WO2016101338A1 - 液晶显示器 - Google Patents

液晶显示器 Download PDF

Info

Publication number
WO2016101338A1
WO2016101338A1 PCT/CN2015/070042 CN2015070042W WO2016101338A1 WO 2016101338 A1 WO2016101338 A1 WO 2016101338A1 CN 2015070042 W CN2015070042 W CN 2015070042W WO 2016101338 A1 WO2016101338 A1 WO 2016101338A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
optical axis
single optical
axis phase
compensation film
Prior art date
Application number
PCT/CN2015/070042
Other languages
English (en)
French (fr)
Inventor
海博
康志聪
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to JP2017533283A priority Critical patent/JP6587685B2/ja
Priority to EA201791470A priority patent/EA033496B1/ru
Priority to US14/417,521 priority patent/US9625763B2/en
Priority to KR1020177019942A priority patent/KR20170097146A/ko
Priority to GB1711594.0A priority patent/GB2550711B/en
Publication of WO2016101338A1 publication Critical patent/WO2016101338A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133635Multifunctional compensators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133637Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2

Definitions

  • the present invention relates to a liquid crystal display, and more particularly to a liquid crystal display using a single optical axis phase compensation film.
  • liquid crystal displays have gradually become mainstream displays due to the thinness and shortness of liquid crystal displays.
  • various electronic devices on the market such as mobile phones, personal digital assistants, digital cameras, computer screens, laptop screens, etc., almost all adopt liquid crystal display screens as their display screens.
  • the liquid crystal display includes a liquid crystal layer, and changes in the direction of rotation of the liquid crystal molecules in the liquid crystal layer by the electric field applied to the liquid crystal layer, thereby adjusting the transmittance of light passing through the liquid crystal layer.
  • the liquid crystal material has a birefringence characteristic, that is, refractive indices different from each other along the long axis direction of the molecule and the short axis direction of the molecule. Therefore, the linearly polarized incident light passes through different paths of the liquid crystal layer to have different phases in its polarization direction, and thus the color characteristics and transmittance at the oblique viewing angle and at the frontal view may be different.
  • the prior art proposes to add a compensation film to the liquid crystal panel.
  • the compensation film is corrected by compensating for the phase difference of light in different directions, and the birefringence property of the liquid crystal molecules is compensated for symmetry.
  • FIG. 1 is a dark state light leakage after compensation by a conventional single optical axis phase compensation film.
  • the cloth simulation map, FIG. 2 is a simulation diagram of the full-view contrast distribution after being compensated by the single optical axis phase compensation film.
  • 1 and 2 set the liquid crystal optical path difference ⁇ n ⁇ d to be 315 nm, the compensation value Ro of the A-type compensation film was 58 nm, the compensation value Rth was 220 nm, and the compensation value Rth of the C-type compensation film was 40 nm.
  • the horizontal viewing area is more easily seen by the audience, so the contrast and sharpness of the horizontal viewing angle have a greater impact on the viewing effect. In contrast, the area of vertical viewing is less likely to be seen and has less impact on the audience.
  • the liquid crystal display can define a dark state light leakage region in a vertical viewing angle region.
  • the present invention discloses a liquid crystal display comprising a backlight; a first triacetate cellulose (TAC) film; a first polyvinyl alcohol (PVA) film; a first single optical axis phase compensation film that adjusts a thickness of the first single optical axis phase compensation film and adjusts a first refractive index corresponding to the light rays in the first direction, the second direction, and the third direction, respectively a second refractive index and a third refractive index to provide a first compensation value and a second compensation value; a second single optical axis phase compensation film that adjusts a thickness of the second single optical axis phase compensation film and Adjusting a fourth refractive index, a fifth refractive index, and a sixth refractive index corresponding to the light in the first direction, the second direction, and the third direction, respectively, to provide a third compensation value; a layer; a second PVA film; and a second TAC film.
  • TAC triacetate cellulose
  • PVA polyviny
  • the liquid crystal layer has an optical path difference determined by (ne-no) ⁇ d, which is between 305.8 and 324.2 nm, wherein ne and no respectively represent extraordinary light of the liquid crystal layer.
  • the refractive index and the ordinary refractive index, and d represents the thickness of the liquid crystal layer.
  • the second compensation value is determined according to the first refractive index, the second refractive index, the third refractive index, and the thickness of the first single optical axis phase compensation film. .
  • the second compensation value of the first single optical axis phase compensation film is between 208 and 293 nm.
  • the liquid crystal molecules of the liquid crystal layer have a pretilt angle of 89 degrees.
  • the third compensation value is determined according to the fourth refractive index, the fifth refractive index, the sixth refractive index, and the thickness of the second single optical axis phase compensation film. .
  • the first single optical axis phase compensation film is an A-type compensation film, and an optical axis of the first single optical axis phase compensation film is parallel to a surface, and the second single optical axis phase
  • the compensation film is a C-type compensation film, and the optical axis of the second single-axis phase compensation film is perpendicular to the surface.
  • the liquid crystal display further includes a first pressure sensitive adhesive, the first A pressure sensitive adhesive is disposed between the first single optical axis phase compensation film and the liquid crystal layer.
  • the liquid crystal display further includes a second pressure sensitive adhesive disposed between the second single optical axis phase compensation film and the liquid crystal layer.
  • the first compensation value Ro A of the first single optical axis phase compensation film is controlled to be between 55 and 78 nm
  • the second compensation value Rth b is controlled between 208 and 293 nm
  • the present invention can improve the conventional single optical axis by appropriately setting the first compensation value Ro A of the first single optical axis phase compensation film, the second compensation value Rth A, and the third compensation value Rth C of the second single optical axis phase compensation film.
  • the phase compensation film compensates for the problem of severe dark state light leakage in the horizontal viewing angle region, while increasing the contrast and sharpness of the horizontal viewing angle region.
  • FIG. 1 is a simulation diagram of dark state light leakage distribution after compensation by a conventional single optical axis phase compensation film.
  • FIG. 2 is a simulation diagram of full-view contrast distribution after being compensated by the single optical axis phase compensation film.
  • FIG 3 is a schematic view of a preferred embodiment of a liquid crystal display of the present invention.
  • FIG. 4 is a diagram showing the first compensation value Ro A and the second compensation value Rth A of the first single optical axis phase compensation film and the second single optical axis phase compensation film under the condition that the optical path difference of the liquid crystal layer is 305.8 nm.
  • FIG. 5 is a diagram showing the first compensation value Ro A and the second compensation value Rth A of the first single optical axis phase compensation film and the second single optical axis phase compensation film under the condition that the optical path difference of the liquid crystal layer is 315 nm.
  • FIG. 6 is a diagram showing the first compensation value Ro A and the second compensation value Rth A of the first single optical axis phase compensation film and the second single optical axis phase compensation film under the condition that the optical path difference of the liquid crystal layer is 324.2 nm.
  • the three compensation value Rth C is a dark state light leakage distribution map under the condition of 24 nm.
  • the liquid crystal optical path difference is 305.8 nm
  • the first compensation value Ro A of the first single optical axis phase compensation film is 71 nm
  • the second compensation value Rth A is 269 nm
  • the second single optical axis phase compensation film is The three-compensation value Rth C is a full-view contrast distribution map at 24 nm.
  • the liquid crystal optical path difference is 315 nm
  • the first compensation value Ro A of the first single optical axis phase compensation film is 65 nm
  • the second compensation value Rth A is 244 nm
  • the third single optical axis phase compensation film is the third.
  • the compensation value Rth C is a dark state light leakage distribution map at 75 nm.
  • the compensation value Rth C is a full-view contrast distribution map at 75 nm.
  • the three compensation value Rth C is a dark state light leakage distribution map under the condition of 95 nm.
  • the three-compensation value Rth C is a full-view contrast distribution map at 95 nm.
  • FIG. 3 is a schematic diagram of a preferred embodiment of the liquid crystal display 10 of the present invention.
  • the liquid crystal display 10 includes a liquid crystal layer 16, a first polarizer 12, a second polarizer 14, and a backlight 18.
  • the backlight 18 is used to generate light, and the liquid crystal layer 16 is bonded between the first polarizer 12 and the second polarizer 14 by a pressure sensitive adhesive (PSA) 2.
  • PSA pressure sensitive adhesive
  • the first polarizer 12 and the second polarizer 14 are used to deflect incident light, and the first optical axis of the first polarizer 12 is perpendicular to the second optical axis of the second polarizer 14.
  • the first polarizer 12 includes a first polyvinyl alcohol (PVA) film 121 sandwiched between a first triacetate cellulose (TAC) film 122 and a first single optical axis phase compensation film 123. between.
  • the second polarizer 14 includes a second polyvinyl alcohol film 141 sandwiched between the second single optical axis phase compensation film 142 and the second TAC film 143.
  • the first single optical axis phase compensation film 123 is an A-type compensation film (A-plate) whose optical axis is parallel to the surface of the compensation film 123.
  • the second single optical axis phase compensation film 142 is a C-type compensation film (C-plate) whose optical axis is perpendicular to the surface of the compensation film 142.
  • the first single optical axis phase compensation film 123 is used to provide a first compensation value Ro A and a second compensation value Rth A
  • the second single optical axis phase compensation film 142 is used to provide a third compensation value Rth C .
  • the angle between the slow axis of the first single-axis phase compensation film 123 and the absorption axis of the first PVA film 121 is 90 degrees
  • the absorption axis of the second PVA film 141 is 0 degree.
  • the optical path difference of the liquid crystal layer 16 and the compensation values of the compensation films 123, 142 are all values corresponding to a wavelength equal to 550 nm.
  • FIG. 4 to FIG. 6 respectively illustrate first compensation values of different first single optical axis phase compensation films 123 under the condition that the optical path difference of the liquid crystal layer 16 is 305.8 nm, 315 nm, and 324.2 nm.
  • Ro A and the second compensation value Rth A a relationship between the third compensation value Rth C of the second single optical axis phase compensation film 142 and the light leakage value.
  • the incident light emitted from the backlight 18 is distributed in a Lambertian distribution, and the central luminance is defined as 100 nit.
  • the liquid crystal molecules of the liquid crystal layer 16 have a pretilt angle of 89 degrees.
  • d represents the thickness of the liquid crystal layer 16.
  • Ro A represents the first compensation value of the first single optical axis phase compensation film 123 in the XY plane
  • Rth A represents the second compensation value of the first single optical axis phase compensation film 123 in the Z-axis direction
  • Rth C represents the third compensation value of the second single optical axis phase compensation film 142 in the Z-axis direction
  • Ro A , Rth A , and Rth C are determined by the following equations:
  • Rth A [(Nx A +Ny A )/2-Nz A ] ⁇ D A Equation (2)
  • Rth C [(Nx C +Ny C )/2-Nz C ] ⁇ D C Equation (3)
  • Nx A , Ny A , and Nz A respectively represent the refractive indices corresponding to the X, Y, and Z axes of the Cartesian coordinate system when the light from the backlight 18 passes through the first single optical axis phase compensation film 123.
  • Nx C , Ny C , and Nz C respectively represent the refractive indices corresponding to the X, Y, and Z axes of the Cartesian coordinate system when the light rays from the backlight 18 pass through the second single optical axis phase compensation film 142
  • D A and D C indicate the thicknesses of the first single optical axis phase compensation film 123 and the second single optical axis phase compensation film 142, respectively.
  • the pre-tilt angle is 89 degrees, 305.8nm ⁇ ⁇ n ⁇ d ⁇ 324.2nm, dark state light leakage is less than 0.2
  • the corresponding compensation value range of the first single optical axis phase compensation film 123 and the second single optical axis phase compensation film 142 at nit that is, in the case where the optical path difference of the liquid crystal layer 16 is between 305.8 nm and 324.2 nm and the pretilt angle of the liquid crystal molecules of the liquid crystal layer 16 is 89 degrees, the liquid crystal display 10 can still be based on the first single optical axis phase compensation film.
  • the first compensation value Ro A and the second compensation value Rth A of 123 and the third compensation value Rth C of the second single optical axis phase compensation film 142 suppress light leakage.
  • the first compensation value Ro A , the second compensation value Rth A of the first single optical axis phase compensation film 123 and the third compensation value Rth C of the second single optical axis phase compensation film 142 are all incidents with a wavelength of 550 nm.
  • the compensation value of the light when the compensation value is within the above range, can obtain an optimum compensation effect in the liquid crystal display device, and achieve the minimum dark state light leakage.
  • FIG. 7 and FIG. 8 respectively show that the first compensation value Ro A of the first single optical axis phase compensation film 123 is 71 nm and the second compensation value Rth A when the liquid crystal optical path difference is 305.8 nm.
  • the third compensation value Rth C of 269 nm and the second single optical axis phase compensation film 142 is a dark state light leakage distribution map and a full viewing angle contrast distribution map at 24 nm.
  • the third compensation value Rth C of the optical axis phase compensation film 142 is a dark state light leakage distribution map and a full viewing angle contrast distribution map at 75 nm. 11 and FIG.
  • the liquid crystal optical path difference is 324.2 nm
  • the first compensation value Ro A of the first single optical axis phase compensation film 123 is 58 nm
  • the second compensation value Rth A is 220 nm
  • the second The third compensation value Rth C of the single optical axis phase compensation film 142 is a dark state light leakage distribution map and a full viewing angle contrast distribution map at 95 nm.
  • the dark state light leakage compensated by the liquid crystal display according to the embodiment of the present invention is lower than the dark state light leakage after compensation by the single optical axis phase compensation film. Moreover, the compensated dark state light leakage is concentrated near the vertical viewing angle, and the light leakage range is concentrated in a small viewing angle range. Comparing FIG. 8 , FIG. 10 , FIG. 12 and FIG. 2 , it can be directly observed that the full-view contrast distribution compensated by the liquid crystal display according to the embodiment of the present invention is also superior to the full-view contrast ratio compensated by the existing single optical axis phase compensation film. The distribution, especially in the horizontal viewing area, is effectively improved.
  • a person skilled in the art may obtain the first compensation value Ro A of the first single optical axis phase compensation film 123, the second compensation value Rth A, and the third compensation value Rth C of the second single optical axis phase compensation film 142, and then The refractive index or thickness of the first single optical axis phase compensation film 123 and the second single optical axis phase compensation film 142 are adjusted by Equations (1) to (3).
  • the present invention sets the first compensation value Ro A of the first single optical axis phase compensation film 123, the second compensation value Rth A and the third compensation value of the second single optical axis phase compensation film 142.
  • Rth C can improve the problem of severe dark state light leakage in the horizontal viewing angle region caused by the compensation of the traditional single optical axis phase compensation film, and increase the contrast and sharpness of the horizontal viewing angle region.

Abstract

一种液晶显示器(10),其自入光侧至出光侧依序包括:背光源(18)、第一TAC膜(122)、第一PVA膜(121)、第一单光轴相位补偿膜(123)、液晶层(16)、第二单光轴相位补偿膜(142)、第二PVA膜(141)以及第二TAC膜(143)。第一单光轴相位补偿膜(123)通过调整厚度以及调整该光线在第一、第二以及第三方向分别所对应的第一折射率、第二折射率以及第三折射率以提供第一补偿值及第二补偿值。第二单光轴相位补偿膜(142)通过调整厚度以及调整光线在第一、第二方向以及第三方向分别所对应的第四折射率、第五折射率以及第六折射率以提供第三补偿值。液晶显示器(10)依据第一补偿值、第二补偿值以及第三补偿值控制其漏光。

Description

液晶显示器 技术领域
本发明涉及一种液晶显示器,尤指一种使用单光轴相位补偿膜的液晶显示器。
背景技术
近年来,由于液晶显示器轻薄短小的特性,已经使液晶显示器逐渐成为主流的显示器。目前市场上各种电子装置,如移动电话、个人数字助理、数字相机、计算机屏幕、笔记本电脑屏幕等,几乎都采用液晶显示屏幕作为其显示屏幕。
液晶显示器包括设置有液晶层,通过施加于该液晶层的电场变化,改变该液晶层中液晶分子的转动方向,进而调整通过该液晶层的光的透射率。液晶材料具有双折射的特性,亦即沿着分子长轴方向和分子短轴方向的折射率彼此不同。因此,线偏振入射光经过液晶层的不同路径从而在其偏振方向上具有不同的相位,因而偏斜视角处以及正视处的色彩特性和透射率会有所不同。
因为液晶层中液晶分子的双折射率会随观察角度变化发生改变,所以随着液晶显示器的观察角度增大,画面的对比度不断降低,画面的清晰度下降。为了在一定视角内能大幅度提高画面的对比度,并有效降低暗态画面的漏光,现有技术是提出在液晶面板上附加补偿膜。该补偿膜是通过补偿不同方向的光的相位差来进行修正,让液晶分子的双折射性质得到对称性的补偿。
参阅图1与图2,图1是经现有单光轴相位补偿膜补偿后的暗态漏光分 布模拟图,图2是经该单光轴相位补偿膜补偿后的全视角对比度分布模拟图。图1和图2设定液晶光程差Δn×d为315nm,A型补偿膜的补偿值Ro为58nm,补偿值Rth为220nm,C型补偿膜的补偿值Rth为40nm。由图1与图2可见,在上述条件下,水平视角仍存在严重的暗态漏光。对一般观众来说,水平视角的区域更容易被观众看到,所以水平视角的对比度和清晰度对观看效果的影响较大。相对地,垂直视角的区域因为不容易被看到,对观众的影响较小。
所以有必要把暗态漏光区域限定在垂直视角附近的区域,而非水平视角的区域。
发明内容
因此本发明的目的是提供一种使用单光轴相位补偿膜的液晶显示器,其通过调整单光轴相位补偿膜的厚度或是折射率来调整其补偿值,使得使用单光轴相位补偿膜的液晶显示器可以将暗态漏光区域限定在垂直视角区域。
本发明揭露一种液晶显示器,所述种液晶显示器包含一背光源;一第一三醋酸纤维素酯片基(triacetate cellulose,TAC)膜;一第一聚乙烯醇(Polyvinyl Alcohol,PVA)膜;一第一单光轴相位补偿膜,其通过调整所述第一单光轴相位补偿膜的厚度以及调整所述光线在第一方向、第二方向以及第三方向分别所对应的第一折射率、第二折射率以及第三折射率以提供一第一补偿值以及一第二补偿值;一第二单光轴相位补偿膜,其通过调整所述第二单光轴相位补偿膜的厚度以及调整所述光线在所述第一方向、所述第二方向以及所述第三方向分别所对应的第四折射率、第五折射率以及第六折射率以提供一第三补偿值;一液晶层;一第二PVA膜;以及一第二TAC膜。所述第一补偿值 是依据以下方程序所决定:RoA=(NxA-NyA)×DA,RoA表示所述第一补偿值,NxA、NyA分别表示所述第一单光轴相位补偿膜在笛卡尔坐标系的X、Y轴上所对应的折射率,DA表示所述第一单光轴相位补偿膜的厚度,所述第一单光轴相位补偿膜的第一补偿值是介于55~78nm之间。
根据本发明的一实施例,所述液晶层由(ne-no)×d决定的光程差,是介于305.8~324.2nm之间,其中ne和no分别表示所述液晶层的非寻常光折射率和寻常光折射率,d表示所述液晶层厚度。
根据本发明的一实施例,所述第二补偿值是依据所述第一折射率、所述第二折射率、所述第三折射率和所述第一单光轴相位补偿膜的厚度决定。
根据本发明的一实施例,所述第一单光轴相位补偿膜的第二补偿值是介于208~293nm之间。
根据本发明的一实施例,所述液晶层的液晶分子的预倾角(pretilt angle)是89度。
根据本发明的一实施例,所述第三补偿值是依据所述第四折射率、所述第五折射率、所述第六折射率和所述第二单光轴相位补偿膜的厚度决定。
根据本发明的一实施例,所述第二单光轴相位补偿膜的第三补偿值是介于Y1nm~Y2nm之间,其中Y1=0.004174x2-3.119x+555.5以及Y2=-0.005882x2+1.733x+25.9,x表示所述第二补偿值。
根据本发明的一实施例,所述第一单光轴相位补偿膜是一A型补偿膜,所述第一单光轴相位补偿膜的光轴平行于表面,所述第二单光轴相位补偿膜是一C型补偿膜,所述第二单光轴相位补偿膜的光轴垂直于表面。
根据本发明的一实施例,所述液晶显示器进一步包括第一压敏胶,所述第 一压敏胶设置于所述第一单光轴相位补偿膜与所述液晶层之间。
根据本发明的一实施例,所述液晶显示器进一步包括第二压敏胶,所述第二压敏胶设置于所述第二单光轴相位补偿膜与所述液晶层之间。
相较于现有技术,本发明使用单光轴相位补偿膜的液晶显示器,当液晶层的光程差在305.8nm~324.2nm(波长=550nm对应的光程差)之间且液晶层的液晶分子的预倾角在89度时,只要将第一单光轴相位补偿膜的第一补偿值RoA控制在55~78nm之间,且第二补偿值Rthb控制在208~293nm之间,且所述第二单光轴相位补偿膜的第三补偿值是介于Y1nm~Y2nm之间,其中Y1=0.004174x2-3.119x+555.5以及Y2=-0.005882x2+1.733x+25.9,x表示所述第二补偿值。本发明通过合理设置第一单光轴相位补偿膜的第一补偿值RoA、第二补偿值RthA以及第二单光轴相位补偿膜的第三补偿值RthC,能够改善传统单光轴相位补偿膜补偿造成的水平视角区域严重暗态漏光的问题,同时增加水平视角区域的对比度和清晰度。
为让本发明的上述内容能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下文。
附图说明
图1是经现有单光轴相位补偿膜补偿后的暗态漏光分布模拟图。
图2是经该单光轴相位补偿膜补偿后的全视角对比度分布模拟图。
图3是本发明液晶显示器的较佳实施例的示意图。
图4绘示液晶层的光程差在305.8nm的条件下,不同第一单光轴相位补偿膜的第一补偿值RoA和第二补偿值RthA、第二单光轴相位补偿膜的第三补偿值RthC与漏光值的关系图。
图5绘示液晶层的光程差在315nm的条件下,不同第一单光轴相位补偿膜的第一补偿值RoA和第二补偿值RthA、第二单光轴相位补偿膜的第三补偿值RthC与漏光值的关系图。
图6绘示液晶层的光程差在324.2nm的条件下,不同第一单光轴相位补偿膜的第一补偿值RoA和第二补偿值RthA、第二单光轴相位补偿膜的第三补偿值RthC与漏光值的关系图。
图7绘示在液晶光程差为305.8nm、第一单光轴相位补偿膜的第一补偿值RoA为71nm、第二补偿值RthA为269nm以及第二单光轴相位补偿膜的第三补偿值RthC为24nm条件下的暗态漏光分布图。
图8绘示在液晶光程差为305.8nm、第一单光轴相位补偿膜的第一补偿值RoA为71nm、第二补偿值RthA为269nm以及第二单光轴相位补偿膜的第三补偿值RthC为24nm条件下的全视角对比度分布图。
图9绘示在液晶光程差为315nm、第一单光轴相位补偿膜的第一补偿值RoA为65nm、第二补偿值RthA为244nm以及第二单光轴相位补偿膜的第三补偿值RthC为75nm条件下的暗态漏光分布图。
图10绘示在液晶光程差为315nm、第一单光轴相位补偿膜的第一补偿值RoA为65nm、第二补偿值RthA为244nm以及第二单光轴相位补偿膜的第三补偿值RthC为75nm条件下的全视角对比度分布图。
图11绘示在液晶光程差为324.2nm、第一单光轴相位补偿膜的第一补偿值RoA为58nm、第二补偿值RthA为220nm以及第二单光轴相位补偿膜的第三补偿值RthC为95nm条件下的暗态漏光分布图。
图12绘示在液晶光程差为324.2nm、第一单光轴相位补偿膜的第一补偿 值RoA为58nm、第二补偿值RthA为220nm以及第二单光轴相位补偿膜的第三补偿值RthC为95nm条件下的全视角对比度分布图。
具体实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施之特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「顶」、「底」、「水平」、「垂直」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请参阅图3,图3是本发明液晶显示器10的较佳实施例的示意图。液晶显示器10包含一液晶层16、一第一偏光片(polarizer)12、一第二偏光片14以及一背光源18。背光源18是用来产生光线,而液晶层16是利用压敏胶(pressure sensitive adhesive,PSA)2黏合在第一偏光片12与第二偏光片14之间。第一偏光片12与第二偏光片14是用来偏折入射光,且第一偏光片12的第一光轴垂直于第二偏光片14的第二光轴。
第一偏光片12包含一第一聚乙烯醇(Polyvinyl Alcohol,PVA)膜121,夹在第一三醋酸纤维素酯片基(triacetate cellulose,TAC)膜122和第一单光轴相位补偿膜123之间。第二偏光片14包含一第二聚乙烯醇膜141,夹在第二单光轴相位补偿膜142和第二TAC膜143之间。在本实施例中,第一单光轴相位补偿膜123是A型补偿膜(A-plate),其光轴平行补偿膜123的表面。第二单光轴相位补偿膜142是C型补偿膜(C-plate),其光轴垂直于补偿膜142的表面。第一单光轴相位补偿膜123用来提供一第一补偿值RoA和第二补偿值RthA,第二单光轴相位补偿膜142则用来提供一第三补偿值RthC。而第一单 光轴相位补偿膜123的慢轴与第一PVA膜121的吸收轴的夹角呈90度,第二PVA膜141的吸收轴呈0度。以下将说明如何决定第一补偿值、第二补偿值以及第三补偿值。在以下实施例中,液晶层16的光程差和补偿膜123、142的补偿值均为波长等于550nm对应的值。
请参阅图4-图6,图4-图6分别绘示液晶层16的光程差在305.8nm、315nm以及324.2nm的条件下,不同第一单光轴相位补偿膜123的第一补偿值RoA和第二补偿值RthA、第二单光轴相位补偿膜142的第三补偿值RthC与漏光值的关系图。为便于说明,在本实施例中,背光源18射出的入射光分布为朗伯分布,中央亮度定义为100nit。液晶层16的液晶分子的预倾角(pretilt angle)则为89度。液晶层16由Δn×d决定的光程差,是介于305.8~324.2nm之间,其中Δn=ne-no,ne和no分别表示液晶层16的非寻常光折射率和寻常光折射率,d表示液晶层16的厚度。
在图4-图6中,RoA表示第一单光轴相位补偿膜123在X-Y平面的第一补偿值,RthA表示第一单光轴相位补偿膜123在Z轴方向的第二补偿值,RthC表示第二单光轴相位补偿膜142在Z轴方向的第三补偿值,而RoA、RthA、RthC是以下列方程式所决定:
RoA=(NxA-NyA)×DA           方程式(1)
RthA=[(NxA+NyA)/2-NzA]×DA      方程式(2)
RthC=[(NxC+NyC)/2-NzC]×DC       方程式(3)
其中NxA、NyA、NzA分别表示源自背光源18的光线在通过第一单光轴相位补偿膜123时,在笛卡尔坐标系的X、Y、Z轴上所对应的折射率,NxC、NyC、NzC分别表示源自背光源18的光线在通过第二单光轴相位补偿膜142 时,在笛卡尔坐标系的X、Y、Z轴上所对应的折射率,DA和DC分别表示第一单光轴相位补偿膜123和第二单光轴相位补偿膜142的厚度。
从图4~图6的内容中,可以观察到在不同的液晶光程差下,第一单光轴相位补偿膜123和第二单光轴相位补偿膜142的补偿值对暗态漏光的影响趋势是类似的。即不同光程差下,暗态漏光最小时对应的补偿值范围是一样的。
通过图4~图6,在不同的液晶预倾角下搭配不同的补偿值进行模拟,可计算出在预倾角为89度,305.8nm≤Δn×d≤324.2nm的范围内,暗态漏光小于0.2nit时第一单光轴相位补偿膜123和第二单光轴相位补偿膜142的对应补偿值范围。也就是说,液晶层16的光程差在305.8nm~324.2nm之间且液晶层16的液晶分子的预倾角在89度的情形下,液晶显示器10仍然可以依据第一单光轴相位补偿膜123的第一补偿值RoA和第二补偿值RthA,以及第二单光轴相位补偿膜142的第三补偿值RthC抑制漏光。只要将第一单光轴相位补偿膜123的第一补偿值RoA控制在55和78nm之间,第二补偿值RthA控制在208和293nm之间,同时依据调整后第二补偿值RthA,进一步地调整第二单光轴相位补偿膜142的第三补偿值RthC,使第三补偿值RthC位于Y1nm~Y2nm之间,其中Y1=0.004174x2-3.119x+555.5以及Y2=-0.005882x2+1.733x+25.9,x表示第二补偿值RthA
因此,第一单光轴相位补偿膜123的第一补偿值RoA、第二补偿值RthA以及第二单光轴相位补偿膜142的第三补偿值RthC均是针对波长为550nm的入射光的补偿值,当补偿值处于上述范围内时,在液晶显示装置中能够得到最佳的补偿效果,达到最小的暗态漏光。
请参阅图7和图12,图7和图8分别绘示在液晶光程差为305.8nm、第一单光轴相位补偿膜123的第一补偿值RoA为71nm、第二补偿值RthA为269nm以及第二单光轴相位补偿膜142的第三补偿值RthC为24nm条件下的暗态漏光分布图和全视角对比度分布图。图9和图10分别绘示本实施例在液 晶光程差为315nm、第一单光轴相位补偿膜123的第一补偿值RoA为65nm、第二补偿值RthA为244nm以及第二单光轴相位补偿膜142的第三补偿值RthC为75nm条件下的暗态漏光分布图和全视角对比度分布图。图11和图12分别绘示本实施例在液晶光程差为324.2nm、第一单光轴相位补偿膜123的第一补偿值RoA为58nm、第二补偿值RthA为220nm以及第二单光轴相位补偿膜142的第三补偿值RthC为95nm条件下的暗态漏光分布图和全视角对比度分布图。
对比图7、图9、图11与图1,可以直接观察到,经本发明实施例的液晶显示器补偿后的暗态漏光低于现有使用单光轴相位补偿膜补偿后的暗态漏光,而且补偿暗态漏光集中在垂直视角附近,漏光范围集中在较小的视角范围内。对比图8、图10、图12与图2,可以直接观察到,经本发明实施例的液晶显示器补偿后的全视角对比度分布也优于现有单光轴相位补偿膜补偿后的全视角对比度分布,特别是在水平视角区域的对比度得到了有效的改善。
本领域技术人员可以在得到第一单光轴相位补偿膜123的第一补偿值RoA、第二补偿值RthA以及第二单光轴相位补偿膜142的第三补偿值RthC之后,再通过方程式(1)~方程式(3)调整第一单光轴相位补偿膜123和第二单光轴相位补偿膜142的折射率或是厚度。
相较于现有技术,本发明通过合理设置第一单光轴相位补偿膜123的第一补偿值RoA、第二补偿值RthA以及第二单光轴相位补偿膜142的第三补偿值RthC,能够改善传统单光轴相位补偿膜补偿造成的水平视角区域严重暗态漏光的问题,同时增加水平视角区域的对比度和清晰度。
综上所述,虽然本发明已以较佳实施例揭露如上,但该较佳实施例并非用以限制本发明,该领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (17)

  1. 一种液晶显示器,其包含一背光源用来发出光线,包括:
    一第一三醋酸纤维素酯片基(triacetate cellulose,TAC)膜;
    一第一聚乙烯醇(Polyvinyl Alcohol,PVA)膜;
    一第一单光轴相位补偿膜,其通过调整所述第一单光轴相位补偿膜的厚度以及调整所述光线在第一方向、第二方向以及第三方向分别所对应的第一折射率、第二折射率以及第三折射率以提供一第一补偿值以及一第二相位差值;
    一液晶层;
    一第二单光轴相位补偿膜,其通过调整所述第二单光轴相位补偿膜的厚度以及调整所述光线在所述第一方向、所述第二方向以及所述第三方向分别所对应的第四折射率、第五折射率以及第六折射率以提供一第三补偿值;
    一第二PVA膜;以及
    一第二TAC膜,
    其中所述液晶显示器依据所述第一补偿值、所述第二补偿值以及所述第三补偿值控制其暗态大视角漏光,
    其中所述第一补偿值是依据以下方程序所决定:RoA=(NxA-NyA)×DA,RoA表示所述第一补偿值,NxA、NyA分别表示所述第一单光轴相位补偿膜在笛卡尔坐标系的X、Y轴上所对应的折射率,DA表示所述第一单光轴相位补偿膜的厚度,
    其中所述液晶层由(ne-no)×d决定的光程差,是介于305.8~324.2nm之间,其中ne和no分别表示所述液晶层的非寻常光折射率和寻常光折射率,d表示所述液晶层厚度,所述第一单光轴相位补偿膜的第一补偿值是介于55~78nm 之间,所述第一单光轴相位补偿膜的第二补偿值是介于208~293nm之间,所述第三补偿值是介于Y1nm~Y2nm之间,其中Y1=0.004174x2-3.119x+555.5以及Y2=-0.005882x2+1.733x+25.9,x表示所述第二补偿值。
  2. 如权利要求1所述的液晶显示器,其中所述第二补偿值是依据以下方程序所决定RthA=[(NxA+NyA)/2-NzA]×DA,其中RthA表示所述第二补偿值,NxA、NyA、NzA分别表示所述第一单光轴相位补偿膜在笛卡尔坐标系的X、Y、Z轴上所对应的折射率,DA表示所述第一单光轴相位补偿膜的厚度。
  3. 如权利要求1所述的液晶显示器,其中所述液晶层的液晶分子的预倾角(pretilt angle)是89度。
  4. 如权利要求1所述的液晶显示器,其中所述第三补偿值是依据所述第四折射率、所述第五折射率、所述第六折射率和所述第二单光轴相位补偿膜的厚度决定。
  5. 如权利要求1所述的液晶显示器,其中所述第一单光轴相位补偿膜是一A型补偿膜,所述第一单光轴相位补偿膜的光轴平行于表面,所述第二单光轴相位补偿膜是一C型补偿膜,所述第二单光轴相位补偿膜的光轴垂直于表面。
  6. 根据权利要求1所述的液晶显示器,其中所述液晶显示器进一步包括第一压敏胶,所述第一压敏胶设置于所述第一单光轴相位补偿膜与所述液晶层之间。
  7. 根据权利要求6所述的液晶显示器,其中所述液晶显示器进一步包括第二压敏胶,所述第二压敏胶设置于所述第二单光轴相位补偿膜与所述液晶层之间。
  8. 一种液晶显示器,其包含一背光源用来发出光线,包括:
    一第一三醋酸纤维素酯片基(triacetate cellulose,TAC)膜;
    一第一聚乙烯醇(Polyvinyl Alcohol,PVA)膜;
    一第一单光轴相位补偿膜,其通过调整所述第一单光轴相位补偿膜的厚度以及调整所述光线在第一方向、第二方向以及第三方向分别所对应的第一折射率、第二折射率以及第三折射率以提供一第一补偿值以及一第二相位差值;
    一液晶层;
    一第二单光轴相位补偿膜,其通过调整所述第二单光轴相位补偿膜的厚度以及调整所述光线在所述第一方向、所述第二方向以及所述第三方向分别所对应的第四折射率、第五折射率以及第六折射率以提供一第三补偿值;
    一第二PVA膜;以及
    一第二TAC膜,
    其中所述液晶显示器依据所述第一补偿值、所述第二补偿值以及所述第三补偿值控制其暗态大视角漏光,
    其中所述第一补偿值是依据以下方程序所决定:RoA=(NxA-NyA)×DA,RoA表示所述第一补偿值,NxA、NyA分别表示所述第一单光轴相位补偿膜在笛卡尔坐标系的X、Y轴上所对应的折射率,DA表示所述第一单光轴相位补偿膜的厚度,
    其中所述第一单光轴相位补偿膜的第一补偿值是介于55~78nm之间。
  9. 如权利要求8所述的液晶显示器,其中所述液晶层由(ne-no)×d决定的光程差,是介于305.8~324.2nm之间,其中ne和no分别表示所述液晶层的非寻常光折射率和寻常光折射率,d表示所述液晶层厚度。
  10. 如权利要求8所述的液晶显示器,其中所述第二补偿值是依据以下方程序所决定RthA=[(NxA+NyA)/2-NzA]×DA,其中RthA表示所述第二补偿值,NxA、NyA、NzA分别表示所述第一单光轴相位补偿膜在笛卡尔坐标系的X、Y、Z轴上所对应的折射率,DA表示所述第一单光轴相位补偿膜的厚度。
  11. 如权利要求10所述的液晶显示器,其中所述第一单光轴相位补偿膜的第二补偿值是介于208~293nm之间。
  12. 如权利要求8所述的液晶显示器,其中所述液晶层的液晶分子的预倾角(pretilt angle)是89度。
  13. 如权利要求8所述的液晶显示器,其中所述第三补偿值是依据所述第四折射率、所述第五折射率、所述第六折射率和所述第二单光轴相位补偿膜的厚度决定。
  14. 如权利要求13所述的液晶显示器,其中所述第二单光轴相位补偿膜的第三补偿值是介于Y1nm~Y2nm之间,其中Y1=0.004174x2-3.119x+555.5以及Y2=-0.005882x2+1.733x+25.9,x表示所述第二补偿值。
  15. 如权利要求8所述的液晶显示器,其中所述第一单光轴相位补偿膜是一A型补偿膜,所述第一单光轴相位补偿膜的光轴平行于表面,所述第二单光轴相位补偿膜是一C型补偿膜,所述第二单光轴相位补偿膜的光轴垂直于表面。
  16. 根据权利要求8所述的液晶显示器,其中所述液晶显示器进一步包括第一压敏胶,所述第一压敏胶设置于所述第一单光轴相位补偿膜与所述液晶层之间。
  17. 根据权利要求16所述的液晶显示器,其中所述液晶显示器进一步包括 第二压敏胶,所述第二压敏胶设置于所述第二单光轴相位补偿膜与所述液晶层之间。
PCT/CN2015/070042 2014-12-25 2015-01-04 液晶显示器 WO2016101338A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017533283A JP6587685B2 (ja) 2014-12-25 2015-01-04 液晶表示装置
EA201791470A EA033496B1 (ru) 2014-12-25 2015-01-04 Жидкокристаллический дисплей
US14/417,521 US9625763B2 (en) 2014-12-25 2015-01-04 Liquid crystal display
KR1020177019942A KR20170097146A (ko) 2014-12-25 2015-01-04 액정 디스플레이
GB1711594.0A GB2550711B (en) 2014-12-25 2015-01-04 Correcting birefringence of LC by adjusting thickness and refractive index of uniaxial compensating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410819969.1A CN104536205A (zh) 2014-12-25 2014-12-25 液晶显示器
CN201410819969.1 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016101338A1 true WO2016101338A1 (zh) 2016-06-30

Family

ID=52851755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070042 WO2016101338A1 (zh) 2014-12-25 2015-01-04 液晶显示器

Country Status (7)

Country Link
US (1) US9625763B2 (zh)
JP (1) JP6587685B2 (zh)
KR (1) KR20170097146A (zh)
CN (1) CN104536205A (zh)
EA (1) EA033496B1 (zh)
GB (1) GB2550711B (zh)
WO (1) WO2016101338A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536204A (zh) * 2014-12-25 2015-04-22 深圳市华星光电技术有限公司 液晶显示器
CN105334672A (zh) * 2015-12-08 2016-02-17 深圳市华星光电技术有限公司 液晶面板补偿架构及其光学补偿方法
CN107193152A (zh) * 2017-07-13 2017-09-22 深圳市华星光电技术有限公司 液晶显示面板及液晶显示器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101770114A (zh) * 2008-12-31 2010-07-07 乐金显示有限公司 具有宽视角的液晶显示装置
CN102650761A (zh) * 2011-12-15 2012-08-29 京东方科技集团股份有限公司 具有视角补偿的液晶显示器
CN102854654A (zh) * 2012-09-11 2013-01-02 深圳市华星光电技术有限公司 显示装置
CN102866537A (zh) * 2012-09-03 2013-01-09 深圳市华星光电技术有限公司 液晶显示器
CN103605239A (zh) * 2013-11-22 2014-02-26 深圳市华星光电技术有限公司 用于液晶显示器的光学补偿膜及包括其的液晶显示器
JP2014170202A (ja) * 2012-10-12 2014-09-18 Fujifilm Corp 液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070091229A1 (en) * 2005-06-09 2007-04-26 Jang Soo J Vertically aligned liquid crystal display
JP5077873B2 (ja) * 2007-03-19 2012-11-21 スタンレー電気株式会社 液晶表示素子
KR20100022919A (ko) * 2008-08-20 2010-03-03 동우 화인켐 주식회사 광시야각을 갖는 트위스트네마틱 모드 액정표시장치
KR101605031B1 (ko) * 2009-11-02 2016-03-21 동우 화인켐 주식회사 면상 스위칭 모드 액정표시장치
CN102798923B (zh) * 2012-08-23 2014-12-24 深圳市华星光电技术有限公司 光学补偿结构及显示装置
JP2014070202A (ja) * 2012-09-28 2014-04-21 Unitika Ltd ポリアミド樹脂組成物、およびそれよりなる成形体
CN103364995B (zh) * 2013-07-10 2016-03-09 深圳市华星光电技术有限公司 液晶显示器及其光学补偿方法
CN104536204A (zh) * 2014-12-25 2015-04-22 深圳市华星光电技术有限公司 液晶显示器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101770114A (zh) * 2008-12-31 2010-07-07 乐金显示有限公司 具有宽视角的液晶显示装置
CN102650761A (zh) * 2011-12-15 2012-08-29 京东方科技集团股份有限公司 具有视角补偿的液晶显示器
CN102866537A (zh) * 2012-09-03 2013-01-09 深圳市华星光电技术有限公司 液晶显示器
CN102854654A (zh) * 2012-09-11 2013-01-02 深圳市华星光电技术有限公司 显示装置
JP2014170202A (ja) * 2012-10-12 2014-09-18 Fujifilm Corp 液晶表示装置
CN103605239A (zh) * 2013-11-22 2014-02-26 深圳市华星光电技术有限公司 用于液晶显示器的光学补偿膜及包括其的液晶显示器

Also Published As

Publication number Publication date
EA033496B1 (ru) 2019-10-31
US9625763B2 (en) 2017-04-18
GB201711594D0 (en) 2017-08-30
JP6587685B2 (ja) 2019-10-09
KR20170097146A (ko) 2017-08-25
JP2018505440A (ja) 2018-02-22
EA201791470A1 (ru) 2017-10-31
CN104536205A (zh) 2015-04-22
GB2550711B (en) 2021-03-03
US20160187727A1 (en) 2016-06-30
GB2550711A (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP3926072B2 (ja) 液晶表示装置
JP6266769B2 (ja) 液晶ディスプレイの光学補償方法
TW201325907A (zh) 偏光板及包括偏光板的液晶顯示器
WO2014056245A1 (zh) Va显示模式补偿架构及va显示模式液晶显示装置
US9158157B2 (en) Liquid crystal display
US9645445B2 (en) Liquid crystal display
WO2015149377A1 (zh) 用于液晶面板的双层双轴补偿架构及液晶显示装置
WO2016101339A1 (zh) 液晶显示器
WO2016070450A1 (zh) 液晶面板补偿架构及液晶显示装置
WO2016065659A1 (zh) 液晶面板补偿架构及液晶显示装置
WO2016101338A1 (zh) 液晶显示器
WO2015149379A1 (zh) 用于液晶面板的单层双轴补偿架构及液晶显示装置
WO2014107886A1 (zh) 用于液晶面板的补偿系统及液晶显示装置
WO2016065660A1 (zh) 液晶面板补偿架构及液晶显示装置
WO2015196503A1 (zh) 液晶显示器及其光学补偿方法
WO2014056246A1 (zh) Va显示模式补偿架构及va显示模式液晶显示装置
CN102854654B (zh) 显示装置
US20140192300A1 (en) Compensation System for Liquid Crystal Panel and Liquid Crystal Display Device
US20140098329A1 (en) VA Display Mode Compensation Architecture and VA Display Mode Liquid Crystal Display Device
US20160124264A1 (en) Compensation structure for liquid crystal panels and the liquid crystal displays
WO2015196501A1 (zh) 液晶显示器及其光学补偿方法
US20150286099A1 (en) Compensation Architecture of Liquid Crystal Panel and Liquid Crystal Display Device
CN105334670A (zh) 液晶面板补偿架构及其光学补偿方法
WO2015149380A1 (zh) 液晶面板的补偿架构及液晶显示装置
CN105334671A (zh) 液晶面板补偿架构及其光学补偿方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14417521

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017533283

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177019942

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201711594

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150104

WWE Wipo information: entry into national phase

Ref document number: 201791470

Country of ref document: EA

122 Ep: pct application non-entry in european phase

Ref document number: 15871417

Country of ref document: EP

Kind code of ref document: A1