CN1571142A - 基于外延的CMOS或BiCMOS工艺中提供三阱的方法 - Google Patents

基于外延的CMOS或BiCMOS工艺中提供三阱的方法 Download PDF

Info

Publication number
CN1571142A
CN1571142A CNA2004100430947A CN200410043094A CN1571142A CN 1571142 A CN1571142 A CN 1571142A CN A2004100430947 A CNA2004100430947 A CN A2004100430947A CN 200410043094 A CN200410043094 A CN 200410043094A CN 1571142 A CN1571142 A CN 1571142A
Authority
CN
China
Prior art keywords
well
triple
sti
type
inject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100430947A
Other languages
English (en)
Other versions
CN1571142B (zh
Inventor
P·阿戈特松
K·安德松
H·诺尔斯特伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN1571142A publication Critical patent/CN1571142A/zh
Application granted granted Critical
Publication of CN1571142B publication Critical patent/CN1571142B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823892Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及到在基于外延的CMOS或BiCMOS工艺中提供三阱的方法,其中,在外延淀积之前,注入三阱。

Description

基于外延的CMOS或BiCMOS工艺中提供三阱的方法
技术领域
本发明涉及到在基于外延的CMOS或BiCMOS工艺中提供三阱的方法。
背景技术
在主流CMOS或BiCMOS工艺中,可以在P/p型衬底中注入NMOS中的PWELL/pwell,因此,对在芯片上所有的NMOS晶体管来说,pwell的偏置是共同的。为了防止整体偏置,可以选择使用三阱(TRIPLE WELL/triple well)的方案。很早就知道了三阱的使用,并已很早公开了提供三阱的方法,例如参见美国专利NO.6.388.295和日本专利NO.11026601。
三阱的使用首次提供了在每个NMOS晶体管上分别偏置的可能,由此可以单独地调节阈值电压。对模拟RF来说并且对混合信号电路来说或许最理想的是,三阱的使用也隔离了NMOS晶体管并抑制了噪声耦合。通过使用三阱的概念能获得几个益处。在集成电路中,一组晶体管的整体偏置是有利的。
发明内容
本发明涉及提供例如三阱的深NWELL/nwell的新方法。使用三阱的传统工艺流程具有通过使用高能量注入制成进入硅的深掺杂注入磷。相反,本发明建议利用在沉积外延层之前掺杂注入砷。由于砷的扩散比磷慢并有更好的晶格匹配,所以砷更可取。所述砷被深注入硅内,以便将对晶体管参数的影响减少到最小。在NMOS晶体管外延淀积之后,随后的pwell注入的深度决定了三阱注入的深度。该方法优先用于浅沟槽隔离(STI)工艺。STI的深度一定不能到达已注入砷的三阱。这意味着必须引进一些额外的N型掺杂,以切断在STI下面的路径。这通过在外延淀积之前与三阱注入连续进行附加的N注入来实现。PMOS晶体管的标准nwell注入也可以用来切断这条路径。在STI刻蚀和填充后,进行该nwell注入。用N型掺杂到达STI下面的区域并与深nwell一起形成PMOS晶体管的良好隔离的方式选择能量。
在外延淀积之前引入所述深层N注入基本上构成了发明的第一个权利要求的实质内容。在这种应用中,砷的使用构成了发明的第二个权利要求的实质内容。
这种工艺顺序可以容易地增加到标准的CMOS/BiCMOS工艺流程。通过使用这个概念,可以在同一个岛中具有一组NMOS晶体管,并与它的周围隔离。本发明介绍了一组NMOS晶体管,其具有相同偏置应被标准的NWELL注入或外延淀积之前的额外N型注入所包围,这基本上构成了发明的第三个权利要求的实质内容。
在STI下面增加额外的硼掺杂基本上构成了本发明第四个权利要求的实质内容。根据类型或工艺,在STI下面的P型路径的电阻率可以是很高,这需要pwell接触之间短的距离。为了增加这个距离,用与深阱/DEEP NWELL注入相同的方式,在外延淀积之前引进额外的P型注入。该注入必需以下面的方式被优化:注入不穿透三阱/TRIPLE WFLL注入并建立到衬底的导电路径。设计NMOS晶体管的pwell使得它到达比STI深度更深的深度,并由此降低STI下面的电流路径的电阻。
附图说明
图1是P型衬底的剖视图。
图2是根据本发明具有已注入的三阱的P型衬底的剖视图。
图3是根据本发明具有已注入的三阱的P型衬底的剖视图,其中展示了n型掺杂剂的注入。
图4是根据本发明具有已注入的三阱的P型衬底的剖视图,其中示出了p型掺杂剂的注入。
图5是根据本发明具有已注入的三阱的P型衬底的剖视图,其中展示了已获得的不同岛之间的隔离。
图6是根据具有三个NMOS晶体管的本发明,具有已注入的三阱的P型衬底的剖视图。
优选实施方式
为了理解本发明,将描述特定的例子,省略了本领域技术人员熟知的具体细节。下面的描述是工艺步骤的顺序,并且可以作为单独的模块合到主流CMOS或BiCMOS工艺内。没有介绍这些工艺步骤之前或之后的流程。也假定在先前的步骤中已制作了对准标记,并且可以在描述的顺序中使用对准标记。
在图1中,展示了p型衬底1的截面图。依据电路的应用,选择衬底的掺杂水平。只要具有高欧姆,上述原则就不会受电阻率的选择的影响。
在该起始材料上,外延淀积之前进行一系列三次注入。应用第一掩模2以在优选的区域中获得三阱3。掩模2仅在这些区域的正上方的区域有开口。接着,使用该图案化的抗蚀剂2作为掩模,进行砷的离子注入4。以2×10exp13cmexp-2的建议的掺杂剂量、480keV的能量和0度的倾斜角进行该注入4,该注入4渗入到衬底深部。在图2中,展示了该注入步骤和已获得的三阱区3的步骤。
进行下一个掩模步骤5以掩蔽同一岛中将围绕器件或器件群的另外的n型注入6。必须以在已注入区中的STI 12a下没有剩余p型的方式进行注入。它也必须连接到三阱区,确保没有p型区域将此注入与三阱分离。在图3中,展示了该n型掺杂剂的注入。
最后的掺杂8目标是终止在STI 12b的下面,这将在后面的工艺流程中完成。将有单独的图案化抗蚀剂掩模9。选择该注入的能量和剂量,使其到达三阱3。它应当尽可能的高,但仍不切断三阱3。当确定剂量和能量时,甚至必须考虑可能对设计规则有影响的横向扩散。当制订设计规则时,注入应被优化以使STI下的电流路径的电阻率应当被最小化。在图4中,展示了该p型掺杂的注入。
本说明书以特定的顺序介绍了这三个注入。但可以进行注入顺序的任何排列,并且仍能获得想要的结构。
在这三个掩模注入后,将进行外延生长。对硅的掩模蚀刻将跟着进入外延层。用介质材料,例如高密度等离子体氧化物(HDP),填充已获得的沟槽,接着,通过化学和/或机械抛光CMP平面化。这些方框(boxes)STI 12将在如在图5中所示的工艺中的器件之间提供隔离。到此为止,没有提及深度和厚度的绝对数字。原因是对于这些数字,本概念适用于很宽的范围。但需要下面的条件以实现概念。外延的厚度、STI的深度和所述三个注入的深度必须如下互相关联。STI不应到达三阱。P型不应当注入在将注入n型的区域中。环绕的n型必须到达三阱,并切断在注入区中STI下的所有p型。三阱必须足够的深,以对晶体管的特性没有任何较大的影响。
掩模步骤的数量是技术复杂度的象征。在该顺序中,基本工艺流程包括三个附加层。要减少到仅一个附加的掩模,可以用pwell注入代替8,并且可以使用nwell或掩埋的集电极代替6,这将降低工艺成本。
在已取得的该结构中,通过传统的主流CMOS或BiCMOS流程能制作传统的NMOS设计。在图6中,展示了三个NMOS晶体管的横截面图。在此视图中,看不到pwell6和三阱3的接线端。在图中能看到漏14、源15和栅13。如果单独地偏置单个器件,那么附加的p型注入是没有必要的。在这种情况下,周围的STI12a是与用来隔离器件的STI 12b相同的STI,这意味着附加的n型注入将在与用于隔离器件的STI相同的STI的下面。在这种情况下,当制造多于一个器件时,与该附加n型一样的岛将仅在周围的STI下面。p型将位于被周围的STI锁定的STI和n型注入之下。

Claims (5)

1.一种在基于外延的CMOS或BiCMOS工艺中提供三阱的方法,其特征在于:在外延淀积前,注入所述三阱。
2.根据权利要求1的方法,其特征在于,当注入所述三阱时,使用砷,其中发生慢扩散。
3.根据权利要求2的方法,其特征在于,在已获得的结构中,增加至少一个NMOS器件。
4.根据权利要求2或3的方法,其特征在于,在外延淀积之前,注入硼。
5.根据权利要求4的方法,其特征在于,在已获得的结构中,增加一个以上的NMOS器件。
CN2004100430947A 2003-03-28 2004-03-26 基于外延的CMOS或BiCMOS工艺中提供三阱的方法 Expired - Fee Related CN1571142B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE03009248 2003-03-28
SE0300924A SE0300924D0 (sv) 2003-03-28 2003-03-28 A method to provide a triple well in an epitaxially based CMOS or BiCMOS process
SE0300924-8 2003-03-28

Publications (2)

Publication Number Publication Date
CN1571142A true CN1571142A (zh) 2005-01-26
CN1571142B CN1571142B (zh) 2010-05-26

Family

ID=20290871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004100430947A Expired - Fee Related CN1571142B (zh) 2003-03-28 2004-03-26 基于外延的CMOS或BiCMOS工艺中提供三阱的方法

Country Status (4)

Country Link
US (1) US7008836B2 (zh)
CN (1) CN1571142B (zh)
DE (1) DE102004014923A1 (zh)
SE (1) SE0300924D0 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335236B (zh) * 2007-12-28 2011-07-06 上海新傲科技股份有限公司 利用桶式外延炉进行bicmos电路的埋层外延方法

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667288B2 (en) * 2004-11-16 2010-02-23 Masleid Robert P Systems and methods for voltage distribution via epitaxial layers
US7598573B2 (en) * 2004-11-16 2009-10-06 Robert Paul Masleid Systems and methods for voltage distribution via multiple epitaxial layers
US7491632B2 (en) 2005-11-10 2009-02-17 International Business Machines Corporation Buried subcollector for high frequency passive semiconductor devices
GB2439597A (en) * 2006-06-30 2008-01-02 X Fab Uk Ltd Low noise RF CMOS circuits
KR100870297B1 (ko) * 2007-04-27 2008-11-25 주식회사 하이닉스반도체 반도체 소자의 제조 방법
US7902611B1 (en) * 2007-11-27 2011-03-08 Altera Corporation Integrated circuit well isolation structures
US8273617B2 (en) 2009-09-30 2012-09-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US20110079861A1 (en) * 2009-09-30 2011-04-07 Lucian Shifren Advanced Transistors with Threshold Voltage Set Dopant Structures
US8421162B2 (en) 2009-09-30 2013-04-16 Suvolta, Inc. Advanced transistors with punch through suppression
US8530286B2 (en) 2010-04-12 2013-09-10 Suvolta, Inc. Low power semiconductor transistor structure and method of fabrication thereof
US8569128B2 (en) 2010-06-21 2013-10-29 Suvolta, Inc. Semiconductor structure and method of fabrication thereof with mixed metal types
US8759872B2 (en) 2010-06-22 2014-06-24 Suvolta, Inc. Transistor with threshold voltage set notch and method of fabrication thereof
US8377783B2 (en) 2010-09-30 2013-02-19 Suvolta, Inc. Method for reducing punch-through in a transistor device
US8404551B2 (en) 2010-12-03 2013-03-26 Suvolta, Inc. Source/drain extension control for advanced transistors
US8461875B1 (en) 2011-02-18 2013-06-11 Suvolta, Inc. Digital circuits having improved transistors, and methods therefor
US8525271B2 (en) 2011-03-03 2013-09-03 Suvolta, Inc. Semiconductor structure with improved channel stack and method for fabrication thereof
US8400219B2 (en) 2011-03-24 2013-03-19 Suvolta, Inc. Analog circuits having improved transistors, and methods therefor
US8748270B1 (en) 2011-03-30 2014-06-10 Suvolta, Inc. Process for manufacturing an improved analog transistor
US8796048B1 (en) 2011-05-11 2014-08-05 Suvolta, Inc. Monitoring and measurement of thin film layers
US8999861B1 (en) 2011-05-11 2015-04-07 Suvolta, Inc. Semiconductor structure with substitutional boron and method for fabrication thereof
US8811068B1 (en) 2011-05-13 2014-08-19 Suvolta, Inc. Integrated circuit devices and methods
US8569156B1 (en) 2011-05-16 2013-10-29 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
US8735987B1 (en) 2011-06-06 2014-05-27 Suvolta, Inc. CMOS gate stack structures and processes
US8995204B2 (en) 2011-06-23 2015-03-31 Suvolta, Inc. Circuit devices and methods having adjustable transistor body bias
FR2978614B1 (fr) 2011-07-25 2014-09-05 Altis Semiconductor Snc Substrat semi-conducteur comprenant des zones dopees formant une jonction p-n
US8629016B1 (en) 2011-07-26 2014-01-14 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
WO2013022753A2 (en) 2011-08-05 2013-02-14 Suvolta, Inc. Semiconductor devices having fin structures and fabrication methods thereof
US8748986B1 (en) 2011-08-05 2014-06-10 Suvolta, Inc. Electronic device with controlled threshold voltage
US8645878B1 (en) 2011-08-23 2014-02-04 Suvolta, Inc. Porting a circuit design from a first semiconductor process to a second semiconductor process
US8614128B1 (en) 2011-08-23 2013-12-24 Suvolta, Inc. CMOS structures and processes based on selective thinning
US8713511B1 (en) 2011-09-16 2014-04-29 Suvolta, Inc. Tools and methods for yield-aware semiconductor manufacturing process target generation
US9236466B1 (en) 2011-10-07 2016-01-12 Mie Fujitsu Semiconductor Limited Analog circuits having improved insulated gate transistors, and methods therefor
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8819603B1 (en) 2011-12-15 2014-08-26 Suvolta, Inc. Memory circuits and methods of making and designing the same
US8883600B1 (en) 2011-12-22 2014-11-11 Suvolta, Inc. Transistor having reduced junction leakage and methods of forming thereof
US8599623B1 (en) 2011-12-23 2013-12-03 Suvolta, Inc. Circuits and methods for measuring circuit elements in an integrated circuit device
US8970289B1 (en) 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US8877619B1 (en) 2012-01-23 2014-11-04 Suvolta, Inc. Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom
US9093550B1 (en) 2012-01-31 2015-07-28 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
US9406567B1 (en) 2012-02-28 2016-08-02 Mie Fujitsu Semiconductor Limited Method for fabricating multiple transistor devices on a substrate with varying threshold voltages
US8863064B1 (en) 2012-03-23 2014-10-14 Suvolta, Inc. SRAM cell layout structure and devices therefrom
US9299698B2 (en) 2012-06-27 2016-03-29 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US8637955B1 (en) 2012-08-31 2014-01-28 Suvolta, Inc. Semiconductor structure with reduced junction leakage and method of fabrication thereof
US9112057B1 (en) 2012-09-18 2015-08-18 Mie Fujitsu Semiconductor Limited Semiconductor devices with dopant migration suppression and method of fabrication thereof
US9041126B2 (en) 2012-09-21 2015-05-26 Mie Fujitsu Semiconductor Limited Deeply depleted MOS transistors having a screening layer and methods thereof
CN104854698A (zh) 2012-10-31 2015-08-19 三重富士通半导体有限责任公司 具有低变化晶体管外围电路的dram型器件以及相关方法
US8816754B1 (en) 2012-11-02 2014-08-26 Suvolta, Inc. Body bias circuits and methods
US9093997B1 (en) 2012-11-15 2015-07-28 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9070477B1 (en) 2012-12-12 2015-06-30 Mie Fujitsu Semiconductor Limited Bit interleaved low voltage static random access memory (SRAM) and related methods
US9112484B1 (en) 2012-12-20 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit process and bias monitors and related methods
US9268885B1 (en) 2013-02-28 2016-02-23 Mie Fujitsu Semiconductor Limited Integrated circuit device methods and models with predicted device metric variations
US8994415B1 (en) 2013-03-01 2015-03-31 Suvolta, Inc. Multiple VDD clock buffer
US8988153B1 (en) 2013-03-09 2015-03-24 Suvolta, Inc. Ring oscillator with NMOS or PMOS variation insensitivity
US9299801B1 (en) 2013-03-14 2016-03-29 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9449967B1 (en) 2013-03-15 2016-09-20 Fujitsu Semiconductor Limited Transistor array structure
US9112495B1 (en) 2013-03-15 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9478571B1 (en) 2013-05-24 2016-10-25 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US8976575B1 (en) 2013-08-29 2015-03-10 Suvolta, Inc. SRAM performance monitor
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods
US9319013B2 (en) 2014-08-19 2016-04-19 Mie Fujitsu Semiconductor Limited Operational amplifier input offset correction with transistor threshold voltage adjustment
KR101923763B1 (ko) * 2015-03-13 2018-11-30 매그나칩 반도체 유한회사 레벨 쉬프트 회로 보호용 정전기 방전 보호 회로 및 소자
US20200194459A1 (en) * 2018-12-18 2020-06-18 Vanguard International Semiconductor Corporation Semiconductor devices and methods for fabricating the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470766A (en) * 1994-06-06 1995-11-28 Integrated Devices Technology, Inc. Efficient method for fabricating optimal BiCMOS N-wells for bipolar and field effect transistors
US5559368A (en) * 1994-08-30 1996-09-24 The Regents Of The University Of California Dynamic threshold voltage mosfet having gate to body connection for ultra-low voltage operation
KR100189739B1 (ko) * 1996-05-02 1999-06-01 구본준 반도체 기판에 삼중웰을 형성하는 방법
US6330190B1 (en) * 1996-05-30 2001-12-11 Hyundai Electronics America Semiconductor structure for flash memory enabling low operating potentials
KR100239402B1 (ko) * 1997-04-02 2000-02-01 김영환 반도체 소자의 웰과 그 형성방법
US5776807A (en) * 1997-08-13 1998-07-07 Tritech Microelectronics, Ltd. Method for fabricating a triple well for bicmos devices
KR100328455B1 (ko) * 1997-12-30 2002-08-08 주식회사 하이닉스반도체 반도체소자의제조방법
DE69739267D1 (de) * 1997-12-31 2009-04-02 St Microelectronics Srl Methode und Schaltung zur Verbesserung der Eigenschaften eines ESD-Schutzes für integrierte Halbleiterschaltungen
US6258641B1 (en) * 1999-02-05 2001-07-10 Taiwan Semiconductor Manufacturing Company OTP (open trigger path) latchup scheme using triple and buried well for sub-quarter micron transistors
KR100345681B1 (ko) * 1999-06-24 2002-07-27 주식회사 하이닉스반도체 반도체소자의 삼중웰 형성방법
US7253047B2 (en) * 1999-09-01 2007-08-07 Micron Technology, Inc. Semiconductor processing methods of forming transistors, semiconductor processing methods of forming dynamic random access memory circuitry, and related integrated circuitry
US6525394B1 (en) * 2000-08-03 2003-02-25 Ray E. Kuhn Substrate isolation for analog/digital IC chips

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335236B (zh) * 2007-12-28 2011-07-06 上海新傲科技股份有限公司 利用桶式外延炉进行bicmos电路的埋层外延方法

Also Published As

Publication number Publication date
US20040219733A1 (en) 2004-11-04
CN1571142B (zh) 2010-05-26
DE102004014923A1 (de) 2004-11-11
SE0300924D0 (sv) 2003-03-28
US7008836B2 (en) 2006-03-07

Similar Documents

Publication Publication Date Title
CN1571142B (zh) 基于外延的CMOS或BiCMOS工艺中提供三阱的方法
CN101405867B (zh) 一种模块化双极-cmos-dmos模拟集成电路和功率晶体管技术
US5034337A (en) Method of making an integrated circuit that combines multi-epitaxial power transistors with logic/analog devices
KR101010426B1 (ko) 트렌치 구속 분리 확산영역을 갖는 상보형 아날로그 바이폴라 트랜지스터
US5408125A (en) Semiconductor process for manufacturing semiconductor device with increased operating voltages
KR20090051213A (ko) Soi 또는 벌크형 실리콘 중의 하나에 백게이트가 구성된접합 전계 효과 트랜지스터
US5256582A (en) Method of forming complementary bipolar and MOS transistor having power and logic structures on the same integrated circuit substrate
CN1322589C (zh) 具增加击穿电压的半导体结构及制造该半导体结构的方法
US5181095A (en) Complementary bipolar and MOS transistor having power and logic structures on the same integrated circuit substrate
US5153697A (en) Integrated circuit that combines multi-epitaxial power transistors with logic/analog devices, and a process to produce same
US5516718A (en) Method of making BI-CMOS integrated circuit having a polysilicon emitter
US5929506A (en) Isolated vertical PNP transistor and methods for making same in a digital BiCMOS process
US5880002A (en) Method for making isolated vertical PNP transistor in a digital BiCMOS process
US5633180A (en) Method of forming P-type islands over P-type buried layer
CN1151544C (zh) 生产晶体管的方法
KR20200129368A (ko) 바이폴라 접합 트랜지스터, 이를 포함하는 BiCMOS 소자 및 BiCMOS 소자 제조방법
KR19990088516A (ko) 반도체장치의제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100526

CF01 Termination of patent right due to non-payment of annual fee