CN1597496A - 从合成气中除去氮、甲烷和氩用低△p净化器 - Google Patents

从合成气中除去氮、甲烷和氩用低△p净化器 Download PDF

Info

Publication number
CN1597496A
CN1597496A CNA2004100712290A CN200410071229A CN1597496A CN 1597496 A CN1597496 A CN 1597496A CN A2004100712290 A CNA2004100712290 A CN A2004100712290A CN 200410071229 A CN200410071229 A CN 200410071229A CN 1597496 A CN1597496 A CN 1597496A
Authority
CN
China
Prior art keywords
logistics
waste fluid
equipment
liquid
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100712290A
Other languages
English (en)
Other versions
CN100519406C (zh
Inventor
A·马尔霍特拉
T·阿梅
B·R·韦尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kellogg Brown and Root LLC
Original Assignee
Kellogg Brown and Root LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kellogg Brown and Root LLC filed Critical Kellogg Brown and Root LLC
Publication of CN1597496A publication Critical patent/CN1597496A/zh
Application granted granted Critical
Publication of CN100519406C publication Critical patent/CN100519406C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0276Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of H2/N2 mixtures, i.e. of ammonia synthesis gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/506Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification at low temperatures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0288Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/046Purification by cryogenic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0866Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • C01B2203/143Three or more reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • C01B2203/147Three or more purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/80Processes or apparatus using separation by rectification using integrated mass and heat exchange, i.e. non-adiabatic rectification in a reflux exchanger or dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/20H2/N2 mixture, i.e. synthesis gas for or purge gas from ammonia synthesis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/30Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/80Retrofitting, revamping or debottlenecking of existing plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

公开了一种由合成气制备氨的方法,该方法用过量空气进行重整,并且除氮时压力损失小。通过来自蒸馏塔的贫氢液流的膨胀提供使合成气冷却的自冷冻以低温富氢。

Description

从合成气中除去氮、甲烷和氩用低ΔP净化器
技术领域
本发明涉及改进制氨用合成气的制备的方法和装置。本发明降低洗氮净化器装置中的压力损失。
背景技术
由烃和空气通过氢/氮合成气体(合成气)制备氨的方法众所周知。典型地,外来合成气组分包括来自空气中的惰性气体和/或烃进料如氩和甲烷。当在合成气制备中使用过量的空气时,存在的氮也超过化学计量比,从而必须从原始(makeup)合成气流中除去氮或从氨合成回路中清除氮以保持所需的氨合成反应器进料的组成。
Grotz的美国专利US 3,422,613公开了一种使用过量空气的合成气制备方法和低温合成气净化方法,其依赖在净化上游的合成气的压降来冷冻。随后,在压缩机中弥补该压降,所述压缩机将合成气的压力升高至氨合成回路的压力。在合成气净化中,由于在上游从组成合成气中除去了惰性气体如氩和甲烷,所以该方法还降低了循环速率或来自氨反应器回路的吹扫气流的流动(flow)。
Mandelik等人的美国专利US 4,568,530提供了一种在氨合成反应器中使用高活性催化剂来合成氨的方法。通过在循环至合成回路压缩机的合成气侧流进行的氢富集过程来去除吹扫气体。总的循环流量(flow)约为组成合成气体积流量的3倍。
Pinto的美国专利US 4,681,745推荐使用空气分离来提供富氧空气,这样重整产生了烃的减少(slip)比其它制氨系统中高的合成气。在回收氨产物后,通过从残留的合成气流中清除来使氨合成中的非反应气体的浓度维持较高。此方法依靠空气分离而除去了前端气体重整反应器,但表面上看来在氨合成之后使更小的吹扫气流的处理成为可能。
Lee等人的美国专利US 5,180,570描述了一种用于合成甲醇和氨的整体处理系统。氨合成部分使用通过低温分馏(fractionation)进行的氮洗涤来净化氨合成气,同时由外部提供冷冻且在该过程中不提供膨胀功率的回收。
Gosnell等人,″New Kellogg Brown & Root AmmoniaProcess,″1999年7月,存在于AIChE Ammonia SafetySymposium,1999年9月,描述了一种氨合成方法,该方法在合成中使用与优化的、用于产生合成气体的设备前端(plant frontend)一体化的低温合成气净化方法与高活性氨催化剂。
发明内容
本发明提供一种净化合成气,例如在制氨过程中出现的合成气的方法。该方法使用低温蒸馏来净化合成气,并使用液体膨胀机由废流体膨胀获得用于蒸馏的冷冻从而从该废流体中回收机械功。此方法降低了合成气流中的压力损失,并且同时,相对于相似的利用除去氮和惰性气体的现有技术氨合成方法,降低了压缩费用和能量。
本发明的方法特别适用于基础设备设计(grassroots plantdesign),优选地,也可以用于改进现有合成气系统从而改善方法性能和经济状况。例如,在改进中,本发明的较低压降可以允许用过量空气重整和从组成合成气中除去氮而对方法进行改进,而不用对合成回路和/或组成气体压缩机进行昂贵的改进或更换。
在一个实施方案中,本发明提供一种净化合成气的方法,包括:(a)将含过量氮的原始合成气流引入到蒸馏塔的进料区中;  (b)用具有功输出(work output)的液体膨胀机(liquid expander)使来自该蒸馏塔的液态塔底流出物流膨胀从而形成冷却的废流体物流;(c)精馏来自该蒸馏塔中进料区的蒸气从而形成氮和惰性气体含量降低的塔顶蒸气流;(d)用冷却的废流体物流以间接热交换的方式来冷却该塔顶蒸气流从而形成部分冷凝的塔顶流出物流和相对热的废流体物流;(e)将部分冷凝的塔顶流出物流分成冷凝物流与氮和惰性气体含量降低的净化的合成气蒸气流;和(f)用该冷凝物流回流蒸馏塔。该方法还可以包括以下步骤:在引入到进料区之前,通过穿过Joule-Thompson(J-T)阀的膨胀来冷却原始合成气流。另外,该方法可以包括以下步骤,用热的废流体物流和净化的合成气蒸气流以交叉换热(cross-exchange)的方式来冷却原始合成气流。在此实施方案中,通过调整进行膨胀的液态塔底流出物流的流量来控制蒸馏塔中的液位。
该方法还可以包括通过重整烃来制备原始合成气,其中重整包括自热重整或用过量空气的二级重整。并且,通过此方法,可以向用于制氨的氨合成回路提供净化的合成气蒸气流。
在另一个实施方案中,本发明提供一种氨合成方法,包括:(a)重整烃以形成合成气从而形成用于氨合成的、含过量氮的原始合成气流,其中重整包括自热重整或用过量空气的二级重整;(b)在交叉换热器(cross-exchanger)中冷却该原始合成气流;(c)使来自该交叉换热器的冷却的原始合成气流膨胀;(d)将该膨胀的原始合成气流引入到蒸馏塔的进料区中;(e)通过液体膨胀机使来自蒸馏塔的液态塔底流出物流膨胀从而形成冷却的废流体物流;(f)精馏来自该蒸馏塔中进料区的蒸气从而形成氮和惰性气体含量降低的塔顶蒸气流;(g)用该冷却的废流体物流以间接热交换的方式来冷却该塔顶蒸气流从而形成部分冷凝的塔顶流出物流和部分变热的废流体物流;(h)将部分冷凝的塔顶流出物流分离成冷凝物流与氮和惰性气体含量降低的净化的合成气蒸气流;(i)用该冷凝物流回流蒸馏塔;(j)加热交叉换热器中的净化的合成气蒸气流;(k)加热交叉换热器中的部分变热的废流体物流;(l)将净化的合成气蒸气流从交叉换热器供应至氨合成回路。
在另一个实施方案中,本发明可以用于改善包括以下步骤的氨合成方法:用过量空气重整烃从而形成原始合成气流;通过蒸馏从该原始合成气流中除去氮和惰性气体,其中由通过膨胀发生机形成的过程流体膨胀(process fluid expansion)来提供冷却,并且其中通过使来自蒸馏塔的底部液体膨胀而冷却的废流体将塔顶流出物流部分冷凝,并向氨合成回路供应经蒸馏的、氮和惰性气体含量降低的合成气。在此实施方案中,对氨合成方法的改进包括:(a)任选地,使穿过蒸馏塔的Joule-Thompson阀上游的原始合成气流膨胀;和(b)通过具有功输出的液体膨胀机使底部液体膨胀。
在另一个实施方案中,本发明提供一种用于净化含过量氮的原始合成气流的净化装置,包括:用于将原始合成气流引入蒸馏塔中进料区的装置;用于使来自蒸馏塔的液态塔底流出物流膨胀从而形成冷却废流体物流的设备;用于精馏来自该蒸馏塔中进料区的蒸气从而形成氮和惰性气体含量降低的塔顶蒸气流的设备;用于通过用冷却的废流体物流以间接热交换的方式来冷却该塔顶蒸气流从而形成部分冷凝的塔顶流出物流和相对热的废流体物流的设备;用于将部分冷凝的塔顶流出物流分成冷凝物流与氮和惰性气体含量降低的净化的合成气蒸气流的设备;和用于用冷凝物流回流蒸馏塔的设备。
在另一个实施方案中,本发明提供一种氨合成方法装置,包括:(a)用于重整烃从而形成合成气的设备,其中该重整设备包括自热或二级重整装置以及用于向该自热或二级重整装置供应过量空气的设备,从而形成用于氨合成的、含过量氮的原始合成气流;(b)用于冷却该原始合成气流的交叉换热器设备;(c)用于使来自该交叉换热器的冷却的原始合成气流膨胀的设备;(d)用于将该膨胀的原始合成气流引入到蒸馏塔的进料区中的设备;(e)用于通过液体膨胀机使来自蒸馏塔的液态塔底流出物流膨胀从而形成冷却的废流体物流的设备;(f)用于精馏来自该蒸馏塔中进料区的蒸气从而形成氮和惰性气体含量降低的塔顶蒸气流的设备;(g)用于用该冷却的废流体物流以间接热交换的方式来冷却该塔顶蒸气流从而形成部分冷凝的塔顶流出物流和部分变热的废流体物流的设备;(h)用于将部分冷凝的塔顶流出物流分成冷凝物流与氮和惰性气体含量降低的净化的合成气蒸气流的设备;(i)用于用该冷凝物流回流蒸馏塔的设备;(j)用于加热交叉换热器中净化的合成气蒸气流的设备;(k)用于加热交叉换热器中部分变热的废流体物流的设备;和(l)用于将净化的合成气蒸气流从交叉换热器供应至氨合成回路的设备。
附图说明
图1是说明现有技术合成气净化方法的流程示意图,该方法采用上游合成气进料来驱动膨胀机并以功的形式抽出合成气能量以实现自冷冻。
图2是本发明一个实施方案方法的流程示意图,该方法使用富氮废流体物流的膨胀在该过程中产生自冷冻。
图3是说明本发明另一个实施方案方法的流程示意图,其中可以使合成气进料或液化的废气通过液体膨胀机膨胀来冷冻。
图4是本发明一个实施方案的方块流程图,该实施方案说明与氨合成方法中用过量空气的二级重整和热交换重整一体化的低压降除氮。
图5是本发明一个实施方案的方块流程图,该实施方案说明与氨合成方法中常规初级蒸气重整和用过量空气的二级重整一体化的低压降除氮。
具体实施方式
参考图1-3,其中相似的流体和元件编号相似,图1描述了现有技术的合成气净化方法PA。合成气进料流10驱动膨胀机12,以功14的形式抽出合成气能量而实现自冷冻。在交叉换热器16、18中,通过与来自蒸馏塔20中的冷产物流进行间接热传递而冷冻原料流10。在交叉换热器16、18之间,原始合成气10在涡轮膨胀机(turboexpander)12中膨胀,冷却该原始合成气10并回收功14。例如,在启动的过程中,可以绕过膨胀机12或通过使用Joule-Thompson(J-T)阀22来弥补。来自交叉换热器18的部分液化原始合成气13进入蒸馏塔20而被进一步冷却,部分冷凝并精馏,产生氮和惰性气体含量降低的净化的合成气流24和贫氢废气流26。如上所述,净化的合成气流24和废气流26流过交叉换热器16、18以冷冻原始合成气进料流10。
废气流26作为塔底流出物流28从蒸馏塔20排出,迅速经过液位控制阀30,并用作与蒸馏塔20一体化的热交换器32中的冷却剂。热交换器32冷却并部分冷凝来自塔20的塔顶蒸气从而获得合成气液体以回流塔20。为了提高于较高压下运转的氨合成反应器(未示出)中的转化率,压缩组成合成气流24。这样,在净化方法PA中,由原始合成气10引起的压降必须通过消耗额外的压缩功率而在下游被弥补。
图2描述了根据本发明的合成气净化方法34的一个实施方案,该实施方案使用液体塔底流出物流28的机械膨胀而在净化方法34中产生自冷冻的主要部分。在图1交叉换热器16、18的位置上使用单个交叉换热器36,尽管交叉换热器36可以包括许多物理阶段(physicalstages)。原始合成气流10通过蒸馏塔20的阀站38上游。阀站38可以包括初级的、用于在正常运转的过程中控制流量的线尺寸阀(line-size valve)和用于调整和/或启动自冷冻的J-T二级阀。然后,原始合成气流10优选以合成气蒸气和液体混合物的形式进入塔20的入口区40。在入口区40中,合成气液体分离并被收集在液体滞留区42中。液体作为塔底流出物流28通过下出口44离开塔20。通过液体膨胀机46使塔底流出物流28膨胀从而使塔底流出物流28自冷冻并回收功48,而功48可用于驱动泵、压缩机、发电机等。当在本文中使用时,″膨胀机”是一种功输出设备,该设备接收液态供应物并生成液态或蒸气流出物,优选蒸气-液体混合流出物。在该流出物流体是液体的情况下,液体膨胀机46可以是水力涡轮机。
旁路J-T阀用于例如在启动时的气相流动或两相流动。优选地,在操作中,塔底流出物流2 8的膨胀是本发明合成气净化方法34中的自冷冻的主要来源,而穿过阀站38处的旁路J-T阀的膨胀是相对次要的来源。然而,该旁路J-T阀可以是启动过程中的重要冷冻来源。
冷冻的废流体物流28从液体膨胀机46进入与塔20一体化的间接热交换区32的冷却剂入口52中。基于合成气分析仪56的反馈,液体膨胀机46的流速控制滞留区42中的液位,还部分调整塔20中的状态。塔20中的状态决定净化的合成气流24的组成,即较多的冷冻降低氮含量,而较少的冷冻增加氮含量。冷冻的废流体物流28通过热交换区32,由冷却剂出口56从塔20排出。在通过热交换区32的过程中,塔底流出物流28冷却并将来自塔20的塔顶蒸气部分冷凝。
合成气蒸气从入口区40向上流经接触区58,与向下流经接触区58的流体接触从而吸收氮并增加蒸气中的氢含量。在接触区58的上端,该蒸气进入直蒸气管(vapor riser)60并流向位于热交换区32上端的蒸气入口区62。该蒸气经过热交换区32的管侧以用废流体物流28部分冷凝,这进一步富集了该蒸气中的低沸点组分。蒸气和冷凝物离开热交换区32,并在分离(knockout)区64中被分离。蒸气作为净化的合成气流24离开塔20,通过合成气出口66排放。冷凝物收集在分离区64下面的并与接触区58连接的液封池68(liquid seal well)中。如上所述,冷凝物从液封池68中溢出而向下流经接触区58至液体滞留区42。
图3描述了合成气净化方法70的另一个实施方案,其中可以根据本发明对图1的方法PA进行改进或更新。增加了一个底部液体膨胀机以通过例如作为能48来回收功从而使塔底流出物流28自冷冻。与图2中一样,也安装旁路J-T阀。得到的改进净化方法70可与图2中本发明的实施方案相比,但如果需要,也可以按原始配置操作。对于低压降操作,绕过原始合成气涡轮膨胀机12,并将阀22设置为全开或任选地绕过(未示出)。
在本发明的一个优选实施方案中,吹扫气体的液态副产物流即塔底流出物流28的膨胀产生净化方法所需的自冷冻的主要部分。这避免了在图1的现有技术配置中引起的合成气的主要压力损失。典型地,在现有技术方法PA中,从合成气进料流10的引入到净化的合成气流24的离开出现约3.1巴的压降。此压降大部分发生在穿过膨胀机12处,其使原始合成气压力降低约1.8-2.0巴。在图2中所示的本发明的实施方案中,可以通过来自塔底流出物流28而非来自原始合成气进料流10的膨胀获得所需自冷冻的主要部分,从而将从合成气原料流10的引入到净化的合成气流24的离开出现的压降限制在约0.75-1.3巴。
参考图4,氨制备方法的实施方案可以包括在商业名称为KRES的已知类型的反应器/换热器(exchemger)104中催化重整含烃100和蒸气102的进料。在二级重整装置108中可以实现使用过量空气106作为氧化剂额外重整含烃100和蒸气102的进料。该方法还可以包括高和/或低温转换(shift conversion)和去除二氧化碳110、甲烷化和干燥112、根据图2或3描述的合成气净化114、压缩116和氨合成118。例如,为了甲烷化和干燥112,将吹扫气流120从氨合成118循环至合成气净化114的上游。循环液流120的质量流速比原始合成气流10的可以相对较小(见图2),例如,为原始合成气流10的约5-25重量%,优选为原始合成气流10的10-20重量%。废气流26可以作为燃料气体排出。
参考图5,制氨方法的另一个实施方案包括在常规的初级重整装置122中催化重整含烃100和蒸气102的进料,随后在常规的二级催化重整装置124中用过量空气106进行额外的重整。转换(shiftconversion)和去除二氧化碳110、甲烷化和干燥112、合成气净化114、压缩116、氨合成118和吹扫气流120循环参考图4的描述。废气流26可以作为初级重整装置122中的燃料燃烧和/或与图4中一样作为燃料气体排出。
图2的净化方法可以在改进能量消耗和基建费用节约的新型装置中使用,或可以用于改进如图1的现有净化方法以减少操作成本和/或增加生产能力。图2的方法还可以用于改进不使用净化和/或过量空气的现有装置。通过将一些重整功能转移给二级重整装置并降低初级重整装置的工作温度,用过量空气对重整进行改进可以提高现有装置的生产能力并提高现有重整装置中管子和/或其它内部构件的寿命。增加除氮步骤也可以使重整操作更灵活(例如,更高的甲烷减少量(methane slip)),并且由于通过除氮降低了惰性气体,从而导致来自氨合成回路中的吹扫或循环较少。使用本发明低ΔP净化方法所带来的氮净化/过量空气改进可以提高通过降低或消除对组成合成气压缩机改进的程度带来的改进,对于较大数量的现有氨装置,这可以使改进在经济上合算。
实施例:将图2中本发明实施方案的净化方法与图1中现有技术的净化方法相比。图1和2的方法都处理原始合成气进料流10以制备净化的合成气流24和废气流26,并且入口和出口物流组成在两种情况下是相同的,如下面的表1所示。
                 表1-净化合成气规格
                             物流组成,摩尔%
气体组分    原始合成气    净化的合成气    废气(26)
            (10)          (24)
氢气        65.8          74.7            6.6
氮气        31.4          24.9            74.2
甲烷        2.2           0.006           16.7
氩气        0.6           0.4             2.5
总计        100.0         100.0           100.0
图2的低ΔP方法用2200吨/天的氨加工装置模拟操作以将其操作温度、压力和流速与作为基本情况的、图1现有技术方法的相比较。结果示于下面的表2中。
                   表2-净化操作条件
                  基础:2200MTPD氨
处理物流,位置         基本情况(图1)       实施例(图2)
原始合成气(10),交叉换热器(20)的入口
温度,℃               4.0                 4.0
压力,kPa              3,479.0             3,479.0
质量流量,千克/小时         142,124        142,124
原始合成气(10),塔(20)的入口
温度,℃                    -172.6         -172.0
压力,kPa                   3,240.0        3,454.0
质量流量,千克/小时         142,124        142,124
合成气(24),来自塔(20)的出口
温度,℃                    -178.6         -178.2
压力,kPa                   3,215.0        3,429.0
质量流量,千克/小时         99,607         99,529
合成气(24),来自交叉换热器
(16、20)的出口
温度,℃                    1.3            2.1
压力,kPa                   3,165.0        3,404.0
质量流量,千克/小时         99,607         99,52 9
底部流体(28),来自塔(20)的出口
温度,℃                    -172.8         -172.2
压力,kPa                   3,240.0        3,454.0
质量流量,千克/小时         42,517         42,596
废流体(26),换热器(32)的入口
温度,℃                    -186.0         -187.6
压力,kPa                   319.0          302.1
质量流量,千克/小时         42,517         42,596
废流体(26),来自交叉换热器
(16、36)的出口
温度,℃                    1.3            2.1
压力,kPa                   256.4          253.3
质量流量,千克/小时         42,517         42,596
表2中的数据表明,在与图1基本情况相比的图2实施例中,流量和温度相似,但在净化处理入口与出口间合成气的压降显著降低。这通常需要为氨合成回路压力提供更少的组成气体压缩。对于图1基本情况和图2实施例,还确定了用于组成合成气压缩、流体膨胀功率输出以及净压缩和膨胀所需的功率。结果示于下面的表3中。
                       表3-功率平衡
                     基础:2200MTPD氨
压缩/膨胀                 基本情况(图1)    实施例(图2)
组成合成气压缩,千瓦      8,310.66         7,453.49
原始合成气膨胀,千瓦      -203.39          --
废流体膨胀,千瓦          --               -120.40
净压缩/膨胀功率,千瓦     8,107.27         7,333.09
正如上面给出的数据所示,图2的净化方法的特征在于合成气压降比图1现有技术方法的低。虽然在图2的实施例中,从废流体的膨胀中回收的功率少于在图1基本情况下合成气进料膨胀的功率,但组成压缩功率的下降更显著。这样,不但合成气压降降低,而且总的功率需求也更少,这可能节约新的氨装置中的投资和生产费用。在现有的无净化器的氨装置的改进中,图2实施例中下降的压降可以使生产能力增加和/或对组成合成气压缩机的改进较小或不对其进行改进。
以上参考只是为了进行说明而提供的非限制实施例描述了本发明。各种改进和变化对本领域普通技术人员来说显而易见,即所有这些变化和改进都在附加的权利要求书的范围和精神内,并应该包括在本发明内。

Claims (19)

1.一种净化合成气的方法,包括:
将含过量氮的原始合成气流引入到蒸馏塔的进料区中;
用具有功输出的液体膨胀机使来自该蒸馏塔的液态塔底流出物流膨胀从而形成冷却的废流体物流;
精馏来自该蒸馏塔中进料区的蒸气从而形成氮和惰性气体含量降低的塔顶蒸气流;
用冷却的废流体物流以间接热交换的方式来冷却该塔顶蒸气流从而形成部分冷凝的塔顶流出物流和相对热的废流体物流;
将部分冷凝的塔顶流出物流分成冷凝物流与氮和惰性气体含量降低的净化的合成气蒸气流;和
用该冷凝物流回流蒸馏塔。
2.权利要求1的方法,还包括在引入到进料区之前,使穿过Joule-Thompson阀的原始合成气流冷却并膨胀。
3.权利要求2的方法,其中该原始合成气流的冷却包括与热的废流体物流和净化的合成气蒸气流交叉换热。
4.权利要求1的方法,其中通过调整液态塔底流出物流膨胀的流量来控制蒸馏塔中的液位。
5.权利要求1的方法,其中来自液体膨胀机的废流体包括混合的蒸气和液体。
6.权利要求5的方法,其中来自冷却塔顶蒸气的热废流体由气相组成。
7.权利要求1的方法,其中该液体膨胀机包括水力涡轮机。
8.权利要求1的方法,还包括通过重整烃来制备原始合成气,其中所述重整包括自热重整或用过量空气的二级重整。
9.权利要求1的方法,还包括向氨合成回路供应净化的合成气蒸气流以形成氨。
10.一种氨合成方法,包括:
重整烃以形成合成气,从而形成用于氨合成的、含过量氮的原始合成气流,其中所述重整包括自热重整或用过量空气的二级重整;
在交叉换热器(cross-exchanger)中冷却该原始合成气流;
使来自该交叉换热器的冷却的原始合成气流膨胀;
将该膨胀的原始合成气流引入到蒸馏塔的进料区中;
通过液体膨胀机使来自蒸馏塔的液态塔底流出物流膨胀从而形成冷却的废流体物流;
精馏来自该蒸馏塔中进料区的蒸气从而形成氮和惰性气体含量降低的塔顶蒸气流;
用该冷却的废流体物流以间接热交换的方式来冷却该塔顶蒸气流从而形成部分冷凝的塔顶流出物流和部分变热的废流体物流;
将部分冷凝的塔顶流出物流分成冷凝物流与氮和惰性气体含量降低的净化合成气蒸气流;
用该冷凝物流回流蒸馏塔;
加热交叉换热器中的净化的合成气蒸气流;
加热交叉换热器中的部分变热的废流体物流;
将净化的合成气蒸气流从交叉换热器供应至氨合成回路。
11.权利要求10的方法,其中来自液体膨胀机的废流体包括混合的蒸气和液体。
12.权利要求11的方法,其中来自冷却塔顶蒸气的热废流体由气相组成。
13.权利要求10的方法,其中该液体膨胀机包括水力涡轮机。
14.一种改进,在包括用过量空气重整烃以形成原始合成气流步骤的氨合成方法中,通过蒸馏从原始合成气流中除去氮气和惰性气体,其中由通过膨胀发生机的过程流体膨胀来提供冷却,并且其中塔顶流出物流用通过膨胀来自蒸馏塔的底部液体而冷却的废流体物流来部分冷凝,并将氮和惰性气体含量降低的合成气从蒸馏塔供应至氨合成回路,改进之处在于使底部液体通过具有功输出的液体膨胀机而膨胀。
15.权利要求14的改进,其中来自液体膨胀机的废流体包括混合的蒸气和液体。
16.权利要求14的改进,其中该液体膨胀机包括水力涡轮机。
17.权利要求14的改进,还包括使原始合成气穿过蒸馏塔的Joule-Thompson阀上游而膨胀。
18.一种用于净化含过量氮的原始合成气流的装置,包括:
用于将原始合成气流引入蒸馏塔中进料区的设备;
用于使来自蒸馏塔的液态塔底流出物流通过液体膨胀机膨胀从而形成冷却废流体物流的设备;
用于精馏来自该蒸馏塔中进料区的蒸气从而形成氮和惰性气体含量降低的塔顶蒸气流的设备;
用于通过用冷却的废流体物流以间接热交换的方式来冷却该塔顶蒸气流从而形成部分冷凝的塔顶流出物流和相对热的废流体物流的设备;
用于将部分冷凝的塔顶流出物流分成冷凝物流与氮和惰性气体含量降低的净化的合成气蒸气流的设备;和
用于用冷凝物流回流蒸馏塔的设备。
19.一种氨加工装置,包括:
用于重整烃而形成合成气的设备,其中该重整设备包括自热或二级重整装置以及用于向该自热或二级重整装置供应过量空气的设备,从而形成用于氨合成的、含过量氮的原始合成气流;
用于冷却该原始合成气流的交叉换热器设备;
用于使来自该交叉换热器的冷却的原始合成气流膨胀的设备;
用于将该膨胀的原始合成气流引入到蒸馏塔的进料区中的设备;
用于通过液体膨胀机使来自蒸馏塔的液态塔底流出物流膨胀从而形成冷却的废流体物流的设备;
用于精馏来自该蒸馏塔中进料区的蒸气从而形成氮和惰性气体含量降低的塔顶蒸气流的设备;
用于用该冷却的废流体物流以间接热交换的方式来冷却该塔顶蒸气流从而形成部分冷凝的塔顶流出物流和部分变热的废流体物流的设备;
用于将部分冷凝的塔顶流出物流分成冷凝物流与氮和惰性气体含量降低的净化的合成气蒸气流的设备;
用于用该冷凝物流回流蒸馏塔的设备;
用于加热交叉换热器中净化的合成气蒸气流的设备;
用于加热交叉换热器中部分变热的废流体物流的设备;
用于将净化的合成气蒸气流从交叉换热器供应至氨合成回路的设备。
CNB2004100712290A 2003-07-17 2004-07-16 从合成气中除去氮、甲烷和氩用低△p净化器 Active CN100519406C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/604,404 US7090816B2 (en) 2003-07-17 2003-07-17 Low-delta P purifier for nitrogen, methane, and argon removal from syngas
US10/604404 2003-07-17

Publications (2)

Publication Number Publication Date
CN1597496A true CN1597496A (zh) 2005-03-23
CN100519406C CN100519406C (zh) 2009-07-29

Family

ID=33539949

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100712290A Active CN100519406C (zh) 2003-07-17 2004-07-16 从合成气中除去氮、甲烷和氩用低△p净化器

Country Status (7)

Country Link
US (2) US7090816B2 (zh)
EP (1) EP1503160B1 (zh)
CN (1) CN100519406C (zh)
CA (1) CA2473045C (zh)
DE (1) DE602004016796D1 (zh)
MX (1) MXPA04006957A (zh)
RU (1) RU2331575C2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102498058A (zh) * 2009-09-02 2012-06-13 阿梅尼亚·卡萨莱股份有限公司 利用深冷净化制取氨补充合成气
CN105358476A (zh) * 2013-06-26 2016-02-24 卡萨尔公司 一种净化包含氢气和杂质的合成气的方法

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219088A1 (en) * 2003-04-29 2004-11-04 Harvey Wen Mini ammonia plant
US8083793B2 (en) 2005-02-28 2011-12-27 Medtronic, Inc. Two piece heart valves including multiple lobe valves and methods for implanting them
US7816602B2 (en) 2006-02-13 2010-10-19 Adc Telecommunications, Inc. Fiber distribution hub with outside accessible grounding terminals
US7720343B2 (en) 2006-02-13 2010-05-18 Adc Telecommunications, Inc. Fiber distribution hub with swing frame and modular termination panels
US7481074B2 (en) * 2006-03-01 2009-01-27 Air Products And Chemicals, Inc. Self-contained distillation purifier/superheater for liquid-fill product container and delivery systems
US20080016768A1 (en) 2006-07-18 2008-01-24 Togna Keith A Chemically-modified mixed fuels, methods of production and used thereof
EP2068764A4 (en) * 2006-09-28 2016-07-27 Heart Leaflet Technologies Inc INSTALLATION TOOL FOR PERCUTANEOUS INSTALLATION OF A PROSTHESIS
DE102006055973A1 (de) * 2006-11-24 2008-05-29 Borsig Gmbh Wärmetauscher zur Kühlung von Spaltgas
WO2009016625A2 (en) * 2007-07-29 2009-02-05 Baruchi Barry Baruch Kimchi Method and system for the separation of a mixture containing carbon dioxide, hydrocarbon, and hydrogen
EP2022754A1 (en) * 2007-08-08 2009-02-11 Ammonia Casale S.A. Process for producing ammonia synthesis gas
US8229265B2 (en) 2007-11-21 2012-07-24 Adc Telecommunications, Inc. Fiber distribution hub with multiple configurations
EP2135841A1 (en) * 2008-06-20 2009-12-23 Ammonia Casale S.A. Process for the production of syngas for ammonia synthesis
US20090320520A1 (en) * 2008-06-30 2009-12-31 David Ross Parsnick Nitrogen liquefier retrofit for an air separation plant
EP2159192A1 (en) * 2008-08-28 2010-03-03 Ammonia Casale S.A. Process for the production of ammonia synthesis gas with improved cryogenic purification
US8617270B2 (en) 2008-12-03 2013-12-31 Kellogg Brown & Root Llc Systems and methods for improving ammonia synthesis efficiency
US8683824B2 (en) 2009-04-24 2014-04-01 Ebara International Corporation Liquefied gas expander and integrated Joule-Thomson valve
EP2301886A1 (en) * 2009-09-03 2011-03-30 Ammonia Casale S.A. Waste heat recovery in a chemical process and plant, particularly for the synthesis of ammonia
US8377154B2 (en) * 2010-05-18 2013-02-19 Kellogg Brown & Root Llc Gasification system and process for maximizing production of syngas and syngas-derived products
RU2438975C1 (ru) * 2010-07-21 2012-01-10 ООО "Проектный офис" Способ получения стехиометрической азотоводородной смеси, способ получения аммиака с ее использованием и устройства для реализации указанных способов
US8889093B2 (en) * 2010-09-16 2014-11-18 Kellogg Brown & Root Llc High pressure cyrogenic process and system for producing ammonia products
US20130298600A1 (en) * 2011-01-17 2013-11-14 L'air Liquide Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Process and apparatus for production of ammonia synthesis gas and pure methane by cryogenic separation
US8889037B2 (en) * 2011-02-01 2014-11-18 Kellogg Brown & Root Llc Systems and methods for producing syngas and products therefrom
CN103557675B (zh) * 2013-10-30 2015-05-27 河南开元空分集团有限公司 合成氨化工尾气的深冷精馏液化系统及方法
US20160067040A1 (en) * 2014-09-09 2016-03-10 Boston Scientific Scimed, Inc. Valve locking mechanism
US10426617B2 (en) * 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
PE20180157A1 (es) * 2015-05-14 2018-01-18 Shell Int Research Proceso para preparar un gas de sintesis y un dispositivo de enfriamiento de gas de sintesis
DE102015210801A1 (de) 2015-06-12 2016-12-15 Thyssenkrupp Ag Mehrdruckverfahren zur Herstellung von Ammoniak ohne Anreicherung von Inertgas
US10082332B2 (en) 2015-10-29 2018-09-25 Praxair Technology, Inc. System and method for argon recovery from the tail gas of an ammonia production plant
CN108700373B (zh) 2016-01-11 2021-02-12 普莱克斯技术有限公司 用于稀有气体回收的系统和方法
DE102016105127A1 (de) 2016-03-18 2017-09-21 Thyssenkrupp Ag Verfahren und Vorrichtung zur Behandlung eines Gasgemischs
US10309720B2 (en) 2016-03-21 2019-06-04 Praxair Technology, Inc. System and method for argon recovery from a feed stream comprising hydrogen, methane, nitrogen and argon
US10072890B2 (en) 2016-03-21 2018-09-11 Praxair Technology, Inc. System and method for enhanced argon recovery from a feed stream comprising hydrogen, methane, nitrogen and argon
US10024595B2 (en) 2016-09-21 2018-07-17 Praxair Technology, Inc. System and method for cryogenic purification of a feed stream comprising hydrogen, methane, nitrogen and argon
US10088229B2 (en) 2016-09-21 2018-10-02 Praxair Technology, Inc. System and method for cryogenic purification of a feed stream comprising hydrogen, methane, nitrogen and argon
US10295251B2 (en) 2016-09-21 2019-05-21 Praxair Technology, Inc. System and method for cryogenic purification of a feed stream comprising hydrogen, methane, nitrogen and argon
US10870810B2 (en) 2017-07-20 2020-12-22 Proteum Energy, Llc Method and system for converting associated gas
DE102018210921A1 (de) 2018-07-03 2019-08-14 Thyssenkrupp Ag Vermeidung von VOC und HAP Emissionen aus dem Entgaser von Synthesegas verarbeitenden Anlagen
CN109612203A (zh) * 2018-11-22 2019-04-12 山东润银生物化工股份有限公司 一种合成氨排放气的处理方法
CN112179046B (zh) * 2020-10-13 2022-09-06 丁玉龙 一种液态空气储能与氨气合成集成装置及方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1156003A (en) * 1965-10-22 1969-06-25 Braun & Co C F Ammonia Synthesis Gas Purification Process and Apparatus.
US3572046A (en) * 1965-10-22 1971-03-23 Braun & Co C F Apparatus for purification of raw ammonia synthesis gas
US3549335A (en) * 1965-10-22 1970-12-22 Braun & Co C F Autothermal reactor
US3442613A (en) * 1965-10-22 1969-05-06 Braun & Co C F Hydrocarbon reforming for production of a synthesis gas from which ammonia can be prepared
US3422613A (en) * 1967-05-08 1969-01-21 Turbo Machine Co Yarn assembly apparatus for false twisting yarn
FR2471567B1 (fr) * 1979-12-12 1986-11-28 Technip Cie Procede et systeme de refrigeration d'un fluide a refroidir a basse temperature
FR2473032A1 (fr) * 1980-01-07 1981-07-10 Banquy David Procede de production d'ammoniac et du gaz de synthese correspondant
DE3363367D1 (en) * 1982-04-14 1986-06-12 Ici Plc Ammonia production process
US4613492A (en) * 1982-09-01 1986-09-23 Humphreys & Glasgow, Ltd. Production of synthesis gas
GB2132328B (en) * 1982-12-23 1986-03-26 Air Prod & Chem A process for removing methane and argon from crude ammonia synthesis gas]
US4568530A (en) * 1984-10-16 1986-02-04 The M. W. Kellogg Company Ammonia synthesis
US4970867A (en) * 1989-08-21 1990-11-20 Air Products And Chemicals, Inc. Liquefaction of natural gas using process-loaded expanders
US5180570A (en) * 1992-01-23 1993-01-19 Lee Jing M Integrated process for making methanol and ammonia
JPH06159931A (ja) * 1992-11-27 1994-06-07 Kobe Steel Ltd 合成ガス精製装置
US5935544A (en) * 1996-06-06 1999-08-10 Brown & Root, Inc. Moderate excess nitrogen Braun Purifier™ process and method for retrofitting non-Braun Purifier™ ammonia plants
FR2775275B1 (fr) * 1998-02-20 2000-05-19 Air Liquide Procede et installation pour la production combinee d'un melange de synthese d'ammoniac et de monoxyde de carbone
US20020102200A1 (en) * 2000-04-10 2002-08-01 Jungerhans Robert Rudolf Josef Purification of gases, in synthesis gas production process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102498058A (zh) * 2009-09-02 2012-06-13 阿梅尼亚·卡萨莱股份有限公司 利用深冷净化制取氨补充合成气
CN102498058B (zh) * 2009-09-02 2016-01-20 卡萨尔公司 利用深冷净化制取氨补充合成气
CN105358476A (zh) * 2013-06-26 2016-02-24 卡萨尔公司 一种净化包含氢气和杂质的合成气的方法

Also Published As

Publication number Publication date
EP1503160A1 (en) 2005-02-02
MXPA04006957A (es) 2005-06-17
DE602004016796D1 (de) 2008-11-13
US20060239871A1 (en) 2006-10-26
RU2331575C2 (ru) 2008-08-20
CA2473045A1 (en) 2005-01-17
CA2473045C (en) 2011-09-27
RU2004121999A (ru) 2006-01-20
US7090816B2 (en) 2006-08-15
US20050013768A1 (en) 2005-01-20
CN100519406C (zh) 2009-07-29
EP1503160B1 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
CN100519406C (zh) 从合成气中除去氮、甲烷和氩用低△p净化器
CN1104619C (zh) 液化和处理天然气的方法
CN1813046A (zh) 同时生产可液化天然气和天然气液体的馏分的方法和装置
CN1133582C (zh) 生产一氧化碳和氢的方法和设备
CN106642989B (zh) 一种用于分离混合气的深冷分离系统
CN102583281A (zh) 单晶硅生产中氩气回收纯化的方法与装置
CN1097247A (zh) 空气分离
KR102217256B1 (ko) 일산화탄소를 생성하는 방법 및 장치
CN100404988C (zh) 含空气煤层气液化分离工艺及设备
CN1133583C (zh) 联合生产氨合成混合物和一氧化碳的方法和设备
EP2414077A2 (en) Process for co2 capture with improved stripper performance
CN1172941A (zh) 空气分离
CN1088451C (zh) 氨和甲醇联合生产方法
CN114477093B (zh) 一种多晶硅还原尾气回收系统
CN1254299C (zh) 处理合成气和相关气体的方法和装置
CN202519029U (zh) 单晶硅生产中氩气回收纯化装置
KR20000017195A (ko) 합성 가스 유니트로부터의 메탄올 방출을 감소시키는 방법
CN1151011A (zh) 从低温空气分离设备进行超高纯氧气的生产
CN102884387A (zh) 用于在氨合成中所用吹扫气体的分离单元中回收氩的方法和装置
CN109631495A (zh) 一种集成高纯氮和氩气回收的方法及装置
CN1084870C (zh) 分离空气的方法和设备
CN107138025A (zh) 一种压力能和冷能高效回收利用的低温甲醇洗工艺
CN210346071U (zh) 一种集成脱乙烯、脱氢、脱甲烷、脱氮的深冷分离装置
CN1502552A (zh) 从空气生产氪/氙混合物的方法和装置
CN200979332Y (zh) 含空气煤层气液化分离设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant