CN1633699A - 电荷控制雪崩光电二极管及其制造方法 - Google Patents

电荷控制雪崩光电二极管及其制造方法 Download PDF

Info

Publication number
CN1633699A
CN1633699A CNA038030500A CN03803050A CN1633699A CN 1633699 A CN1633699 A CN 1633699A CN A038030500 A CNA038030500 A CN A038030500A CN 03803050 A CN03803050 A CN 03803050A CN 1633699 A CN1633699 A CN 1633699A
Authority
CN
China
Prior art keywords
layer
avalanche photodide
electric charge
course
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA038030500A
Other languages
English (en)
Inventor
柯呈佶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Picometrix LLC
Original Assignee
Picometrix LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Picometrix LLC filed Critical Picometrix LLC
Publication of CN1633699A publication Critical patent/CN1633699A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明包括在半绝缘InP结构上生长的外延结构。首先,生长缓冲层以隔离由基片产生的缺陷。然后生长n-型层用作收集电子的n-接触层。接着,生长倍增层向APD设备提供雪崩增益。之后,通过碳掺杂生长超薄电荷控制层。生长吸收层作为由光激发产生电子空穴对的区域。最后,生长p-型层作为收集空穴的P接触层。

Description

电荷控制雪崩光电二极管及其制造方法
技术领域
本发明大体上涉及基于半导体的光电探测器领域,更特别地,涉及最优化的雪崩光电二极管及其制造方法。
背景技术
由于已知的光子和电子间的相互作用,近些年在光电探测器领域取得了巨大的进展,特别是在利用半导体材料的光电探测器领域。一种基于半导体的光电探测器称作雪崩光电二极管,或者APD。这种类型的结构通常由大量用作不同的目的,例如吸收和倍增的固体半导体材料构成。
APD结构通过激发态电荷载流子的行为提供大增益的主要益处,激发态电荷载流子在倍增层中产生大量的电子空穴对。然而,APD产生大量电荷载流子是如此地高效以致于有被饱和的危险,从而对器件带宽产生有害影响。为了防止电荷载流子崩溃,强制电场在APD内自我调控,且特别地期望使倍增层中的电场显著地高于吸收层中的电场。
传统上,隔离吸收、分级、电荷、倍增(SAGCM)APD利用分级层(grading layer)使异质界面的空穴俘获(hole trapping)最小化,利用电荷控制层隔离吸收层和倍增层之间的电场。该电荷控制层的设计是极其关键的,因为要允许倍增层中的电场强度足够高以发起碰撞电离,同时保持吸收层中的电场较低以防止隧道崩溃。
例如,具有n-型倍增层的SAGCM APD结构,电子被扩增并且需要p-型掺杂起电荷控制层作用。然而,传统的铍或锌p-型掺杂方法需要相对厚的电荷控制层,因为铍或锌伴随有高扩散系数。由于该具有更低掺杂的厚电荷控制区域,载流子通过电荷控制层的渡越时间(transit time)增加,从而降低了APD设备的整体速度。
作为比较,在本发明中,铍或锌电荷控制层中存在的限制通过利用碳掺杂被克服了。这一解决方法导致了超薄电荷控制层,同时增加了光电探测器的速度。因为碳具有很小的扩散系数,所以能够获得精确的掺杂控制,从而能够实现具有100埃或者更小厚度超薄层的电荷薄层(charge sheet)。
本发明包括在半绝缘InP结构上生长的外延结构。首先,生长缓冲层以隔离由基片产生的缺陷。然后生长n-型层用作收集电子的n-接触层。接着,生长倍增层(multiplication layer)向APD设备提供雪崩增益。之后,通过碳掺杂生长超薄电荷控制层。生长吸收层作为由光激发产生电子空穴对的区域。最后,生长p-型层作为收集空穴的P接触层。本发明进一步的实施例和优点在下面通过参考附图加以讨论。
附图简述
图1是根据本发明一个方案的电荷控制雪崩光电二极管的透视图。
图2是描述电场空间依赖的曲线图,其中电场跨电荷控制雪崩光电二极管的深度来设置。
优选实施例详细说明
根据本发明的优选实施例,出于光电导目的提供了一种外延结构。光电导结构是雪崩光电二极管(APD),其通过电荷控制层加以优化以提高性能。本发明结构和制造方法的详情在这里进一步加以讨论。
参考图1,显示了根据优选实施例的电荷控制APD 10的透视图。基片12被提供作为沉积外延结构的基础。本发明的电荷控制APD可以用多种合适的方式加以制造,包括分子束外延和金属有机汽相外延。
基片12可以由半绝缘材料构成,或者选择地,基片可以掺杂磷酸铟(InP)。在基片12上布置缓冲层14使基片12的任何结构缺陷或者化学缺陷与其余的结构隔离。
在缓冲层14上布置n-型层16作为n-接触层,从而收集泻落(cascading)通过电荷控制APD 10的电子。n-型层可以由磷酸铟(InP)或者铝砷化铟(InAlAs)中的一种构成。在n-型层16上布置由InAlAs构成的倍增层18。倍增层18提供雪崩效应,其中电子的电流密度被放大,借此提供APD增益。
在倍增层18上布置电荷控制层20从而使倍增层18与电荷控制APD 10的顶层隔离。在优选实施例中,电荷控制层20由碳掺杂的InAlAs构成。电荷控制层20仅沉积小于100埃的厚度。有可能使电荷控制层20的厚度小至2埃,从而代表二维电荷薄层。因此优选地,电荷控制层20的厚度为2-100埃。
在吸收层24的上下布置两个数字分级层(digistal graded layer)22,26,以便使由于镓砷化铟(InGaAs)和InAlAs材料之间的能带隙产生的任何载流子俘获最小化。第一数字分级层22布置在电荷控制层20上。用于产生电子空穴对的吸收层24布置在数字分级层22上。然后在吸收层24上布置第二数字分级层26。
在优选实施例中,第一和第二数字分级层22,26都由铝镓砷化铟(InAlGaAs)构成。吸收层24由InGaAs构成,以便使通过光激发产生的电子空穴对数量最大。
用作p-接触层的p-型层28布置在第二数字分级层26上,以便按照和n-型层16类似的方式收集空穴。p-型层26优选地是InP或者InAlAs之一,如同上面对于n-型层16的说明。在相关实施例中,p-型层28和n-型层16可以用相同材料制成,或者选择地,它们可以用InP或者InAlAs系列中的不同材料构成。
参考图1说明的电荷控制APD 10比典型的外延APD提供了极大改良的性能。特别地,电荷控制层20特别适合于维持倍增层18中的高电场,同时维持吸收层24中的低电场。
图2是表示电场值的曲线图,其测量了电荷控制APD 10的深度对各种偏压的依赖性。特别地,注意到吸收层24典型地布置为距离p-型层28的表面0.25-1.25μm。类似地,倍增层18可以布置为距离p-型层28的表面1.25-1.75μm。
因此,从图2显见,位于吸收层24和倍增层18之间的电荷控制层20负责各个层之间的电场的增加。特别地,对于-5V偏压,吸收层24中的电场大约为0,而倍增层18中的电场处于-1.75×103V/cm的量级。对于-30伏特的电压,吸收层24中的电场大约为-1.0×103V,而倍增层18中的电场处于-5.0×103V/cm的量级。而且,因为电荷控制层20的厚度小于100埃,所以还使载流子渡越时间显著降低,导致APD响应时间整体增效。
如上所述,本发明包括具有电荷控制层的雪崩光电二极管。特别地,电荷控制层是碳掺杂的,且厚度小于100埃,借此增大了器件吸收层和倍增层之间的电场梯度。对于本领域技术人员应当显而易见,上述实施例只是本发明许多可能具体实施例的少数几个实例。本领域技术人员能够容易地设计大量的各种其它布置而不背离由随后的权利要求限定的本发明的精神和范围。

Claims (19)

1.一种雪崩光电二极管,包括:
位于一基片层上的吸收层;
位于该基片层上的倍增层;和
碳掺杂电荷控制层,其位于吸收层和倍增层之间。
2.根据权利要求1的雪崩光电二极管,其中吸收层位于第一数字分级层和第二数字分级层之间。
3.根据权利要求1的雪崩光电二极管,进一步包括位于倍增层和基片之间的n-型接触层。
4.根据权利要求1的雪崩光电二极管,进一步包括p-型接触层。
5.根据权利要求1的雪崩光电二极管,进一步包括位于n-型接触层和基片之间的缓冲层。
6.根据权利要求1的雪崩光电二极管,其中吸收层是InGaAs。
7.根据权利要求1的雪崩光电二极管,其中倍增层是InAlAs。
8.根据权利要求1的雪崩光电二极管,其中碳掺杂电荷控制层是碳掺杂InAlAs。
9.根据权利要求1的雪崩光电二极管,其中碳掺杂电荷控制层的厚度为2-100埃。
10.根据权利要求1的雪崩光电二极管,其中碳掺杂电荷控制层的厚度为5-50埃。
11.根据权利要求1的雪崩光电二极管,其中碳掺杂电荷控制层的厚度为5-35埃。
12.根据权利要求2的雪崩光电二极管,其中第一数字分级层是InAlGaAs,而第二数字分级层是InAlGaAs。
13.根据权利要求3的雪崩光电二极管,其中n-型接触层是InP或者InAlA之一。
14.根据权利要求4的雪崩光电二极管,其中p-型接触层是InP或者InAlAs之一。
15.一种制造雪崩光电二极管的方法,包括如下步骤:
提供基片层;
沉积倍增层;
沉积碳掺杂电荷控制层;和
沉积吸收层。
16.根据权利要求15的方法,进一步包括沉积n-型层以收集电子的步骤。
17.根据权利要求15的方法,进一步包括沉积p-型层以收集空穴的步骤。
18.根据权利要求15的方法,进一步包括沉积用于防止带隙偏移(bandgap offsets)之间的载流子俘获的数字分级层的步骤。
19.根据权利要求15的方法,进一步包括以碳掺杂InAlAs材料的步骤。
CNA038030500A 2002-02-01 2003-02-03 电荷控制雪崩光电二极管及其制造方法 Pending CN1633699A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35341802P 2002-02-01 2002-02-01
US60/353,418 2002-02-01

Publications (1)

Publication Number Publication Date
CN1633699A true CN1633699A (zh) 2005-06-29

Family

ID=27663208

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA038030500A Pending CN1633699A (zh) 2002-02-01 2003-02-03 电荷控制雪崩光电二极管及其制造方法

Country Status (8)

Country Link
US (1) US20050029541A1 (zh)
EP (1) EP1470572A2 (zh)
JP (1) JP2005516414A (zh)
KR (1) KR20040094418A (zh)
CN (1) CN1633699A (zh)
AU (1) AU2003207814A1 (zh)
CA (1) CA2473223A1 (zh)
WO (1) WO2003065417A2 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343983C (zh) * 2005-06-09 2007-10-17 华南师范大学 用于红外光探测的雪崩光电二极管的二次封装装置
CN103268898A (zh) * 2013-04-18 2013-08-28 中国科学院半导体研究所 一种雪崩光电探测器及其高频特性提高方法
CN103811586A (zh) * 2012-11-13 2014-05-21 三菱电机株式会社 雪崩光电二极管及其制造方法
CN104247046A (zh) * 2012-07-25 2014-12-24 惠普发展公司,有限责任合伙企业 具有缺陷辅助的硅吸收区域的雪崩光电二极管
CN105655436A (zh) * 2014-11-28 2016-06-08 三菱电机株式会社 雪崩光电二极管的制造方法
CN107644921A (zh) * 2017-10-18 2018-01-30 五邑大学 一种新型雪崩二级管光电探测器及其制备方法
CN107749424A (zh) * 2017-10-24 2018-03-02 江门市奥伦德光电有限公司 一种雪崩光电二极管及其制备方法
CN113097349A (zh) * 2021-06-09 2021-07-09 新磊半导体科技(苏州)有限公司 一种利用分子束外延制备雪崩光电二极管的方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168818A (ja) * 2001-09-18 2003-06-13 Anritsu Corp 順メサ型アバランシェフォトダイオード及びその製造方法
WO2003065418A2 (en) 2002-02-01 2003-08-07 Picometrix, Inc. Planar avalanche photodiode
WO2003065416A2 (en) 2002-02-01 2003-08-07 Picometrix, Inc. Enhanced photodetector
US7161170B1 (en) * 2002-12-12 2007-01-09 Triquint Technology Holding Co. Doped-absorber graded transition enhanced multiplication avalanche photodetector
WO2004100224A2 (en) * 2003-05-02 2004-11-18 Picometrix, Llc Pin photodetector
TWI228320B (en) * 2003-09-09 2005-02-21 Ind Tech Res Inst An avalanche photo-detector(APD) with high saturation power, high gain-bandwidth product
CN101232057B (zh) * 2004-10-25 2012-05-09 三菱电机株式会社 雪崩光电二极管
JP5015494B2 (ja) * 2006-05-22 2012-08-29 住友電工デバイス・イノベーション株式会社 半導体受光素子
US8536445B2 (en) * 2006-06-02 2013-09-17 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells
EP2073277A1 (en) * 2007-12-19 2009-06-24 Alcatel Lucent Avalanche photodiode
US8279411B2 (en) * 2008-08-27 2012-10-02 The Boeing Company Systems and methods for reducing crosstalk in an avalanche photodiode detector array
US9395182B1 (en) 2011-03-03 2016-07-19 The Boeing Company Methods and systems for reducing crosstalk in avalanche photodiode detector arrays
WO2013176976A1 (en) * 2012-05-17 2013-11-28 Picometrix, Llc Planar avalanche photodiode
JP2015141936A (ja) * 2014-01-27 2015-08-03 三菱電機株式会社 半導体装置の製造方法
KR101666400B1 (ko) * 2014-10-30 2016-10-14 한국과학기술연구원 포토다이오드 및 포토다이오드 제조 방법
US10032950B2 (en) 2016-02-22 2018-07-24 University Of Virginia Patent Foundation AllnAsSb avalanche photodiode and related method thereof
US11056604B1 (en) * 2020-02-18 2021-07-06 National Central University Photodiode of avalanche breakdown having mixed composite charge layer
CN117317053A (zh) * 2023-10-17 2023-12-29 北京邮电大学 一种五级倍增的雪崩光电二极管

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236069A (en) * 1978-10-16 1980-11-25 Varo, Inc. Avalanche photodiode gain control system
JPH0824199B2 (ja) * 1984-05-31 1996-03-06 富士通株式会社 半導体受光素子の製造方法
US4686550A (en) * 1984-12-04 1987-08-11 American Telephone And Telegraph Company, At&T Bell Laboratories Heterojunction semiconductor devices having a doping interface dipole
US4597004A (en) * 1985-03-04 1986-06-24 Rca Corporation Photodetector
US5146296A (en) * 1987-12-03 1992-09-08 Xsirius Photonics, Inc. Devices for detecting and/or imaging single photoelectron
US5179430A (en) * 1988-05-24 1993-01-12 Nec Corporation Planar type heterojunction avalanche photodiode
US5365077A (en) * 1993-01-22 1994-11-15 Hughes Aircraft Company Gain-stable NPN heterojunction bipolar transistor
JP2845081B2 (ja) * 1993-04-07 1999-01-13 日本電気株式会社 半導体受光素子
JP2699807B2 (ja) * 1993-06-08 1998-01-19 日本電気株式会社 組成変調アバランシ・フォトダイオード
JP2762939B2 (ja) * 1994-03-22 1998-06-11 日本電気株式会社 超格子アバランシェフォトダイオード
JP2601231B2 (ja) * 1994-12-22 1997-04-16 日本電気株式会社 超格子アバランシェフォトダイオード
US6326650B1 (en) * 1995-08-03 2001-12-04 Jeremy Allam Method of forming a semiconductor structure
US5818096A (en) * 1996-04-05 1998-10-06 Nippon Telegraph And Telephone Corp. Pin photodiode with improved frequency response and saturation output
FR2758657B1 (fr) * 1997-01-17 1999-04-09 France Telecom Photodetecteur metal-semiconducteur-metal
JP3177962B2 (ja) * 1998-05-08 2001-06-18 日本電気株式会社 プレーナ型アバランシェフォトダイオード
US6229161B1 (en) * 1998-06-05 2001-05-08 Stanford University Semiconductor capacitively-coupled NDR device and its applications in high-density high-speed memories and in power switches
US6359322B1 (en) * 1999-04-15 2002-03-19 Georgia Tech Research Corporation Avalanche photodiode having edge breakdown suppression

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343983C (zh) * 2005-06-09 2007-10-17 华南师范大学 用于红外光探测的雪崩光电二极管的二次封装装置
CN104247046A (zh) * 2012-07-25 2014-12-24 惠普发展公司,有限责任合伙企业 具有缺陷辅助的硅吸收区域的雪崩光电二极管
CN103811586B (zh) * 2012-11-13 2017-01-18 三菱电机株式会社 雪崩光电二极管及其制造方法
CN103811586A (zh) * 2012-11-13 2014-05-21 三菱电机株式会社 雪崩光电二极管及其制造方法
CN103268898B (zh) * 2013-04-18 2015-07-15 中国科学院半导体研究所 一种雪崩光电探测器及其高频特性提高方法
CN103268898A (zh) * 2013-04-18 2013-08-28 中国科学院半导体研究所 一种雪崩光电探测器及其高频特性提高方法
CN105655436A (zh) * 2014-11-28 2016-06-08 三菱电机株式会社 雪崩光电二极管的制造方法
CN105655436B (zh) * 2014-11-28 2017-07-11 三菱电机株式会社 雪崩光电二极管的制造方法
CN107644921A (zh) * 2017-10-18 2018-01-30 五邑大学 一种新型雪崩二级管光电探测器及其制备方法
CN107644921B (zh) * 2017-10-18 2023-08-29 五邑大学 一种新型雪崩二极管光电探测器及其制备方法
CN107749424A (zh) * 2017-10-24 2018-03-02 江门市奥伦德光电有限公司 一种雪崩光电二极管及其制备方法
CN107749424B (zh) * 2017-10-24 2023-11-07 江门市奥伦德光电有限公司 一种雪崩光电二极管及其制备方法
CN113097349A (zh) * 2021-06-09 2021-07-09 新磊半导体科技(苏州)有限公司 一种利用分子束外延制备雪崩光电二极管的方法
CN113097349B (zh) * 2021-06-09 2021-08-06 新磊半导体科技(苏州)有限公司 一种利用分子束外延制备雪崩光电二极管的方法

Also Published As

Publication number Publication date
AU2003207814A1 (en) 2003-09-02
KR20040094418A (ko) 2004-11-09
JP2005516414A (ja) 2005-06-02
CA2473223A1 (en) 2003-08-07
US20050029541A1 (en) 2005-02-10
WO2003065417A3 (en) 2003-11-06
EP1470572A2 (en) 2004-10-27
WO2003065417A2 (en) 2003-08-07

Similar Documents

Publication Publication Date Title
CN1633699A (zh) 电荷控制雪崩光电二极管及其制造方法
US4695857A (en) Superlattice semiconductor having high carrier density
US7732823B2 (en) Light emitting device and semiconductor device
US7863625B2 (en) Nanowire-based light-emitting diodes and light-detection devices with nanocrystalline outer surface
US4476477A (en) Graded bandgap multilayer avalanche photodetector with energy step backs
KR100393461B1 (ko) 이종접합에너지경사구조
CN1625813A (zh) 平面雪崩光电二极管
US20070227588A1 (en) Enhanced tunnel junction for improved performance in cascaded solar cells
US4801993A (en) Monolithic semiconductor structure of a heterojunction bipolar transistor and a laser
US4821082A (en) Heterojunction bipolar transistor with substantially aligned energy levels
US5198682A (en) Multiple quantum well superlattice infrared detector with graded conductive band
JPS61166081A (ja) 半導体デバイスの改良
KR20110073493A (ko) 나노구조 포토다이오드
CN1345474A (zh) 具有减少相分离、利用第三族氮化物四元金属体系的半导体结构及其制备方法
US5041882A (en) Heterojunction bipolar transistor
US4768074A (en) Heterojunction bipolar transistor having an emitter region with a band gap greater than that of a base region
US5003366A (en) Hetero-junction bipolar transistor
JPH0665216B2 (ja) 半導体装置
Capasso New heterojunction devices by band-gap engineering
JP2002231992A (ja) 半導体受光素子
JPS582077A (ja) 半導体デバイス
EP0150564A2 (en) Electronic device comprising a heterojunction
JPH07335934A (ja) 光半導体素子,及びその製造方法
JP2780333B2 (ja) 半導体積層構造及びこれを有する半導体素子
US20100140587A1 (en) High-Injection Heterojunction Bipolar Transistor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1079901

Country of ref document: HK

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1079901

Country of ref document: HK