CN100404988C - 含空气煤层气液化分离工艺及设备 - Google Patents

含空气煤层气液化分离工艺及设备 Download PDF

Info

Publication number
CN100404988C
CN100404988C CNB2006101034250A CN200610103425A CN100404988C CN 100404988 C CN100404988 C CN 100404988C CN B2006101034250 A CNB2006101034250 A CN B2006101034250A CN 200610103425 A CN200610103425 A CN 200610103425A CN 100404988 C CN100404988 C CN 100404988C
Authority
CN
China
Prior art keywords
gas
air
fractionating column
coal bed
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2006101034250A
Other languages
English (en)
Other versions
CN1908559A (zh
Inventor
杨克剑
张武
任小坤
杨中维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
In Keruiao energy Polytron Technologies Inc
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CNB2006101034250A priority Critical patent/CN100404988C/zh
Publication of CN1908559A publication Critical patent/CN1908559A/zh
Application granted granted Critical
Publication of CN100404988C publication Critical patent/CN100404988C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/88Quasi-closed internal refrigeration or heat pump cycle, if not otherwise provided

Abstract

本发明公开了一种含空气煤层气的液化分离工艺,主要是将冷却后的含空气煤层气通入一分馏塔的中部,经分馏塔底部的蒸发器的蒸发和顶部冷凝器的冷凝、塔内的气体馏分、液体馏分进行充分的质、热交换,在分馏塔顶部得到高纯度的氮气,分馏塔底部得到高纯度的液态天然气,其中,在分馏塔顶部与含空气煤层气入口之间引出一部分洁净空气通入换热器中。本发明还提供了上述液化分离工艺设备。本发明含空气煤层气液化分离设备及工艺是专为含空气煤层气设计的分离液化过程,采用单级精馏设备,较双级精馏的工艺更简单,操作更方便,其投入成本较低,利于大规模推广。

Description

含空气煤层气液化分离工艺及设备
技术领域
本发明涉及一种气体液化分离设备及工艺,特别涉及含空气煤层气的液化分离设备及工艺。
背景技术
煤层气也称非常规天然气或矿井瓦斯,其主要成分是甲烷。它不仅是一种宝贵的清洁能源,也是重要的化工原料。我国的煤层气资源极为丰富,但开发的比较少,几乎没有工业上的应用。据了解,我国每年排入大气的煤层气占全世界采煤排放的煤层气总量的三分之一,这不但造成了严重的大气污染,也是很大的资源浪费。
煤层气的特点是单井产量不很高,除就近使用外,铺设管道外输常常不合算。尤其是采煤过程中抽放的煤层气,因为压力低,甲烷含量低,而且其中混有空气,空气中的氧气是危险的助燃剂,这就给煤层气的加工和运输带来了困难,放空浪费的就更严重,这个问题一直没有得到很好的解决。如果把含空气煤层气中的煤层气(主要是甲烷)和空气分离出来并将提纯后的煤层气液化,这就极大地方便了运输和利用。
液化天然气技术从上世纪六十年代就开始商业化,至今已有三、四十年的历史。我国液化天然气产业正处于发展阶段,国内对各种液化天然气的循环已基本掌握。但不论是国外或者国内,液化天然气技术都是针对纯度较高、不含空气的天然气。对含空气的煤层气的分离和液化,还没有引起人们的重视,含空气煤层气放空排放的现象仍然十分严重。
常规的分离方法有吸收法、吸附法、薄膜渗透法和低温精馏法等。前面几种方法,分离的纯度很难达到要求,有的回收率低,有的还需要加热,含空气煤层气在高温下易爆炸,存在安全隐患,因此没有得到应用。在本申请人2006年5月19日提出名称为“含空气煤层气液化工艺及设备”的专利申请中,提出把低温精馏法应用在含空气煤层气的分离和液化上,描述了一种双级精馏的工艺,但该工艺方法所需设备较多,工艺较为繁杂,投入成本较高,不利于在小规模的煤矿推广应用。
发明内容
本发明所要解决的技术问题是提供一种含空气煤层气的液化分离工艺,采用低温单级精馏方法,工艺更为简单,本发明还提供了这种含空气煤层气的液化分离设备。
为解决上述技术问题,本发明所采取的技术方案是:
一种含空气煤层气的液化分离工艺,包括如下工艺步骤:
将含空气煤层气原料气压缩净化,去除原料气中杂质;
将压缩净化的含空气煤层气通入换热器进行热交换,将温度冷却至-140℃~-190℃,大部分含空气煤层气冷却为液体;
将冷却后的含空气煤层气通入一分馏塔的中部,经分馏塔底部的蒸发器的蒸发和顶部冷凝器的冷凝、塔内的气体馏分、液体馏分进行充分的质、执交换,在分馏塔顶部得到高纯度的氮气,分馏塔底部得到高纯度的液态天然气;
其中,在分馏塔顶部与含空气煤层气入口之间引出一部分洁净空气通入换热器中。
其中,所述换热器的冷量和冷凝器的冷量由一个制冷系统提供,所述制冷系统为气体膨胀制冷系统或混合制冷剂制冷系统;所述气体膨胀制冷系统中,从分馏塔顶部分离出的氮气被引入制冷系统中补充制冷气的泄漏损失;所述制冷系统中的制冷气先经过分馏塔底部的蒸发器回收冷量;所述引出的洁净空气从换热器复热后,通入净化设备作为加热和吹除气体;所述含空气煤层气进入分馏塔之前先经过蒸发器预冷。
本发明还提供了一种上述含空气煤层气的液化分离工艺的设备,包括压缩净化设备、制冷设备和液化分离设备,所述液化分离设备具有换热器,压缩净化设备与液化分离设备中的换热器的原料气热介质通道连接,制冷设备与液化分离设备的换热器制冷介质通道连接,所述液化分离设备包括一分馏塔与换热器相连,分馏塔顶部具有冷凝器,分馏塔底部具有蒸发器,换热器的原料气热介质通道被引入分馏塔中部,所述分馏塔的上部有一条气体管路被引入换热器中。
其中,所述制冷设备为气体膨胀制冷设备或混合制冷剂制冷设备;所述分馏塔顶部有气体管路将气体引入到气体膨胀制冷设备中;所述分馏塔的冷凝器的制冷介质管路与制冷设备的制冷气管路连通;所述分馏塔的蒸发器加热管路与制冷气管路或含空气煤层气管路相连通。
本发明所能达到的有益效果是:本发明含空气煤层气液化分离设备及工艺是专为含空气煤层气设计的分离液化过程,采用单级精馏设备,较双级精馏的工艺更简单,操作更方便,其投入成本较低,利于大规模推广。
附图说明
图1为本发明实施例1和实施例2压缩净化设备示意图;
图2为本发明实施例1制冷设备和液化分离设备示意图;
图3为本发明实施例2制冷设备和液化分离设备示意图。
具体实施方式
实施例1
参阅图1、图2,为本发明实施例1含空气煤层气液化分离设备示意图,包括两大部分,首先含空气煤层气原料气先经压缩净化,再经过液化分离即可得到液态天然气,其中液化分离过程所需的冷量由制冷系统提供,具体的设备及工艺描述如下:
参阅图1,为本发明压缩净化设备示意图。包括过滤器1、气液分离器2、压缩机3、冷却器4、分子筛设备组,所述分子筛干燥设备组包括三台分子筛干燥机5、6、7,当第一台分子筛干燥机5工作时,第二台分子筛干燥机6加热再生、第三台分子筛干燥机7冷却备用,每8小时切换一次。该分子筛干燥设备主要用来脱除水、二氧化碳。分子筛设备组后有过滤器8,还有加热器22。
压缩净化的工艺流程如下:
1、自排放管道来的含空气煤层气原料气首先经过滤器1除去灰尘;
2、除尘后的含空气煤层气进入气液分离器2气液分离后,气体进入压缩机3压缩;
3、压缩后经冷却器4冷却;
4、含空气煤层气进入分子筛干燥机5,脱出水和二氧化碳,流程中产生的洁净空气的一部分经加热器9加热至240-250℃,用于分子筛干燥机6的再生,另一部分直接进入已再生好的干燥机7,冷却分子筛,降低分子筛干燥机7的温度,然后用氮气置换分子筛干燥机7中的空气,备用;
6、经分子筛干燥设备脱除水、二氧化碳和氧气的含空气煤层气原料气再经过滤器8即可进入制冷、液化分离设备。
参阅图2,为本发明实施例1含空气煤层气制冷、液化分离设备示意图,包括制冷设备和液化分离设备,制冷设备得到的冷量通过换热器16、10、冷凝器12与其内含空气煤层气热交换。所述液化分离设备包括依次连接的换热器16、10和底部有蒸发器11、顶部有冷凝器12的分馏塔13。冷凝器12的制冷管道与制冷系统的管道相连,蒸发器11的加热管道在换热器16、10之间与原料气的管道相连,换热器10冷端的原料气管道与分馏塔中部相连,分馏塔13顶部有气体管道依次与换热器10、16相连,分馏塔上部也有管路依次与换热器10、16相连,分馏塔底部还有液体管路将液体天然气连接到输出阀门。
液化分离工艺步骤如下:
1、经压缩净化的含空气煤层气(甲烷50%,空气50%)进入换热器16中与具中制冷介质交换热量,温度下降后再进入蒸发器11的加热管道,造成蒸发器内的液体蒸发,气体本身温度进一步下降,再进入换热器10,使温度下降到-168℃,压力为0.6Mpa;
2、温度下降后的含空气煤层气经阀门减压到0 45MPa进入分馏塔13的中部,其液体自上而下流过塔板,在分馏塔13底部的蒸发器11内含空气煤层气液体的一部分破蒸发为气体,加热温度约为-140℃,被蒸发的气体向上流动与向下流动的液体进行热、质交换;
3、在分馏塔的上部(原料气入口以上),向上流动的气体到达分馏塔顶部,又被分馏塔顶部的冷凝器冷凝,其中一部分冷凝为液体,向下回流,同样作为液体馏分与气体再进行热、质交换。冷凝器12的冷凝温度约为-180℃,压力约为0.44Mpa;
4、在分馏塔的上部,在塔顶部与原料气入口之间温度为-180℃的一块塔板处又向外放出一部分气体,流量约为原料气的43%,这部分气体是洁净空气,其含氧量略高于空气,为24%,含甲烷量极少(为0.07%),温度约为-176℃,压力约为0.44MPa,这部分气体依次进入换热器10、16,回收冷量;
5、从分馏塔的顶部放出一部分气体,流量约为原料气的7%,这部分气体是很纯的氮气,纯度为99.95%,温度约为-180℃,压力约为0.44MPa,也依次进入换热器10、16,回收冷量。
6、从分馏塔13底部放出的就是纯度很高的液化煤层气。流量为原料气的50%,纯度达到99.9%以上,温度约为-140℃,压力约为0.44MPa。
上述液化分离过程中换热器16、10和冷凝器12所需要的冷量是由制冷设备提供的,制冷设备为混合制冷剂制冷设备,包括制冷机14和压缩机15。
实施例2
实施例2压缩净化工艺与设备与实施例1相同。
参阅图3,为本发明实施例2含空气煤层气制冷设备和液化分离设备示意图。液化分离设备包括三级换热器23、24、25,分馏塔26,分馏塔顶部有冷凝器27,分馏塔底部有蒸发器28,分馏塔的结构与实施例1相同。制冷设备为气体压缩膨胀制冷系统,采用了一台压缩机22、冷却器29和两台透平膨胀机17、18。分馏塔冷凝器27有气体管路将气体引入到制冷设备的管道中。冷凝器27的制冷管道与制冷设备的管道相连,蒸发器28的加热管道在换热器23、24之间与制冷气的管道相连,换热器25冷端的含空气煤层气原料气管道与分馏塔中部相连。
液化分离工艺步骤如下:
1、经压缩净化的含空气煤层气原料气(甲烷50%,空气50%)进入换热器23、24、25中交换热量,降低温度达到-168℃、压力为0.63MPa;
2、温度下降后的含空气煤层气经阀门减压到0.45MPa进入分馏塔26的中部,其液体自上而下流过塔板,在分馏塔26底部的蒸发器28内含空气煤层气液体的一部分被蒸发为气体,加热温度约为-140℃,被蒸发的气体向上流动与向下流动的液体进行热、质交换;
3、在分馏塔的上部(原料气入口以上),向上流动的气体到达分馏塔顶部,又被分馏塔顶部的冷凝器27冷凝,其中一部分冷凝为液体,向下回流,同样作为液体馏分与气体再进行热、质交换。冷凝器27的冷凝温度约为-180℃,压力约为0.44MPa;
4、在分馏塔的上部,在塔顶部与原料气入口之间温度为-180℃的一块塔板处又向外放出一部分气体,流量约为原料气的43%,这部分气体是洁净空气,其含氧量略高于空气,为24%,含甲烷量极少(为0.07%),温度约为-176℃,压力约为0.44MPa,这部分气体依次进入换热器25、24、23,回收冷量,复热以后,这部分气体可用做净化器的加热再生和冷却气体。
5、从分馏塔的顶部放出一部分气体,流量约为原料气的7%,这部分气体是很纯的氮气,纯度为99.95%,温度约为-180℃,压力约为0.44MPa,减压到0.3MPa后与制冷气汇合,依次进入换热器25、24、23,回收冷量。
6、从分馏塔26底部放出的就是纯度很高的液化煤层气。流量为原料气的50%,纯度达到99.9%以上,温度约为-140℃,压力约为0.44MPa。
上述液化分离过程中换热器23、24、25和冷凝器27所需要的冷量是由制冷系统提供的,所述制冷设备包括压缩机22,冷却器29,两台透平的增压机17、18、透平增压机后连接冷却器19,然后连接第一换热器23,第一换热器23进一步连接蒸发器28的管道,然后制冷管道分为两路,一路连接透平膨胀机20的进气口,一路连接第二换热器24,第二换热器24的制冷管道再和透平膨胀机21的进气口连接,透平膨胀机21的排气口再和冷凝器27的制冷管道连接,然后与分馏塔的顶部的气体管道汇合,再连接第三换热器25的冷介质通道。透平膨胀机20的排气口与换热器24、25之间的冷介质通道相连接。透平增压机17、18分别由透平膨胀机20、21的转轴驱动。制冷系统工艺步骤如下:
1、制冷系统启动之前,系统内充满氮气作为制冷气。
2、启动制冷系统,制冷气先经压缩机22压缩,在冷却器29中冷却,再经过透平增压机17、18增压,再经冷却器19冷却,进入第一换热器23预冷,温度降低到-124℃。
3、制冷气再经蒸发器28的管道(温度为-140℃)被进一步冷却到-137℃,然后制冷气分为两路,一路气量为30%进入透平膨胀机20,膨胀后温度为-169℃,另一路气量为70%进入第二换热器24,从换热器24出来温度为-158℃,再进入透平膨胀机21膨胀制冷。
4、从透平膨胀机21膨胀后的制冷气温度为-185℃,它先进入冷凝器13的制冷管道,为冷凝器27提供冷源,随后,制冷气温度升高为-181.4℃,再与分馏塔顶部出来的氮气汇合,返流进入第三换热器25用来冷却原料气。
5、从换热器25的热端出来的制冷气温度升高为-169℃,它与透平膨胀机20膨胀后的气体(温度也是-169℃)汇合,再依次进入换热器24、23,作为换热器的冷源。这部分气体复热后,多余的氮气可以做净化器的冷吹置换气,而大部分氮气则再压缩、增压、冷却、膨胀制冷,如此循环。
由于流程中本身能够产生氮气,足够用来补充制冷系统的泄漏,因此启动以后,不需要再购买氮气。

Claims (11)

1.一种含空气煤层气的液化分离工艺,包括如下工艺步骤:
将含空气煤层气原料气压缩净化,去除原料气中杂质;
将压缩净化的含空气煤层气通入换热器进行热交换,将温度冷却至-140℃~-190℃,大部分含空气煤层气冷却为液体;
将冷却后的含空气煤层气通入一分馏塔的中部,经分馏塔底部的蒸发器的蒸发和顶部冷凝器的冷凝、塔内的气体馏分、液体馏分进行充分的质、热交换,在分馏塔顶部得到高纯度的氮气,分馏塔底部得到高纯度的液态天然气;
其中,在分馏塔顶部与含空气煤层气入口之间引出一部分洁净空气通入换热器中。
2.根据权利要求1所述的一种含空气煤层气的液化分离工艺,其特征在于:所述换热器的冷量和冷凝器的冷量由一个制冷系统提供,所述制冷系统为气体膨胀制冷系统或混合制冷剂制冷系统。
3.根据权利要求2所述的一种含空气煤层气的液化分离工艺,其特征在于:所述气体膨胀制冷系统中,从分馏塔顶部分离出的氮气被引入制冷系统中补充制冷气的泄漏损失。
4.根据权利要求2所述的一种含空气煤层气的液化分离工艺,其特征在于:所述制冷系统中的制冷气先经过分馏塔底部的蒸发器回收冷量。
5.根据权利要求1所述的一种含空气煤层气的液化分离工艺,其特征在于:所述引出的洁净空气从换热器复热后,再通入净化设备。
6.根据权利要求1所述的一种含空气煤层气的液化分离工艺,其特征在于:所述含空气煤层气进入分馏塔之前先经过蒸发器预冷。
7.一种上述含空气煤层气的液化分离工艺的设备,包括压缩净化设备、制冷设备和液化分离设备,所述液化分离设备具有换热器,压缩净化设备与液化分离设备中的换热器的原料气热介质通道连接,制冷设备与液化分离设备的换热器制冷介质通道连接,所述液化分离设备包括一分馏塔与换热器相连,分馏塔顶部具有冷凝器,分馏塔底部具有蒸发器,其特征在于:换热器的原料气热介质通道被引入分馏塔中部,所述分馏塔的上部有一条气体管路被引入换热器中。
8.根据权利要求7所述的一种含空气煤层气液化分离设备,其特征在于:所述制冷设备为气体膨胀制冷设备或混合制冷剂制冷设备。
9.根据权利要求8所述的一种含空气煤层气液化分离设备,其特征在于:所述分馏塔顶部有气体管路将气体引入到气体膨胀制冷设备中。
10.根据权利要求7所述的一种含空气煤层气液化分离设备,其特征在于:所述分馏塔的冷凝器的制冷介质管路与制冷设备的制冷气管路连通。
11.根据权利要求7所述的一种含空气煤层气液化分离设备,其特征在于:所述分馏塔的蒸发器加热管路与制冷气管路或含空气煤层气管路相连通。
CNB2006101034250A 2006-07-03 2006-07-20 含空气煤层气液化分离工艺及设备 Active CN100404988C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101034250A CN100404988C (zh) 2006-07-03 2006-07-20 含空气煤层气液化分离工艺及设备

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200610090921 2006-07-03
CN200610090921.7 2006-07-03
CNB2006101034250A CN100404988C (zh) 2006-07-03 2006-07-20 含空气煤层气液化分离工艺及设备

Publications (2)

Publication Number Publication Date
CN1908559A CN1908559A (zh) 2007-02-07
CN100404988C true CN100404988C (zh) 2008-07-23

Family

ID=37699736

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101034250A Active CN100404988C (zh) 2006-07-03 2006-07-20 含空气煤层气液化分离工艺及设备

Country Status (1)

Country Link
CN (1) CN100404988C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476485B (zh) * 2009-02-09 2011-01-26 宁波鲍斯压缩机有限公司 大型煤层气回收成套装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2917489A1 (fr) * 2007-06-14 2008-12-19 Air Liquide Procede et appareil de separation cryogenique d'un debit riche en methane
JP2012514050A (ja) * 2008-11-03 2012-06-21 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 炭化水素流から窒素を排除して燃料ガス流を提供する方法およびそのための装置
CN101445755B (zh) * 2008-12-22 2012-11-28 中国石油集团长城钻探工程有限公司 一种煤层气提纯液化方法
CN101818984B (zh) * 2010-04-21 2012-05-30 中国石油大学(北京) 一种含空气煤层气的全液化分离工艺
CN101922849B (zh) * 2010-09-07 2012-05-23 上海交通大学 含氧煤层气的液化精馏方法
CN103256786B (zh) * 2013-06-08 2015-09-09 中煤科工集团重庆研究院有限公司 抑燃抑爆型低浓度煤层气深冷液化装置
CN103277978B (zh) * 2013-06-08 2015-07-15 中国科学院理化技术研究所 提取低浓度含氧煤层气中甲烷的装置
CN105349195B (zh) * 2014-08-19 2017-10-03 中国海洋石油总公司 一种含氧煤层气脱氧、脱氮的液化工艺
CN105135820B (zh) * 2015-09-22 2017-10-24 中科瑞奥能源科技股份有限公司 利用含空气瓦斯制取lng的方法以及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475347A (en) * 1982-09-16 1984-10-09 Air Products And Chemicals, Inc. Process for separating carbon dioxide and sulfur-containing gases from a synthetic fuel production process off-gas
CN1718680A (zh) * 2004-07-09 2006-01-11 西南化工研究设计院 煤层气低温分离提浓甲烷工艺
US20060111602A1 (en) * 2004-08-24 2006-05-25 Advanced Extraction Technologies, Inc. Removing diamondoid components from natural gas at reduced temperatures
CN200952872Y (zh) * 2006-07-03 2007-09-26 北京科瑞赛斯气体液化技术有限公司 含空气煤层气液化分离设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475347A (en) * 1982-09-16 1984-10-09 Air Products And Chemicals, Inc. Process for separating carbon dioxide and sulfur-containing gases from a synthetic fuel production process off-gas
CN1718680A (zh) * 2004-07-09 2006-01-11 西南化工研究设计院 煤层气低温分离提浓甲烷工艺
US20060111602A1 (en) * 2004-08-24 2006-05-25 Advanced Extraction Technologies, Inc. Removing diamondoid components from natural gas at reduced temperatures
CN200952872Y (zh) * 2006-07-03 2007-09-26 北京科瑞赛斯气体液化技术有限公司 含空气煤层气液化分离设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476485B (zh) * 2009-02-09 2011-01-26 宁波鲍斯压缩机有限公司 大型煤层气回收成套装置

Also Published As

Publication number Publication date
CN1908559A (zh) 2007-02-07

Similar Documents

Publication Publication Date Title
CN100404988C (zh) 含空气煤层气液化分离工艺及设备
CN201199120Y (zh) 一种空气回热式的矿井瓦斯气的分离液化设备
CN103523751B (zh) 一种深冷分离提纯一氧化碳和氢气的装置及方法
CN201377961Y (zh) 多工况空分设备
CN102498058B (zh) 利用深冷净化制取氨补充合成气
CN103123203A (zh) 利用含氮废气进行再低温精馏制取纯氮的方法
CN108870868B (zh) 一种撬装移动式二氧化碳驱油产出气回收系统
CN105865147A (zh) 制取高纯一氧化碳和富氢气联产液态甲烷的系统及方法
CN105716370A (zh) 一种从合成气制取富氢气和一氧化碳的系统及方法
CN200952872Y (zh) 含空气煤层气液化分离设备
CN101922850A (zh) 利用含氧煤层气制取液化天然气的方法
CN104807290A (zh) 单塔双返流膨胀制取低压氮气的装置和方法
CN1952569A (zh) 含空气煤层气液化工艺及设备
CN115069057B (zh) 一种低温精馏提纯回收二氧化碳的方法
CN102435045A (zh) 液氮洗涤净化合成气及其深冷分离回收lng装置
CN109631495A (zh) 一种集成高纯氮和氩气回收的方法及装置
CN2898737Y (zh) 含空气煤层气的液化设备
CN108151442A (zh) 原料气中lng的低温制取系统
CN202382518U (zh) 液氮洗涤净化合成气及其深冷分离回收lng装置
CN101493277B (zh) 矿井瓦斯气的低温分离方法及设备
CN217661593U (zh) 低温精馏提纯回收二氧化碳装置
CN106440661A (zh) 一种制备高纯度液体二氧化碳的节能型装置和方法
CN103361138B (zh) 一种用提氢解析气制取液化天然气和合成氨原料气的方法
CN201359420Y (zh) 矿井瓦斯气的低温分离设备
CN114165987B (zh) 一种液体二氧化碳生产装置及其生产方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: PHYSICAL CHEMISTRY TECHNOLOGY INST., CHINESE ACAD

Free format text: FORMER OWNER: BEIJING KERUI SAISI GAS LIQUEFACTION TECHNOLOGY CO., LTD.

Effective date: 20080104

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20080104

Address after: Postal code 2, North Zhongguancun, Beijing, Haidian District: 100080

Applicant after: Technical Institute of Physics and Chemistry, CAS

Address before: Room 1, building two, building 3, North 201, Beijing, Haidian District, Zhongguancun, China: 100080

Applicant before: Beijing Kerui Saisi gas liquefaction Technology Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190313

Address after: 100094 Beijing Haidian District Fenghui Middle Road No. 7 New Material Pioneering Building 2 Floor 202

Patentee after: In Keruiao energy Polytron Technologies Inc

Address before: 100080 Beijing Haidian District Zhongguancun North No. 2

Patentee before: Technical Institute of Physics and Chemistry, CAS