CN1567642A - 一种锂二次电池用非水电解质 - Google Patents

一种锂二次电池用非水电解质 Download PDF

Info

Publication number
CN1567642A
CN1567642A CNA03149188XA CN03149188A CN1567642A CN 1567642 A CN1567642 A CN 1567642A CN A03149188X A CNA03149188X A CN A03149188XA CN 03149188 A CN03149188 A CN 03149188A CN 1567642 A CN1567642 A CN 1567642A
Authority
CN
China
Prior art keywords
nonaqueous electrolyte
carbonate
native graphite
ethylene
lipf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA03149188XA
Other languages
English (en)
Other versions
CN1282273C (zh
Inventor
胡勇胜
孔维和
陈立泉
黄学杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Physics of CAS
Original Assignee
Institute of Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Physics of CAS filed Critical Institute of Physics of CAS
Priority to CNB03149188XA priority Critical patent/CN1282273C/zh
Publication of CN1567642A publication Critical patent/CN1567642A/zh
Application granted granted Critical
Publication of CN1282273C publication Critical patent/CN1282273C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/122

Landscapes

  • Secondary Cells (AREA)

Abstract

本发明涉及一种锂二次电池用的非水电解质。该电解质包含:(i)锂盐;(ii)非水有机溶剂;(iii)含有至少一种(1)式所示的卤烯烃化合物添加剂,式中R1、R2和R3选自氢,烷基,环烷基,烯基,芳基或卤素,X为氟、氯、溴或碘;所述的卤烯烃化合物添加剂占非水有机溶剂总重量的0.1~10wt%。本发明提供的非水电解质,使用含有式(1)所示的卤烯烃化合物添加剂,先于电解液有机溶剂的分解,并可以在石墨类负极表面形成一层致密、稳定的固体电解质界面膜,从而将电解液的分解抑制到最小程度,进而提高了锂二次电池的充放电效率和循环特性。

Description

一种锂二次电池用非水电解质
技术领域
本发明属于高能电池领域,特别是涉及锂二次电池用的非水电解质。
技术背景
自1990年日本索尼公司成功开发锂离子电池以来,锂离子电池由于具有工作电压高(3.6V)、能量密度高、无记忆效应、自放电小和循环寿命长等优异性能,在移动电话、摄像机、笔记本电脑等便携式电子装置上获得了广泛应用。近年来,电动汽车动力电池研究开发工作也逐渐转向了大容量、高能量密度的锂二次电池上。而且,随着锂二次电池应用领域的扩大,十分期待着电池循环特性和电池特性能进一步得到提高。
虽然很早以来人们就将用金属锂作负极的锂二次电池作为能实现高容量化的电池,对其进行了深入的研究,发现在反复的充放电过程中,金属锂表面生长出锂枝晶,能刺透在正负极之间起电子绝缘作用的隔膜,最终触到正极,造成电池内部短路,引起安全问题,所以它一直处于基础研究阶段而未获得实际应用。
针对这个问题,人们提出了在负极中使用石油焦、硬碳、人造石墨、天然石墨等能嵌入/脱出锂的碳质材料的非水系电解质的锂二次电池方案。在该锂二次电池中,由于锂是以锂离子状态而不是以锂金属存在,因而可以抑制锂枝晶的形成,避免了电池内部短路,大大提高了电池的循环寿命和安全性。在众多的碳质材料中,由于石墨类碳质材料具有价格低廉、原料来源丰富和平坦的锂嵌入/脱出电位平台等优点而倍受人们青睐。但由于石墨类碳材料各向异性的层状结构对电解质的兼容性较差,放电过程有机溶剂的共嵌入、还原和分解以及由此带来的石墨片层的剥落,使得石墨类碳质材料的容量损失较高、循环性较差。特别是在以具有低熔点(-49℃)和高介电常数的碳酸亚丙酯(PC)作为主要溶剂的非水电解质中,在石墨电极表面不能形成稳定的SEI膜,碳酸亚丙酯随同溶剂化锂离子一同嵌入到石墨层间,并在其间进行剧烈的还原分解反应,导致石墨片层的剥离,进而破坏了石墨电极结构,使电池的循环寿命大大降低。
因此,目前大多采用这种分解反应比较少的碳酸亚乙酯(EC)作为有机溶剂非水电解质的主要成份,但是由于在反复的充电和放电过程中,EC局部地在电极表面分解,存在充放电效率低、循环特性低。而且,与碳酸亚丙酯相比,碳酸亚乙酯因熔点高(36.4℃)而不能单独使用,一般将其与低粘度的链状碳酸酯混和使用。由于EC的熔点高,电池低温性能差,在-20℃以下就不能工作。一般来说低粘度溶剂的沸点低,大量的添加后虽然有利于电解质的性能的提高,但也存在溶剂着火点降低导致电池安全性降低的问题。相反,若添加量较少则存在电池低温性能较差的问题。因此,目前该类电池的循环特性、电池安全和低温特性很难兼顾。
发明内容
本发明的目的在于克服已有技术使用的非水电解质使得锂二次电池的循环特性、电池安全和低温特性很难兼顾的特性,从而提供一种用于锂二次电池的、具有优良电池循环特性、电池安全和低温特性的非水电解质,将使用包含石墨类碳质材料负极的锂二次电池的电解液的分解抑制到最小程度。
本发明的目的是通过如下的技术方案实现的:
本发明提供了一种用于锂二次电池的非水电解质,包括:
(i)锂盐;
(ii)非水有机溶剂;
(iii)含有至少一种(1)式所示的卤烯烃化合物添加剂:
Figure A0314918800041
式中R1、R2和R3分别选自氢,伯、仲或叔烷基,环烷基,烯基,芳基或卤素,
X为氟、氯、溴或碘;
所述锂盐选自LiPF6、LiAsF6、LiSbF6、LiClO4、LiAlCl4、LiCF3SO3、LiC4F9SO3、LiN(CxF2x+1SO2)(CyF2y+1SO2),其中,x和y是自然数,LiBFz(CF3)4-z,其中z≤4的自然数,LiC(SO2CF3)3、LiPF3(CF3)3、LiPF3(C2F5)3、LiPF4(C2F5)2、LiPF4(异-C3F7)2和LiPF5(异-C3F7),所述锂盐的浓度为0.5~2.0mol/L;
所述的非水有机溶剂选自环状碳酸酯、链状碳酸酯及其混合物;
所述的卤烯烃化合物添加剂占非水有机溶剂总重量的0.1~10wt%。
所述环状碳酸酯包括碳酸亚乙酯、碳酸亚丙酯、碳酸亚乙烯酯和碳酸亚丁酯。
所述链状碳酸酯包括碳酸甲乙酯、碳酸二甲酯、碳酸二乙酯、碳酸甲丙酯、碳酸甲基异丙基酯、碳酸乙丙酯、碳酸二丙酯、碳酸丁甲酯、碳酸异丁基甲基酯、碳酸仲丁基甲基酯和碳酸叔丁基甲酯。
所述卤烯烃化合物的R1,R2和R3分别选自氢原子、甲基、乙基、丙基、丁基、戊基、己基、异丙基、异丁基、仲丁基、叔丁基、环丙基、环己基、乙烯基、丙烯基、苯基、对甲苯基或卤素原子。
所述卤烯烃化合物包括四氟乙烯、四氯乙烯、四溴乙烯、四碘乙烯、1,1,2-三氟乙烯、1,1,2-三氯乙烯、1,1,2-三溴乙烯、1,1,2-三碘乙烯、1,1-二氟乙烯、1,1-二氯乙烯、1,1-二溴乙烯、1,1-二碘乙烯、1,2-二氟乙烯、1,2-二氯乙烯、1,2-二溴乙烯、1,2-二碘乙烯、氟乙烯、氯乙烯、溴乙烯和碘乙烯。
本发明的优益之处在于:使用添加含有卤烯烃化合物的非水电解质作为使用包含石墨类碳质材料负极的锂二次电池的电解液,初次充电期间,化合物添加剂比电解质有机溶剂更早地分解,在负材料表面生成一层致密和稳定的固体电解质界面膜,阻止了电解液与电极的直接接触,从而抑制了电解质有机溶剂的进一步分解;该膜是优良的离子导体、电子的绝缘体,可抑制电解液的进一步分解,同时并不妨碍锂离子在电解液和负极之间的传递,大大提高了锂二次电池的充放电效率;另外,它不增加电池内阻,还大大提高了电池的循环特性。
附图说明
图1是本发明实施例2的循环伏安图;
图2是本发明对比例1的循环伏安图;
图3是本发明实施例2的第一周充放电容量—电位曲线图;
图4是本发明对比例1的第一周充放电容量—电位曲线图。
具体实施方式
实施例1、制备含有0.1wt%四氯乙烯的非水电解质及模拟电池1
在含水量<1ppm的氩气气氛手套箱中,将碳酸亚丙酯及其重量0.1wt%的四氯乙烯混合均匀,再将充分干燥的LiPF6以1mol/L的量溶解在其中,制备得到含有0.1wt%四氯乙烯非水电解质。
将90重量份的天然石墨粉末与溶有10重量份的PVDF(聚偏氟乙烯)的N-甲基吡咯烷酮粘结剂溶液混合成均匀的浆状物,均匀涂覆在作为负极集流体的厚度为12μm的铜箔上,在120℃真空干燥8小时,裁成一定尺寸的电极片,作为阴极,以锂箔作为阳极,其间为含浸了制得的非水电解质的隔膜,一起构成模拟电池1。
实施例2~4、制备含有3wt%、5wt%和10wt%四氯乙烯的非水电解质及模拟电池2~4
按实施例1的方法,分别将3wt%、5wt%和10wt%四氯乙烯溶于碳酸亚丙酯及LiPF6中,制备得到含有3wt%、5wt%和10wt%四氯乙烯的非水电解质。
按实施例1中的方法,构成模拟电池2~4。
实施例5~8、制备含有0.1wt%、3wt%、5wt%和10wt%四氟乙烯的非水电解质及模拟电池5~8
按实施例1的方法,分别将0.1wt%、3wt%、5wt%和10wt%四氟乙烯溶于碳酸亚丙酯及LiPF6中,制备得到含0.1wt%、3wt%、5wt%和10wt%四氟乙烯的非水电解质。
按实施例1中的方法,构成模拟电池5~8。
实施例9~12、制备含有0.1wt%、3wt%、5wt%和10wt%四溴乙烯的非水电解质及模拟电池9~12
按实施例1的方法,分别将0.1wt%、3wt%、5wt%和10wt%四溴乙烯溶于碳酸亚丙酯及LiPF6中,制备得到含有0.1wt%、3wt%、5wt%和10wt%四溴乙烯的非水电解质。
按实施例1中的方法,构成模拟电池9~12。
实施例13~16、制备含有0.1wt%、3wt%、5wt%和10wt%1,1,2-三氯乙烯的非水电解质及模拟电池13~16
按实施例1的方法,分别将0.1wt%、3wt%、5wt%和10wt%1,1,2-三氯乙烯溶于碳酸亚丙酯及LiPF6中,制备得到含有0.1wt%、3wt%、5wt%和10wt%1,1,2-三氯乙烯的非水电解质。
按实施例1中的方法,构成模拟电池13~16。
实施例17~20、制备含有0.1wt%、3wt%、5wt%和10wt%1,1-二氯乙烯的非水电解质及模拟电池17~20
按实施例1的方法,分别将0.1wt%、3wt%、5wt%和10wt%1,1-二氯乙烯溶于碳酸亚丙酯及LiPF6中,制备得到含有0.1wt%、3wt%、5wt%和10wt%1,1-二氯乙烯的非水电解质。
按实施例1中的方法,构成模拟电池17~20。
实施例21~24、制备含有0.1wt%、3wt%、5wt%和10wt%1,2-二氯乙烯的非水电解质及模拟电池21~24
按实施例1的方法,分别将0.1wt%、3wt%、5wt%和10wt%1,2-二氯乙烯溶于碳酸亚丙酯及LiPF6中,制备得到含有0.1wt%、3wt%、5wt%和10wt%1,2-二氯乙烯的非水电解质。
按实施例1中的方法,构成模拟电池21~24。
实施例25~28、制备含有0.1wt%、3wt%、5wt%和10wt%氯乙烯的非水电解质及模拟电池25~28
按实施例1的方法,分别将0.1wt%、3wt%、5wt%和10wt%氯乙烯溶于碳酸亚丙酯及LiPF6中,制备得到含有0.1wt%、3wt%、5wt%和10wt%氯乙烯的非水电解质。
按实施例1中的方法,构成模拟电池25~28。
实施例29~38制备含有3wt%1-氯丙烯、1-氯丁烯、1-氯戊烯、1-氯己烯、1-氯庚烯、1-氯辛烯、1-氯-2-异丙基乙烯、1-氯-2-异丁基乙烯、1-氯-2-仲丁基乙烯和1-氯-2-叔丁基乙烯的非水电解质及模拟电池29~38
按实施例1的方法,分别将3wt%1-氯丙烯、1-氯丁烯、1-氯戊烯、1-氯己烯、1-氯庚烯、1-氯辛烯、1-氯-2-异丙基乙烯、1-氯-2-异丁基乙烯、1-氯-2-仲丁基乙烯和1-氯-2-叔丁基乙烯溶于碳酸亚丙酯及LiPF6中,制备得到含3wt%1-氯丙烯、1-氯丁烯、1-氯戊烯、1-氯己烯、1-氯庚烯、1-氯辛烯、1-氯-2-异丙基乙烯、1-氯-2-异丁基乙烯、1-氯-2-仲丁基乙烯和1-氯-2-叔丁基乙烯的非水电解质。
按实施例1中的方法,构成模拟电池29~38。
实施例39~40制备含有3wt%1-氯环丙乙烯和1-氯环己乙烯的非水电解质及模拟电池33~36
按实施例1的方法,分别将3wt%1-氯环丙乙烯和1-氯环己乙烯溶于碳酸亚丙酯及LiPF6中,制备得到含有3wt%1-氯环丙乙烯和1-氯环己乙烯的非水电解质。
按实施例1中的方法,构成模拟电池39~40。
实施例41~42制备含有3wt%1-氯丁二烯和1-氯-1,3-戊二烯的非水电解质及模拟电池41~42
按实施例1的方法,分别将3wt%1-氯丁二烯和1-氯-1,3-戊二烯溶于碳酸亚丙酯及LiPF6中,制备得到含有3wt%1-氯丁二烯和1-氯-1,3-戊二烯的非水电解质。
按实施例1中的方法,构成模拟电池41~42。
实施例43~44制备含有3wt%1-氯苯乙烯和1-氯对甲基苯乙烯的非水电解质及模拟电池43~44
按实施例1的方法,分别将3wt%1-氯苯乙烯和1-氯对甲基苯乙烯溶于碳酸亚丙酯及LiPF6中,制备得到含有3wt%1-氯苯乙烯和1-氯对甲基苯乙烯的非水电解质。
按实施例1中的方法,构成模拟电池43~44。
对比例1、制备不含添加剂的非水电解质及模拟电池45
在含水量<1ppm的氩气气氛手套箱中,将充分干燥的LiPF6以1mol/L的量溶解在碳酸亚丙酯中,制备得到不含添加剂的非水电解质。
按实施例1中的方法,构成模拟电池45。
分解电压的测定:
由常规的循环伏安法,在0~3V电压范围内,以0.1mV/S的扫描速度测定模拟电池2、6、10和45,测得实施例2、6、10和对比例1制得的非水电解质的分解电压,测定结果列于表1中,实施例2与对比例1制得的模拟电池2和45的循环伏安图分别如图1和2所示。
表1、非水电解质的分解电压
    分解电压(V vs Li/Li+)
    实施例2     1.31
    实施例6     1.19
    实施例10     1.47
    对比例1     0.90
从表1和图1,2中可以看出,添加了卤烯烃化合物添加剂的电解液具有比未加添加剂的电解液高的分解电压。因此,加了添加剂的电解液在初次充电时分解得更早,并且在分解电压下于石墨负极上形成固体电解质界面膜,阻止时分解得更早,并且在分解电压下于石墨负极上形成固体电解质界面膜,阻止了电解液中有机溶剂的进一步分解。
模拟电池的充放电测试:
将实施例1~44和对比例1制得的模拟电池1~45在Land多通道充放电仪上进行恒电流模式充放电测试,工作温度25℃,充放电的截止电压范围为2.5~0.01V,充放电电流密度均为0.156mA/cm2。模拟电池3和45的第一周充放电的容量—电位曲线图分别如图3和4所示,模拟电池1~45的充放电测试结果列于表2中。
如图4所示,在不添加卤烯烃化合物的情况下,在0.9V vs Li/Li+附近观察到一很长的平台,对应于碳酸亚丙酯随同溶剂化锂离子共同嵌入到石墨层间的电化学过程。然而,如图3所示,在添加仅3重量%比例的四氯乙烯到碳酸亚丙酯的电解液中后,整个过程完全改变了,仅在1.25V出现一小平台,对应于四氯乙烯的分解,随之在石墨表面形成固体电解质界面膜,抑制了电解液的进一步分解,随后电压很快降到0.25Vvs Li/Li+以下有一长平台,对应于锂离子嵌入石墨层间的电化学过程。在充电过程,在0.25V vs Li/Li+左右的平台对应于锂离子脱出石墨层间的电化学过程,可逆容量高达330mAh/g以上。第一周的充放电效率为82%。如表2所示,第二周的充放电效率高达98%,在进行100周充放电循环后,仍然有着92.6%的容量保持率,说明在石墨表面形成的固体电解质界面膜是稳定的、致密的,进而提高了石墨类碳质材料的充放电效率和循环特性。
实施例45、制备含有0.1wt%四氯乙烯的非水电解质的模拟电池46
将85重量份的正极活性物质LiCoO2、10重量份的乙炔黑和溶有5重量份的PVDF的N-甲基吡咯烷酮粘结剂混合成均匀的浆状物,均匀涂覆在作为正极集流体的厚度为18μm的铝箔上,在120℃真空干燥8小时,裁成一定尺寸的电极片,作为阳极。
将90重量份的天然石墨粉末与溶有10重量份的PVDF的N-甲基吡咯烷酮粘结剂混合成均匀的浆状物,均匀涂覆在作为负极集流体的厚度为12μm的铜箔上,在120℃真空干燥8小时,裁成一定尺寸的电极片,作为阴极。
阴极与阳极之间为浸了实施例1制得的非水电解质的隔膜,一起构成模拟电池46。实施例46~48、制备含有3wt%、5wt%和10wt%四氯乙烯的非水电解质的模拟电池47~49
按实施例45中的方法,在阴极与阳极之间分别使用浸了实施例2~4制得的非水电解质的隔膜,分别构成模拟电池47~49。
实施例49~52、制备含有0.1wt%、3wt%、5wt%和10wt%四氟乙烯的非水电解质的模拟电池50~53
按实施例45的方法,在阴极与阳极之间分别使用浸了实施例5~8制得的非水电解质的隔膜,分别构成模拟电池50~53。
实施例53~56、制备含有0.1wt%、3wt%、5wt%和10wt%四溴乙烯的非水电解质的模拟电池54~57
按实施例45的方法,在阴极与阳极之间分别使用浸了实施例9~12制得的非水电解质的隔膜,分别构成模拟电池54~57。
实施例57~60、制备含有0.1wt%、3wt%、5wt%和10wt%1,1,2-三氯乙烯的非水电解质的模拟电池58~61
按实施例45的方法,在阴极与阳极之间分别使用浸了实施例13~16制得的非水电解质的隔膜,分别构成模拟电池58~61。
实施例61~64、制备含有0.1wt%、3wt%、5wt%和10wt%1,1-二氯乙烯的非水电解质的模拟电池62~65
按实施例45的方法,在阴极与阳极之间分别使用浸了实施例17~20制得的非水电解质的隔膜,分别构成模拟电池62~65。
实施例65~68、制备含有0.1wt%、3wt%、5wt%和10wt%1,2-二氯乙烯的非水电解质的模拟电池66~69
按实施例45的方法,在阴极与阳极之间分别使用浸了实施例21~24制得的非水电解质的隔膜,分别构成模拟电池66~69。
实施例69~72、制备含有0.1wt%、3wt%、5wt%和10wt%氯乙烯的非水电解质的模拟电池70~73
按实施例45的方法,在阴极与阳极之间分别使用浸了实施例25~28制得的非水电解质的隔膜,分别构成模拟电池70~73。
实施例73~82、制备含有3wt%1-氯丙烯、1-氯丁烯、1-氯戊烯、1-氯己烯、1-氯庚烯、1-氯辛烯、1-氯-2-异丙基乙烯、1-氯-2-异丁基乙烯、1-氯-2-仲丁基乙烯和1-氯-2-叔丁基乙烯的非水电解质的模拟电池74~83
按实施例45的方法,在阴极与阳极之间分别使用浸了实施例29~38制得的非水电解质的隔膜,分别构成模拟电池74~83。
实施例83~84、制备含有3wt%1-氯环丙乙烯和1-氯环己乙烯的非水电解质的模拟电池84~85
按实施例45的方法,在阴极与阳极之间分别使用浸了实施例39~40制得的非水电解质的隔膜,分别构成模拟电池84~85。
实施例85~86、制备含有3wt%1-氯丁二烯和1-氯-1,3-戊二烯的非水电解质的模拟电池86~87
按实施例45的方法,在阴极与阳极之间分别使用浸了实施例41~42制得的非水电解质的隔膜,分别构成模拟电池86~87。
实施例87~88、制备含有3wt%1-氯苯乙烯和1-氯对甲基苯乙烯的非水电解质的模拟电池88~89
按实施例45的方法,在阴极与阳极之间分别使用浸了实施例43~44制得的非水电解质的隔膜,分别构成模拟电池86~89。
模拟电池的充放电测试:
将实施例45~88制得的模拟电池46~89在Land多通道充放电仪上进行恒电流模式充放电测试,工作温度25℃,充放电截止电压范围为4.2-2.75V,充放电电流为0.5C。充放电测试结果列于表3中。
从表3可以看出,在实际的电池体系中,该非水电解质既与正极有良好的相容性,又可在石墨类碳质材料负极表面形成稳定的固体电解质膜,制备的电池具有优良的充放电效率和循环特性。因此,使用该非水电解质能有效地改善电池性能。
表2:
例证 阴极 阳极 化合物    加入量(重量%)     第一周可逆容量(mAh/g)     第一周充放电效率(%)  第100周可逆容量(mAh)  第100周可逆容量保持率(%)
实施例1 天然石墨 锂箔   四氯乙烯    0.1     343     86.9  289  84.2
实施例2 天然石墨 锂箔   四氯乙烯    3     341     86.6  316  92.6
实施例3 天然石墨 锂箔   四氯乙烯    5     335     82  311  92.8
实施例4 天然石墨 锂箔   四氯乙烯    10     329     80  260  79
实施例5 天然石墨 锂箔   四氟乙烯    0.1     347     87.5  295  85
实施例6 天然石墨 锂箔   四氟乙烯    3     345     87.1  321  93.0
实施例7 天然石墨 锂箔   四氟乙烯    5     338     84  318  94.0
实施例8 天然石墨 锂箔   四氟乙烯    10     332     81  267  80.2
实施例9 天然石墨 锂箔   四溴乙烯    0.1     340     83.8  282  83
实施例10 天然石墨 锂箔   四溴乙烯    3     339     83.5  301  88.8
实施例11 天然石墨 锂箔   四溴乙烯    5     334     81.2  298  89.2
实施例12 天然石墨 锂箔   四溴乙烯    10     328     80  256  78.1
实施例13 天然石墨 锂箔   1,1,2-三氯乙烯    0.1     342     87  289  84.4
实施例14 天然石墨 锂箔   1,1,2-三氯乙烯    3     340     86.9  314  92.4
实施例15 天然石墨 锂箔     1,1,2-三氯乙烯     5     334     82.4     310     93
实施例16 天然石墨 锂箔     1,1,2-三氯乙烯     10     327     80.2     260     79.6
实施例17 天然石墨 锂箔     1,1-二氯乙烯     0.1     345     87.2     291     84.5
实施例18 天然石墨 锂箔     1,1-二氯乙烯     3     343     87.1     318     92.9
实施例19 天然石墨 锂箔     1,1-二氯乙烯     5     337     83     313     93
实施例20 天然石墨 锂箔     1,1-二氯乙烯     10     329     80     260     79
实施例21 天然石墨 锂箔     1,2-二氯乙烯     0.1     344     87.1     290     84.4
实施例22 天然石墨 锂箔     1,2-二氯乙烯     3     342     87     317     92.8
实施例23 天然石墨 锂箔     1,2-二氯乙烯     5     336     82.8     312     92.9
实施例24 天然石墨 锂箔     1,2-二氯乙烯     10     328     79.8     259     79.1
实施例25 天然石墨 锂箔     氯乙烯     0.1     346     87.3     291     84.2
实施例26 天然石墨 锂箔     氯乙烯     3     344     87.2     318     92.6
实施例27 天然石墨 锂箔     氯乙烯     5     338     82.9     313     92.7
实施例28 天然石墨 锂箔     氯乙烯     10     330     79.9     260     78.9
实施例29 天然石墨 锂箔     1-氯丙烯     3     342     86.8     314     92
实施例30 天然石墨 锂箔     1-氯丁烯     3     340     86.5     309     91.1
实施例31 天然石墨 锂箔 1-氯戊烯     3     334     86     300     90
实施例32 天然石墨 锂箔 1-氯己烯     3     328     84     292     89
实施例33 天然石墨 锂箔 1-氯庚烯     3     345     83.2     303     88
实施例34 天然石墨 锂箔 1-氯辛烯     3     343     82.5     294     86
实施例35 天然石墨 锂箔 1-氯-2-异丙基乙烯     3     336     82     286     85.2
实施例36 天然石墨 锂箔 1-氯-2-异丁基乙烯     3     330     81.3     277     84
实施例37 天然石墨 锂箔 1-氯-2-仲丁基乙烯     3     343     81     288     84.1
实施例38 天然石墨 锂箔 1-氯-2-叔丁基乙烯     3     342     81.2     287     83.9
实施例39 天然石墨 锂箔 1-氯环丙乙烯     3     337     85     301     89.4
实施例40 天然石墨 锂箔 1-氯环己乙烯     3     331     83.8     291     88
实施例41 天然石墨 锂箔 1-氯丁二烯     3     339     86.8     308     91
实施例42 天然石墨 锂箔 1-氯-1,3-戊二烯     3     337     86.1     303     90.1
实施例43 天然石墨 锂箔 1-氯苯乙烯     3     331     82.2     291     88
实施例44 天然石墨 锂箔 1-氯对甲基苯乙烯     3     324     80     280     86.4
对比例1 天然石墨 锂箔 --     --     --     --     --     --
表3:
例证 阴极 阳极 化合物     加入量(重量%)     第一周容量(mAh)   第一周充放电效率(%)  第100周容量(mAh)  第100周容量保持率(%)
实施例45   LiCoO2   天然石墨     四氯乙烯     0.1     1831   84  1283  70.1
实施例46   LiCoO2   天然石墨     四氯乙烯     3     1829   83.8  1642  89.8
实施例47   LiCoO2   天然石墨     四氯乙烯     5     1817   80.9  1639  90.2
实施例48   LiCoO2   天然石墨     四氯乙烯     10     1801   78  1242  69
实施例49   LiCoO2   天然石墨     四氟乙烯     0.1     1841   84.3  1316  71.5
实施例50   LiCoO2   天然石墨     四氟乙烯     3     1838   84.1  1672  91
实施例51   LiCoO2   天然石墨     四氟乙烯     5     1821   82.9  1664  91.4
实施例52   LiCoO2   天然石墨     四氟乙烯     10     1811   81.2  1268  70
实施例53   LiCoO2   天然石墨     四溴乙烯     0.1     1824   82  1258  69
实施例54   LiCoO2   天然石墨     四溴乙烯     3     1820   81.8  1583  87
实施例55   LiCoO2   天然石墨     四溴乙烯     5     1811   80.6  1581  87.3
实施例56   LiCoO2   天然石墨     四溴乙烯     10     1792   76  1182  66
实施例57   LiCoO2   天然石墨     1,1,2-三氯乙烯     0.1     1834   84.2  1289  70.3
实施例58   LiCoO2   天然石墨     1,1,2-三氯乙烯     3     1833   84  1648  89.9
  实施例59   LiCoO2   天然石墨   1,1,2-三氯乙烯     5     1820     81.1     1643     90.3
  实施例60   LiCoO2   天然石墨   1,1,2-三氯乙烯     10     1804     78.2     1248     69.2
  实施例61   LiCoO2   天然石墨   1,1-二氯乙烯     0.1     1836     84.4     1294     70.5
  实施例62   LiCoO2   天然石墨   1,1-二氯乙烯     3     1835     84.2     1651     90
  实施例63   LiCoO2   天然石墨   1,1-二氯乙烯     5     1822     81.3     1647     90.4
  实施例64   LiCoO2   天然石墨   1,1-二氯乙烯     10     1806     78.4     1253     69.4
  实施例65   LiCoO2   天然石墨   1,2-二氯乙烯     0.1     1835     84.5     1295     70.6
  实施例66   LiCoO2   天然石墨   1,2-二氯乙烯     3     1834     84.3     1648     89.9
  实施例67   LiCoO2   天然石墨   1,2-二氯乙烯     5     1821     81.2     1644     90.3
  实施例68   LiCoO2   天然石墨   1,2-二氯乙烯     10     1805     78.3     1254     69.5
  实施例69   LiCoO2   天然石墨   氯乙烯     0.1     1839     84.7     1294     70.4
  实施例70   LiCoO2   天然石墨   氯乙烯     3     1838     84.5     1649     89.7
  实施例71   LiCoO2   天然石墨   氯乙烯     5     1825     81.4     1645     90.1
  实施例72   LiCoO2   天然石墨   氯乙烯     10     1809     78.5     1253     69.3
  实施例73   LiCoO2   天然石墨   1-氯丙烯     3     1827     83.5     1607     88
  实施例74   LiCoO2   天然石墨   1-氯丁烯     3     1825     82.8     1582     86.7
  实施例75   LiCoO2   天然石墨     1-氯戊烯     3     1813     80.7     1524     84.1
  实施例76   LiCoO2   天然石墨     1-氯己烯     3     1803     77.8     1494     82.9
  实施例77   LiCoO2   天然石墨     1-氯庚烯     3     1801     76     1448     80.4
  实施例78   LiCoO2   天然石墨     1-氯辛烯     3     1795     74.2     1416     78.9
  实施例79   LiCoO2   天然石墨     1-氯-2-异丙基乙烯     3     1792     73     1457     81.3
  实施例80   LiCoO2   天然石墨     1-氯-2-异丁基乙烯     3     1778     72     1438     80.9
  实施例81   LiCoO2   天然石墨     1-氯-2-仲丁基乙烯     3     1781     72.1     1444     81.1
  实施例82   LiCoO2   天然石墨     1-氯-2-叔丁基乙烯     3     1770     71.9     1400     79.1
  实施例83   LiCoO2   天然石墨     1-氯环丙乙烯     3     1830     82.7     1599     87.4
  实施例84   LiCoO2   天然石墨     1-氯环己乙烯     3     1816     81     1563     86.1
  实施例85   LiCoO2   天然石墨     1-氯丁二烯     3     1839     84.4     1626     88.4
  实施例86   LiCoO2   天然石墨     1-氯-1,3-戊二烯     3     1838     83     1605     87.3
  实施例87   LiCoO2   天然石墨     1-氯苯乙烯     3     1825     79     1497     82
  实施例88   LiCoO2   天然石墨     1-氯对甲基苯乙烯     3     1809     77     1453     80.3

Claims (5)

1.一种用于锂二次电池的非水电解质,包括:
(i)锂盐;
(ii)非水有机溶剂;
(iii)含有至少一种(1)式所示的卤烯烃化合物添加剂:
Figure A031491880002C1
式中R1、R2和R3分别选自氢,伯、仲或叔烷基,环烷基,烯基,芳基或卤素,X为氟、氯、溴或碘;
所述锂盐选自LiPF6、LiAsF6、LiSbF6、LiClO4、LiAlCl4、LiCF3SO3、LiC4F9SO3、LiN(CxF2x+1SO2)(CyF2y+1SO2),其中,x和y是自然数,LiBFz(CF3)4-z,其中z≤4的自然数,LiC(SO2CF3)3、LiPF3(CF3)3、LiPF3(C2F5)3、LiPF4(C2F5)2、LiPF4(异-C3F7)2和LiPF5(异-C3F7);所述锂盐的浓度为0.5~2.0mol/L;
所述的非水有机溶剂选自环状碳酸酯、链状碳酸酯及其混合物;
所述的卤烯烃化合物添加剂占非水有机溶剂总重量的0.1~10wt%。
2.按权利要求1所述的用于锂二次电池的非水电解质,其特征在于,所述环状碳酸酯包括碳酸亚乙酯、碳酸亚丙酯、碳酸亚乙烯酯和碳酸亚丁酯。
3.按权利要求1所述的用于锂二次电池的非水电解质,其特征在于,所述链状碳酸酯包括碳酸甲乙酯、碳酸二甲酯、碳酸二乙酯、碳酸甲丙酯、碳酸甲基异丙基酯、碳酸乙丙酯、碳酸二丙酯、碳酸丁甲酯、碳酸异丁基甲基酯、碳酸仲丁基甲基酯和碳酸叔丁基甲酯。
4.按权利要求1所述的用于锂二次电池的非水电解质,其特征在于,所述卤烯烃化合物的R1,R2和R3分别选自氢原子、甲基、乙基、丙基、丁基、戊基、己基、异丙基、异丁基、仲丁基、叔丁基、环丙基、环己基、乙烯基、丙烯基、苯基、对甲苯基或卤素原子。
5.按权利要求1所述的用于锂二次电池的非水电解质,其特征在于,所述卤烯烃化合物包括四氟乙烯、四氯乙烯、四溴乙烯、四碘乙烯、1,1,2-三氟乙烯、1,1,2-三氯乙烯、1,1,2-三溴乙烯、1,1,2-三碘乙烯、1,1-二氟乙烯、1,1-二氯乙烯、1,1-二溴乙烯、1,1-二碘乙烯、1,2-二氟乙烯、1,2-二氯乙烯、1,2-二溴乙烯、1,2-二碘乙烯、氟乙烯、氯乙烯、溴乙烯和碘乙烯。
CNB03149188XA 2003-06-20 2003-06-20 一种锂二次电池用非水电解质 Expired - Lifetime CN1282273C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB03149188XA CN1282273C (zh) 2003-06-20 2003-06-20 一种锂二次电池用非水电解质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB03149188XA CN1282273C (zh) 2003-06-20 2003-06-20 一种锂二次电池用非水电解质

Publications (2)

Publication Number Publication Date
CN1567642A true CN1567642A (zh) 2005-01-19
CN1282273C CN1282273C (zh) 2006-10-25

Family

ID=34472483

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB03149188XA Expired - Lifetime CN1282273C (zh) 2003-06-20 2003-06-20 一种锂二次电池用非水电解质

Country Status (1)

Country Link
CN (1) CN1282273C (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100423333C (zh) * 2003-10-22 2008-10-01 三星Sdi株式会社 有机电解溶液和使用该有机电解溶液的锂电池
CN101218706B (zh) * 2005-06-10 2011-09-28 三菱化学株式会社 非水电解液、非水电解质二次电池和碳酸酯化合物
CN103098289A (zh) * 2010-09-03 2013-05-08 日产自动车株式会社 非水电解质组合物及非水电解质二次电池
CN109411806A (zh) * 2018-12-11 2019-03-01 广东永邦新能源股份有限公司 一种低温锂离子电池及其制备方法
CN115986201A (zh) * 2023-03-15 2023-04-18 中国铁塔股份有限公司 一种电池和电池制备方法
WO2023193230A1 (zh) * 2022-04-08 2023-10-12 宁德时代新能源科技股份有限公司 电解液、二次电池、电池模块、电池包和用电装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387450B2 (en) * 2017-04-05 2022-07-12 Massachusetts Institute Of Technology Electrolytes for lithium metal electrodes and rechargeable batteries using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100423333C (zh) * 2003-10-22 2008-10-01 三星Sdi株式会社 有机电解溶液和使用该有机电解溶液的锂电池
CN101218706B (zh) * 2005-06-10 2011-09-28 三菱化学株式会社 非水电解液、非水电解质二次电池和碳酸酯化合物
CN103098289A (zh) * 2010-09-03 2013-05-08 日产自动车株式会社 非水电解质组合物及非水电解质二次电池
CN103098289B (zh) * 2010-09-03 2016-03-09 日产自动车株式会社 非水电解质组合物及非水电解质二次电池
CN109411806A (zh) * 2018-12-11 2019-03-01 广东永邦新能源股份有限公司 一种低温锂离子电池及其制备方法
WO2023193230A1 (zh) * 2022-04-08 2023-10-12 宁德时代新能源科技股份有限公司 电解液、二次电池、电池模块、电池包和用电装置
EP4283745A4 (en) * 2022-04-08 2024-05-01 Contemporary Amperex Technology Co Ltd ELECTROLYTE SOLUTION, SECONDARY BATTERY, BATTERY MODULE, BATTERY PACK AND ELECTRICAL DEVICE
CN115986201A (zh) * 2023-03-15 2023-04-18 中国铁塔股份有限公司 一种电池和电池制备方法

Also Published As

Publication number Publication date
CN1282273C (zh) 2006-10-25

Similar Documents

Publication Publication Date Title
CN1148826C (zh) 非水电解质蓄电池
CN1260849C (zh) 有机电解液及使用它的锂电池
CN1178326C (zh) 非水性电解质以及使用该电解质的锂二次电池
CN1248350C (zh) 非水电解液以及锂二次电池
CN1288791C (zh) 一种锂二次电池和用于制备该电池的方法
CN1181592C (zh) 非水系电解液蓄电池
CN101471455A (zh) 用于锂离子电池非水电解质中的添加剂及用其制备的非水电解质
CN1846326A (zh) 改进电池安全性的电解质溶剂和包含其的锂二次电池
CN1849725A (zh) 可循环性和/或高温安全性改进的非水锂二次电池
CN1146065C (zh) 用于电化学体系的非水溶液电解质以及含有该电解质的锂蓄电池
CN1992420A (zh) 可再充电锂电池
CN1716681A (zh) 锂二次电池
CN1961451A (zh) 锂二次电池用添加剂
CN1393954A (zh) 锂聚合物电池
CN101060183A (zh) 非水系二次电池
CN1722509A (zh) 可充电锂离子电池的电解液及包括它的可充电锂离子电池
CN1551401A (zh) 非水电解质以及包含该非水电解质的锂二次电池
CN1227760C (zh) 包括非离子表面活性剂的电解质和使用该电解质的锂离子电池
CN1755976A (zh) 锂离子二次电池用的电解液和包括它的锂离子二次电池
CN1581563A (zh) 非水电解液和包含该非水电解液的锂二次电池
CN1677739A (zh) 用于锂电池的电解液及包含它的锂电池
CN101079503A (zh) 有机电解液和利用它的锂电池
CN1612383A (zh) 具有有效性能的锂电池
CN1921210A (zh) 有机电解液及采用它的锂电池
CN1755974A (zh) 锂离子二次电池用的电解液和包含它的锂离子二次电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20061025