WO2015149380A1 - 液晶面板的补偿架构及液晶显示装置 - Google Patents

液晶面板的补偿架构及液晶显示装置 Download PDF

Info

Publication number
WO2015149380A1
WO2015149380A1 PCT/CN2014/075150 CN2014075150W WO2015149380A1 WO 2015149380 A1 WO2015149380 A1 WO 2015149380A1 CN 2014075150 W CN2014075150 W CN 2014075150W WO 2015149380 A1 WO2015149380 A1 WO 2015149380A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
compensation
film
protective film
crystal display
Prior art date
Application number
PCT/CN2014/075150
Other languages
English (en)
French (fr)
Inventor
康志聪
海博
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/358,627 priority Critical patent/US20150286099A1/en
Publication of WO2015149380A1 publication Critical patent/WO2015149380A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a compensation architecture for a liquid crystal panel and a liquid crystal display device. Background technique
  • LCD Liquid Crystal Display
  • TFT Thin Film Transistor
  • the linear liquid crystal for producing a liquid crystal display panel is a material having a birefringence A n.
  • the light When the light passes through the liquid crystal molecules, it can be divided into ordinary light and ordinary light, if the light is oblique.
  • the liquid crystal molecules When the liquid crystal molecules are incident, two refracted rays are generated.
  • the birefringence A n ne - no , ne indicates the refractive index of the liquid crystal molecules to ordinary rays, and no indicates the refractive index of the liquid crystal molecules to extraordinary rays. Therefore, when the light passes through the liquid crystal sandwiched between the upper and lower pieces of glass, the light will have a phase retardation phenomenon.
  • the light characteristics of the liquid crystal cell are usually measured by the phase delay A n X d , also known as the optical path difference, ⁇ ⁇ is the birefringence, d is the thickness of the liquid crystal cell, and the difference in phase retardation of the liquid crystal cell at different viewing angles is the viewing angle.
  • the origin of the problem The phase retardation of a good optical compensation film can cancel out the phase retardation of the linear liquid crystal, and the viewing angle of the liquid crystal panel can be widened.
  • the compensation principle of the optical compensation film is generally to correct the phase difference generated by the liquid crystal at different viewing angles, so that the birefringence properties of the liquid crystal molecules are compensated for symmetry.
  • optical compensation film can effectively reduce the light leakage of the dark state picture, and can greatly improve the contrast of the picture within a certain angle of view.
  • Optical compensation films can be divided into simple ones based on their functional purposes. A phase difference film, a chromatic aberration compensation film, a viewing angle expansion film, and the like which change the phase.
  • the use of an optical compensation film can reduce the amount of light leakage in the dark state of the liquid crystal display, and can greatly improve the contrast, chromaticity and overcome some gray scale inversion problems in a certain viewing angle.
  • Nx is the refractive index along the slow axis (the axis with the largest refractive index, that is, the direction of vibration where the light has a slower propagation velocity) in the plane of the film
  • Ny is the fast axis along the plane of the film (with the smallest refractive index)
  • Nz is the refractive index in the plane of the film (perpendicular to Nx and Ny).
  • the optical compensation film used is different for different liquid crystal display modes, that is, different liquid crystal cell types, and the Ro and Rth values are also adjusted to appropriate values.
  • FIG. 1a is a dark state full-view brightness contour profile of a liquid crystal panel compensated by a conventional single-layer dual-axis compensation architecture
  • FIG. 1b is the aforementioned single-layer dual-axis compensation
  • Figure 2a is a view of the brightness profile of the dark state of the liquid crystal panel compensated by the existing double-layer dual-axis compensation architecture
  • FIG. 2b is the foregoing Contrast contour profile of the full viewing angle of the liquid crystal panel compensated by the double-layer dual-axis compensation architecture.
  • the position of ° is severely leaking, that is, the dark state of the liquid crystal panel is severe, and the viewing angle is closer to the horizontal viewing angle.
  • the current double-layer dual-axis compensation architecture is used for compensation, and the dark state of the liquid crystal panel is severely leaked.
  • the angle of view is between the horizontal and vertical angles of view.
  • the double-layer dual-axis compensation architecture is compensated, the dark state of the liquid crystal panel is severely exposed in the middle of the horizontal and vertical viewing angles, as opposed to The single-layer dual-axis compensation architecture is slightly improved, but the dual-layer dual-axis compensation architecture is more expensive, which is not conducive to cost reduction, and has limited improvement.
  • the compensation by the single-layer dual-axis compensation architecture can effectively reduce the cost.
  • the liquid crystal panel has a dark light leakage in a near-horizontal viewing angle, and the contrast is low, which affects the viewing effect.
  • the present invention provides a compensation structure for a liquid crystal panel.
  • the dark state of the liquid crystal panel can be lightly leaked from a near horizontal viewing area to a near vertical viewing area. Deflection; and can effectively reduce the dark state light leakage of the liquid crystal panel as a whole and ensure that the light leakage is concentrated in a small range.
  • a compensation structure of a liquid crystal panel comprising: a first protective film, a first polarizing film, a biaxial compensation film, a liquid crystal panel, a second protective film, a second polarizing film, and a third protective film, which are sequentially stacked, wherein
  • the liquid crystal panel is provided with a liquid crystal layer including a plurality of liquid crystal molecules, the refractive index anisotropy of the liquid crystal layer is ⁇ , the thickness is d, and the pretilt angle of the liquid crystal molecules is ⁇ ;
  • the thickness compensation value of the biaxial compensation film is Rthl;
  • the thickness compensation value of the second protective film is Rth2, wherein -
  • the thickness compensation value Rth2 of the second protective film is 59 nm.
  • the material of the first polarizing film and the second polarizing film is polyvinyl alcohol.
  • the materials of the first protective film, the second protective film and the third protective film are all cellulose acetate.
  • the angle between the light absorption axis of the first polarizing film and the slow axis of the biaxial compensation film is 90°.
  • the liquid crystal panel is a liquid crystal panel in a vertical alignment mode.
  • a liquid crystal display device including a liquid crystal display panel and a backlight module.
  • the liquid crystal display panel is disposed opposite to the backlight module, and the backlight module provides a display light source to the liquid crystal display.
  • a panel for causing the liquid crystal display panel to display an image wherein the liquid crystal display panel employs a liquid crystal panel having a compensation structure as described above.
  • the dark angle of the dark leakage of the liquid crystal panel can be deflected from the near horizontal viewing angle region to the near vertical viewing angle region. And it is possible to effectively reduce the dark state light leakage of the liquid crystal panel as a whole and to ensure that the light leakage is concentrated in a small range.
  • the compensation is achieved by combining the single-layer double-axis compensation film and the second protective film, which can solve the problem of compensation by using the single-layer double-axis compensation film alone, and the invention is different from the compensation method using the double-layer dual-axis compensation film. reduce manufacturing cost.
  • Figure la is a luminance profile distribution of a dark state full-view angle of a liquid crystal panel compensated by a conventional single-layer biaxial compensation film.
  • Figure lb is a contour view of a full-view angle such as the liquid crystal panel shown in Figure la.
  • Fig. 2a is a diagram showing a brightness profile of a dark state full-view angle of a liquid crystal panel compensated by a conventional double-layered biaxial compensation film.
  • Fig. 2b is a view of a full-view iso-contour profile of the liquid crystal panel shown in Fig. 2a.
  • FIG. 3 is an exemplary illustration of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 4 is an exemplary illustration of a single layer dual axis compensation architecture provided by an embodiment of the present invention.
  • Fig. 5 is a graph showing changes in the amount of light leakage with a compensation value when the liquid crystal optical path difference is 287.3 nm, the pretilt angle ⁇ is 89°, and the dark state light leakage is concentrated at a large viewing angle.
  • liquid crystal display device having a liquid crystal optical path difference of 290 nm and a pretilt angle ⁇ 89°, the dark state leakage light concentrates on the large viewing angle when the amount of light leakage changes with the compensation value trend graph.
  • Fig. 7 is a graph showing changes in the amount of light leakage with a compensation value when the liquid crystal optical path difference is 303 nm, the pretilt angle ⁇ is 89°, and the dark state light leakage is concentrated at a large viewing angle.
  • Fig. 8 is a graph showing changes in the amount of light leakage with a compensation value when the liquid crystal optical path difference is 305.7 nm, the pretilt angle ⁇ is 89°, and the dark state light leakage is concentrated at a large viewing angle.
  • FIG. 9a is a dark state full-view brightness contour distribution of the liquid crystal panel after compensation in a specific embodiment.
  • Fig. 9b is a view of a full-view isosurface contour contour of the liquid crystal panel shown in Fig. 9a.
  • Fig. 10a is a view showing a brightness state distribution of a dark state full-view angle of a liquid crystal panel after compensation in another embodiment.
  • Fig. 10b is a view of a full-view isosurface contour contour of the liquid crystal panel shown in Fig. 10a.
  • Fig. 11a is a dark state full-view equal-intensity contour distribution diagram of the compensated liquid crystal panel in another embodiment.
  • Figure l ib is a full-view contrast contour profile of the liquid crystal panel as shown in Figure 11a.
  • Fig. 12a is a diagram showing the brightness state distribution of the dark state of the compensated liquid crystal panel in another embodiment.
  • Fig. 12b is a view of a full-view isosurface contour contour of the liquid crystal panel shown in Fig. 12a.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS In order to make the objects, technical solutions, and advantages of the present invention more comprehensible, the present invention will be further described with reference to the accompanying drawings.
  • the liquid crystal display device of the present embodiment includes a liquid crystal display panel 100 and a backlight module 200.
  • the liquid crystal display panel 100 is disposed opposite to the backlight module 200, and the backlight module 200 provides display.
  • a light source is applied to the liquid crystal display panel 100 to cause the liquid crystal display panel 100 to display an image, wherein the liquid crystal display panel 100 is a liquid crystal panel that compensates with a compensation structure.
  • the foregoing compensation architecture is a single-layer dual-axis compensation architecture.
  • the compensation architecture includes a bottom-up (of course, from the reverse order, that is, from top to bottom).
  • the liquid crystal panel 10 is a Vertical Alignment Cell (VA Cell)
  • the first polarizing film 11 and the second polarizing film 12 are made of polyvinyl alcohol (PVA), and the first polarized light.
  • the angle between the absorption axis of the film 11 and the slow axis of the biaxial compensation film is set to 90°, and the materials of the first protective film 14, the second protective film 15 and the third protective film 16 are all triacetyl cellulose (Triacetyl Cellulose, TAC), one of the functions of the TAC protective films 14, 15, 16 is to protect the PVA polarizing films 11, 12, improve the mechanical properties of the PVA polarizing films 11, 12, and prevent the PVA polarizing films 11, 12 from retracting.
  • TAC Triacetyl Cellulose
  • the liquid crystal panel 10 is provided with a liquid crystal layer including a plurality of liquid crystal molecules having a refractive index anisotropy of ⁇ and a thickness d, and a liquid crystal molecule having a pretilt angle of ⁇ ; in the above compensation structure,
  • the thickness compensation value of the biaxial compensation film 13 is represented by Rth1
  • the thickness compensation value of the second protective film 15 is represented by Rth2.
  • the purpose is to appropriately set the compensation values of the biaxial compensation film 13 and the second protective film 15 to achieve a sharp angle of leakage of the dark state of the liquid crystal panel from the near horizontal viewing angle region to the near vertical viewing angle region. the goal of.
  • the pretilt angle ⁇ is 85 ° ⁇ ⁇ ⁇ 90 °;
  • the four quadrant liquid crystal tilt angles are 45°, 135°, 225° and 315°, respectively;
  • the optical path difference Anxd is 287.3 nm ⁇ ⁇ ⁇ 305.7 nm.
  • Light source Blue-yellow garnet light emitting diode (Blue-YAG LED) spectrum
  • the central brightness of the light source is defined as 100 nits (nit);
  • the light source is distributed as Lambert's distribution.
  • FIG. 5 is a graph showing the change of the light leakage amount with the compensation value when the liquid crystal optical path difference is 287.3 nm, the pretilt angle 89 is 89°, and the dark state light leakage is concentrated at a large viewing angle.
  • FIG. 6 is a graph showing a trend of light leakage with a compensation value when the liquid crystal optical path difference is 290 nm, the pretilt angle 89 is 89°, and the dark state light leakage is concentrated at a large viewing angle; FIG.
  • the liquid crystal display device has a liquid crystal light path difference of 303 nm, a pretilt angle 89 of 89°, a dark state light leakage concentrated at a large viewing angle, and a light leakage amount with a compensation value.
  • FIG. 8 is a liquid crystal display device of the present embodiment.
  • the path difference is 305.8 nm, and the pretilt angle 89 is 89°.
  • the dark state leakage light concentrates on the trend graph when the light leakage amount changes with the compensation value at a large viewing angle.
  • Ro represents the in-plane compensation value of the biaxial compensation film 13.
  • the thickness compensation value Rth1 of the biaxial compensation film 13 and the thickness compensation value Rth2 of the second protective film 12 are respectively: 180 nm ⁇ Rthl ⁇ 260 nm Yl nm ⁇ Rth2 ⁇ Y2 nm ;
  • the thickness D is changed to change the compensation value
  • the refractive index N is changed to change the compensation value
  • the thickness D and the refractive index N are simultaneously changed to change the compensation value.
  • a specific compensation value is selected and the corresponding compensation result is tested, and the technical effects obtained by the technical solution of the present invention are further specifically described.
  • FIG. 9a is a dark state full-view and other brightness contour distribution diagram of the compensated liquid crystal panel in the specific embodiment
  • FIG. 1 is a full-view equal-contrast contour of the compensated liquid crystal panel in the embodiment. Distribution.
  • FIG. 10a is a dark state full-view brightness contour profile of the liquid crystal panel after compensation in the specific embodiment
  • FIG. 10b is a full-view equal-contrast contour of the compensated liquid crystal panel in the embodiment. Distribution.
  • the liquid crystal panel compensated by the compensation structure of the above parameters the dark state light leakage is concentrated near the vertical viewing angle, the light leakage range is concentrated in a small viewing angle range, and the light leakage is The amount is significantly lower than the dark leakage caused by the current single-layer Biaxial compensation.
  • the liquid crystal panel compensated by the compensation structure of the above parameters has a full-view contrast distribution which is significantly better than the current single-layer Biaxial compensation full-view contrast distribution, especially near The contrast of the horizontal viewing angle area is effectively improved.
  • the present invention reduces the use of the compensation film and reduces the production cost as compared with the compensation method using the double-layered double-axis compensation film.
  • FIG. 11a is a dark state full-view brightness contour distribution diagram of the compensated liquid crystal panel in the specific embodiment
  • FIG. 1 ib is a full viewing angle and the like of the compensated liquid crystal panel in the specific embodiment.
  • FIG. 12a is a dark state full-view and other brightness contour distribution diagram of the compensated liquid crystal panel in the specific embodiment
  • FIG. 12b is a full-view equal-contrast contour of the compensated liquid crystal panel in the embodiment. Distribution.
  • the liquid crystal panel compensated by the compensation structure of the above parameters the dark state light leakage is concentrated near the vertical viewing angle, the light leakage range is concentrated in a small viewing angle range, and the light leakage is The amount is significantly lower than the current single layer Dark state leakage caused by Biaxial compensation.
  • the liquid crystal panel compensated by the compensation structure of the above parameters has a full viewing angle contrast distribution which is significantly better than the current single layer Biaxial compensation full view contrast distribution, especially near The contrast of the horizontal viewing angle area is effectively improved.
  • the present invention reduces the use of the compensation film and reduces the production cost as compared with the compensation method using the double-layered dual-axis compensation film.
  • the present invention by appropriately setting the compensation values of the biaxial compensation film and the second polarizing film, it is possible to deflect the dark state of the liquid crystal panel from the near horizontal viewing region to the near vertical viewing region; It is possible to effectively reduce the dark state light leakage of the liquid crystal panel as a whole and to ensure that the light leakage is concentrated in a small range.
  • the compensation is achieved by combining the single-layer double-axis compensation film and the second protective film, which can solve the problem of compensation by using the single-layer double-axis compensation film alone, and the invention is different from the compensation method using the double-layer dual-axis compensation film. reduce manufacturing cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

提供了一种液晶面板(10)的补偿架构,包括依次叠层设置的第一保护膜(14)、第一偏光膜(11)、双轴补偿膜(13)、液晶面板(10)、第二保护膜(15)、第二偏光膜(12)以及第三保护膜(16),液晶面板(10)设置有包括多个液晶分子的液晶层,液晶层的折射率各向异性为Δn,厚度为d,液晶分子的预倾角为θ;双轴补偿膜(13)的厚度补偿值为Rth1;第二保护膜(15)的厚度补偿值为Rth2,其中:287.3nm≤Δn×d≤305.7nm;85°≤θ<90°;180nm≤Rth1≤260nm;Y1nm≤Rth2≤Y2nm;Y1=-0.885×Rth1+241.9;Y2=-0.006638×(Rth1) 2+1.95×Rth1-6.3。还提供了一种液晶显示装置,包含了采用补偿架构进行补偿的液晶显示面板(100)。

Description

说 明 书
液晶面板的补偿架构及液晶显示装置
技术领域 本发明涉及液晶显示技术领域,尤其涉及一种用于液晶面板的补偿架构以 及液晶显示装置。 背景技术
液晶显示器(Liquid Crystal Display, LCD), 为平面超薄的显示设备, 它由 一定数量的彩色或黑白像素组成, 放置于光源或者反射面前方。 液晶显示器功 耗很低, 并且具有高画质、 体积小、 重量轻的特点, 因此倍受大家青睐, 成为 显示器的主流。 目前液晶显示器是以薄膜晶体管 (Thin Film Transistor, TFT ) 液晶显示器为主。
随着 TFT-LCD 的面积越来越大, 其观察角度不断增大, 画面的对比度不断 降低, 画面的清晰度下降, 这是液晶层中液晶分子的双折射率随观察角度变化 发生改变的结果。 对于普通的液晶显示屏来说, 当从某个角度观看普通的液晶 显示屏时, 将发现它的亮度急遽的损失 (变暗) 及变色。 传统的液晶显示器通 常只有 90 度的视角, 也就是左 / 右两边各 45 度。 制作液晶显示面板的线状液 晶是一种具有双折射率 A n 的物质, 当光线通过液晶分子后, 可分成寻常光线 ( ordinary ray) 与非常光线 ( extraordinary ray ) 两道光, 如果光线是斜向 入射液晶分子, 便会产生两道折射光线, 双折射率 A n=ne-no, ne 表示液晶分 子对寻常光线的折射率, no 表示液晶分子对非常光线的折射率。 因此当光线经 过上下两片玻璃所夹住的液晶后, 光线就会产生相位延迟 (Phase retardation) 的现象。 液晶盒的光线特性通常用相位延迟 A n X d来衡量, 也称为光程差, Δ η 为双折射率, d 为液晶盒的厚度, 液晶盒不同视角下相位延迟的不同是其产生 视角问题的由来。 良好的光学补偿膜的相位延迟可以跟线状液晶的相位延迟互 相抵消, 就可以增广液晶面板的可视角度。 光学补偿膜的补偿原理一般是将液 晶在不同视角产生的相位差进行修正, 让液晶分子的双折射性质得到对称性的 补偿。 采用光学补偿膜进行补偿, 可以有效降低暗态画面的漏光, 在一定视角 内能大幅度提高画面的对比度。 光学补偿膜从其功能目的来区分则可分为单纯 改变相位的位相差膜、 色差补偿膜及视角扩大膜等。 使用光学补偿膜能降低液 晶显示器暗态时的漏光量, 并且在一定视角内能大幅提高影像之对比、 色度与 克服部分灰阶反转问题。 衡量光学补偿膜特性的主要参数包括在平面方向上的 面内补偿值 Ro, 在厚度方向上的厚度补偿值 Rth, 折射率 N, 以及膜厚度 D, 满足 如下关系式- o= (Nx-Ny ) X D;
Rth= [ (Nx+Ny ) /2-Nz] X D:
其中, Nx是膜平面内沿着慢轴 (具有最大折射率的轴, 也就是光线具有较 慢传播速率的振动方向) 的折射率, Ny 是膜平面内沿着快轴 (具有最小折射率 的轴, 也就是光波具有较快传播速率的振动方向, 垂直于 Nx) 的折射率, Nz 是 膜平面方向的折射率 (垂直于 Nx 和 Ny) 。 针对不同的液晶显示模式, 也即不同的液晶盒类型, 使用的光学补偿膜也 不同, 而且 Ro和 Rth值也需调节为合适的值。 现有大尺寸液晶电视使用的光学补 偿膜大多是针对 VA (垂直配向) 显示模式, 早期使用的有 Konica (柯尼卡) 公 司的 N-TAC, 后来不断发展形成 0PTES (奥普士) 公司的 Zeonor, 富士通的 F-TAC 系列, 日东电工的 X-p late 等。 现有的补偿方式中, 一般采用单层双轴补偿架构或双层双轴补偿架构, 单 层双轴补偿架构只需要在液晶面板的其中一侧设置有补偿膜, 而双层双轴补偿 架构则需要在液晶面板的两侧均设置有补偿膜, 仅仅通过调整双轴补偿膜的补 偿值进行补偿。 参阅图 la、 lb、 2a和 2b, 图 la是经现有的一种单层双轴补偿架 构补偿后的液晶面板的暗态全视角等亮度轮廓分布图; 图 lb是前述单层双轴补 偿架构补偿后的液晶面板的全视角等对比度轮廓分布图; 图 2a是经现有的一种 双层双轴补偿架构补偿后的液晶面板的暗态全视角等亮度轮廓分布图; 图 2b是 前述双层双轴补偿架构补偿后的液晶面板的全视角等对比度轮廓分布图。 从图 la和 lb可以看出,采用现行的单层双轴补偿架构进行补偿,在水平视角 phi=20〜40 °、 phi=140〜160°、 phi=200~220°以及 phi=310〜330°的位置漏光严重, 即液晶面板 的暗态漏光严重的视角更接近于水平视角; 从图 2&和213可以看出, 采用现行双 层双轴补偿架构进行补偿, 液晶面板的暗态漏光严重的视角在水平与垂直视角 中间。 由于观众与 TV的相对位置决定了接近水平视角的区域更容易被观众看到, 所以接近水平视角的对比度、 清晰度对观看效果的影响最大, 而接近垂直视角 的区域因为不容易被看到, 对观众的影响较小, 随着电视尺寸的增大, 这种效 应会更加明显, 因此有必要把暗态漏光区域限定在近垂直视角附近。
因此, 在现行的单层双轴补偿架构或双层双轴补偿架构模式中, 虽然采用 双层双轴补偿架构补偿后, 液晶面板的暗态漏光严重的视角在水平与垂直视角 中间, 相对于单层双轴补偿架构的方式略有改善, 但是双层双轴补偿架构的价 格比较昂贵, 不利于降低成本, 而且改善程度有限。 而采用单层双轴补偿架构 进行补偿虽然可以有效地降低成本, 但是液晶面板在接近水平的视角暗态漏光 严重, 对比度低, 影响观看效果。 发明内容 鉴于现有技术存在的不足, 本发明提供了一种液晶面板的补偿架构, 通过 合理的设置补偿值, 能够将液晶面板的暗态漏光严重的角度由近水平视角区域 往近垂直视角区域偏转; 并且能够从总体上有效地减弱液晶面板的暗态漏光并 且保证漏光集中在较小的范围内。
为了实现上述目的, 本发明采用了如下的技术方案:
一种液晶面板的补偿架构, 包括依次叠层设置的第一保护膜、 第一偏光膜、 双轴补偿膜、 液晶面板、 第二保护膜、 第二偏光膜以及第三保护膜, 其中, 所 述液晶面板设置有包括多个液晶分子的液晶层, 所述液晶层的折射率各向异性 为 Δη, 厚度为 d, 液晶分子的预倾角为 Θ; 所述双轴补偿膜的厚度补偿值为 Rthl; 所述第二保护膜的厚度补偿值为 Rth2, 其中-
287.3nm < Δη ά < 305.7醒;
85°< θ < 90。;
180nm < Rthl≤260匪;
Yl nm < Rth2 < Y2 nm;
Yl= -0.885xRthl + 241.9;
Y2= -0.006638X (Rthl ) 2 +1.95xRthl -6.3。
其中, 290nm≤Anxd≤303nm。
其中, 200nm < Rthl < 240nm; 59 nm < Rth2 < 88.5 nm。
其中, 所述第二保护膜的厚度补偿值 Rth2的取值为 59nm。 其中, 所述第一偏光膜和第二偏光膜的材料为聚乙烯醇。
其中, 所述第一保护膜、 第二保护膜以及第三保护膜的材料均为三醋酸纤 维素。
其中, 所述第一偏光膜的吸光轴与所述双轴补偿膜的慢轴的夹角为 90 ° 。 其中, 所述液晶面板为垂直配向模式的液晶面板。
本发明的另一方面是提供一种液晶显示装置, 包括液晶显示面板及背光模 组, 所述液晶显示面板与所述背光模组相对设置, 所述背光模组提供显示光源 给所述液晶显示面板, 以使所述液晶显示面板显示影像, 其中, 所述液晶显示 面板采用具有如上所述的补偿架构的液晶面板。
相比于现有技术, 本发明中, 通过合理的设置双轴补偿膜以及第二保护膜 的补偿值, 能够将液晶面板的暗态漏光严重的角度由近水平视角区域往近垂直 视角区域偏转; 并且能够从总体上有效地减弱液晶面板的暗态漏光并且保证漏 光集中在较小的范围内。 采用单层双轴补偿膜和第二保护膜结合进行补偿, 既 能解决了单纯采用单层双轴补偿膜补偿存在的问题, 而相对于采用双层双轴补 偿膜的补偿方式, 本发明则降低生产成本。 附图说明
图 la是经现有的一种单层双轴补偿膜补偿后的液晶面板的暗态全视角等亮 度轮廓分布图。
图 lb是如图 la所示的液晶面板的全视角等对比度轮廓分布图。
图 2a是经现有的一种双层双轴补偿膜补偿后的液晶面板的暗态全视角等亮 度轮廓分布图。
图 2b是如图 2a所示的液晶面板的全视角等对比度轮廓分布图。
图 3是本发明实施例提供的液晶显示装置的示例性图示。
图 4是本发明实施例提供的单层双轴补偿架构的示例性图示。
图 5是本发明实施例的液晶显示装置在液晶光程差为 287. 3nm,预倾角 Θ为 89°, 暗态漏光集中在大视角时的漏光量随补偿值变化趋势图。
图 6是本发明实施例的液晶显示装置在液晶光程差为 290nm, 预倾角 Θ为 89°, 暗态漏光集中在大视角时的漏光量随补偿值变化趋势图。
图 7是本发明实施例的液晶显示装置在液晶光程差为 303nm, 预倾角 Θ为 89°, 暗态漏光集中在大视角时的漏光量随补偿值变化趋势图。
图 8是本发明实施例的液晶显示装置在液晶光程差为 305. 7nm,预倾角 Θ为 89°, 暗态漏光集中在大视角时的漏光量随补偿值变化趋势图。
图 9a是一具体实施例中补偿后的液晶面板的暗态全视角等亮度轮廓分布。 图 9b是如图 9a所示的液晶面板的全视角等对比度轮廓分布图。 图 10a是另一具体实施例中补偿后的液晶面板的暗态全视角等亮度轮廓分 布图。
图 10b是如图 10a所示的液晶面板的全视角等对比度轮廓分布图。
图 11a是另一具体实施例中补偿后的液晶面板的暗态全视角等亮度轮廓分 布图。
图 l ib是如图 11a所示的液晶面板的全视角等对比度轮廓分布图。
图 12a是另一具体实施例中补偿后的液晶面板的暗态全视角等亮度轮廓分 布图。
图 12b是如图 12a所示的液晶面板的全视角等对比度轮廓分布图。 具体实施方式 为了使本发明的目的、 技术方案以及优点更加清楚明白, 下面将结合附图 用实施例对本发明做进一步说明。
如图 3所示, 本实施例提供的液晶显示装置, 包括液晶显示面板 100及背 光模组 200, 所述液晶显示面板 100与所述背光模组 200相对设置, 所述背光模 组 200提供显示光源给所述液晶显示面板 100,以使所述液晶显示面板 100显示 影像, 其中, 所述液晶显示面板 100 为采用了具有补偿架构进行补偿的液晶面 板。
具体地, 前述的补偿架构为单层双轴补偿架构, 如图 4所示, 该补偿架构包 括由下而上 (当然从相反的顺序, 即由上而下也是可以的) 依次叠层设置的第 一保护膜 14、 第一偏光膜 11、 双轴 (Biaxial ) 补偿膜 13、 液晶面板 10、 第二保 护膜 15、 第二偏光膜 12以及第一保护膜 16。 其中, 所述液晶面板 10为垂直配向 模式的液晶盒 (Vertical Alignment Cell, VA Cell ) , 第一偏光膜 11和第二偏光 膜 12的材料为聚乙烯醇 (Polyvinyl alcohol, PVA) ,第一偏光膜 11的吸光轴与双 轴补偿膜的慢轴的夹角设置为 90° , 第一保护膜 14、 第二保护膜 15以及第三保 护膜 16的材料均为三醋酸纤维素(Triacetyl Cellulose, TAC ), TAC保护膜 14、 15、 16的作用之一是用于保护 PVA 偏光膜 11、 12, 提升 PVA 偏光膜 11、 12的机械性 能, 防止 PVA 偏光膜 11、 12回缩。 液晶面板 10设置有包括多个液晶分子的液晶 层,所述液晶层的折射率各向异性为 Δη, 厚度为 d, 液晶分子的预倾角(Pritilt angle) 为 Θ; 在以上的补偿架构中, 双轴补偿膜 13的厚度补偿值采用 Rthl表示, 第二保护膜 15的厚度补偿值采用 Rth2表示。 在以上的架构中, 其目的是通过合理的设置双轴补偿膜 13以及第二保护膜 15的补偿值, 达到将液晶面板的暗态漏光严重的角度由近水平视角区域往近垂 直视角区域偏转的目的。
在模拟的过程中, 进行了如下设定- 一、 液晶层设定-
1、 预倾角 Θ为 85°≤θ < 90°;
2、 四个象限液晶倾角分别为 45°、 135°、 225°以及 315°;
3、 光程差 Anxd为 287.3nm < Δηχά < 305.7nm。 二、 背光源设定:
1、 光源: 蓝光-钇铝石榴石发光二极管 (Blue-YAG LED) 光谱;
2、 光源中央亮度定义为 100尼特 (nit ) ;
3、 光源分布为朗伯分布 (Lambert ' s distribution) 。
参阅图 5-8, 图 5是本实施例的液晶显示装置在液晶光程差为 287. 3nm, 预倾 角 Θ为 89°, 暗态漏光集中在大视角时的漏光量随补偿值变化趋势图; 图 6是本实 施例的液晶显示装置在液晶光程差为 290nm, 预倾角 Θ为 89°, 暗态漏光集中在大 视角时的漏光量随补偿值变化趋势图; 图 7是本实施例的液晶显示装置在液晶光 程差为 303nm, 预倾角 Θ为 89°, 暗态漏光集中在大视角时的漏光量随补偿值变化 趋势图;图 8是本实施例的液晶显示装置在液晶光程差为 305. 8nm,预倾角 Θ为 89°, 暗态漏光集中在大视角时的漏光量随补偿值变化趋势图。 附图中, Ro表示双轴 补偿膜 13的面内补偿值。 由此, 通过图 5-8, 在不同的预倾角下搭配不同的补偿 值进行模拟, 可获得在 287.3nm≤Anxd≤305.7nm, 85°< θ < 90°的范围内, 暗 态漏光小于 0. 2nit 时, 双轴补偿膜 13的厚度补偿值 Rthl和第二保护膜 12的厚度 补偿值 Rth2的范围分别为: 180nm < Rthl < 260nm Yl nm < Rth2 < Y2 nm ; 其 中,
Yl= -0.885 xRthl + 241.9;
Y2= -0.006638X (Rthl ) 2 +1 .95xRthl -6.3。
由于补偿膜的补偿值 Ro、 Rth, 折射率 N以及厚度 D具有如下关系: o= (Nx-Ny) xD ; th=[ (Nx+Ny ) /2-Nz] xD; 因此可以通过以下三种方法来改变补偿值:
1、 在现行双轴补偿膜 13和第二保护膜 15折射率 N不变的基础上, 改变厚 度 D来改变补偿值;
2、 在现行双轴补偿膜 13和第二保护膜 15厚度 D不变的基础上, 改变折射 率 N来改变补偿值;
3、在保证双轴补偿膜 13和第二保护膜 15的厚度补偿值 Rth范围的基础上, 同时改变厚度 D和折射率 N来改变补偿值。 下面选择一具体的补偿值并测试相应的补偿结果, 进一步具体说明本发明 的技术方案所取得的技术效果。
参阅图 9a和图 9b, 图 9a是本具体实施例中补偿后的液晶面板的暗态全视角 等亮度轮廓分布图, 图%是本具体实施例中补偿后的液晶面板的全视角等对比 度轮廓分布图。图 9a和图 9b的设定条件为:光程差 Anxd=287.3nm,预倾角 θ= 89°, Ro=60nm, Rthl=200nm , Rth2=88.5nm。 由图 9a与图 la和 2a对比, 可以直观的看 到, 经以上参数的补偿架构补偿后的液晶面板, 暗态漏光集中在垂直视角附近, 漏光范围集中在较小的视角范围内, 且漏光量明显低于现行的单层 Biaxial补偿 造成的暗态漏光。 由图 9b与图 lb和 2b对比, 可以直观的看到, 经以上参数的补 偿架构补偿后的液晶面板, 全视角对比度分布明显优于现行单层 Biaxi al补偿的 全视角对比度分布, 特别是在近水平视角区域的对比度得到了有效地改善。 而 在取得如上更优效果的情况下, 相比于采用双层双轴补偿膜的补偿方式, 本发 明则减少了补偿膜的使用, 降低生产成本。
参阅图 10a和图 10b, 图 10a是本具体实施例中补偿后的液晶面板的暗态全视 角等亮度轮廓分布图, 图 10b是本具体实施例中补偿后的液晶面板的全视角等对 比度轮廓分布图。 图 10a和图 10b的设定条件为: 光程差 Anxd=290nm, 预倾角 θ= 89°, Ro=60nm, Rthl=200nm, Rth2=88.5nm。 由图 10a与图 la和 2a对比, 可以 直观的看到, 经以上参数的补偿架构补偿后的液晶面板, 暗态漏光集中在垂直 视角附近, 漏光范围集中在较小的视角范围内, 且漏光量明显低于现行的单层 Biaxial补偿造成的暗态漏光。 由图 10b与图 lb和 2b对比, 可以直观的看到, 经 以上参数的补偿架构补偿后的液晶面板, 全视角对比度分布明显优于现行单层 Biaxial补偿的全视角对比度分布, 特别是在近水平视角区域的对比度得到了有 效地改善。 而在取得如上更优效果的情况下, 相比于采用双层双轴补偿膜的补 偿方式, 本发明则减少了补偿膜的使用, 降低生产成本。
参阅图 11a和图 lib, 图 11a是本具体实施例中补偿后的液晶面板的暗态全视 角等亮度轮廓分布图, 图 l ib是本具体实施例中补偿后的液晶面板的全视角等对 比度轮廓分布图。 图 11a和图 l ib的设定条件为: 光程差 Anxd=303nm, 预倾角 θ= 89°, Ro=72nm, Rthl=240nm, Rth2=59nm。 由图 11a与图 la和 2a对比, 可以直 观的看到, 经以上参数的补偿架构补偿后的液晶面板, 暗态漏光集中在垂直视 角附近, 漏光范围集中在较小的视角范围内, 且漏光量明显低于现行的单层 Biaxial补偿造成的暗态漏光。 由图 1 lb与图 lb和 2b对比, 可以直观的看到, 经 以上参数的补偿架构补偿后的液晶面板, 全视角对比度分布明显优于现行单层 Biaxial补偿的全视角对比度分布, 特别是在近水平视角区域的对比度得到了有 效地改善。 而在取得如上更优效果的情况下, 相比于采用双层双轴补偿膜的补 偿方式, 本发明则减少了补偿膜的使用, 降低生产成本。
参阅图 12a和图 12b, 图 12a是本具体实施例中补偿后的液晶面板的暗态全视 角等亮度轮廓分布图, 图 12b是本具体实施例中补偿后的液晶面板的全视角等对 比度轮廓分布图。图 11a和图 l ib的设定条件为:光程差 Anxd=305.7nm,预倾角 θ= 89°, Ro=72nm, Rthl=240nm, Rth2=59nm。 由图 12a与图 la和 2a对比, 可以直 观的看到, 经以上参数的补偿架构补偿后的液晶面板, 暗态漏光集中在垂直视 角附近, 漏光范围集中在较小的视角范围内, 且漏光量明显低于现行的单层 Biaxial补偿造成的暗态漏光。 由图 12b与图 lb和 2b对比, 可以直观的看到, 经 以上参数的补偿架构补偿后的液晶面板, 全视角对比度分布明显优于现行单层 Biaxial补偿的全视角对比度分布, 特别是在近水平视角区域的对比度得到了有 效地改善。 而在取得如上更优效果的情况下, 相比于采用双层双轴补偿膜的补 偿方式, 本发明则减少了补偿膜的使用, 降低生产成本。
以上具体实施例中提供的光程差 Anxd、 预倾角 Θ以、 Rthl以及 TAC Rth2的具 体取值, 仅仅是作为例子进行说明。 经过实践证明, 当这些参数的取值在以下 范围内时都可以达到与上述具体例子相同或近似的技术效果: 287.3nm≤Anxd≤ 305.7nm; 85°< θ < 90°; 180nm < Rthl < 260nm; Yl nm < Rth2 < Y2 nm Yl= -0.885 x thl + 241.9; Y2= -0.006638x (Rthl ) 2 +1.95xRthl -6.3。 180nm≤Rthl≤ 260nm; Yl nm < Rth2 < Y2 nm;其中, Yl= -0.885xRthl + 241.9; Y2= -0.006638x (Rthl ) 2 +1.95xRthl -6.3。 特别是当双轴补偿膜 13的厚度补偿值 Rthl的取值在 200〜240nm、 第二保护膜的厚度补偿值 Rth2的取值在 59〜88.5nm的范围内时, 该 方案可以获得更优的技术效果。
综上所述,本发明中,通过合理的设置双轴补偿膜以及第二偏光膜的补偿值, 能够将液晶面板的暗态漏光严重的角度由近水平视角区域往近垂直视角区域偏 转; 并且能够从总体上有效地减弱液晶面板的暗态漏光并且保证漏光集中在较 小的范围内。 采用单层双轴补偿膜和第二保护膜结合进行补偿, 既能解决了单 纯采用单层双轴补偿膜补偿存在的问题, 而相对于采用双层双轴补偿膜的补偿 方式, 本发明则降低生产成本。
需要说明的是, 在本文中, 诸如第一和第二等之类的关系术语仅仅用来将 一个实体或者操作与另一个实体或操作区分开来, 而不一定要求或者暗示这些 实体或操作之间存在任何这种实际的关系或者顺序。 而且, 术语 "包括"、 "包 含"或者其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素 的过程、 方法、 物品或者设备不仅包括那些要素, 而且还包括没有明确列出的 其他要素, 或者是还包括为这种过程、 方法、 物品或者设备所固有的要素。 在 没有更多限制的情况下, 由语句 "包括一个…… " 限定的要素, 并不排除在包 括所述要素的过程、 方法、 物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本申请原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本申请的保护范围。

Claims

权 利 要 求 书
1、 一种液晶面板的补偿架构, 包括依次叠层设置的第一保护膜、 第一偏光 膜、 双轴补偿膜、 液晶面板、 第二保护膜、 第二偏光膜以及第一保护膜, 其中, 所述液晶面板设置有包括多个液晶分子的液晶层, 所述液晶层的折射率各向异 性为 Δη,厚度为 d,液晶分子的预倾角为 Θ;所述双轴补偿膜的厚度补偿值为 Rthl; 所述第二保护膜的厚度补偿值为 Rth2, 其中:
287.3匪 < Anxd < 305.7醒;
85°< θ < 90。;
180nm≤ thl < 260nm;
Yl nm < Rth2 < Y2 nm;
Yl= -0.885x thl + 241.9;
Y2= -0.006638X (Rthl ) 2 +1.95xRthl -6.3。
2、 根据权利要求 1所述的补偿架构, 其中, 290nm≤Anxd≤303nm。
3、根据权利要求 1所述的补偿架构, 其中, 200nm≤ Rthl≤ 240nm; 59 nm≤ Rth2≤88.5匪。
4、 根据权利要求 1所述的补偿架构, 其中, 所述第二保护膜的厚度补偿值 Rth2的取值为 59nm。
5、 根据权利要求 1所述的补偿架构, 其中, 所述第一偏光膜和第二偏光膜 的材料为聚乙烯醇。
6、 根据权利要求 2所述的补偿架构, 其中, 所述第一偏光膜和第二偏光膜 的材料为聚乙烯醇。
7、 根据权利要求 5所述的补偿架构, 其中, 所述第一保护膜、 第二保护膜 以及第三保护膜的材料均为三醋酸纤维素。
8、 根据权利要求 5所述的补偿架构, 其中, 所述第一偏光膜的吸光轴与所 述双轴补偿膜的慢轴的夹角为 90° 。
9、 根据权利要求 7所述的补偿架构, 其中, 所述液晶面板为垂直配向模式 的液晶面板。
10、 根据权利要求 8所述的补偿架构, 其中, 所述液晶面板为垂直配向模式 的液晶面板。
11、 一种液晶显示装置, 包括液晶显示面板及背光模组, 所述液晶显示面 板与所述背光模组相对设置, 所述背光模组提供显示光源给所述液晶显示面板, 以使所述液晶显示面板显示影像, 其中, 所述液晶显示面板采用一补偿架构进 行补偿, 所述补偿架构包括依次叠层设置的第一保护膜、 第一偏光膜、 双轴补 偿膜、 液晶面板、 第二保护膜、 第二偏光膜以及第一保护膜, 其中, 所述液晶 面板设置有包括多个液晶分子的液晶层, 所述液晶层的折射率各向异性为 Δη, 厚度为 d, 液晶分子的预倾角为 Θ; 所述双轴补偿膜的厚度补偿值为 Rthl; 所述 第二保护膜的厚度补偿值为 Rth2, 其中:
287.3nm < Δηχ<1 < 305.7醒;
85°< θ < 90。;
180nm < thl < 260nm;
Yl nm < Rth2 < Y2 nm;
Yl= -0.885xRthl + 241.9;
Y2= -0.006638X (Rthl ) 2 +1.95xRthl -6.3。
12、 根据权利要求 11所述的液晶显示装置, 其中, 290nm≤Anxd≤303nm。
13、 根据权利要求 11所述的液晶显示装置, 其中, 200nm≤Rthl≤240nm; 59 nm < Rth2 < 88.5 腿。
14、 根据权利要求 11所述的液晶显示装置, 其中, 所述第二保护膜的厚度 补偿值 Rth2的取值为 59nm。
15、 根据权利要求 11所述的液晶显示装置, 其中, 所述第一偏光膜和第二 偏光膜的材料为聚乙烯醇。
16、 根据权利要求 12所述的液晶显示装置, 其中, 所述第一偏光膜和第二 偏光膜的材料为聚乙烯醇。
17、 根据权利要求 15所述的液晶显示装置, 其中, 所述第一保护膜、 第二 保护膜以及第三保护膜的材料均为三醋酸纤维素。
18、 根据权利要求 15所述的液晶显示装置, 其中 所述第一偏光膜的吸光 轴与所述双轴补偿膜的慢轴的夹角为 90 ° 。
19、 根据权利要求 17所述的液晶显示装置, 其中 所述液晶面板为垂直配 向模式的液晶面板。
20、 根据权利要求 18所述的液晶显示装置, 其中 所述液晶面板为垂直配 向模式的液晶面板。
PCT/CN2014/075150 2014-04-04 2014-04-11 液晶面板的补偿架构及液晶显示装置 WO2015149380A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/358,627 US20150286099A1 (en) 2014-04-04 2014-04-11 Compensation Architecture of Liquid Crystal Panel and Liquid Crystal Display Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410136880.5A CN103869538A (zh) 2014-04-04 2014-04-04 液晶面板的补偿架构及液晶显示装置
CN201410136880.5 2014-04-04

Publications (1)

Publication Number Publication Date
WO2015149380A1 true WO2015149380A1 (zh) 2015-10-08

Family

ID=50908242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075150 WO2015149380A1 (zh) 2014-04-04 2014-04-11 液晶面板的补偿架构及液晶显示装置

Country Status (2)

Country Link
CN (1) CN103869538A (zh)
WO (1) WO2015149380A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487295A (zh) * 2015-12-08 2016-04-13 深圳市华星光电技术有限公司 液晶面板补偿架构及其光学补偿方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003167120A (ja) * 2001-09-20 2003-06-13 Sumitomo Chem Co Ltd 複合偏光板及びそれを配置した表示装置
CN1639621A (zh) * 2002-03-08 2005-07-13 夏普株式会社 液晶显示装置
CN101111797A (zh) * 2005-06-09 2008-01-23 Lg化学株式会社 垂直取向液晶显示器
US7929087B2 (en) * 2008-03-24 2011-04-19 Fujifilm Corporation Optical film, polarizing plate, and liquid crystal display device
CN203025472U (zh) * 2012-11-23 2013-06-26 深圳市盛波光电科技有限公司 3d投影仪系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003167120A (ja) * 2001-09-20 2003-06-13 Sumitomo Chem Co Ltd 複合偏光板及びそれを配置した表示装置
CN1639621A (zh) * 2002-03-08 2005-07-13 夏普株式会社 液晶显示装置
CN101111797A (zh) * 2005-06-09 2008-01-23 Lg化学株式会社 垂直取向液晶显示器
US7929087B2 (en) * 2008-03-24 2011-04-19 Fujifilm Corporation Optical film, polarizing plate, and liquid crystal display device
CN203025472U (zh) * 2012-11-23 2013-06-26 深圳市盛波光电科技有限公司 3d投影仪系统

Also Published As

Publication number Publication date
CN103869538A (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
JP3926072B2 (ja) 液晶表示装置
WO2019114099A1 (zh) 一种液晶显示面板及液晶显示器
JP6266769B2 (ja) 液晶ディスプレイの光学補償方法
CN102854661B (zh) Va显示模式补偿架构及va显示模式液晶显示装置
WO2015149377A1 (zh) 用于液晶面板的双层双轴补偿架构及液晶显示装置
WO2016070450A1 (zh) 液晶面板补偿架构及液晶显示装置
WO2014180048A1 (zh) 液晶显示器及其光学补偿方法
WO2016065659A1 (zh) 液晶面板补偿架构及液晶显示装置
WO2015149379A1 (zh) 用于液晶面板的单层双轴补偿架构及液晶显示装置
WO2016101339A1 (zh) 液晶显示器
WO2016065660A1 (zh) 液晶面板补偿架构及液晶显示装置
CN102879954B (zh) Va显示模式补偿架构及va显示模式液晶显示装置
WO2014107886A1 (zh) 用于液晶面板的补偿系统及液晶显示装置
WO2015196503A1 (zh) 液晶显示器及其光学补偿方法
WO2016101338A1 (zh) 液晶显示器
CN102798922B (zh) 光学补偿结构及显示装置
CN102854654B (zh) 显示装置
US9011993B2 (en) Optical compensation structure and display device
US20140192300A1 (en) Compensation System for Liquid Crystal Panel and Liquid Crystal Display Device
US20160124264A1 (en) Compensation structure for liquid crystal panels and the liquid crystal displays
US20140098329A1 (en) VA Display Mode Compensation Architecture and VA Display Mode Liquid Crystal Display Device
US20140098328A1 (en) VA Display Mode Compensation Architecture and VA Display Mode Liquid Crystal Display Device
US20150286099A1 (en) Compensation Architecture of Liquid Crystal Panel and Liquid Crystal Display Device
US20150286083A1 (en) Dual-layered biaxial compensation structure for liquid crystal panels and the liquid crystal displays
WO2015149380A1 (zh) 液晶面板的补偿架构及液晶显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14358627

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14888382

Country of ref document: EP

Kind code of ref document: A1