CN1578911A - 微型传感器 - Google Patents

微型传感器 Download PDF

Info

Publication number
CN1578911A
CN1578911A CNA028217187A CN02821718A CN1578911A CN 1578911 A CN1578911 A CN 1578911A CN A028217187 A CNA028217187 A CN A028217187A CN 02821718 A CN02821718 A CN 02821718A CN 1578911 A CN1578911 A CN 1578911A
Authority
CN
China
Prior art keywords
sensor element
microsensor
semiconductor
eutectic
metal level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028217187A
Other languages
English (en)
Other versions
CN100507573C (zh
Inventor
M·布兰德
R·塞尼斯卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams AG
Original Assignee
Austriamicrosystems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Austriamicrosystems AG filed Critical Austriamicrosystems AG
Publication of CN1578911A publication Critical patent/CN1578911A/zh
Application granted granted Critical
Publication of CN100507573C publication Critical patent/CN100507573C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/00238Joining a substrate with an electronic processing unit and a substrate with a micromechanical structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/13Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
    • G01P15/131Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position with electrostatic counterbalancing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Sensors (AREA)

Abstract

本发明描述了一个微型传感器,其具有一个传感器元件(2)和一个集成的转换电路(1),它包括一个带有集成的电路(4)的半导体(11),其中该传感器元件(2)被安置在该半导体(11)之一主表面(12)上并在该半导体(11)和传感器元件(2)之间构造一个低共熔接点(3)。

Description

微型传感器
本发明涉及一种权利要求1之前序部分限定的微型传感器。
一个如此形式的微型传感器例如已在DE10027234A1中公开。其中描述了一个微型传感器带有一个集成的转换电路和一个其上安装的微型机械式传感器元件。该传感器元件通过一个环绕的焊缝与该集成的转换电路形成机械地和电气地连接。另外,该传感器元件为了测量加速度具有一个弯曲横梁,其到该集成的转换电路的距离是以电容方式决定的并且被转换为一个测量信号。
在一个这样的结构方案中,该传感器元件至该集成的转换电路的距离就扮演了该坐标系统并且扮演了用于该弯曲横条之‘位置确定’的参考值。该传感器元件至该集成的转换电路之距离的一个改变则会使得测量结果出错,因此应该避免。这样就要求该传感器元件与该集成的转换电路为一个精确限定的和长时间稳定的连接。此外为了电气的耦合所述的连接还应该是导电性的。
在一种钎焊连接情况下,存在的危险是,所述连接在机械应力的影响下发生变形。而且钎焊连接的老化也可能导致该传感器元件相对于该集成的转换电路的一个位置变化。这种危险还通过温度升高-正如其例如在将微型传感器焊接在一个印刷电路板上时可能发生地那样-被明显地提高了。
另外,用钎焊连接在晶片联合装配中制造大量微型传感器时要求很高的技术费用,因为许多焊接表面必须同时高精度地被相互焊接起来。
本发明的任务是,创造一种开头所述类型的微型传感器,其在一传感器元件和一集成的转换电路之间的连接得到改进。作为优选,该微型传感器应能在晶片联合装配中制成。
这一任务通过权利要求1限定的一微型传感器来解决。本发明之优选的改进方案是从属权利要求的主题。
本发明的基本构思是,将一个优选的微型机械式传感器元件借助一种低共熔接点与一个集成的并为一半导体芯片形式的转换电路(集成电路,IC)相连接。特别地,一个硅基的传感器元件适合于一种与一个硅-半导体芯片、例如一个CMOS-或BICMOS-IC的低共熔连接。
按照本发明,构造一个微型传感器具有一个传感器元件和一个集成的转换电路,其包括一个带有一集成的电路的半导体,其中该传感器元件被安置在该半导体的一主表面上并且在半导体和传感器元件之间构成一个低共熔连接。
低共熔连接、尤其是低共熔硅-金-连接之特征是在一个宽的温度范围内有一个高的机械稳定性。特别地,这种连接相比传统的钎焊连接是更加稳定的机械特性和热力特性。另一个优点在于,低共熔接点可以被实施得很细薄,所以那种对于位置变化很严格的区域可被保持得很小。
在本发明的一个优选的结构方案中该传感器元件由一个半导体材料构成或具有至少一个半导体层或一个半导体基片。该低共熔接点可以在这种情况下被构成在该传感器元件的一个半导体表面和该集成的转换电路之半导体的一表面之间。
为此作为优选,该半导体在面对该传感器元件的主表面上设置一金属层。该低共熔接点在这种情况下由该金属层和传感器元件的半导体材料构成。这样就以有利方式,在传感器元件和半导体之间建造了一个非常紧凑的连接,对此并且仅需要一个微小数量的连接构件。作为选择,该传感器元件也可以设有一个金属层而该低共熔接点则可以由该半导体之材料和该传感器元件之金属层构成。
作为优选,对于一个集成的转换电路或者一个作为金属层的硅基传感器元件而应用一个金层或一个包含金的层结构。作为低共熔接点在此应用了一个硅-金-低共熔混合物,其作为例子可以通过一个硅表面和一个金表面在提高的温度和提高的压力下相互靠置接合来构成。
该硅-金-低共熔混合物之熔点温度以363℃处于一个有利的温度范围内。一方面该熔化温度是如此之低,以致于这个为了构成低共熔接点所必需的温度对于该集成的转换电路来说在适当的工艺操作规程下是无损伤的。另一方面,该熔化温度还明显地大于通常在印刷电路板上钎焊构件时产生的最高温度,而其一般处于260℃和280℃之间。这样就确保了,在钎焊时该低共熔接点不会改变或甚至根本不会松开。在有些情况下,可以通过一个在该低共熔接点上邻接的金属之缓冲层还会使该低共熔接点的熔化温度由于和该缓冲层的合金化作用而被提高。
特别优选的是,该传感器元件和该集成的转换电路是基于相同的半导体材料。这种对于该传感器元件和该集成的转换电路为一个基本相同形式的组成结构将导致在该传感器元件和该集成的转换电路之间有利的微小应力,因为该微型传感器的两个构件具有大致相同的热膨胀系数。
在本发明的一个优选的变型结构方案中,该集成的转换电路被构造在该半导体之面对该传感器元件的主表面上或者被构成在这个主表面附近。这样就能够在该集成的电路和该传感器元件或那些与该传感器元件对应配置的电极之间实现短的电气连接,通常短的电连接之优点是短的信号延时(Aufzeiten)和微小的干扰性。在例如通过与传感器元件对应配置的电极作电容式或电感式接收或发送一个测量信号时,短的电气连接则是特别有利的,因为该电气连接的所述寄生电感和电容是相当微小的。因此,该测量信号的一个错假现象被极大程度地抑制了。
作为优选,该集成的电路被所述已说明的金属层覆盖。因此,该传感器元件可以直接通过该集成的电路而安置。
在该集成的电路和该金属层之间可以安置一个粘接层,其提高了该金属层在该半导体上或该集成的电路上的粘接性。其中作为有利方式一种导电的粘接层,例如是一个钛层。
另外优选的是,在该集成的电路和该金属层之间设置一个阻挡层,其防止了原子从该金属层向该集成的电路中的一个扩散作用。一个这样的阻挡层还可以按优选方式被设置在该传感器元件中。
如果该低共熔接点在两侧被阻挡层包围,那么因此该低共熔接点的伸展范围被确定。这样的优点是,该低共熔接点的厚度可以高的精度被校准。
本发明另外的特征,优点和实用性将通过下面结合图1和2描述的两个实施例获知。其表明:
图1是一本发明微型传感器之第一实施例的截面示意图,和
图2a和2b是本发明微型传感器之第二实施例在构成该低共熔接点之前和之后的一个局部截面示意图,
相同的或相同作用的元件在附图中设有相同的附图标记。
在图1中描述的微型传感器具有一个集成的转换电路1和一个传感器元件2。该集成的转换电路1包括一个带有一主表面12的半导体11和一个集成的电路4,其被设置在该主表面12的侧面上。
该传感器元件2安置在该主表面12上。为此,该传感器元件借助一个环绕的凸起14被安置在该半导体11的主表面12上并且在该凸起14和半导体11之间构成一个低共熔接点3。该低共熔接点3还将结合图2a和2b作仔细地解释。
该传感器元件2在所示实施例中被设置为用于一加速传感器的微型机械式传感器元件。为此,该传感器元件2具有一个可运动的并为一弹簧片8结构形式的构件(示意地描绘了被偏移的位置),其被一个环绕的在安装状态时平行于该主表面12安置的框架9所包围。该弹簧片8将按照有效加速度值从它的静止位置被偏移,因此,该弹簧片8相对该主表面12的距离依据所述的加速作用而变化。
这个距离以电容方式被测量并且借助该集成的电路被转换为一电气测量信号。
为了这种电容式测量设置了与该传感器元件对应配置的并且与该弹簧片8相对置的电极10,其例如可以作为参考电极10a,测量电极10c和激励器电极10b起作用。该参考电极10a被安置在该弹簧片8被固定的端部旁,因此,相对弹簧片的距离即使在其偏移情况下也只是微小的改变。该测量电极10c与此相反是与该弹簧片8的另外端部相对置的并且因此被安置在一个具有尽可能大之偏移的位置上。通过该激励器电极10b可以使一个静电力施加到该弹簧片8上。这样就能实现一个对该弹簧片8之静止位置的调节。此外,还可以依此稳定弹簧片8并可改变其敏感度。
这个在电极10上施加的电容测量信号则借助该集成的电路被制备。这个集成的电路可以为此包括一个测量电路-,校正电路-,和/或补偿电路。从该集成的电路起,所述被制备的测量信号将通过导体电路(未表示),连接表面15,和导线连接16被引出到外部的连接线上。
对于该微型传感器的功能和测量结果的精度来说,所述在主表面12和该传感器元件之相对置的表面17之间的距离D是具有决定意义的。这个距离D组合地包括了该凸起14的高度,该低共熔接点3的厚度和必要情况下另外中间层的厚度。该突起的高度和另外中间层的厚度可以借助公知的制造方法如干腐蚀被制造得具有足够的精度。因为该低共熔接点3如已述的那样同样可以被构造得具有一个精确的可予先决定的厚度,故在制造时就能够很精准地遵守一个予先确定的所述在该主表面12和该相反对置的表面17之间的距离D。
代替一个弹簧片,一个微型机械式传感器元件在用于获取其他测量值时也可以具有其它可运动的构件。作为例子,在一个压力传感器情况下该传感器元件可以在该弹簧片8的位置上包括一个薄的膜片例如一个硅膜片,它的弯曲度以电容方式或电感地被测量。同时最好在该传感器元件中构造一个开口,以便在该膜片的一侧面上建立该要被测知的环境压力。而且其他的例如可振荡的或可响应的微型机械式结构也经常被应用。
在图2中详细地描述了本发明的一第二实施例。图2a表明了该传感器元件和一微型传感器直接在构成该低共熔接点3之前的所述被集成的转换电路。图2b则表明了该微型传感器与所形成的低共熔接点3的一个相应的描绘。
在本表明的实施例中,该集成的转换电路1具有一个由硅制造的半导体11。该集成的转换电路例如可以是一种CMOS-或BICMOS-IC。
该传感器元件2同样由一种硅体制造。由于选择相同的材料用于该集成的转换电路和传感器元件,该微型传感器的这些部件就具有近似相同的热膨胀系数,因此,在温度变化时特别地在对该微型传感器的制造之后或焊接之后的冷却期间,在传感器元件和转换电路之间的机械应力被保持在微小水平上。
对于硅基的微型传感器,为了低共熔接点特别优选地应用一种硅-金-低共熔混合物。这种低共熔混合物之特征在于一个熔化温度,其以363℃是特别如此地低下,以致于在适宜的工艺操作下不会出现对该集成的转换电路的损伤。
此外,一个硅-金-低共熔混合物可构成一个牢固的、抗腐蚀的和机械上及热力方面长时间稳定的连接。这种连接是非常有利于气密封的和可以应用于对该微型传感器内部空间作密闭的屏蔽。这一特性对于压力传感器是特别有利的。作为例子,一个在一膜片上限界成的参考单元可以借助这种低共熔接点与该膜片相连接并且因此被气体隔绝地和密闭地封闭。该要被测量的压力则在一个如此形式的结构方案下就根据该膜片相对于该参者单元的弯曲变形和其中占据的参考压力而获得。通过借助低共熔接点形成之气体隔绝的密闭式屏蔽就确保了一个随时间稳定的参考压力。
一般地,一个用于微型传感器的密闭屏蔽对于电容方式产生该测量信号有利的是,使该被封闭的介质之介电特性保持常数。
代替一个硅-金-低共熔混合物也可以在一定情况下应用一种硅-银-或一种硅-铝-低共熔混合物。
为了构成该低共熔接点,在该半导体11之主表面12上安置一个金属层7,最好为一种金层,图2a。该金属层7作为例子可以化学或电镀方式制造,或者气相喷镀或阴极真空喷镀,其中在给定情况下为了侧面的结构化要应用一个适当的掩膜技术。
这些被该金属层覆盖的结构件13就可以依此不仅即是该集成的电路4之组成部分而且例如也可以是导体电路的组成部分。特别是一个环绕的用于屏罩该微型传感器内部空间的低共熔接点一般原则上说,在将导体电路从该微型传感器内部空间导引到该位于外部的导线连接区域上时是必需的。在一个相应的从区域21a向区域21b中作导体电路导引的情况下,这些导体电路将与该低共熔接点的连接方向交叉。在此,作为优选方式,该金属层或低共熔接点也可以将该导体电路的(一些)部分覆盖。其中,该导体电路的一个电气绝缘例如用一氧化层是优选的。
当然,该金属层7也可以直接被安置在该半导体11的主表面12上。随后关于结构件13应该理解为半导体11的主表面12。
在该结构件13和金属层7之间最好安置一个阻挡层5。这一阻挡层5防止金属原子从金属层7向该集成的电路4中的一个扩散并且这样在该集成的转换电路1之侧面上限定了该低共熔接点的伸展范围或厚度。作为阻挡层5可以例如应用一种硅氧化物层或氮化硅层。然而,一种可以包含例如钯,铂,钨和/或钛的金属层作为阻挡层也是适宜的。
此外,在该金属层7和所述被覆盖的结构件13之间,最好在该被覆盖的结构件13上可以安置一个粘接层,例如一种钛层和/或一种缓冲层,例如由铝或一种铝合金构成(未示出)。一个粘接层则提高了该金属层7在所述被覆盖的结构件13上的粘接性能并且因此之结果改善了该低共熔接点与该集成的转换电路1的锚接作用。
该传感器元件2在面对该金属层7的侧面上并在所要构成的低共熔接点的区域内具有一个用于形成一半导体-金属-低共熔混合物的半导体表面。作为优选,这一表面由传感器元件本身或一个被安置在该传感器元件上的半导体层6构成。在最后的可能方案中,该半导体层6最好被安置在一个阻挡层19上,例如由硅氧化物,氮化硅,钨,钛,钯或铂构成,其在构成所述低共熔接点情况下限制了所述金属层原子到该传感器元件中的散布。
通过该阻挡层5和19对该低共熔接点的一种两侧的包围,该低共熔接点的厚度就可以非常精确地被确定。但是要说明的是,在本发明中所称的阻挡层是优选的方式而不是强制必需的。
在一个硅基的传感器元件情况下为了构成低共熔接点按照目的要求应用了一个硅表面。这个就可以用该传感器元件本身或者最好由一个其上安置的硅层来构成。作为阻挡层,特别适宜的是一个硅氧化物层或一种氮化硅层。
在面对着该集成的转换电路1的侧面上,在正如图1所示的实施例那样的传感器元件情况下构造一个凸起14。这个可以例如通过区域方式的刻蚀来形成。对此,特别适合的是一种干腐蚀方法,其中从该凸起14之表面18到所述被刻蚀了的表面17的距离就可以很精确地被确定。在本实施例中,这个距离计为大约4μm。
作为优选方式,该硅层的厚度如此被确定并且要与该金层的厚度相协调,即,要构成该低共熔接点的硅数量和金数量已经是以这个通过该硅-金-低共熔混合物所予先确定的化学计量比例存在了。这个化学计量比例即是94重量百分比Gold(金)∶6重量百分比Silizium(硅)。它在相同的表面情况下对应于金层厚度对硅层厚度的一个比例为100∶52。
为了构成该低共熔接点,该传感器元件和集成的转换电路被相互紧靠地连接,因此,该金属层7和半导体表面18形成接触。这样在该金属层和半导体表面之间提高了温度和/或提高了挤压力情况下即以公知方式构成所述低共熔接点。
其中该低共熔阶段首先液体化并且最后固化成一种统一的低共熔接缝,其描述了该低共熔接点3,图2b。
通过这个液体化过程该被覆盖的结构件13之表面粗度和不平性就被有利地补偿了。一般说来,不平度至大约0,5μm是可允许的。另外,该液体的低共熔混合物之一微小的部分被沿着侧向上排挤并且固化为一个内角倒圆20的形式。该低共熔接点的厚度计为例如大约1μm。
这些为了构成该低共熔接点3之相应的工艺规程参数,特别是压力和温度则取决于那些组成的材料。一种低共熔硅-金-连接作为优选方式是在该低共熔混合物的熔化温度363℃和大约390℃之间的温度下形成的。其中,通过一个适宜的工艺操作可以构成一个相当程度上无应力的连接。对此的先决条件是在构成该低共熔接点时传感器元件和集成的转换电路是相同的温度以及一个尽可能小的横向温度梯度。具有特别优点的是将多个低共熔接点可以同时地在晶片联合装配中形成。
这种借助所述的实施例对本发明的解释是当然地不能理解为对本发明的限制。

Claims (17)

1.微型传感器,具有一个传感器元件(2)和一个集成的转换电路(1),该传感器包括一个带有一集成的电路(4)的半导体(11),其中该传感器元件(2)被安置在该半导体(11)的一主表面(12)上,其特征在于:
在该半导体(11)和该传感器元件(2)之间构成一个低共熔接点(3)。
2.按权利要求1的微型传感器,其特征在于:
该集成的电路(4)被设置在该半导体(11)之面对该传感器元件(2)的那个侧面上。
3.按权利要求1或2的微型传感器,其特征在于:
该传感器元件(2)由一种半导体材料构成或具有一个层结构(6)或具有一个由半导体材料构成的基片。
4.按权利要求3的微型传感器,其特征在于:
该集成的转换电路(1)之半导体(11)和该传感器元件(2)包含相同的半导体材料。
5.按权利要求4的微型传感器,其特征在于:
该集成的转换电路(1)之半导体(11)和该传感器元件(2)包含硅。
6.按权利要求3至5之一的微型传感器,其特征在于:
该低共熔接点(3)由一个在半导体(11)之主表面(12)上安置的金属层(7)和传感器元件(2)之半导体材料构成。
7.按权利要求3至5之一的微型传感器,其特征在于:
该低共熔接点(3)由一个在传感器元件(2)上安置的金属层和该半导体之材料构成。
8.按权利要求6或7的微型传感器,其特征在于:
该金属层是一金层或包含有金。
9.按权利要求7或8的微型传感器,其特征在于:
该集成的电路(4)用金属层(7)覆盖。
10.按权利要求6至9之一的微型传感器,其特征在于:
在该金属层(7)和该集成的电路(4)之间安置一个阻挡层(5)和/或一个粘接层。
11.按权利要求1至10之一的微型传感器,其特征在于:
该传感器元件(2)具有一个阻挡层(19)。
12.按权利要求10或11的微型传感器,其特征在于:
在集成的电路(4)和金属层之间的阻挡层(5)和/或该传感器元件(2)之阻挡层(19)包含硅氧化物或氮化硅。
13.按权利要求1至12之一的微型传感器,其特征在于:
该低共熔接点(3)包含一个硅-金-低共熔混合物。
14.按权利要求1至13之一的微型传感器,其特征在于:
该传感器元件(2)是一个微型机械式传感器元件。
15.按权利要求14的微型传感器,其特征在于:
该传感器元件(2)包括一个可运动的构件,基于其至该半导体(11)的距离产生一个测量信号。
16.按权利要求15的微型传感器,其特征在于:
该测量信号基于所述距离以电感或以电容方式产生。
17.按权利要求15或16的微型传感器,其特征在于:
该可运动的构件是一个弹簧片(8)或一个可运动的膜片或一个可振荡的结构件。
CNB028217187A 2001-10-29 2002-10-08 微型传感器 Expired - Fee Related CN100507573C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10153319.5 2001-10-29
DE10153319A DE10153319B4 (de) 2001-10-29 2001-10-29 Mikrosensor

Publications (2)

Publication Number Publication Date
CN1578911A true CN1578911A (zh) 2005-02-09
CN100507573C CN100507573C (zh) 2009-07-01

Family

ID=7704087

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028217187A Expired - Fee Related CN100507573C (zh) 2001-10-29 2002-10-08 微型传感器

Country Status (6)

Country Link
US (1) US7427808B2 (zh)
EP (1) EP1440322B1 (zh)
CN (1) CN100507573C (zh)
DE (1) DE10153319B4 (zh)
HK (1) HK1073689A1 (zh)
WO (1) WO2003038449A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253625A (zh) * 2012-02-17 2013-08-21 台湾积体电路制造股份有限公司 微电子机械系统mems结构及其形成方法
US9077365B2 (en) 2010-10-15 2015-07-07 S.C. Johnson & Son, Inc. Application specific integrated circuit including a motion detection system
CN105084292A (zh) * 2014-05-13 2015-11-25 中芯国际集成电路制造(上海)有限公司 Mems器件的真空封装结构和真空封装方法
CN105206537A (zh) * 2005-03-18 2015-12-30 因文森斯公司 晶片封装环境中制作ai/ge键合的方法及由其生产的产品
CN107209033A (zh) * 2015-01-28 2017-09-26 大陆-特韦斯股份有限公司 具有对称掩埋的传感器元件的传感器
CN107576821A (zh) * 2017-09-27 2018-01-12 东南大学 电感悬臂梁无线无源加速度传感器
CN107727696A (zh) * 2017-09-27 2018-02-23 东南大学 电感悬臂梁无线无源湿度传感器
CN107747981A (zh) * 2017-09-27 2018-03-02 东南大学 电感悬臂梁无线无源流量传感器
CN107765036A (zh) * 2017-09-27 2018-03-06 东南大学 电感双端固支梁无线无源加速度传感器
CN107782472A (zh) * 2017-09-27 2018-03-09 东南大学 电感双端固支梁无线无源应力传感器
CN107817058A (zh) * 2017-09-27 2018-03-20 东南大学 电感悬臂梁无线无源温度传感器

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2773261B1 (fr) 1997-12-30 2000-01-28 Commissariat Energie Atomique Procede pour le transfert d'un film mince comportant une etape de creation d'inclusions
FR2856844B1 (fr) 2003-06-24 2006-02-17 Commissariat Energie Atomique Circuit integre sur puce de hautes performances
US7271389B2 (en) * 2003-10-20 2007-09-18 United States Of America As Represented By The Secretary Of The Navy Neutron detection device and method of manufacture
FR2861497B1 (fr) 2003-10-28 2006-02-10 Soitec Silicon On Insulator Procede de transfert catastrophique d'une couche fine apres co-implantation
DE102004021693B4 (de) * 2004-04-30 2008-11-06 Austriamicrosystems Ag Mikromechanischer Sensor
CN100430708C (zh) * 2004-07-21 2008-11-05 华新丽华股份有限公司 机电元件,微机电及共振元件制作和气密度测试方法
DE102004058879B4 (de) 2004-12-06 2013-11-07 Austriamicrosystems Ag MEMS-Mikrophon und Verfahren zur Herstellung
DE102004058880B4 (de) * 2004-12-06 2007-12-13 Austriamicrosystems Ag Integrierter Mikrosensor und Verfahren zur Herstellung
DE102005002304B4 (de) * 2005-01-17 2011-08-18 Austriamicrosystems Ag Mikroelektromechanischer Sensor und Verfahren zu dessen Herstellung
FR2889887B1 (fr) 2005-08-16 2007-11-09 Commissariat Energie Atomique Procede de report d'une couche mince sur un support
FR2891281B1 (fr) 2005-09-28 2007-12-28 Commissariat Energie Atomique Procede de fabrication d'un element en couches minces.
DE102006047203B4 (de) 2006-10-05 2013-01-31 Austriamicrosystems Ag Mikrophonanordnung und Verfahren zu deren Herstellung
FR2910179B1 (fr) 2006-12-19 2009-03-13 Commissariat Energie Atomique PROCEDE DE FABRICATION DE COUCHES MINCES DE GaN PAR IMPLANTATION ET RECYCLAGE D'UN SUBSTRAT DE DEPART
US7690272B2 (en) * 2007-09-28 2010-04-06 Endevco Corporation Flexural pivot for micro-sensors
TW200933990A (en) * 2008-01-21 2009-08-01 Pegatron Corp Board module
JP5177015B2 (ja) * 2009-02-27 2013-04-03 富士通株式会社 パッケージドデバイスおよびパッケージドデバイス製造方法
FR2947098A1 (fr) 2009-06-18 2010-12-24 Commissariat Energie Atomique Procede de transfert d'une couche mince sur un substrat cible ayant un coefficient de dilatation thermique different de celui de la couche mince
US8338208B2 (en) * 2009-12-31 2012-12-25 Texas Instruments Incorporated Micro-electro-mechanical system having movable element integrated into leadframe-based package
US8567246B2 (en) 2010-10-12 2013-10-29 Invensense, Inc. Integrated MEMS device and method of use
US9664750B2 (en) 2011-01-11 2017-05-30 Invensense, Inc. In-plane sensing Lorentz force magnetometer
US8860409B2 (en) 2011-01-11 2014-10-14 Invensense, Inc. Micromachined resonant magnetic field sensors
US8947081B2 (en) 2011-01-11 2015-02-03 Invensense, Inc. Micromachined resonant magnetic field sensors
CN107408516A (zh) 2015-02-11 2017-11-28 应美盛股份有限公司 使用Al‑Ge共晶接合连接组件的3D集成

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701424A (en) * 1986-10-30 1987-10-20 Ford Motor Company Hermetic sealing of silicon
US5178015A (en) * 1991-07-22 1993-01-12 Monolithic Sensors Inc. Silicon-on-silicon differential input sensors
JP3613838B2 (ja) * 1995-05-18 2005-01-26 株式会社デンソー 半導体装置の製造方法
US5721162A (en) * 1995-11-03 1998-02-24 Delco Electronics Corporation All-silicon monolithic motion sensor with integrated conditioning circuit
DE19617696C2 (de) * 1996-05-03 1998-04-09 Thomas Bilger Mikromechanischer Druck- und Kraftsensor
US5798557A (en) 1996-08-29 1998-08-25 Harris Corporation Lid wafer bond packaging and micromachining
US5831162A (en) * 1997-01-21 1998-11-03 Delco Electronics Corporation Silicon micromachined motion sensor and method of making
US5923995A (en) 1997-04-18 1999-07-13 National Semiconductor Corporation Methods and apparatuses for singulation of microelectromechanical systems
AT3609U1 (de) * 1999-06-02 2000-05-25 Austria Mikrosysteme Int Mikrosensor
KR100413789B1 (ko) 1999-11-01 2003-12-31 삼성전자주식회사 고진공 패키징 마이크로자이로스코프 및 그 제조방법
DE19962231A1 (de) * 1999-12-22 2001-07-12 Infineon Technologies Ag Verfahren zur Herstellung mikromechanischer Strukturen

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206537A (zh) * 2005-03-18 2015-12-30 因文森斯公司 晶片封装环境中制作ai/ge键合的方法及由其生产的产品
CN105314592A (zh) * 2005-03-18 2016-02-10 因文森斯公司 晶片封装环境中制作al/ge键合的方法及由其生产的产品
US9077365B2 (en) 2010-10-15 2015-07-07 S.C. Johnson & Son, Inc. Application specific integrated circuit including a motion detection system
CN103253625B (zh) * 2012-02-17 2015-12-23 台湾积体电路制造股份有限公司 微电子机械系统mems结构及其形成方法
US9266714B2 (en) 2012-02-17 2016-02-23 Taiwan Semiconductor Manufacturing Company, Ltd. Micro-electro mechanical system (MEMS) structures and methods of forming the same
CN103253625A (zh) * 2012-02-17 2013-08-21 台湾积体电路制造股份有限公司 微电子机械系统mems结构及其形成方法
CN105084292A (zh) * 2014-05-13 2015-11-25 中芯国际集成电路制造(上海)有限公司 Mems器件的真空封装结构和真空封装方法
US10451646B2 (en) 2015-01-28 2019-10-22 Continental Teves Ag & Co. Ohg Sensor with symmetrically embedded sensor elements
CN107209033A (zh) * 2015-01-28 2017-09-26 大陆-特韦斯股份有限公司 具有对称掩埋的传感器元件的传感器
CN107209033B (zh) * 2015-01-28 2019-11-12 大陆-特韦斯股份有限公司 具有对称掩埋的传感器元件的传感器
CN107576821A (zh) * 2017-09-27 2018-01-12 东南大学 电感悬臂梁无线无源加速度传感器
CN107765036A (zh) * 2017-09-27 2018-03-06 东南大学 电感双端固支梁无线无源加速度传感器
CN107782472A (zh) * 2017-09-27 2018-03-09 东南大学 电感双端固支梁无线无源应力传感器
CN107817058A (zh) * 2017-09-27 2018-03-20 东南大学 电感悬臂梁无线无源温度传感器
CN107747981A (zh) * 2017-09-27 2018-03-02 东南大学 电感悬臂梁无线无源流量传感器
CN107727696A (zh) * 2017-09-27 2018-02-23 东南大学 电感悬臂梁无线无源湿度传感器

Also Published As

Publication number Publication date
WO2003038449A1 (de) 2003-05-08
DE10153319A1 (de) 2003-05-15
US20050067695A1 (en) 2005-03-31
US7427808B2 (en) 2008-09-23
DE10153319B4 (de) 2011-02-17
EP1440322A1 (de) 2004-07-28
HK1073689A1 (en) 2005-10-14
CN100507573C (zh) 2009-07-01
EP1440322B1 (de) 2006-07-26

Similar Documents

Publication Publication Date Title
CN100507573C (zh) 微型传感器
CA2082021C (en) Method of stabilizing the surface properties of objects to be thermally treated in a vacuum
US5760455A (en) Micromechanical semiconductor component and manufacturing method therefor
EP0943923B1 (en) Method of manufacturing a semiconductor acceleration sensor
KR100903789B1 (ko) 정전용량형 가속도 센서
CN1650155A (zh) 气压传感器
KR100960599B1 (ko) 가속도 센서 및 그 제조 방법
CN101663748B (zh) 功能元件封装及其制造方法
CN100533152C (zh) 加速度传感器和加速度传感器的制造方法
US6401542B1 (en) Pressure sensing semiconductor device comprising a semiconductor chip which has a diaphragm formed with piezoresistance
US8026594B2 (en) Sensor device and production method therefor
US5995088A (en) Display device having intergrated circuit chips thereon
US5302852A (en) Semiconductor device package having a low profile structure and high strength
JP3399688B2 (ja) 圧力センサ
US20040263186A1 (en) Capacitance type dynamic quantity sensor
US10908044B2 (en) Pressure sensor having a joint of active braze
US11156520B2 (en) Physical quantity sensor having a wall including first and second protrusion arrangements
CN118053676A (zh) 层叠陶瓷电容器
EP3939783B1 (en) Insulating film-equipped metal material and pressure sensor
JP2018073889A (ja) センサ用基板およびセンサ装置
CN111900135A (zh) 功率半导体模块装置
US20240059554A1 (en) Mems module
JP5651977B2 (ja) 加速度センサの製造方法
WO2017208642A1 (ja) 樹脂パッケージ
JP3426909B2 (ja) センサ用気密端子及びこれを用いたセンサ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1073689

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1073689

Country of ref document: HK

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090701

Termination date: 20131008