CN1622450B - 放大器 - Google Patents

放大器 Download PDF

Info

Publication number
CN1622450B
CN1622450B CN2004100590861A CN200410059086A CN1622450B CN 1622450 B CN1622450 B CN 1622450B CN 2004100590861 A CN2004100590861 A CN 2004100590861A CN 200410059086 A CN200410059086 A CN 200410059086A CN 1622450 B CN1622450 B CN 1622450B
Authority
CN
China
Prior art keywords
output
amplifier
stage
voltage
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2004100590861A
Other languages
English (en)
Other versions
CN1622450A (zh
Inventor
帕特里克·艾蒂安·理查德
约翰·劳伦斯·彭诺克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Logic International Ltd
Cirrus Logic International UK Ltd
Cirrus Logic International Semiconductor Ltd
Original Assignee
Wolfson Microelectronics PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wolfson Microelectronics PLC filed Critical Wolfson Microelectronics PLC
Publication of CN1622450A publication Critical patent/CN1622450A/zh
Application granted granted Critical
Publication of CN1622450B publication Critical patent/CN1622450B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3001Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
    • H03F3/301CMOS common drain output SEPP amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3001Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
    • H03F3/3022CMOS common source output SEPP amplifiers
    • H03F3/3023CMOS common source output SEPP amplifiers with asymmetrical driving of the end stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3001Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
    • H03F3/3022CMOS common source output SEPP amplifiers
    • H03F3/3023CMOS common source output SEPP amplifiers with asymmetrical driving of the end stage
    • H03F3/3027CMOS common source output SEPP amplifiers with asymmetrical driving of the end stage using a common source driving stage, i.e. inverting stage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

公开了一种放大器,具有连接至输出级的输入级。所述输入级连接在正电源轨和接地轨之间,且具有一被设置为接收输入信号的输入端,所述输出级连接在正电源轨和负电源轨之间且具有一输出端。该输出级适于在所述输出端根据所接收的输入信号产生一输出信号,且进一步适于使得,在使用中,在所述输出端的静态电压为处于正电源轨上的电压和负电源轨上的电压之间的一选择值。为驱动接地负载,所述静态输出电压最好是0伏。在一优选实施例中,采用CMOS技术在一公共基底上形成所述输入和输出级,所述输出级包括具有三阱结构的一个或多个NMOS装置。还公开了一种相应的驱动接地负载的方法。

Description

放大器
技术领域
本发明涉及放大器,具体地,当然并非专有地涉及适用于与单个集成电路上的复杂的其他数字或模拟电路结合使用的音频放大器,用于驱动接地的扬声器或耳机。 
背景技术
许多集成音频放大器使用单电源(电源电压Vdd,典型地为5v),并产生一静态电压大约为Vdd/2的输出信号。由此,需要交流耦合来提供一参考地的输出信号,如到其他接地设备或扬声器或耳机的连接所要求的那样。对于如扬声器或耳机那样的低阻抗负载,这些交流耦合电容需要大到维持良好的低音响应(用于驱动16欧姆的负载,在20Hz对于-3dB点需要470微法的耦合电容)。对于手提系统来说,这些耦合电容的物理尺寸尤为重要,但对于低成本的系统来说,则其成本具有重大意义。而且,该耦合电容需要在加电时充电(至Vdd/2),并需要在断电时或甚至在暂时的省电空闲运行模式下放电。如果不采用特殊的预防措施来制止,则会造成来自扬声器或耳机的恼人的卡哒声和砰砰声。这通常需要额外的芯片外的开关晶体管和阻抗(由于它们需连接至远离该芯片的电容器的端子)。即使输出负载具有较高的阻抗且耦合电容器较小,例如对于驱动10k欧姆负载的线性输出,也能观测到该这些效应,且需要额外的元件来消除这些影响。 
相应地,要求使用一放大器提供对零电位(0V)平衡的驱动输出信号,以避免对空间的要求和额外元件的费用。换句话说,将要求使用一放大器,其静态输出电压为零电位,使得在驱动接地负载时不需要耦合电容器。 
一种尝试解决该问题的办法公开于US2003/0138112A1中。该文件公开了一种耳机驱动器系统,其包括DC电压至电压转换器,设置来从正电源电压产生负电源电压。该系统包括耳机驱动放大器,其被提供有正电源电压和所产生的负电源电压,并被设置用于产生偏移地电位(0V)的输出信号。因此尽管该系统在单电压源的作用下操作,但不需要在放大器和耳机输入之间设置大的耦合电容。在所述的实施例中,该电压-电压转换器包括一电荷泵,以及相对较小(即1-10uF)的外部电容器。然而,尽管避免了使用大的耦合电容,引用该电压-电压转换器明显地增加了所述放大器系统的复杂度,由此增加了成本。 
为降低系统成本,期望使用一低成本的负电源发生器,例如形式简单的不可调节的电容器电荷泵。对于某些应用,期望在同一芯片上引入至少部分负电源发生电路以及其他的放大元件。然而,低成本、简单的负电源发生器所具有的问题是它们往往会具有噪声(良好的输出电压调节,例如使用线性后调节器,通常要求具有大的其自身的去耦罩,必然会提高复杂度和成本)。大多数调节器,尤其是低信息遗失的调节器,其所具有的带宽低于音频,因此,如果不在输入和输出上使用大的去耦合电容器,其难以抑制电源波动的音频成份,或难以在音频处提供好的负载调节。例如,工作于一干净的正电源和一带噪声的负电源的耳机放大器的操作可能导致在产生的输出信号上出现无法接受的高电平的噪声,除非采取特殊的预防措施在音频或以上频率处给予该放大器高的电源抑制。 
不管该负电源是否是从该正电源产生的,或者是否是由一独立源提供的,一放大器与一单个芯片上其他电路的集成带来了进一步的问题,其中所述放大器在双(即正和负)电源的作用下操作。人们意欲与放大器集成使用的(用于处理数字和模拟信号)的电路通常被设计为在一单个正电源和接地之间操作。显然,必须为兼容性,即为双电源操作修改已存在的电路结构并不是所期望的。 
逐渐地,且尤其是作为数字音频系统发展的结果,正变得期望将放大器与其他数字和音频信号处理电路嵌入在同一硅基底上。使用比过去典型的应用更小的几何工艺来最划算地实现此集成电路。期望的是使用所提供的特征尺寸通常为0.35um,0.25um或甚至更小的技术来实现这些电路。在这些技术中,电源电压典型地被限制为3.3V或2.5V。互补MOS(CMOS)在一单个硅晶片上联合使用PMOS和NMOS技术,与例如BiCMOS或引入附加装置结构用于高电压输出的任何专门处理相比,其或许是当前技术中最划算的。期望提供一种放大器,其与其他电路在一CMOS芯片上集成,或至少在具有少量附加制造步骤的CMOS工艺中制造。然而,CMOS芯片传统上被按排用于单电源操作。该P型基底被连接至地,因此,没有N型区域(例如,NMOS源极或漏极)可被偏置为大于低于接地的二极管的压降。 
此外,该CMOS装置的电源电压限制与用于模拟音频信号接口的现用标准冲突。例如,传统的,要求音频“线路电平”信号为2Vrms(峰峰值大约5.6V,其大于均值3.3V)。由于要不断地提高性能的压力和为上述固定或增加的外部干扰提供净空的需要,这些要求看来不会降低。 
由此,需要音频输出级与现有的单电源单元库集成以使用0.25um左右的标准工艺CMOS实现音频SoCs(其代表“系统级芯片”,即具有约1M门的大芯片,例如在一个或少数芯片上实现DVD播放机或移动电话),使得输出在芯片上呈负值摆动,如果不实现大芯片,则主要为单电源芯片,且根据应用,输出电压高达2V rms o/ps。 
本发明的实施例旨在提供放大器,所述放大器至少部分克服了与现有技术相关的上述问题中的一个或多个。 
发明内容
根据本发明的第一实施方式,提供一种放大器,其包括连接至输出级的输入级,该输入级连接在正电源轨和接地端之间,且具有一被设置 为接收输入信号的输入端,所述输出级连接在正电源轨和负电源轨之间且具有一输出端,所述输出级适于在所述输出端根据所接收的输入信号产生一输出信号,且进一步适于使得,在使用中,在所述输出端的静态电压为处于正电源轨上的电压和负电源轨上的电压之间的一选择值。 
将会理解,术语“电源轨”用于广义的概念,简单地表示放大器在使用时,连接到电源电压的放大器电路的某些部件、组件、节点、区域或若干区域。类似地,“接地轨”是指在使用中处于零电位的电路的某些部件、组件、节点、区域或若干区域。 
在某些实施例中,输入级可以被直接连接至输出级。在另外一些实施例中,例如,可借助于附加的电路级来间接地连接该输入和输出级。 
本发明的第一方面提供在负电源上的任何噪声都不会直接被连接到输入级的优势,所述输入级自单个正电源轨供电。即使负电源带有噪声,其通常被从输入级隔离,其相应地不需要被设置为是特别不敏感的。该放大器将典型地采用到输入级的负反馈,且其通过前向增益有效地削弱任何注入进输出级(例如从一有噪声的负电源)的噪声。 
对于某些应用,其可能要求将静态输出电压设定在某一非零电平。然而,对于某些应用,尤其对于驱动接地负载,如扬声器和耳机,输出级最好被排列为使得在静态条件下,输出端处于(或接近于)零电位(即零伏)。在实际的电路中,可将输出端静态电压设在零电位至+/-几(<<10V)毫伏以内。这通常受到晶体管偏置电压的限制。 
优选的,该放大器还被调整为使得在所述输入的静态电压基本上为零电位。 
便利地,该输入和输出级被连接至一公共正电源轨。 
在某些优选实施例中,该输入和输出极被集成在一公共基底上,该公共基底被连接至接地轨。 
在某些实施例中,该输出级优选包括至少一个NMOS装置,NMOS装置包括在p阱排列的多个n+源极和漏极区域(即,嵌入或扩散),一n 阱将所述p阱与公共p基底隔离开,且该隔离的p阱连接至该负电源轨。由此,NMOS输出被设置成三阱结构。通过以此种方式将p阱(负电源连接于该p阱)与p型基底隔离开来,在双电源的作用下操作的放大器级可以与输入级以及实际上其他的电路集成在同一芯片上,而不要求对该输入级或其他电路的任何改变。它们仍然位于基底接地的芯片上,且使用现有的以及标准的电路设计技术以CMOS工艺来实现。 
在优选实施例中,所述输出级可包括彼此串联连接的第一和第二输出晶体管,其位于正和负电源轨之间,该输出级的输出端连接到位于该第一和第二输出晶体管之间的节点上。 
更优选的,该放大器进一步包括分别与第一和第二输出晶体管以共发共基结构连接的第三和第四输出晶体管。该共发共基结构的优势在于,它保护晶体管不受到过度的电压应力。 
该放大器进一步包括在第一输出晶体管的栅极和第二输出晶体管的栅极之间彼此并行连接的第一和第二驱动晶体管。类似地,该放大器进一步包括分别与第一和第二驱动晶体管以共发共基结构连接的第三和第四驱动晶体管。 
在某些实施例中,该输入级可包括折叠的共发共基结构的晶体管。这可以直接驱动输出级,尽管在优选实施例中,可使用一中间级来提高环路增益,降低失真并改进音频电源抑制。 
优选地,该输入和输出级以CMOS工艺在一公共基底上实现。 
优选地,该放大器可进一步包括连接在输入级和输出级之间的第三级,该第三级连接在相同的正电源和接地轨上作为输入级。 
该第三级(中间级)最好是非反相的,且可包含一驱动PMOS镜象结构的共源级。其可进一步包括驱动该共源级的源级跟随器级。 
优选的,该输入、输出和第三级集成在一公共基底上。 
在一优选实施方式中,进一步包括一数字-模拟转换器(DAC),其被设置为接收一数字信号并输出一相应的模拟信号至该输入级的输入端。 该输入和输出级以及DAC可集成在一公共基底上。 
优选的,该放大器进一步包括产生装置,用于从一正电源电压产生一负电源电压,该产生装置与输出级连接至同一正电源轨,且该负电源轨连接至该产生装置的输出。 
由此,从一单个正电源,该放大器可被设置为产生一输出信号,其中心在0伏,可在正负之间摆动。该信号可被提供至其他接地的设备,且实际上,可被用于驱动接地的负载,如扬声器和耳机。 
优选的,该产生装置被设置为产生通用的负电源电压,大小等于正电源轨上的正电压。 
有优势地,该产生装置可包括一电荷泵,其便利地可以是一不可调的电容电荷泵。尽管这样产生出来的负电源带噪声,可以使用三阱结构来隔离在CMOS实现中施加该电压的元件,以降低该输入级上噪声的影响。 
该产生装置(例如,电荷泵)可以是至少部分地与输入和输出级集成在一公共基底上。 
在使用中,该放大器将进一步包括连接至正电源轨的电源。 
根据本发明的第二个方面,提供一种驱动接地的负载的方法,该方法包括以下步骤:将一输入信号提供给放大器输入级的输入端,所述输入级连接至一输出级;连接正电源电压和接地之间的输入级;连接正电源电压和负电源电压之间的输出级以在该输出级的输出端提供一基本上为0伏的静态输出电压;使用输出级在所述输出端产生一输出信号,所述输出信号依赖于输入信号;且将负载连接到输出端以使用输出信号驱动该负载。 
优选地,该方法进一步包括以下步骤:在一公共基底上形成放大器输入级和输出级,且将该公共基底接地。所述形成输出级的步骤优选包括形成至少一个NMOS装置的步骤,该NMOS装置包括设置在p阱中的多个n+源极和漏极区域,一n阱将所述p阱与公共基底隔离,以及将隔 离的p阱连接至负电源电压的步骤。 
优选地,该方法进一步包括从正电源电压产生负电源电压的步骤。 
附图说明
以下将结合附图通过例子来描述本发明的实施例,仅通过例子来描述并非用于限制的目的。附图中: 
图1为实施本发明的两级放大器的示意性表示; 
图2为实施本发明的三级放大器的示意图; 
图3为适用于本发明的实施例的电平转换器电路的图; 
图4为传统的CMOS工艺的阱结构的图; 
图5为适用于本发明的实施例的三阱CMOS结构的示图; 
图6为用于本发明的实施例的输出级的示图; 
图7为采用共发共基晶体管的优选输出级的示图; 
图8为用于本发明的实施例的输入级的示图; 
图9为适用于本发明实施例的第二、中间级放大器级的示图; 
图10为实施本发明的放大器的示图,其中包含自图7、8和9的电路级; 
图11是实施本发明的放大器系统的高度示意性的图示;以及 
图12是适合用于本发明的实施例的电荷泵的示意图。 
具体实施方式
现在参见图1,其以高度示意的形式示出了实施本发明的放大器。所述放大器是一两级放大器,具有连接到输出级3的输入级1。所述输入级1配置有输入端11,用于接收要放大的输入信号Vin。自输入级放大的信号被提供到输出级,所述输出级转而在其输出端31产生对应的输出信号Vout。所述输入级是一个单电源级,即其电源连接是在正电源轨4(其在使用中被施加了一个正的供电电位)以及接地轨5之间。与之相反,输 出级接收双供电-其被连接在正电源轨4和负电源轨6之间。在此例子中,在使用中,施加到正电源轨和负电源轨上的电压的幅度相等,但是符号相反(分别是+Vs和-Vs)。通过在此双极性供电下的操作,所述输出级能够产生一个在零电压(即静态输出电压处于零电压)的任一侧摆动的输出信号。该输出31被连接到负载L的一侧,所述负载在此情况下是一个耳机扬声器。该扬声器的另一侧接地。因此,该放大器能够以该输出信号来驱动该扬声器,但是在静态的条件下,由于输出电压是零电压,没有电流被驱动通过该负载。所述情况是在所述输出端与负载之间没有任何耦合电容的情况下而获得的。 
图2示出了实施本发明的另一放大器的简化的总貌。其为三级运算放大器。有一输入级1,一第二级2,以及第三级,输出级3。在此例中所述第三级是AB类输出级。其包括一对共发共基的PMOS装置P1和P1C,以及一对共发共基的NMOS装置N1和N1C,所述四个装置在正供电轨和负供电轨4和6之间串联连接。所述共发共基配置允许输出级提供高电压摆动,同时不会使单个的装置承担过高的电压应力。换句话说,所述装置的串联共发共基配置降低了每个晶体管的Vds(漏极-源极)以允许从低电压MOS技术实现高电压输出。在装置P1和N1的栅级之间并联连接配置的是驱动晶体管N2和P2,其分别通过电流源IS1和IS2连接到正轨和负轨4和6。 
电容C23和C12分别连接在输出级输出与第二和第三级之间的节点之间,以及输出级输出与第一和第三级之间的节点之间,提供具有嵌套的密勒补偿的三级运算放大器。 
因此,与常规的运算放大器不同,只有图2中示出的放大器的输出级由负电压驱动。所述输入级只使用正电压和地电压。负电压可能带有噪声,尤其是在一未调节的电容器电荷泵提供的情况下。此配置将带有噪声的负电源远离敏感的输入级。另外,该放大器的负反馈通过至该点的前向增益提供而削弱进入到后续级中的任何噪声。并且在功率消耗方 面也有一个小的节省。需要注意的是未调节的电荷泵电源可以有0.5V的负载调节:如果未被充分削减,结果对负电源的0.5V的音频调制可能成为信道间串音(期望为100dB)甚至失真的重要来源。由于前两级的增益,可以对施加到输出级的电源噪声进行充分的闭环抑制;但是如果此有噪声的负电源用在输入级中,则此电源噪声抑制实际上是不可能实现的。 
这限制了运算放大器输入电压(即在图2中的R1和R2的连接处的电压)不能显著地低于地电压。但是,图2中的运算放大器是要被集成的,因此可以指定仅用于反相配置中,例如如图所示通过R2的电阻反馈,于是输入共模将接地。图2中所示的配置,其输入和输出电压接地,也避免了电阻的不匹配对输出失调电压造成影响。但是,(在图中的C1和R1连接处)的所述电阻输入电压将会低于地电压。为了使Vout>0V,需要此电阻输入电压<0V。典型地,用户将使用如所示的片外交流耦合电容器C1。(R1和R2将典型地是10千欧姆-50千欧姆),于是C1较小,<1uF以获得-3dB,即所说的20Hz的频率>。C1也防止了从电路逆流(例如DAC)的失调传播带来附加的输出失调电压。 
图2的电路也可以与偏置到不等于接地的某电压的非反相运算放大器输入一起使用,如图3中的例子所示。这在驱动一个常规的扬声器或者耳机时是不期望的,但是对于其他的负载可能是适合的,例如要求非零静态偏置电压的传感器或者变频器或者耗尽模式的场效应晶体管(FET),但是也需要其被调制为低于地电压。 
图2的放大器电路可以使用CMOS技术集成在一公共P基底(硅片)上。常规地,整个集成电路的P基底将被偏置到最负的电压,即负的电源电压6。 
但是,经由放大器NMOS装置(N1和N1C)的基底连接,既通过装置寄生电容并且直接通过在这些NMOS上调节体效应,这将直接把负电源噪声输入到放大器输入级中。另外,其意味着带噪声的负电压电源 将分布在整个芯片上,例如分配到敏感的低电平麦克风或者磁的留声机输入,途径还是通过寄生电容或者通过各自的预放大器的NMOS的基底电导。另外,几乎所有的系统输入和输出(I/O)将是介于接地和+Vs之间的逻辑或者模拟信号。由于施加到所有的成员NMOS晶体管上的至少Vs-的体效应,正常的数字库单元的性能将会下降,此向后的偏置也将使最大NMOS漏极-体电压增加到等于+Vs--(-Vs),其有可能导致装置可靠性问题。另外,正常的单元库输入ESD保护以及防闭锁预防措施将需要改进以工作。例如,在输入垫上通常有N阱(nwell)基底二极管,用于提供接地的防闭锁二极管以及接地的静电放电(ESD)路径:如果连接到一负电源,特别是一个不确切的电荷泵电源时,这些将是效率比较低的。 
所以,将基底偏置到一个更干净的接地电压是比较有优势的。 
在一个正常的CMOS处理中,将P基底连接到地,而将NMOS源极或漏极连接到负电压将正向偏压这些扩散。这可以从图4中看出。 
但是某些处理,特别是在0.25um或者之下的某些处理,按标准包括一个标准的“三阱”或者深层阱。这些被最早引入以优化高性能存储芯片中不同电路块的基底偏置,并且后来被用于射频(r.f.)隔离并且也被用于电荷泵(如US6,359,814中所描述)。此三阱配置也可以用于将一放大器NMOS的P基底从连接到下层的基底的电源隔离开。此配置用于本发明的特定实施例中,并且被表示在图5中。所述NMOS漏极和源极位于一P阱中,所述P阱连接到负电源电压。此P阱本身被一个深层n阱(连接到正电源轨)从下层的P基底(为地电位)垂直地隔离开。横向隔离是通过在此深的n阱周围环绕一圈正常的n阱来获得的。因此,尽管NMOS源极和漏极可以被提供负电压(以允许输出级的输出电压相对于地电压向负向摆动),这样作不会造成任何n-p结的正向偏压,原因是NMOS体连接现在被连接到最大的负电源电压。 
将会理解此方案(具有一个接地基底的三阱CMOS实现)的一个限 制是PMOS n阱必须不被连接到负电压,否则阱基底接将正向偏压,箝位在一低于地电压的二极管电压并且触发寄生的npn晶体管,可能会引起闭锁。运算放大器结构必须被选择为不使PMOS n阱低于0V。这不是一个主要约束,但是需要专门的电路设计以及需要可能的设计预防措施。 
利用本发明所实现的运算放大器的输出级如图6中所示。此输出结构是从D.M Monticelli,“A quad CMOS single-supply op amp with rail-to-railoutput swing”,IEEE J Solid-State Circuits,SC-21卷,1026-1034页,1986年12月导出的。当Iin=Isink时,驱动晶体管NMOS N2以及PMOS P2被偏置以提供基本相等的电流,于是输出晶体管N1和P1承载小的驻流。作为源流入该电路的Iin增加,节点GP1(P1栅级)将上升,将P1关掉,并且使更多的电流通过P2,其随后导致节点GN1(N1栅级)上升,增加对N1的驱动。反之源电流Iin减少将具有相反的效果。但是在此电路中,输出晶体管N1和P1,以及驱动晶体管N2和P2可能会承受跨越其源极-漏极的所有的供电电压。 
对于通常所说的3.3V处理上的+/-3.3V的输出电源,这样会造成击穿,或者至少是很差的可靠性,原因在于此设计上使用的3.3V晶体管的热载波应力。需要注意的是3.3V晶体管可用做标准选择,用于0.25V处理上的输出装置,经常被要以能够提供与系统中其他电路兼容的3.3V逻辑输出电平。 
为了防止这种情况,必须添加串联的共发共基放大器装置,如图7的输出电路中所表示。如果N1C的栅级电压被偏置到大约等于高于零电压的NMOS开启电压Vt的电压,这将确保即使在节点31向+Vs上升时Vds(N1)<大约3.3V并且Vds(N1C)<大约3.3V。注意N1C的基底被连接到N1C源极,以便即使在节点31向+Vs上升时也能保持漏极-体电压也小于大约3.3V。依靠详细的热载波降级以及处理的二极管击穿特性,这些偏置电压可以被轻微偏置以使应力分布最佳化,例如,使用基于在仿真中预测的基底电流的热载波降级预测。 
为了考虑偏置设计,以及好的现有热载波降级特性化,以及可能的另外的串联共发共基装置,有可能在即使是+/-3.3V应用中使用所说的标准的2.5V装置,原因是操作的最大电压典型地由热载波降级来设定,(即由漏极-源极电压)而不是由二极管可靠性(栅极-源极或者栅极-漏极电压)或者结击穿(源极-体或者漏极-体电压)来设定。 
注意,对于N1C,NMOS晶体管的基底可以被连接到它们的源极,或者其他适当的电压,这就增加了另一自由度以便甚至是在该电路的“单电源”区域进行设计,例如用于消除放大器输入级上的体效应,以提高共模输入范围。 
共发共基放大器装置N2C,P1C,P2C被以类似的方式偏置和操作。 
如上面所提到的,由于基底被接地,如果n阱区域低于地电压,该n阱基底二极管将正向偏压并且通过电流。这将导致再生闭锁动作,以及其他的附近的n扩散。众所周知的设计技术包括与电源捆绑的防护环,能够降低上述危险,但是占用相当的死区。在任何情况下,这对于直接连接到输出节点,例如P1C的装置都是必要的。但是这些通常对于如P2C那样的装置则不是必要的。为了防止P2C的阱被正向偏置,即使是在存在基底泄露或者寄生电流的情况下,可以将一低值(例如5uA)电流源(没有示出)连接到该阱以及P2C的源极。 
另外,节点GN1(N1的栅极)在N1需要降低高电流时可以被拉到接近Vdd,例如快速负向回转时,通常是NMOS的过度的应力电流降低Isink。可以如上所述增加共发共基的放大器装置以保护Isink,但是优选地此节点被MOS二极管堆栈MDS所箝制,使其不会上升到超过-Vs,6之上的例如3.3V,这具有也提供基本的短路输出电流限制的优点。 
图8示出了适合用于本发明的实施例的输入级1。所述输入级是常规的折叠共发共基放大器。在特定的实施例中,此输入级可以用于直接驱动一输出级。但是,为了获取足够的环路增益以减少失真并且提高音频电源抑制,优选三级拓扑结构。 
实施本发明的三级放大器使用了如图9中所示的第二级2。所述第二级是一个非反相级,以实现简单嵌套的密勒补偿,并且不得不驱动到输出级的高端。其包括驱动一PMOS镜23的共源级22。为了优化第一级净空高度,包括了一输入源极-跟随器级21。 
图10示出了实施本发明的三级放大器,其包括耦合在一起的图8,9和7中的级。所述放大器级被集成在一公共基底上。在所述三级的众多的MOS装置中,只有输出装置MN16,NMOS箝位晶体管MN44以及在第三、输出级中实现Is2的NMOS MN8,MN20被直接提供一个负的电源电压,而输出共发共基放大器装置MN9,箝位晶体管MN45,MN46,以及驱动晶体管MN7,MN10以及MN29也间接使用此电源。负电源噪声耦合到输出的几率与传统的结构相比被显著地减小了。这些NMOS装置使用三阱结构来实施,所以底层P基底可以被设置在地电压。 
另外的共发共基放大器装置MP30,MP8,MN29已经被加入到输出级中以便在即使是在瞬间过载条件下也能降低装置上的电压应力,如在常规操作仿真中能够观察到的那样。分压器电流源MP14确保了PMOSMP25下面的n阱永远不会降低到基底地电压之下。 
使用标准电路技术将标记了16P6PU的输入节点偏置到一适当的恒定的偏置电压,用来限制其所附加的PMOS的偏置电流。为了简化,示意性的图10以及其他图不包括所有必要的MOS栅偏置电路:使用标准的电路技术将没有示出有d.c路径到达的MOS栅级偏置到适当的同定偏置电压。 
图10的电路可以象其他电路一样在同一基底上实现,所述其他电路例如用于提供输入电压的一数字模拟转换器(DAC),以及用于提供如数字滤波那样的效果的前数字信号处理(DSP)。需要注意的是此放大器的输入级也可以使其NMOS隔离在一个三阱结构中,以提高对任何数字基底噪声的隔离。当然,该干扰数字电路也可以在三阱中被隔离。这将会通过该基底减少从数字NMOS电路到放大器NMOS电路的直接耦合。但 是还是会有一些来自数字电源电压(Vdd)的电容性耦合,所述数字电源电压(Vdd)用于通过该基底偏置在数字PMOS电路下的这些深层阱和n阱,并且随后被模拟NMOS下的深阱或者模拟PMOS下的n阱所拾取,所以对电源阻抗以及去耦合的关注还是必要的。 
如上面所提到的,所述负电源可以在该系统中的其他地方来提供,特别是如果已经被该系统的一些其他的部分所需要的情况下,或者可以由一电容性或者电感性的电荷泵主要在芯片上来产生。即使使用这样一个有噪声的负电源,图10的电路仍能提供好的负电源抑制。 
因此将会理解,图10中所示的实施例采用了一个电路拓扑结构,该结构使承受负电压的晶体管的数量最小,所述电路拓扑结构使用一个三阱CMOS配置来隔离该负区域,使用共发共基的放大器以保护晶体管不受到过度的电压应力,在一拓扑结构中,其进一步提供高的开环增益以允许反馈,从而提高负电源上的噪声抑制。 
图11示出了实施本发明的另一个放大器系统。此系统包括一个输入级1,其在正电源轨4和地5之间被供电,连接到自一正轨道4和一负轨道6供电的输出级。该负轨道提供有由电荷泵电路CP产生的负电压,所述电荷泵自身连接到正电源轨4和地轨5之间。因此,CP电路从一正电源电压产生一负电源电压。在该两级放大器之前是一个数字信号处理器以及一个DAC。电源连接到正轨道和地的所述DSP接收一个参考地的数字输入信号110,对其进行处理并且向该DAC提供一经过处理的数字信号。所述DAC,在正轨道和接地的作用下进行操作,响应于来自所述DSP的数字信号,向第一级输入11传递一模拟输入信号,。该输出级3的输出终端31被连接到一个接地的负载。 
图12示出了一适合用于本发明的实施例的简单电荷泵CP的简化图,从一正电源CPVDD4来操作并且产生一个负的电源VNEG6,同时具有对地的连接CPGND和GND。这里CPGND是一个芯片内的连接,通过结合片、结合线以及插件引脚(package pin)连接到电路板地GND。在 操作中,PMOS PHI和PLO在半个时钟周期中接通以给Cbucket充电。在所述半个时钟周期的结尾PHI和PLO截止,Cbucket由其上的电压V(CPVDD)充电。随后,NMOS NHI和NLO被接通。由于端子CPCAP+现在被接地,Cbucket的另一端被压低,通过晶体管NLO与充电电容器Cres分享电荷。在第二个半时钟周期结束时,NHI和NLO被关闭,所述循环被重复。 
如果没有从Cres获取负载电流,则VNEG的电压将会被抽走而下降,直到电压V(VNEG)=-(V(CPVDD)。如果从CPVDD抽取负载电流,那么在每个周期,Cres两端的电压都会下降,并且由于Cbucket与Cres之间的电荷共享,Cbucket将只是部分地对其进行重新充电,因此,V(VNEG)将不会完全达到-(V(CPVDD))。 
在适当的电压水平的时钟典型地是使用本领域技术人员所知的技术由一如图所示的本地时钟发生器产生的。 
需要注意的是在特定的实施例中,正和负的电源电压在幅度上可能是基本相等的。但是在其他的实施例中,所述电源不需要被精确地平衡。例如,在特定的实施例中,可以有+3.3V和-2.5V的电源。这就允许电荷泵或者其他的调节器或者使用的其他方便的电压源中的损耗。 
关于输入和输出级都实施在一公共基底上的实施例,一个未来的技术可能性是将深的氧化物沟道用于横向的隔离,但是还是经常需要n阱以向下向深阱提供偏置电压。其他的可能性是技术上采用完整的电介质隔离,其中,深阱和侧阱被绝缘体(氧化物)代替,并且采用例如绝缘体上硅(silicon-on-insulator)技术,其中P阱将成为例如蓝宝石或者氧化硅基底顶部上的岛屿。但是所有这些技术本质上都比使用n阱的简单结绝缘要昂贵,因此,至少除非技术退步太多使这些隔离结构成为必要的和标准的,所述简单结绝缘代表了优选的实施方式。 
总体上根据上面的讲解,熟悉本专业的技术人员将会理解各种实施例和相关于它们而描述的特定特征可以与其他的实施例或者特别描述的 特征自由组合。熟悉本专业的技术人员也将认识到在不脱离附加的权利要求的范围的情况下可以进行各种改变和修改。 

Claims (24)

1.一种放大器,包括连接至输出级的输入级,所述输入级连接在正电源轨和接地轨之间,且具有一被设置为接收输入信号的输入端,所述输出级连接在正电源轨和负电源轨之间且具有一输出端,该输出级适于在所述输出端根据接收的输入信号产生一输出信号,且进一步适于使得,在使用中,在所述输出端的静态电压为处于正电源轨上的电压和负电源轨上的电压之间的一选择值;且其中所述输入级和输出级集成在公共基底上,所述公共基底连接至所述接地轨,
其中,所述输出级包括至少一个NMOS装置,所述NMOS装置包括设置在p阱中的多个n+源极和漏极区域,一n阱将所述p阱与公共基底隔离开,且所述被隔离的p阱连接至该负电源轨。
2.根据权利要求1的放大器,其中,所述输出级被设置为使得在输出端的静态电压基本为零电位。
3.根据权利要求1或2的放大器,其还适于使得在所述输入端的静态电压基本为零电位。
4.根据权利要求1的放大器,其中,所述输入和输出级被连接至一公共正电源轨。
5.根据权利要求1或2的放大器,其中,所述输出级包括彼此串联连接的第一和第二输出晶体管,其位于正电源轨和负电源轨之间,所述输出级的输出由所述第一和第二输出晶体管之间的节点来提供。
6.根据权利要求5的放大器,进一步包括分别与所述第一和第二输出晶体管以共发共基结构连接的第三和第四输出晶体管。
7.根据权利要求5的放大器,进一步包括在第一输出晶体管的栅极和第二输出晶体管的栅极之间并联的第一和第二驱动晶体管。
8.根据权利要求7的放大器,进一步包括分别与第一和第二驱动晶体管以共发共基结构连接的第三和第四驱动晶体管。
9.根据权利要求1或2的放大器,其中,所述输入级包括折叠的共发共基结构的晶体管。
10.根据权利要求1或2的放大器,其中,所述输入和输出级以CMOS工艺实现。
11.根据权利要求1或2的放大器,进一步包括连接在输入级和输出级之间的第三级,且所述第三级连接在正电源轨和接地轨之间,其间连接有输入级。
12.根据权利要求11的放大器,其中,所述第三级是非反相的。
13.根据权利要求11的放大器,其中,所述第三级可包含一驱动PMOS镜象结构的共源级。
14.根据权利要求13的放大器,其中,所述第三级包括驱动该共源级的源级跟随器级。
15.根据权利要求11的放大器,其中,所述第三级与所述输入级和输出级集成在一公共基底上。
16.根据权利要求1或2的放大器,进一步包括一数字至模拟转换器(DAC),其被设置为接收一数字信号并输出一相应的模拟信号至该输入级的输入。
17.根据权利要求16的放大器,其中,所述DAC与所述输入级和输出级集成在一公共基底上。
18.根据权利要求1或2的放大器,进一步包括产生装置,用于自一正电源电压产生一负电源电压,所述产生装置与输出级连接至同一正电源轨,且所述负电源轨被连接至该产生装置的输出。
19.根据权利要求18的放大器,其中,所述产生装置被设置为产生一负电源电压,其大小等于正电源轨上的正电压。
20.根据权利要求18的放大器,其中,所述产生装置包括一电荷泵。
21.根据权利要求18的放大器,其中,所述产生装置与输入和输出级集成在一公共基底上。
22.根据权利要求1或2的放大器,进一步包括连接至正电源轨的电源。
23.一种驱动接地负载的方法,所述方法包括以下步骤:将一输入信号提供给放大器输入级的输入端,所述输入级连接至一输出级;将该输入级和输出级形成在公共基底上;将该公共基底接地;将该输入级连接在正电源电压和接地之间;将该输出级连接在正电源电压和负电源电压之间以在该输出级的输出端提供一基本上为0伏的静态输出电压;使用输出级在所述输出端产生一输出信号,所述输出信号取决于输入信号;且将负载连接到输出端以使用输出信号驱动该负载,
其中,所述形成输出级的步骤包括形成至少一个NMOS装置的步骤,所述NMOS装置包括设置在p阱中的多个n+源极和漏极区域,一n阱将所述p阱与公共基底隔离,以及将隔离的p阱连接至负电源电压的步骤。
24.根据权利要求23所述的方法,进一步包括自正电源电压产生负电源电压的步骤。
CN2004100590861A 2003-11-26 2004-07-22 放大器 Active CN1622450B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0327539A GB2408644B (en) 2003-11-26 2003-11-26 Amplifier
GB0327539.3 2003-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2011103593486A Division CN102412796A (zh) 2003-11-26 2004-07-22 放大器

Publications (2)

Publication Number Publication Date
CN1622450A CN1622450A (zh) 2005-06-01
CN1622450B true CN1622450B (zh) 2012-01-04

Family

ID=29797879

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2004100590861A Active CN1622450B (zh) 2003-11-26 2004-07-22 放大器
CN2011103593486A Pending CN102412796A (zh) 2003-11-26 2004-07-22 放大器

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2011103593486A Pending CN102412796A (zh) 2003-11-26 2004-07-22 放大器

Country Status (4)

Country Link
US (1) US7030699B2 (zh)
CN (2) CN1622450B (zh)
GB (1) GB2408644B (zh)
TW (1) TWI333323B (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759740B1 (en) * 2004-03-23 2010-07-20 Masleid Robert P Deep well regions for routing body-bias voltage to mosfets in surface well regions having separation wells of p-type between the segmented deep n wells
US7027278B1 (en) * 2004-07-22 2006-04-11 National Semiconductor Corporation Stacked high-voltage ESD protection clamp with triggering voltage circuit control
KR100691349B1 (ko) * 2005-07-20 2007-03-12 삼성전자주식회사 멀티 파워 시스템에 사용되는 차동 회로, 출력 버퍼 회로및 반도체 집적 회로
US7358814B2 (en) * 2006-03-27 2008-04-15 Sigmatel, Inc. Differential amplifier and methods for use therewith
GB2446843B (en) 2006-06-30 2011-09-07 Wolfson Microelectronics Plc Amplifier circuit and methods of operation thereof
GB2444984B (en) * 2006-12-22 2011-07-13 Wolfson Microelectronics Plc Charge pump circuit and methods of operation thereof
GB2444988B (en) 2006-12-22 2011-07-20 Wolfson Microelectronics Plc Audio amplifier circuit and electronic apparatus including the same
GB2447426B (en) * 2006-12-22 2011-07-13 Wolfson Microelectronics Plc Charge pump circuit and methods of operation thereof
GB2478457B (en) 2006-12-22 2011-12-07 Wolfson Microelectronics Plc Charge pump circuit and methods of operation thereof
US7932706B2 (en) * 2007-01-10 2011-04-26 Semiconductor Components Industries, Llc Single input dual output voltage power supply and method therefor
US8362838B2 (en) * 2007-01-19 2013-01-29 Cirrus Logic, Inc. Multi-stage amplifier with multiple sets of fixed and variable voltage rails
US8159294B2 (en) * 2007-05-31 2012-04-17 Richtek Technology Corporaton Multi-voltage headphone drive circuit
US8411879B2 (en) * 2007-05-31 2013-04-02 Richtek Technology Corporation Speaker driver circuit driven by positive and negative voltages
US7991172B2 (en) * 2007-05-31 2011-08-02 Richtek Technology Corporation Half-voltage headphone driver circuit
US7612615B1 (en) * 2008-06-12 2009-11-03 Mediatek Inc. Dual supply amplifier
US7777569B2 (en) * 2009-01-21 2010-08-17 Texas Instruments Incorporated Anti-pop method and apparatus for class AB amplifiers
US7777574B1 (en) * 2009-01-23 2010-08-17 Texas Instruments Incorporated Closed loop ramp up for pop and click reduction in an amplifier
FR2950208B1 (fr) * 2009-09-17 2011-10-14 St Microelectronics Grenoble 2 Etage de sortie d'un amplificateur classe a
US9106072B2 (en) * 2012-12-19 2015-08-11 Qualcomm Incorporated Electrostatic discharge protection of amplifier cascode devices
US8901987B1 (en) * 2013-07-11 2014-12-02 Texas Instruments Incorporated Unidirectional output stage with isolated feedback
US9413398B2 (en) 2014-05-27 2016-08-09 Skyworks Solutions, Inc. Circuits and methods related to power detectors for radio-frequency applications
US9548307B2 (en) * 2014-06-30 2017-01-17 Alpha And Omega Semiconductor Incorporated Compact CMOS device isolation
US9361995B1 (en) 2015-01-21 2016-06-07 Silicon Storage Technology, Inc. Flash memory system using complementary voltage supplies
HUE049330T2 (hu) * 2015-03-23 2020-09-28 Siemens Ag Égetõberendezés biztonsági berendezéssel
CN106708149B (zh) 2015-11-18 2018-01-09 扬智科技股份有限公司 缓冲器电路及应用其的电压产生器
KR101675573B1 (ko) * 2016-03-21 2016-11-11 주식회사 이노액시스 레벨 시프터, 디지털 아날로그 변환기, 버퍼 증폭기 및 이를 포함하는 소스 드라이버와 전자 장치
TWI612407B (zh) * 2016-11-04 2018-01-21 矽統科技股份有限公司 感測裝置
TWI657328B (zh) * 2017-11-28 2019-04-21 立積電子股份有限公司 低壓降穩壓器及電源輸出裝置
EP3739327B1 (en) * 2019-05-16 2022-08-31 EM Microelectronic-Marin SA Electrochemical sensor with interface circuit
KR102361021B1 (ko) * 2019-10-18 2022-02-09 (주)다빛센스 전치 증폭장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068623A (en) * 1989-05-23 1991-11-26 Istituto Nazionale Di Fisica Nucleare High-gain amplifier with low noise and low power dissipation, using field effect transistors
US5907762A (en) * 1997-12-04 1999-05-25 Sharp Microelectronics Technology, Inc. Method of manufacture of single transistor ferroelectric memory cell using chemical-mechanical polishing

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7307129A (zh) * 1973-05-22 1974-11-26
JPS5913409A (ja) * 1982-07-14 1984-01-24 Toshiba Corp 電力増幅回路
US5199079A (en) * 1991-05-21 1993-03-30 Thomson Consumer Electronics, Inc. Supply voltage responsive audible transient (POP) suppression arrangement
JPH05347519A (ja) 1991-12-31 1993-12-27 Texas Instr Inc <Ti> 演算増幅器
JP3462579B2 (ja) * 1994-07-26 2003-11-05 三洋電機株式会社 増幅回路
US5907262A (en) * 1996-11-18 1999-05-25 Maxim Integrated Products, Inc. Folded-cascode amplifier stage
JPH1141040A (ja) * 1997-07-23 1999-02-12 Mitsubishi Electric Corp 差動増幅回路および負荷駆動回路
US6396352B1 (en) * 1999-08-27 2002-05-28 Texas Instruments Incorporated CMOS power amplifier for driving low impedance loads
US7061327B2 (en) 2002-01-24 2006-06-13 Maxim Integrated Products, Inc. Single supply headphone driver/charge pump combination

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068623A (en) * 1989-05-23 1991-11-26 Istituto Nazionale Di Fisica Nucleare High-gain amplifier with low noise and low power dissipation, using field effect transistors
US5907762A (en) * 1997-12-04 1999-05-25 Sharp Microelectronics Technology, Inc. Method of manufacture of single transistor ferroelectric memory cell using chemical-mechanical polishing

Also Published As

Publication number Publication date
GB2408644A (en) 2005-06-01
TWI333323B (en) 2010-11-11
CN1622450A (zh) 2005-06-01
GB0327539D0 (en) 2003-12-31
TW200518443A (en) 2005-06-01
US7030699B2 (en) 2006-04-18
GB2408644B (en) 2007-04-25
CN102412796A (zh) 2012-04-11
US20050110574A1 (en) 2005-05-26

Similar Documents

Publication Publication Date Title
CN1622450B (zh) 放大器
Duisters et al. A-90-dB THD rail-to-rail input opamp using a new local charge pump in CMOS
US10506318B2 (en) System and method for signal read-out using source follower feedback
KR101019245B1 (ko) 오디오 앰프용 비대칭 충전 펌프 장치 및 방법
EP2328056A1 (en) Low-dropout linear regulator (LDO), method for providing an LDO and method for operating an LDO
US7859340B2 (en) Metal-oxide-semiconductor circuit designs and methods for operating same
KR101354232B1 (ko) 전력 변환기용 증폭기 시스템
US10637418B2 (en) Stacked power amplifiers using core devices
US9172339B2 (en) Cascode bias of power MOS transistors
Yao et al. A 0.8-V, 8-/spl mu/W, CMOS OTA with 50-dB gain and 1.2-MHz GBW in 18-pF load
US20040075500A1 (en) Buffer circuit and driver IC
CN105262445A (zh) 放大器的输出电路及ab类推挽放大器的输出电路
CN100514433C (zh) 一种驱动电路
US6005439A (en) Unity gain signal amplifier
US6359512B1 (en) Slew rate boost circuitry and method
US7595678B2 (en) Switched-capacitor circuit
US6833760B1 (en) Low power differential amplifier powered by multiple unequal power supply voltages
JPH07193436A (ja) 低い歪の演算増幅器
US9071205B2 (en) Single input class-AB rail-to-rail output stage
CN101651447A (zh) 放大电路
US9071206B2 (en) Anti-glitch system for audio amplifier
US7285992B1 (en) Amplifier with charge-pump generated local supplies
EP0160035A1 (en) IGFET OPERATIONAL AMPLIFIER WITH HIGH EFFICIENCY.
US7113039B2 (en) Gain-boosted opamp with capacitor bridge connection
US6710660B1 (en) Class B power buffer with rail to rail output swing and small deadband

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Edinburgh

Patentee after: Core logic International Ltd.

Address before: Edinburgh

Patentee before: Wolfson Microelectronics Co.,Ltd.

Address after: Edinburgh

Patentee after: Wolfson Microelectronics Co.,Ltd.

Address before: Edinburgh

Patentee before: WOLFSON MICROELECTRONICS PLC

TR01 Transfer of patent right

Effective date of registration: 20160329

Address after: Edinburgh

Patentee after: CIRRUS LOGIC INTERNATIONAL SEMICONDUCTOR Ltd.

Address before: Edinburgh

Patentee before: Core logic International Ltd.