即使基材膜在制造过程中发生分散,基材膜的厚度方向的延迟发生变化,还是可将上述延迟Rp设定在上述α的90%~110%的范围内。其结果是,即使是基材膜的厚度方向的延迟发生分散的情况,也可用相同的上述第1延迟膜,可提高生产率。
另一方面,本发明的液晶显示装置是具备:设置了在夹持液晶的同时使该液晶的液晶分子大致垂直于表面而取向的2块基板的液晶盒;配置在该液晶盒的两侧,使各自的吸收轴相互正交地配置的2块偏振片;以及在上述两偏振片的一方与上述液晶盒之间配置的、具有双轴各向异性的延迟膜,在上述两偏振片上设置了被配置成其光轴与上述基板大致垂直的、具有负的单轴各向异性的基材膜,上述延迟膜的面内的滞后轴被配置成从上述液晶看时与同一侧的上述偏振片的吸收轴正交的液晶显示装置,其特征在于采取了以下方法。
即,当假定上述延迟膜的面内方向的延迟为Rxy[nm]、上述延迟膜的厚度方向的延迟为Rz[nm]、上述基材膜的厚度方向的延迟为Rtac[nm]、上述液晶的厚度方向的延迟为Rlc[nm],假定与上述Rxy相关的参数α[nm]为α=85-0.09×Rlc-Rtac/20,与上述Rz相关的参数β[nm]为β=1.05×Rlc-1.9×Rtac时,上述延迟Rxy被设定为上述α的80%以上且120%以下的值,同时上述延迟Rz被设定为上述β的60%以上且90%以下的值。
另外,本发明的液晶显示装置是具备:设置了在夹持液晶的同时使该液晶的液晶分子大致垂直于表面而取向的2块基板的液晶盒;配置在该液晶盒的两侧,使各自的吸收轴相互正交地配置的2块偏振片;在上述两偏振片的一方与上述液晶盒之间配置的、具有双轴各向异性的第1延迟膜;以及在上述两偏振片的另一方与上述液晶盒之间配置的、具有双轴各向异性的第2延迟膜,在上述两偏振片上设置了被配置成其光轴与上述基板大致垂直的、具有负的单轴各向异性的基材膜,上述第1和第2延迟膜的面内的滞后轴被配置成从上述液晶看时与同一侧的上述偏振片的吸收轴正交的液晶显示装置,其特征在于采取了以下方法。
即,当假定上述各延迟膜的面内方向的延迟为Rxy[nm]、上述各延迟膜的厚度方向的延迟为Rz[nm]、上述基材膜的厚度方向的延迟为Rtac[nm]、上述液晶的厚度方向的延迟为Rlc[nm],假定与上述Rxy相关的参数α[nm]为α=42.5-0.045×Rlc-Rtac/40,与上述Rz相关的参数β[nm]为β=0.525×Rlc-0.95×Rtac时,上述第1和第2延迟膜的延迟Rxy被设定为上述α的80%以上且120%以下的值,同时上述第1和第2延迟膜的延迟Rz被设定为上述β的60%以上且90%以下的值。
在上述各结构的液晶显示装置中,在液晶分子大致垂直于基板而取向的状态下,液晶给予斜方向的光的相位差被上述延迟膜,或者第1和第2延迟膜补偿,可防止从斜方向看时的漏光,提高对比度。
但是,即使是该结构,在决定上述延迟膜或者第1和第2延迟膜的延迟时,仅通过从在没有基材膜的情况下具有最佳的各延迟膜的厚度方向的延迟减去具有上述基材膜的厚度方向的延迟,在从斜方向看时的要求进一步抑制着色和灰度退降的状况下,不可以说一定的充分的。
因此,本申请的发明人发现,为了进一步提高从斜方向看垂直取向模式的液晶显示装置时的对比度,反复研究的结果是,与上述液晶显示装置一样,基材膜的厚度方向的延迟与上述延迟膜,或者第1和第2延迟膜的厚度方向的延迟并不起同等的作用,特别是,对于具有双轴各向异性的面内方向的延迟Rxy和基材膜的厚度方向的延迟Rtac而言,尽管延迟的方向互不相同,但为了恰当地设定上述延迟Rxy,还应加上延迟Rtac的影响,并且,通过以对比度为最大的上述各延迟为基准,在规定的范围内进行设定,发现可有效地抑制着色和灰度退降,使本发明得以完成。
在本发明的液晶显示装置中,在设定延迟膜,或者第1和第2延迟膜的面内方向的延迟Rxy和厚度方向的延迟Rz时,根据上述液晶和基材膜的厚度方向的延迟Rlc和Rtac进行设定,同时,将从斜方向看时的对比度在实用上维持在充分高的值不变,在可以容许着色和灰度退降的范围内,设定上述延迟Rxy和Rz。由此,与将基材膜的厚度方向的延迟与延迟膜,或者上述第1和第2延迟膜的厚度方向的延迟进行同等处理的情况不同,能可靠地得到在从上述斜方向看时的对比度在实用上维持在充分高的值,而且着色和灰度退降被抑制在容许范围内的液晶显示装置。
另外,在特别要求抑制上述着色及灰度退降的情况下,除上述结构外,希望上述延迟Rxy被设定为上述α的90%以上且110%以下的值,同时上述延迟Rz被设定为上述β的65%以上且85%以下的值。其结果是,可得到从斜方向看时的着色和灰度退降被进一步抑制的液晶显示装置。
此外,对于本发明的液晶显示装置而言,不管上述各延迟膜是否具有双轴各向异性,都希望上述液晶具有负的介质各向异性。
按照该结构,通过施加大致垂直于基板的方向的电场,可使沿基板的法线方向取向的液晶分子依据电场强度而倾斜,与具有正的介质各向异性的情况相比,可简化电极的结构。
在用于实施发明的最佳形态的事项中,所实施的具体的实施形态或实施例始终是阐明本发明的技术内容的,不应只限定于那样的具体例作狭义的解释,在本发明的宗旨和下面叙述的权利要求的范围内,可进行各种变更而付诸实施。
工业上的可利用性
如上所述,按照本发明的液晶显示装置,根据上述基材膜和液晶的厚度方向的延迟Rtac和Rlc,而且,将从斜方向看时的对比度在实用上维持在充分高的值不变,在可以容许着色和灰度退降的范围内,设定上述延迟Rp和Rn。由此,与将基材膜的厚度方向的延迟与上述第1和第2延迟膜的厚度方向的延迟进行同等处理的情况不同,能可靠地得到在从上述斜方向看时的对比度在实用上维持在充分高的值,而且着色和灰度退降被抑制在容许范围内的液晶显示装置。

Claims (11)

1.一种液晶显示装置,它是具备:设置了在夹持液晶的同时使该液晶的液晶分子大致垂直于表面而取向的2块基板的液晶盒;配置在该液晶盒的两侧,使各自的吸收轴相互正交地配置的2块偏振片;在上述两偏振片的一方与上述液晶盒之间配置的、具有正的单轴各向异性的第1延迟膜;以及在该偏振片与第1延迟膜之间配置的、具有负的单轴各向异性的第2延迟膜,
在上述两偏振片上设置了被配置成其光轴与上述基板大致垂直的、具有负的单轴各向异性的基材膜,上述第1延迟膜的滞后轴被配置成从上述液晶看时与同一侧的上述偏振片的吸收轴正交的、上述第2延迟膜的光轴被配置成与上述基板大致垂直的液晶显示装置,其特征在于:
当假定上述第1延迟膜的面内方向的延迟为Rp[nm]、上述第2延迟膜的厚度方向的延迟为Rn[nm]、上述基材膜的厚度方向的延迟为Rtac[nm]、上述液晶的厚度方向的延迟为R1c[nm],
假定与上述Rp相关的参数α[nm]为
α=35+(R1c/80-4)2×3.5+(360-R1c)×Rtac/850,
与上述Rn相关的参数β[nm]为
β=R1c-1.9×Rtac时,
上述延迟Rp被设定为上述α的80%以上且120%以下的值,同时上述延迟Rn被设定为上述β的60%以上且90%以下的值。
2.如权利要求1所述的液晶显示装置,其特征在于:
上述液晶的厚度方向的延迟R1c被设定在324[nm]至396[nm]的范围内,上述第1延迟膜的面内方向的延迟Rp被设定在30.7[nm]至41.7[nm]的范围内。
3.如权利要求1所述的液晶显示装置,其特征在于:
上述延迟Rp被设定为上述α的90%以上且110%以下的值,同时上述延迟Rn被设定为上述β的65%以上且85%以下的值。
4.如权利要求3所述的液晶显示装置,其特征在于:
上述液晶的厚度方向的延迟R1c被设定在342[nm]至378[nm]的范围内,上述第1延迟膜的面内方向的延迟Rp被设定在33.3[nm]至38.6[nm]的范围内。
5.一种液晶显示装置,它是具备:设置了在夹持液晶的同时使该液晶的液晶分子大致垂直于表面而取向的2块基板的液晶盒;配置在该液晶盒的两侧,使各自的吸收轴相互正交地配置的2块偏振片;以及在上述两偏振片的一方与上述液晶盒之间配置的、具有双轴各向异性的延迟膜,
在上述两偏振片上设置了被配置成其光轴与上述基板大致垂直的、具有负的单轴各向异性的基材膜,上述延迟膜的面内的滞后轴被配置成从上述液晶看时与同一侧的上述偏振片的吸收轴正交的液晶显示装置,其特征在于:
当假定上述延迟膜的面内方向的延迟为Rxy[nm]、上述延迟膜的厚度方向的延迟为Rz[nm]、上述基材膜的厚度方向的延迟为Rtac[nm]、上述液晶的厚度方向的延迟为R1c[nm],
假定与上述Rxy相关的参数α[nm]为
α=85-0.09×R1c-Rtac/20,
与上述Rz相关的参数β[nm]为
β=1.05×R1c-1.9×Rtac时,
上述延迟Rxy被设定为上述α的80%以上且120%以下的值,同时上述延迟Rz被设定为上述β的60%以上且90%以下的值。
6.一种液晶显示装置,它是具备:设置了在夹持液晶的同时使该液晶的液晶分子大致垂直于表面而取向的2块基板的液晶盒;配置在该液晶盒的两侧,使各自的吸收轴相互正交地配置的2块偏振片;在上述两偏振片的一方与上述液晶盒之间配置的,具有双轴各向异性的第1延迟膜;以及在上述两偏振片的另一方与上述液晶盒之间配置的、具有双轴各向异性的第2延迟膜,
在上述两偏振片上设置了被配置成其光轴与上述基板大致垂直的、具有负的单轴各向异性的基材膜,上述第1和第2延迟膜的面内的滞后轴被配置成从上述液晶看时与同一侧的上述偏振片的吸收轴正交的液晶显示装置,其特征在于:
当假定上述各延迟膜的面内方向的延迟为Rxy[nm]、上述各延迟膜的厚度方向的延迟为Rz[nm]、上述基材膜的厚度方向的延迟为Rtac[nm]、上述液晶的厚度方向的延迟为R1c[nm],
假定与上述Rxy相关的参数α[nm]为
α=42.5-0.045×R1c-Rtac/40,
与上述Rz相关的参数β[nm]为
β=0.525×R1c-0.95×Rtac时,
上述第1和第2延迟膜的延迟Rxy被设定为上述α的80%以上且120%以下的值,同时上述第1和第2延迟膜的延迟Rz被设定为上述β的60%以上且90%以下的值。
7.如权利要求5所述的液晶显示装置,其特征在于:
上述延迟Rxy被设定为上述α的90%以上且110%以下的值,同时上述延迟Rz被设定为上述β的65%以上且85%以下的值。
8.如权利要求6所述的液晶显示装置,其特征在于:
上述延迟Rxy被设定为上述α的90%以上且110%以下的值,同时上述延迟Rz被设定为上述β的65%以上且85%以下的值。
9.如权利要求1所述的液晶显示装置,其特征在于:
上述液晶具有负的介质各向异性。
10.如权利要求5所述的液晶显示装置,其特征在于:
上述液晶具有负的介质各向异性。
11.如权利要求6所述的液晶显示装置,其特征在于:
上述液晶具有负的介质各向异性。
CNB038055686A 2002-03-08 2003-03-04 液晶显示装置 Expired - Fee Related CN100368896C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP64481/2002 2002-03-08
JP2002064481A JP3993000B2 (ja) 2002-03-08 2002-03-08 液晶表示装置のリターデーションの設定方法

Publications (2)

Publication Number Publication Date
CN1639621A true CN1639621A (zh) 2005-07-13
CN100368896C CN100368896C (zh) 2008-02-13

Family

ID=27800219

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038055686A Expired - Fee Related CN100368896C (zh) 2002-03-08 2003-03-04 液晶显示装置

Country Status (7)

Country Link
US (2) US6885421B2 (zh)
JP (1) JP3993000B2 (zh)
KR (1) KR100697744B1 (zh)
CN (1) CN100368896C (zh)
AU (1) AU2003211481A1 (zh)
TW (1) TWI230826B (zh)
WO (1) WO2003077020A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101131508B (zh) * 2006-08-24 2010-06-02 精工爱普生株式会社 具备光学装置的投影机
CN102033359A (zh) * 2009-09-24 2011-04-27 斯坦雷电气株式会社 液晶显示元件
CN101546067B (zh) * 2008-03-25 2011-06-29 索尼株式会社 图像显示装置以及光学补偿设备
CN101762905B (zh) * 2007-01-26 2012-09-12 卡西欧计算机株式会社 液晶显示元件
CN102854661A (zh) * 2012-10-10 2013-01-02 深圳市华星光电技术有限公司 Va显示模式补偿架构及va显示模式液晶显示装置
CN103869538A (zh) * 2014-04-04 2014-06-18 深圳市华星光电技术有限公司 液晶面板的补偿架构及液晶显示装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7401923B2 (en) * 2004-03-09 2008-07-22 Fergason Patent Properties, Llc Monitor for showing high-resolution and three-dimensional images and method
US20060268407A1 (en) * 2000-07-07 2006-11-30 Fergason James L Display system using two displays and polarization direction rotation for showing high-resolution and three-dimensional images and method and use of a DBEF beam splitter
JP4329983B2 (ja) * 2003-02-05 2009-09-09 大日本印刷株式会社 液晶ディスプレイ
US7508474B2 (en) * 2003-04-07 2009-03-24 Dai Nippon Printing Co., Ltd. Laminated retardation layer, its fabrication process, and liquid crystal display incorporating the same
TWI242083B (en) 2003-08-11 2005-10-21 Sony Corp Liquid crystal display device
JP4883518B2 (ja) * 2003-12-12 2012-02-22 Nltテクノロジー株式会社 液晶表示装置
JP2005201960A (ja) * 2004-01-13 2005-07-28 Seiko Epson Corp 液晶装置および投射型表示装置
JP4904665B2 (ja) * 2004-02-25 2012-03-28 コニカミノルタオプト株式会社 液晶表示装置及び偏光板セット
JP4255893B2 (ja) * 2004-07-16 2009-04-15 富士通株式会社 液晶表示装置
CN100397186C (zh) * 2004-09-16 2008-06-25 东芝松下显示技术有限公司 液晶显示元件
US7450204B1 (en) * 2004-11-02 2008-11-11 University Of Central Florida Research Foundation, Inc. Multi-film compensated liquid crystal display with initial homogeneous alignment
KR100682230B1 (ko) * 2004-11-12 2007-02-12 주식회사 엘지화학 수직 배향 액정표시장치
JP4536489B2 (ja) * 2004-11-15 2010-09-01 株式会社 日立ディスプレイズ 光学素子及びそれを用いた表示装置
US20060109753A1 (en) * 2004-11-23 2006-05-25 Fergason James L Monitor for showing high-resolution and three-dimensional images and method
US7411636B2 (en) 2004-11-23 2008-08-12 Fergason Patent Properties, Llc Stereoscopic liquid crystal display (LCD) with polarization method
JP2007163894A (ja) * 2005-12-14 2007-06-28 Fujifilm Corp 液晶表示装置
JP4311492B2 (ja) * 2007-01-26 2009-08-12 カシオ計算機株式会社 液晶表示素子及び放送受信装置
JP2009289592A (ja) * 2008-05-29 2009-12-10 Canon Inc 表示装置
JP5292020B2 (ja) * 2008-08-28 2013-09-18 スタンレー電気株式会社 液晶表示素子
JP2010085696A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 液晶表示装置
BR112012005201A2 (pt) * 2009-09-08 2016-03-08 Sharp Kk dispositivo de exibição de cristal líquido
JP2011164209A (ja) * 2010-02-05 2011-08-25 Casio Computer Co Ltd 液晶表示素子
JP5632625B2 (ja) * 2010-03-04 2014-11-26 富士フイルム株式会社 Va型液晶表示装置
CN102798922B (zh) * 2012-08-22 2014-12-03 深圳市华星光电技术有限公司 光学补偿结构及显示装置
US9164308B2 (en) * 2012-08-22 2015-10-20 Shenzhen China Star Optoelectronics Technology Co., Ltd. Optical compensation structure and display device
US9011993B2 (en) * 2012-08-23 2015-04-21 Shenzhen China Star Optoelectronics Technology Co., Ltd. Optical compensation structure and display device
CN102854654B (zh) * 2012-09-11 2015-09-02 深圳市华星光电技术有限公司 显示装置
JP6805877B2 (ja) * 2017-02-22 2020-12-23 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4308003A1 (de) 1993-03-13 1994-09-15 Fleissner Maschf Gmbh Co Doppelspulvorrichtung
US6642981B1 (en) 1996-09-30 2003-11-04 Fujitsu Display Technologies Corporation Liquid crystal display device operating in a vertically aligned mode including at least one retardation film
JPH10153802A (ja) * 1996-09-30 1998-06-09 Fujitsu Ltd 液晶表示装置
EP0884626B1 (en) 1997-06-12 2008-01-02 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
EP2284602A1 (en) 1997-08-29 2011-02-16 Sharp Kabushiki Kaisha Liduid crystal display device
JP3526533B2 (ja) * 1997-08-29 2004-05-17 シャープ株式会社 液晶表示装置およびテレビジョン装置
JP3470567B2 (ja) 1997-09-25 2003-11-25 住友化学工業株式会社 液晶表示装置およびこれに用いる視野角補償用フィルム
JP2000019518A (ja) * 1997-09-25 2000-01-21 Sharp Corp 液晶表示装置
JP3299190B2 (ja) * 1998-07-15 2002-07-08 インターナショナル・ビジネス・マシーンズ・コーポレーション 液晶表示装置
JP3926072B2 (ja) * 1998-12-18 2007-06-06 シャープ株式会社 液晶表示装置
US6359671B1 (en) * 2000-02-23 2002-03-19 Planar Systems, Inc. High contrast liquid crystal device
JP3863446B2 (ja) * 2002-03-08 2006-12-27 シャープ株式会社 液晶表示装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101131508B (zh) * 2006-08-24 2010-06-02 精工爱普生株式会社 具备光学装置的投影机
CN101762905B (zh) * 2007-01-26 2012-09-12 卡西欧计算机株式会社 液晶显示元件
CN101546067B (zh) * 2008-03-25 2011-06-29 索尼株式会社 图像显示装置以及光学补偿设备
CN102033359A (zh) * 2009-09-24 2011-04-27 斯坦雷电气株式会社 液晶显示元件
CN102854661A (zh) * 2012-10-10 2013-01-02 深圳市华星光电技术有限公司 Va显示模式补偿架构及va显示模式液晶显示装置
CN102854661B (zh) * 2012-10-10 2015-06-03 深圳市华星光电技术有限公司 Va显示模式补偿架构及va显示模式液晶显示装置
CN103869538A (zh) * 2014-04-04 2014-06-18 深圳市华星光电技术有限公司 液晶面板的补偿架构及液晶显示装置
WO2015149380A1 (zh) * 2014-04-04 2015-10-08 深圳市华星光电技术有限公司 液晶面板的补偿架构及液晶显示装置

Also Published As

Publication number Publication date
US7095467B2 (en) 2006-08-22
JP3993000B2 (ja) 2007-10-17
US20050162593A1 (en) 2005-07-28
WO2003077020A1 (fr) 2003-09-18
KR100697744B1 (ko) 2007-03-22
US6885421B2 (en) 2005-04-26
CN100368896C (zh) 2008-02-13
TW200407622A (en) 2004-05-16
KR20040091701A (ko) 2004-10-28
JP2003262872A (ja) 2003-09-19
AU2003211481A1 (en) 2003-09-22
TWI230826B (en) 2005-04-11
US20040114080A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
CN1639621A (zh) 液晶显示装置
CN1229675C (zh) 液晶显示装置
CN1161644C (zh) 具有宽视角的液晶显示器
CN1199143C (zh) 液晶显示装置
CN1161642C (zh) 叠层相位差板以及由该板构成的液晶显示装置
CN1299153C (zh) 利用透射光显示图像的液晶显示器
CN1213333C (zh) 带延迟板的液晶显示器
CN1228674C (zh) 液晶显示元件和其中所用相位差膜的使用
CN1213331C (zh) 用于液晶显示器的基片以及使用该基片的液晶显示器
CN1708723A (zh) 具有光各向同性相的光补偿的电光式光调制元件
CN1777834A (zh) 包括使用+a-板和+c-板的视角补偿膜的平面内切换液晶显示器
CN1603906A (zh) 液晶显示装置
CN1324367C (zh) 具有补偿薄膜的平面内转换液晶显示器
CN1645205A (zh) 偏振片以及使用它的液晶显示装置
CN1782810A (zh) 液晶面板和液晶显示装置
CN1764867A (zh) 使用聚降冰片烯基聚合物薄膜的垂直排列型液晶显示器
CN1922537A (zh) 用于液晶显示器的滤色器和色校正延迟层的设置
CN1130591C (zh) 液晶显示元件
CN87106251A (zh) 液晶显示器
CN1991507A (zh) 显示器件
CN1274143A (zh) 液晶显示元件、背照光机构以及采用它们的液晶显示装置
CN1564951A (zh) 聚碳酸酯类取向膜以及相位差膜
CN100345043C (zh) 液晶显示装置
CN1169011C (zh) 液晶显示装置
CN1149431C (zh) 液晶显示器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080213

Termination date: 20200304

CF01 Termination of patent right due to non-payment of annual fee