CN1532666A - 信息处理装置、该装置的时钟脉冲控制方法及控制程序 - Google Patents
信息处理装置、该装置的时钟脉冲控制方法及控制程序 Download PDFInfo
- Publication number
- CN1532666A CN1532666A CNA200410033215XA CN200410033215A CN1532666A CN 1532666 A CN1532666 A CN 1532666A CN A200410033215X A CNA200410033215X A CN A200410033215XA CN 200410033215 A CN200410033215 A CN 200410033215A CN 1532666 A CN1532666 A CN 1532666A
- Authority
- CN
- China
- Prior art keywords
- clock
- frequency
- processing section
- clock frequency
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 89
- 230000007423 decrease Effects 0.000 claims abstract description 47
- 230000010365 information processing Effects 0.000 claims description 123
- 238000001514 detection method Methods 0.000 claims description 62
- 230000008859 change Effects 0.000 claims description 47
- 230000003247 decreasing effect Effects 0.000 claims description 14
- 230000000630 rising effect Effects 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 9
- 230000004044 response Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 description 51
- 230000000694 effects Effects 0.000 description 25
- 230000006870 function Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 13
- 230000002411 adverse Effects 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C15/00—Generating random numbers; Lottery apparatus
- G07C15/001—Generating random numbers; Lottery apparatus with balls or the like
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/324—Power saving characterised by the action undertaken by lowering clock frequency
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Power Sources (AREA)
- Executing Machine-Instructions (AREA)
- Information Transfer Systems (AREA)
Abstract
本发明的目的在于提供一种信息处理装置、电器、信息处理装置的时钟脉冲控制方法、时钟脉冲控制程序以及其程序产品,可以同时实现处理的实时性和减少电力消耗。本发明的信息处理装置的时钟脉冲控制单元102,控制由时钟脉冲产生单元101产生的时钟脉冲,并决定时钟频率。计算处理单元103,按照通过时钟脉冲控制单元102而被提供的时钟脉冲,来执行从存储单元104读取的程序。排他处理区间检测单元110用来检测执行排他处理的区间的排他处理区间的开始和结束。时钟脉冲控制判断单元111,在排他处理区间检测单元110检测出特别指定处理区间的开始时,则命令时钟脉冲控制单元102增大时钟频率,而在排他处理区间检测单元110检测出特别指定处理区间的结束时,则命令时钟脉冲控制单元102降低时钟频率。
Description
技术领域
本发明涉及一种信息处理装置、电器、信息处理装置的时钟脉冲控制方法、时钟脉冲控制程序以及其程序产品,尤其是涉及一种通过控制时钟的频率来减少电力消耗的技术。
技术背景
现在的家用电器,比如移动电话、移动AV器械、数码照相机等,对尽可能地将电力消耗抑制成很低都有较高的要求。近几年的家用电器,大多都装有CPU(中央计算处理单元)以及许多处理装置。而且,在这些处理装置中,由于大多数的程序同时工作,又具有显示屏等耗电较多的显示装置,所以,电力消耗处于增加的趋势,因此,抑制电力消耗的技术就变得非常有必要。
众所周知,作为减少信息处理装置的耗电的技术,有一种技术是根据信息处理装置的状况,来控制提供给信息处理装置的时钟频率。作为这种以往的技术,如日本专利公报平成5-108191号(专利文献1)所示,通常以较慢的时钟频率工作,只有在对CPU进行外部中断的期间和之后的一定期间,才提高向CPU提供的时钟频率。该技术通过参照标有中断标志的装置上的硬件,来进行对时钟频率的控制。
而且,还有一种以往的技术,如日本专利公报平成8-76874号(专利文献2)所示,是以设定各任务所需要的最低限度的性能为前提,,在启动各任务时,根据其性能来控制时钟频率的在指定线路上进行设定的技术。而且,还有一种技术,如日本专利公报平成4-278612号(专利文献3)所示,在多任务操作系统下,总是以最低的优先度来设定降低时钟频率的任务。该技术,在其它所有的任务的处理都结束后,也就是,系统进入了等待状态时,通过降低时钟频率来抑制电力消耗。
然而,在抑制家用电器耗电的同时,又有必要使器械正常地工作,而家用电器所具有的处理装置大多都要求有实时性。所谓实时性是指,从要求处理开始起,在规定的时间内对其内容进行处理的一种保证。在执行排他处理的区间,例如,执行某种处理时禁止执行其它处理的区间,由于不接受其它处理的要求,所以就存在着影响实时性的危险性。因此,执行排他处理的区间必须尽可能的在有限的短时间内进行。
专利文献1所示的以往技术所存在的问题在于,在外部中断期间执行增大时钟频率的处理,会使得在外部中断期间电力消耗始终处于非常高的状态,所以,不能实现实时性的省电控制。专利文献2所示的以往技术所存在的问题在于,因为是根据各任务所需要的性能对时钟频率进行控制,所以就必需事先决定并设定各任务所需要的性能。专利文献3所示的以往技术所存在的问题在于,由于是在其它所有任务的处理都结束后,才执行降低时钟频率的处理,所以,电力消耗会保持着高值而直到其它所有任务的处理都结束为止,因而不能实现实时性的省电控制。
发明内容
本发明为了解决上述的课题,目的在于提供一种信息处理装置、具有信息处理装置的电器、信息处理装置的时钟脉冲控制方法、时钟脉冲控制程序以及该程序的程序产品,可以在确保处理的实时性的同时也能够减少电力消耗。
本发明所提供的信息处理装置,包括产生时钟脉冲的时钟脉冲产生单元、控制所述时钟脉冲产生单元所产生的时钟脉冲并决定时钟频率的时钟脉冲控制单元、存储程序的存储单元、按照通过所述时钟脉冲控制单元而被提供的时钟脉冲,执行从所述存储单元中读取程序的计算处理单元、检测所述计算处理单元执行预先规定的特别指定处理的区间的特别指定处理区间的开始和结束的特别指定处理区间检测单元、根据所述特别指定处理区间检测单元所取得的检测结果,将控制时钟频率的指令传送给所述时钟脉冲控制单元的时钟脉冲控制判断单元,所述时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的开始时,命令所述时钟脉冲控制单元增大时钟频率,而在所述特别指定处理区间检测单元检测出所述特别指定处理区间的结束时,则命令所述时钟脉冲控制单元降低时钟频率。
根据此发明结构,时钟脉冲控制判断单元,在特别指定处理区间检测单元检测出特别指定处理区间的开始时,则命令时钟脉冲控制单元增大时钟频率,而在特别指定处理区间检测单元检测出特别指定处理区间的结束时,则命令时钟脉冲控制单元降低时钟频率。然后,计算处理单元按照时钟脉冲控制单元所控制的时钟脉冲,执行存储在存储单元中的程序。由此,通过将有实时性要求的处理作为特别指定的处理,就可以在确保处理的实时性的同时也能够减少电力消耗。
而且,本发明的信息处理装置的特别指定处理区间,可以是一个执行排他处理的区间。根据此发明结构,由于特别指定处理区间通常是有实时性要求的执行排他处理的区间,所以,可以在确保处理的实时性的同时也能够减少电力消耗。
本发明的信息处理装置的特别指定处理区间,还可以是执行排他处理的多个区间中的一个预先规定的特别指定的区间。根据此发明结构,由于特别指定处理区间是执行排他处理的多个区间中的一个预先规定的特别指定的区间,所以,可以避免对于执行排他处理的多个区间中的不一定有实时性要求的区间,加快处理的时间从而引起电力消耗的增加。这样,可以在确保处理的实时性的同时更进一步地提高节省电力消耗的效果。
本发明所提供的信息处理装置,还包括一个电源控制单元,从所述时钟脉冲控制单元得到时钟频率的信息,来控制提供给所述计算处理单元和所述存储单元的电压,所述电源控制单元对应于所述时钟频率增大而使电压升高,对应于所述时钟频率降低而使电压下降。
根据此发明结构,由于电源控制单元对应于时钟脉冲控制单元增大时钟频率,而使提供给计算处理单元和存储单元的电压升高,对应于时钟频率的降低而使所述电压下降,所以,可以在确保处理的实时性的同时更有效地减少电力消耗。
本发明的信息处理装置的时钟脉冲控制单元,在所述电源控制单元使电压升高的期间,随着电压的上升,在所述计算处理单元可以工作的范围内,分阶段地增大所述时钟频率。
根据此发明结构,由于时钟脉冲控制单元,在电源控制单元使电压升高的期间,随着电压的上升,在计算处理单元可以工作的范围内,分阶段地增大时钟频率,所以,即使在电压上升的过程中,计算处理单元也可以执行处理,因此,可以更有效地确保处理的实时性。
而且,本发明的信息处理装置的时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的开始时,根据以前的所述特别指定处理所需要的时间,来预测到所述特别指定处理区间结束为止的时间的低速特别指定处理期间,当被预测的所述特别指定处理期间超过一个极限值时,向所述时钟脉冲控制单元通知增大时钟频率的指令,而被预测的所述特别指定处理期间不超过所述极限值时,则不向所述时钟脉冲控制单元通知增大时钟频率的指令。
根据此发明结构,时钟脉冲控制判断单元,在特别指定处理区间检测单元检测出特别指定处理区间的开始时,根据以前的特别指定处理所需要的时间,来预测特别指定处理期间,当被预测的特别指定处理期间超过一个极限值时,向时钟脉冲控制单元通知增大时钟频率的指令,而被预测的特别指定处理期间不超过极限值时,则不向时钟脉冲控制单元通知增大时钟频率的指令。因此,在发生即使增大时钟频率,也会对在较短的时间内结束特别指定处理并确保实时性产生相反效果或效果较小的情况时,可以回避使时钟频率上升。
而且,本发明的信息处理装置的时钟脉冲控制判断单元,还将取决于所述电源控制单元为使电压升高所需要的时间的电压上升时间、且超过所述电压上升时间的时间作为所述极限值。
根据此发明结构,由于时钟脉冲控制判断单元将取决于电压上升时间、且超过电压上升时间的时间作为极限值,所以,在对确保实时性产生相反效果或效果较小的情况下,可以适当地回避时钟频率的上升。
而且,本发明的信息处理装置的时钟脉冲控制判断单元,还将取决于所述电压上升时间和所述电源控制单元为使电压下降所需要的时间的电压下降时间之和、且超过所述时间之和的时间作为所述极限值。
根据此发明结构,由于时钟脉冲控制判断单元将取决于电压上升时间和电压下降时间之和、且超过该时间之和的时间作为极限值,所以,在对确保实时性产生相反效果或效果较小的情况下,可以更加适当地回避时钟频率的上升。
而且,本发明的信息处理装置的时钟脉冲控制判断单元,还将取决于所述时钟脉冲控制单元为使时钟频率上升所需要的时间的频率上升时间、且超过所述频率上升时间的时间作为所述极限值。
根据此发明结构,由于时钟脉冲控制判断单元将取决于频率上升时间、且超过频率上升时间的时间作为极限值,所以,在对确保实时性产生相反效果或效果较小的情况下,可以适当地回避时钟频率的上升。
而且,本发明的信息处理装置的时钟脉冲控制判断单元,还将取决于所述频率上升时间和所述时钟脉冲控制单元为使时钟频率下降所需要的时间的频率下降时间之和、且超过所述时间之和的时间作为所述极限值。
根据此发明结构,由于时钟脉冲控制判断单元将取决于频率上升时间和频率下降时间之和、且超过该时间之和的时间作为极限值,所以,在对确保实时性产生相反效果或效果较小的情况下,可以更加适当地回避时钟频率的上升。
而且,本发明的信息处理装置的时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的开始时,根据以前的所述特别指定处理所需要的时间,来预测保持着较低的所述时钟频率,直到所述特别指定处理区间结束为止的时间的低速特别指定处理期间以及提高了所述时钟频率之后,直到所述特别指定处理区间结束为止的时间的高速特别指定处理期间,如果被预测的所述低速特别指定处理期间,超过一个取决于被预测的所述高速特别指定处理期间和所述电压控制单元为使电压上升及下降所需要的时间的电压变更期间之和,且超过所述之和的极限值,则向所述时钟脉冲控制单元通知增大时钟频率的指令,如果被预测的所述低速特别指定处理期间不超过所述极限值,则不向所述时钟脉冲控制单元通知增大时钟频率的指令。
根据此发明结构,由于时钟脉冲控制判断单元,在特别指定处理区间检测单元检测出特别指定处理区间的开始时,根据以前的特别指定处理所需要的时间,来预测低速特别指定处理期间和高速特别指定处理期间,如果被预测的低速特别指定处理期间,超过一个取决于电压变更期间和高速特别指定处理期间之和,且超过该和的极限值,则向时钟脉冲控制单元通知增大时钟频率的指令,如果被预测的低速特别指定处理期间不超过极限值,则不向时钟脉冲控制单元通知增大时钟频率的指令,所以,在对确保实时性产生相反效果或效果较小的情况下,可以更进一步适当地回避增大时钟频率。
而且,本发明的信息处理装置的时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的开始时,根据以前的所述特别指定处理所需要的时间,来预测保持着较低的所述时钟频率,直到所述特别指定处理区间结束为止的时间的低速特别指定处理期间以及提高了所述时钟频率之后,直到所述特别指定处理区间结束为止的时间的高速特别指定处理期间,如果被预测的所述低速特别指定处理期间,超过一个取决于被预测的所述高速特别指定处理期间和所述时钟脉冲控制单元为使时钟频率上升及下降所需要的时间的频率变更期间之和,且超过所述之和的极限值,则向所述时钟脉冲控制单元通知增大时钟频率的指令,如果被预测的所述低速特别指定处理期间不超过所述极限值,则不向所述时钟脉冲控制单元通知增大时钟频率的指令。
根据此发明结构,由于时钟脉冲控制判断单元,在特别指定处理区间检测单元检测出特别指定处理区间的开始时,根据以前的特别指定处理所需要的时间,来预测低速特别指定处理期间和高速特别指定处理期间,如果被预测的低速特别指定处理期间,超过一个取决于频率变更期间和高速特别指定处理期间之和,且超过该和的极限值,则向时钟脉冲控制单元通知增大时钟频率的指令,如果被预测的低速特别指定处理期间不超过极限值,则不向时钟脉冲控制单元通知增大时钟频率的指令,所以,在对确保实时性产生相反效果或效果较小的情况下,可以更进一步适当地回避增大时钟频率。
而且,本发明的信息处理装置的时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的开始时,根据以前的处理所需要的时间,来预测在规定的范围内提高了所述时钟频率之后,直到该特别指定处理区间结束为止的时间的高速特别指定处理期间以及保持着较低的所述时钟频率,直到所述特别指定处理区间结束为止的时间的低速特别指定处理期间,如果被预测的所述低速特别指定处理期间,与取决于被预测的所述高速特别指定处理期间和所述电源控制单元为使电压上升及下降所需要的时间的电压变更期间之和、且超过所述之和的极限值相比,当使所述被预测的所述低速特别指定处理期间变大的有效频率在所述规定的范围内时,则向所述时钟脉冲控制单元通知将时钟频率增大到所述有效频率的指令,如果所述有效频率不在所述规定的范围内,则不向所述时钟脉冲控制单元通知增大时钟频率的指令。
根据此发明结构,时钟脉冲控制判断单元,在特别指定处理区间检测单元检测出特别指定处理区间的开始时,如果被预测的低速特别指定处理期间,与取决于预测的高速特别指定处理期间和电压变更期间之和、且超过该和的极限值相比,当使所述被预测的所述低速特别指定处理期间变大的有效频率在所述规定的范围内时,则向时钟脉冲控制单元通知将时钟频率增大到有效频率的指令,而有效频率不在规定的范围内时,则不向时钟脉冲控制单元通知增大时钟频率的指令。因此,可以从规定的范围以及依然较低的频率中,选择对于在较短时间内执行特别指定的处理来说最为理想的频率。从而较适当地同时实现处理的实时性和节省电力消耗。
而且,本发明的信息处理装置的时钟脉冲控制判断单元,在作为所述有效频率的多个频率处于所述规定的范围内时,则向所述时钟脉冲控制单元通知,将所述时钟频率增大到所述多个频率中最高的频率上的指令。
根据此发明结构,时钟脉冲控制判断单元,在作为有效频率的多个频率处于规定的范围内时,则向时钟脉冲控制单元通知指令,将时钟频率增大到多个频率中最高的频率。也就是说,选择可以在最短时间内执行特别指定处理的时钟频率。因此,可以更进一步地同时实现处理的实时性和节省电力消耗。
本发明的信息处理装置的时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的开始时,根据以前的处理所需要的时间,来预测在规定的范围内提高了所述时钟频率之后,直到该特别指定处理区间结束为止的时间的高速特别指定处理期间以及保持着较低的所述时钟频率,直到所述特别指定处理区间结束为止的时间的低速特别指定处理期间,如果被预测的所述低速特别指定处理期间,与取决于被预测的所述高速特别指定处理期间和所述时钟脉冲控制单元为使时钟频率上升及下降所需要的时间的频率变更期间之和、且超过所述之和的极限值相比,当使所述被预测的所述低速特别指定处理期间变大的有效频率在所述规定的范围内时,则向所述时钟脉冲控制单元通知将时钟频率增大到所述有效频率的指令,而所述有效频率不在所述规定的范围内时,则不向所述时钟脉冲控制单元通知增大时钟频率的指令。
根据此发明结构,时钟脉冲控制判断单元,在特别指定处理区间检测单元检测出特别指定处理区间的开始时,如果被预测的低速特别指定处理期间,与取决于预测的高速特别指定处理期间和频率变更期间之和、且超过该和的极限值相比,当使所述被预测的所述低速特别指定处理期间变大的有效频率在所述规定的范围内时,则向时钟脉冲控制单元通知将时钟频率增大到有效频率的指令,而有效频率不在规定的范围内时,则不向时钟脉冲控制单元通知增大时钟频率的指令。因此,可以从规定的范围以及依然较低的频率中,选择对于在较短时间内执行特别指定的处理来说最为理想的频率。从而较适当地同时实现处理的实时性和节省电力消耗。
而且,本发明的信息处理装置的时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的结束时,根据以前的处理所需要的时间,来预测在降低了所述时钟频率之后,直到检测出下次的该特别指定处理区间开始为止的时间的低速非特别指定处理期间,当被预测的所述低速非特别指定处理期间超过一个极限值时,向所述时钟脉冲控制单元通知降低时钟频率的指令,如果被预测的所述低速非特别指定处理期间不超过所述极限值,则不向所述时钟脉冲控制单元通知降低时钟频率的指令。
根据此发明结构,时钟脉冲控制判断单元,在特别指定处理区间检测单元检测出特别指定处理区间的结束时,根据以前的处理所需要的时间,来预测低速非特别指定处理期间,当预测的低速非特别指定处理期间超过一个极限值时,向时钟脉冲控制单元通知降低时钟频率的指令,如果预测的低速非特别指定处理期间不超过极限值,则不向时钟脉冲控制单元通知降低时钟频率的指令。因此,在通过降低时钟频率来节省电力消耗的效果较小的情况下,可以回避使时钟频率减少。
本发明的信息处理装置的时钟脉冲控制判断单元,将取决于所述电源控制单元为使电压下降所需要的时间的电压下降时间、且超过所述电压下降时间的时间作为所述极限值。
根据此发明结构,由于时钟脉冲控制判断单元将取决于电压下降时间、且超过电压下降时间的时间作为极限值,所以,在节省电力消耗的效果较小的情况下,可以适当地回避降低时钟频率。
本发明的信息处理装置的时钟脉冲控制判断单元,将取决于所述电压下降时间和所述电源控制单元为使电压上升所需要的时间的电压上升时间之和、且超过所述之和的时间作为所述极限值。
根据此发明结构,由于时钟脉冲控制判断单元将取决于电压下降时间和电压上升时间之和、且超过该时间之和的时间作为极限值,所以,在节省电力消耗的效果较小的情况下,可以更为适当地回避降低时钟频率。
本发明的信息处理装置的时钟脉冲控制判断单元,将取决于所述时钟脉冲控制单元为使时钟频率减少所需要的时间的频率下降时间、且超过所述频率下降时间的时间作为所述极限值。
根据此发明结构,由于时钟脉冲控制判断单元将取决于频率下降时间、且超过频率下降时间的时间作为极限值,所以,在节省电力消耗的效果较小的情况下,可以适当地回避降低时钟频率。
本发明的信息处理装置的时钟脉冲控制判断单元,将取决于所述频率下降时间和所述时钟脉冲控制单元为使时钟频率上升所需要的时间的频率上升时间之和、且超过所述之和的时间作为所述极限值。
根据此发明结构,由于时钟脉冲控制判断单元将取决于频率下降时间和频率上升时间之和、且超过该时间之和的时间作为极限值,所以,在节省电力消耗的效果较小的情况下,可以更为适当地回避降低时钟频率。
而且,本发明的信息处理装置的时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的结束时,根据以前的所述特别指定处理以外的处理所需要的时间,来预测在规定的范围内降低了所述时钟频率之后,到下次所述特别指定处理区间开始为止的时间的低速非特别指定处理期间,如果被预测的所述低速非特别指定处理期间,与取决于所述电源控制单元为使电压下降及上升所需要的时间的电压变更期间、且超过所述电压变更期间的极限值相比,当使所述被预测的所述低速非特别指定处理期间变大的有效频率在所述规定的范围内,则向所述时钟脉冲控制单元通知将时钟频率减少到所述有效频率的指令,而所述有效频率不在所述规定的范围内时,则不向所述时钟脉冲控制单元通知降低时钟频率的指令。
根据此发明结构,时钟脉冲控制判断单元,在特别指定处理区间检测单元检测出特别指定处理区间的结束时,如果被预测的低速非特别指定处理期间,与取决于电压变更期间、且超过电压变更期间的极限值相比,当使所述被预测的所述低速非特别指定处理期间变大的有效频率在规定的范围内,则向时钟脉冲控制单元通知将时钟频率减少到有效频率的指令,而有效频率不在规定的范围内时,则不向时钟脉冲控制单元通知降低时钟频率的指令。因此,可以从规定的范围以及依然较高的频率中,选择对节省电力消耗最为理想的频率。从而较为适当地同时实现处理的实时性和节省电力消耗。
本发明的信息处理装置的时钟脉冲控制判断单元,在作为有效频率的多个频率处于所述规定的范围内时,则向所述时钟脉冲控制单元通知指令,将所述时钟频率降低到所述多个频率中最低的频率。
根据此发明结构,时钟脉冲控制判断单元,在作为有效频率的多个频率处于规定的范围内时,则向时钟脉冲控制单元通知指令,将时钟频率降低到多个频率中最低的频率。也就是说,选择对节省电力消耗最为理想的频率。因此,可以更进一步适当地同时实现处理的实时性和节省电力消耗。
本发明的信息处理装置的时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的结束时,根据以前的所述特别指定处理以外的处理所需要的时间,来预测在规定的范围内降低了所述时钟频率之后,到下次所述特别指定处理区间开始为止的时间的低速非特别指定处理期间,如果被预测的所述低速非特别指定处理期间,与取决于所述时钟脉冲控制单元为使时钟频率下降及上升所需要的时间的频率变更期间、且超过所述频率变更期间的极限值相比,当使所述被预测的所述低速非特别指定处理期间变大的有效频率在所述规定的范围内,则向所述时钟脉冲控制单元通知将时钟频率降低到所述有效频率的指令,而所述有效频率不在所述规定的范围内时,则不向所述时钟脉冲控制单元通知降低时钟频率的指令。
根据此发明结构,时钟脉冲控制判断单元,在特别指定处理区间检测单元检测出特别指定处理区间的结束时,如果被预测的低速非特别指定处理期间,与取决于频率变更期间、且超过频率变更期间的极限值相比,当使所述被预测的所述低速非特别指定处理期间变大的有效频率在规定的范围内,则向时钟脉冲控制单元通知将时钟频率降低到有效频率的指令,而有效频率不在规定的范围内时,则不向时钟脉冲控制单元通知降低时钟频率的指令。因此,可以从规定的范围以及依然较高的频率中,选择对节省电力消耗最为理想的频率。从而较为适当地同时实现处理的实时性和节省电力消耗。
而且,本发明还提供一种具有以上特征的信息处理装置的电器。根据此发明结构,由于电器具有本发明所述的信息处理装置,所以,可以同时实现通过信息处理装置的处理的实时性和节省电力消耗。
而且,本发明还提供一种信息处理装置的时钟脉冲控制方法,包括,特别指定处理区间检测工序和时钟脉冲控制工序,其中,所述特别指定处理区间检测工序用来检测执行预先规定的特别指定处理的区间的特别指定处理区间的开始和结束,而所述时钟脉冲控制工序,用来在所述特别指定处理区间检测工序检测出所述特别指定处理区间的开始时,提高所述信息处理装置的时钟频率,而在所述特别指定处理区间检测工序检测出所述特别指定处理区间的结束时,降低所述信息处理装置的时钟频率。
根据此发明结构,在特别指定处理区间检测工序检测出执行预先规定的特别指定处理的区间的特别指定处理区间的开始时,时钟脉冲控制工序提高信息处理装置的时钟频率,而在特别指定处理区间检测工序检测出特别指定处理区间的结束时,时钟脉冲控制工序则降低信息处理装置的时钟频率。因此,可以同时实现处理的实时性和节省电力消耗。
而且,本发明还提供一种时钟脉冲控制程序,使信息处理装置实现,对预先规定的执行特别指定处理的特别指定处理区间的开始以及结束进行检测的特别指定处理区间检测功能;和在所述特别指定处理区间检测功能检测出所述特别指定处理区间的开始时,则增大所述信息处理装置的脉冲频率,而在所述特别指定处理区间检测功能检测出所述特别指定处理区间的结束时,则降低所述信息处理装置的脉冲频率的时钟脉冲控制功能。
根据此发明结构,由于时钟脉冲控制程序使信息处理装置实现本发明的信息处理装置的各单元的功能,所以,可以同时实现处理的实时性和节省电力消耗。
而且,本发明还提供一种程序产品,具有时钟脉冲控制程序,该程序使信息处理装置实现,对预先规定的执行特别指定处理的特别指定处理区间的开始以及结束进行检测的特别指定处理区间检测功能;和当所述特别指定处理区间检测功能检测出所述特别指定处理区间的开始时,则增大所述信息处理装置的脉冲频率,而当所述特别指定处理区间检测功能检测出所述特别指定处理区间的结束时,则降低所述信息处理装置的脉冲频率的时钟脉冲控制功能;以及保存所述时钟脉冲控制程序的信号存储媒体。
根据此发明结构,由于在信号保存媒体中保存有本发明的时钟脉冲控制程序,所以,通过在信息处理装置上读取该信号保存媒体中的时钟脉冲控制程序,就可以同时实现处理的实时性和节省电力消耗。
而且,本发明所提供的程序产品的信号保存媒体,还可以是记录媒体和传输媒体中的至少其中之一。根据此发明结构,由于时钟脉冲控制程序可以被保存在记录媒体和传输媒体中的至少其中之一内,所以,通过这些媒体,就可以使时钟脉冲控制程序在计算机上实现所规定的功能。
综上所述,根据本发明的信息处理装置、电器、信息处理装置的时钟脉冲控制方法、时钟脉冲控制程序以及其程序产品,可以同时实现处理的实时性和节省电力消耗。
附图说明
图1是说明本发明的实施例1的信息处理装置结构的方框图。
图2是说明处理区间和时钟频率的关系的示意图。
图3是说明时钟脉冲控制的处理过程的流程图。
图4是说明时钟脉冲控制的处理过程的流程图。
图5是说明本发明的实施例2的信息处理装置结构的方框图。
图6是说明时钟频率减少时的电压控制的处理过程的流程图。
图7是说明时钟频率升高时的电压控制的处理过程的流程图。
图8是说明电压和时间的关系的示意图。
图9是说明排他处理区间和其处理区间过去的执行时间信息的示意图。
图10是说明在开始执行排他处理的区间时,根据执行时间的信息而进行处理的流程图。
图11是说明时钟频率和时间的关系的示意图。
图12是说明从排他处理区间结束到下次的排他处理开始的处理区间过去的执行时间信息的示意图。
图13是说明在结束执行排他处理的区间时,根据执行时间的信息而进行处理的流程图。
图14是说明时钟频率和时间的关系的示意图。
具体实施方式
以下,参照附图就本发明的实施例进行说明。
第1实施例:
图1是说明本发明的实施例1的信息处理装置结构的方框图。在图1中,时钟脉冲产生单元101是以一定的频率产生时钟脉冲的振荡电路。在时钟脉冲产生单元101产生的时钟脉冲,成为给信息处理装置中的计算处理单元或存储单元等提供时钟脉冲的供应源。
时钟脉冲控制单元102,通过分频功能或分频电路,将时钟脉冲产生单元101产生的时钟脉冲进行分频,从而来控制时钟脉冲产生单元101产生的时钟脉冲的频率。例如,将时钟脉冲产生单元101产生的时钟脉冲的频率x分频为1/m(m为自然数),则输出频率为x/m(m为自然数)的时钟脉冲。
而且,作为实现时钟脉冲控制单元102的方法,不仅仅局限于采用分频的方式,也可以采用增大时钟脉冲产生单元101所产生的时钟脉冲频率的方式来实现。
从时钟脉冲控制单元102输出的时钟脉冲,被提供给信息处理装置中的计算处理单元103或存储单元104等。
另一方面,在图1中,是将同一时钟脉冲提供给计算处理单元103或存储单元104等,但也可以采用一种给计算处理单元103或存储单元104等提供不同的时钟脉冲、即不同步的时钟脉冲的结构。而且,也可以分别给构成计算处理单元103的CPU105和DSP106提供不同的时钟脉冲。为了实现这样的结构,可以设置多个时钟脉冲产生单元101和时钟脉冲控制单元102,以便各自产生其时钟脉冲,或者设置一个时钟脉冲产生单元101,由时钟脉冲控制单元102控制多个分频电路,从而形成多个频率不同的时钟脉冲。
计算处理单元103是一种处理器,根据时钟脉冲控制单元102提供的时钟脉冲,进行程序执行和计算处理等。此处理器包括如图1所示的CPU105和DSP106。CPU105是中央计算处理单元,DSP106是将特别指定的计算处理进行高速化的数值信号处理的装置。计算处理单元103也可以通过多处理器来实现。
存储单元104存储的内容包括有在信息处理装置执行的软件(即程序)以及信息处理装置进行工作所需要的数据。存储单元104由比如RAM107或ROM108构成。存储单元104即可以由辅助存储装置来实现,也可以采用可拆卸的记录媒体来实现。作为磁记录媒体,可以有软盘或硬盘,作为光记录媒体,可以有CD或MD或DVD。存储单元104也可以是处理器所具有的内部RAM、寄存器、高速缓冲存储器等。
通道109,用来连接构成计算处理单元103的各构成要素(CPU105和DSP106等)和构成存储单元104的各构成要素(RAM107和ROM108等),介于通道109,来进行程序和数据的交换。
上述的程序以及数据,即可以通过ROM108、软磁盘、CD-ROM等记录媒体31来提供,也可以通过电话线、网络等传输媒体33来提供。在图1中标有作为记录媒体31的CD-ROM,也标有作为传输媒体33的电话线路。通过将作为信息处理装置外部设备的CD-ROM读取装置与通道109连接在一起,则可以读出被存储在CD-ROM中的程序和数据,进而,又可以将这些程序以及数据存储到RAM107或者没有图示的硬磁盘中。在以作为记录媒体31的ROM108的形式来提供程序和数据时,通过将该ROM108装进信息处理装置,信息处理装置就可以按照程序和数据来执行处理。通过传输媒体33提供的程序和数据,介于通道109而被接收,并被存储到RAM107或者没有图示的硬磁盘中。传输媒体33并不只局限于有线的传输媒体,也可以是无线的传输媒体。
排他处理区间检测单元110,用于检测出排他处理区间的开始和结束。关于详细情况,将在以后参照图2来说明。
时钟脉冲控制判断单元111,接收来自排他处理区间检测单元110的排他处理区间的开始或结束的通知,并按照所接收到的通知,向时钟脉冲控制单元102通知控制时钟频率的指令。有关详细情况,与排他处理区间检测单元110同样,将在以后进行更为详细的说明。
存储在存储单元104的程序,介于通道109下载到计算处理单元103而被执行。例如,信息处理装置在执行程序时,将存储在RAM107的程序下载到CPU105之后,由CPU105来执行。此时,比如从存储单元104的RAM107随时读取执行程序所必要的数据,介于通道109而被输送到计算处理单元103的CPU105。
另外,如果程序不是被下载到CPU105而是被下载到DSP106或其它处理器中被执行时,或者程序不是存储在RAM107而是存储在ROM108或其它的程序产品中时,也可以同样地实施本发明的信息处理装置。
程序,由于是占有CPU105而被执行,或者是利用特别指定的资源执行处理,因此会有一个不接受其它要求的排他处理区间。排他处理区间是指,为了优先进行自己的处理而拒绝接受其它处理的区间。排他处理区间包括,例如,禁止装置或程序所要求的中断处理的禁止中断区间、不向其它执行单元出让CPU执行权的抢先禁止区间、利用锁定结构禁止从其它执行单元或其它CPU进入到同样资源的区间等。
这里所指的执行单元是指保持独自执行状态的单元。举例来说,包括有所谓的过程、任务或线(thread)等。基本软件程序的处理部分(核心(kernel)部分的处理部分)也可被作为一个执行单元。并且,在基本软件程序的处理部分中,虽然是按照中断需要来执行各中断请求的处理,但也可以将这些处理作为其它的执行单元。在具有多处理器的信息处理装置中,各处理器执行的处理,各自有着不同的执行单元。
在上述的执行排他处理区间,即使出现另外的处理请求,所要求的处理也必需在排他处理区间结束之后才能予以接受,从而有可能大幅度地推迟处理的执行。另一方面,所请求的处理,到开始执行为止的时间内会受到一定的限制,如有实时性要求的处理在排他处理区间被请求时,则有可能在很大的程度上影响到实时性。因此,为了在执行排他处理的区间保证实时性,就必须在尽可能短的时间内来执行排他处理。
作为本发明的一个实施例的信息处理装置,通过时钟脉冲控制单元102控制时钟脉冲,具有两种处理模式。一种是高速处理模式,在排他处理区间可以快速地结束处理,另一种是低电力消耗模式,在不执行排他处理的通常处理区间,可以抑制电力消耗。高速处理模式以增大时钟频率来快速进行处理,而低电力消耗模式则以降低时钟频率来低速进行处理,从而减少电力消耗。
图2是说明在排他处理区间的时钟脉冲波形的变化、表示正在控制时钟频率的状态的示意图。
排他处理区间检测单元110,执行检测出排他处理区间的功能。图2的121所示意的是,在从非排他处理的通常处理区间进入到执行排他处理的区间时,排他处理区间检测单元110检测出排他处理的开始。而图2的122所示意的是,从执行排他处理的区间回到通常的处理区间时,排他处理区间检测单元110检测出排他处理的结束。排他处理区间的开始和结束被明确地表示出来,所以,排他处理区间检测单元110就可以自动地进行检测。
时钟脉冲控制判断单元111,接收排他处理区间检测单元110发来的排他处理区间的开始或结束的通知。时钟脉冲控制判断单元111,在接收到排他处理区间开始的通知时,向时钟脉冲控制单元102发出增大时钟频率的指令,而在接收到排他处理区间结束的通知时,则向时钟脉冲控制单元102发出降低时钟频率的指令。由此,如图2所示,在排他处理区间是以高速处理模式执行处理,而在通常处理区间则是以低电力消耗模式执行处理。
排他处理区间检测单元110和时钟脉冲控制判断单元111,例如,可以通过程序而得以实现。当排他处理区间的开始或结束的时机可以用程序来进行明确地表示时,可以通过在给时钟脉冲控制判断单元111发出的通知部分中埋入开始处理或结束处理,从而来实现排他处理区间检测单元110。而且,在排他处理区间开始时,通过将发给时钟脉冲控制单元102的增大时钟频率的指令加入到所述埋入处理中,或者在结束时,通过将发给时钟脉冲控制单元102的降低时钟频率的指令加入到所述埋入处理中,则可以实现时钟脉冲控制判断单元111。
而且,作为通过程序来实现排他处理区间检测单元110和时钟脉冲控制判断单元111的其它方式,还可以采取这样一种方式,即准备好一个执行时钟脉冲控制的接口,并将其接口插入到程序中的开始或结束排他处理区间的之前和之后。也就是说,程序开发者通过插入一种处理过程,在排他处理区间开始时增大时钟频率,或者在排他处理区间结束时降低时钟频率,也可以实现排他处理区间检测单元110和时钟脉冲控制判断单元111。
图3说明排他处理区间检测单元110检测出执行排他处理的区间、时钟脉冲控制判断单元111向时钟脉冲控制单元102输出控制时钟频率的指令的操作过程。
首先,排他处理区间检测单元110,判断是否检测出排他处理区间的开始(步骤141)。如果没有检测出排他处理区间的开始(步骤141为NO),则回到起点,重复步骤141的判断处理。另一方面,如果检测出有排他处理区间的开始(步骤141为YES),排他处理区间检测单元110则向时钟脉冲控制判断单元111通知排他处理区间的开始(步骤142)。
时钟脉冲控制判断单元111接到通知后,向时钟脉冲控制单元102通知增大时钟频率的指令(步骤143)。由此,信息处理装置转入到高速处理模式。
然后,计算处理单元103执行排他处理(步骤144),排他处理区间检测单元110判断是否检测出排他处理区间的结束(步骤145)。如果没有检测出排他处理区间的结束(步骤145为NO),则回到步骤144的处理,继续执行排他处理。另一方面,如果检测出排他处理区间的结束(步骤145为YES),排他处理区间检测单元110则向时钟脉冲控制判断单元111通知排他处理区间的结束(步骤146)。
时钟脉冲控制判断单元111接到通知后,向时钟脉冲控制单元102通知降低时钟频率的指令(步骤147)。由此,信息处理装置转入到低电力消耗模式。
如上所述,本发明的信息处理装置,可以高速处理模式来执行排他处理区间的处理。
图4是排他处理区间检测单元110检测排他处理区间、时钟脉冲控制判断单元111向时钟脉冲控制单元102输出控制时钟频率的指令的操作过程的另一种方式。
首先,计算处理单元103开始某种特别指定的处理(步骤161),然后,排他处理区间检测单元110,判断正在执行处理的区间是否为排他处理区间(步骤162)。如果不是排他处理区间(通常的处理区间)(步骤162为NO),则进入步骤163。另一方面,如果是排他处理区间(步骤162为YES),则进入步骤168。
排他处理区间检测单元110,判断是否从正在进行的处理中检测出有排他处理区间的开始(步骤163)。如果检测出有排他处理区间的开始(步骤163为YES),计算处理单元103则开始执行排他处理(步骤164)。如果不是(步骤163为NO),计算处理单元103则按照所受理的处理内容来执行处理(步骤167)。
在步骤164排他处理区间开始之后,排他处理区间检测单元110向时钟脉冲控制判断单元111通知排他处理区间的开始(步骤165)。而时钟脉冲控制判断单元111接到此通知后,则向时钟脉冲控制单元102通知增大时钟频率的指令(步骤166)。由此,信息处理装置转入到高速处理模式。
时钟脉冲控制单元102,接受由时钟脉冲控制判断单元111发来的指令而增大时钟频率。例如,如果预先将高速处理模式的时钟频率定为50MHZ,则时钟脉冲控制单元102将时钟频率增大到50MHZ。另外,还有一种方式,例如,时钟脉冲控制单元102将分频比定为1,这样,对时钟脉冲产生单元101所产生的时钟脉冲不用进行分频就可以提供给计算处理单元103或存储单元104。或者,设定一个计算处理单元103或存储单元104的各装置所容许的时钟频率的上限值,在满足所设定的各装置的上限值的范围内,时钟脉冲控制单元102可以控制时钟脉冲,以便以最大的时钟频率进行输出。
另一方面,排他处理区间检测单元110,判断是否检测出有排他处理区间的结束(步骤168),其判断结果,如果处理已经不在执行排他处理的区间(步骤168为YES),则结束排他处理区间(步骤169)。如果不是(步骤168为NO),计算处理单元103则按照所受理的处理内容来执行处理(步骤167)。
在步骤169结束了排他处理之后,排他处理区间检测单元110,向时钟脉冲控制判断单元111通知排他处理区间的结束(步骤170)。而时钟脉冲控制判断单元111接到此通知后,则向时钟脉冲控制单元102通知降低时钟频率的指令(步骤171)。由此,信息处理装置转入到低电力消耗模式。
时钟脉冲控制单元102接受由时钟脉冲控制判断单元111发来的指令而降低时钟频率。例如,如果预先将低电力消耗模式的时钟频率定为5MHZ,则时钟脉冲控制单元102将时钟频率降低到5MHZ。或者,设定一个计算处理单元103或存储单元104的各装置所容许的时钟频率的下限值,在满足所设定的各装置的下限值的范围内,时钟脉冲控制单元102可以控制时钟脉冲,以便以最小的时钟频率进行输出。
作为时钟脉冲控制单元102接受由时钟脉冲控制判断单元111发来的指令而降低时钟频率的另外一种方式,也可以根据信息处理装置的负载状况、或者因发热而上升的温度状况、或者提供的电池剩余容量等来决定低电力消耗模式时的时钟频率。
进而,作为另外一种方式,可以在进入排他处理区间、开始在步骤166增大时钟频率之前,将在此之前工作过的时钟频率保存起来,当结束排他处理区间时,再将时钟频率恢复到该频率。
如上所述,通过让信息处理装置在容许的范围内以最大的时钟频率工作,则可以缩短在排他处理区间的处理时间,从而提高实时性。而在不进行排他处理的通常处理区间,则在信息处理装置的容许范围内,将时钟频率降低到最小,从而可以抑制电力消耗。由此,可以实现最大限度地抑制电力消耗并提高实时性。
第2实施例:
更进一步,本发明的实施例2所提供的信息处理装置,是一边降低时钟频率的一边降低由电源提供的电压,从而可以抑制电力消耗。给信息处理装置提供的电压,是基于时钟频率由硬件来决定其最低必要的电压标准。一般来说,因为一旦降低时钟频率,最低必要的电压也随之下降,所以,可以从时钟频率较高时的电压开始降低电压。而且,由于电力消耗是与电压的二次方成比例产生变化的,因此,电力消耗受电压的影响较大。
图5所示的是,一边降低时钟频率一边降低由电源提供的电压,从而可抑制电力消耗的信息处理装置的一个实施例。图5是在图1的信息处理装置中追加了AC电源210、电池211、电源控制单元212。时钟脉冲产生单元201、时钟脉冲控制单元202、计算处理单元203、存储单元204、CPU205、DSP206、RAM207、ROM208、通道209、排他处理区间检测单元213、时钟脉冲控制判断单元214都具有与实施例1同样的功能。
AC电源210和电池211是信息处理装置的供电单元。可以由AC电源210提供电压,也可以由电池211来提供电压。
电源控制单元212从AC电源210和电池211中选择供电单元,同时也控制提供给信息处理装置的电压。
实施例2同实施例1一样,其操作过程如图4所示的流程图,但在图4的步骤166和步骤171中,进一步追加了新的处理步骤。
在实施例2中,图4的步骤171成为图6所示的处理步骤。下面,参照图6,来说明实施例2的通知降低时钟频率的指令的处理过程。时钟脉冲控制判断单元214向时钟脉冲控制单元202通知降低时钟频率的指令(步骤221)。当时钟脉冲控制单元202接收到此通知,并降低了时钟频率时,时钟脉冲控制单元202则通知电源控制单元212已经降低了时钟脉冲频率(步骤222)。时钟频率一旦被降低,电源控制单元212则随之降低提供给CPU205、DSP206等计算处理单元203、或RAM207、ROM208等存储单元204的电压(步骤223)。
电压可以降低到时钟脉冲控制单元202、计算处理单元203、存储单元204等信息处理装置中的各构成要素可以工作的范围。例如,为了保证所有的构成要素都能够进行工作,电压可以降低到各构成要素所表示的最低电压中的最大值。具体的来说,例如,在构成要素A可进行工作的最低电压为5V、构成要素B可进行工作的最低电压为7V、构成要素C可进行工作的最低电压为15V的情况下,电压则可以降低到此3种构成要素可进行工作的最低电压中的最大值15V。
而且,在实施例2中,图4的步骤166成为图7所示的处理步骤。下面,参照图7,来说明实施例2的通知增大时钟频率的指令的处理过程。时钟脉冲控制判断单元214向时钟脉冲控制单元202通知增大时钟频率的指令(步骤231)。当时钟脉冲控制单元202接收到此通知,并增大了时钟频率时,时钟脉冲控制单元202则通知电源控制单元212已经增大了时钟频率(步骤232)。时钟频率一旦被增大,电源控制单元212则随之升高提供给CPU205、DSP206等计算处理单元203、或RAM207、ROM208等存储单元204的电压(步骤233)。
电压可以升高到时钟脉冲控制单元202、计算处理单元203、存储单元204等信息处理装置中的各设备可以工作的范围。例如,为了保证所有的设备都能够进行工作,电压可以升高到各设备所表示的最高电压中的最小值。
如上所述,本发明不仅可以通过降低时钟频率来抑制电力消耗,也可以通过电源控制单元212改变电压而进一步地抑制电力消耗。
然而,如图8所示,电压上升并达到稳定是需要时间的。在使电压从251上升到252,并增大时钟频率的情况下,当电压上升并达到稳定时,电源控制单元212向时钟脉冲控制单元202发出通知,时钟脉冲控制单元202则增大时钟频率。通常,在使电压上升而即将处于稳定之前,电压会持续一种超过作为目标252标准电压的状况。此时,如果能保证电压不低于图8所示的252电压标准,电源控制单元212也可以在达到了252电压标准时的253处,通知时钟脉冲控制单元202增大时钟频率。
电压上升期间仍然进行工作的信息处理装置,如果在电压的标准达到252之前的期间内不改变时钟频率,实时性,则会在执行排他处理的区间刚开始的时候就受到影响。因此,在使电压从图8的251上升到252的电压标准的期间中,时钟脉冲控制单元202可以阶段性地增大时钟频率。此时,时钟脉冲控制单元202,保存电压值和在该电压值下可提供的时钟频率的相对应的信息,根据电压控制单元212所提供的电压值的变化,来设定时钟频率。
作为一种在电压的上升期间阶段性地增大时钟频率的方式,也可以是存储单元204,保存电压值和在该电压值下可提供的时钟频率的相对应的信息的方式。此时,计算处理单元203,以从存储单元204下载的相对应的信息为依据,来获得电源控制单元212所提供的现在电压值下可提供的时钟频率。然后,计算处理单元203命令时钟脉冲控制单元202将时钟频率增大到该时钟频率。
电压值和时钟频率的相对应的信息是指,例如,为了使计算处理单元203的CPU205和DSP206等、或者存储单元204的RAM207和ROM208等各构成要素以指定的时钟频率来进行工作而需要的作为最低必要的电压标准的信息。例如,对应的信息,可以是对被分成几个阶段的时钟频率,记述了必要的电压标准值的对应表;或者也可以是对每一个构成要素,将时钟频率作为输入,必要的电压标准作为输出的函数。
一个时钟脉冲控制单元202给信息处理装置中的一个构成要素提供时钟脉冲时,只要按照所述时钟频率和电压的对应表或函数来增大时钟频率就可以。而在一个时钟脉冲控制单元202,以同样的时钟频率给多个构成要素提供时钟脉冲时,则需要将构成要素中要求电压为最高的构成要素的电压作为极限值,当超过该极限值时则增大时钟频率。
时钟脉冲控制单元202,随时从电源控制单元212检测电压的标准,参照电压和时钟频率的对应信息,来控制与其电压标准相对应的时钟频率。这样,即使在进入排他处理区间、使电压上升的期间,也可以对应此时的电压而使时钟频率增大,从而可以加强处理的实时性。
而且,电压下降并达到稳定也是需要时间的。在使电压从252下降到251,并降低时钟频率的情况下,在使电压下降之前的254处,电源控制单元212就向时钟脉冲控制单元202发出降低时钟频率的通知。通常,在使电压下降而即将处于稳定之前,电压会持续一种低于作为目标的251标准电压的状况。如果能保证最小电压不超过251电压标准,时钟脉冲控制单元202,则可以将时钟频率控制在包括电压处于不稳定状态时在内的、即使在最小电压时也可提供的时钟频率上。当电压处于稳定之后,电源控制单元212,通知时钟脉冲控制单元202,对时钟频率进行修正而控制在与该电压对应的时钟频率上。
进一步,如图8的256所示,在电压上升结束之前,当排他处理区间结束而必须马上再次降低电压时,电源控制单元212改变电压的处理、或时钟脉冲控制单元202随着电压的变化而改变时钟频率的处理就成为徒劳的了。因此,可以采取一种方法,在排他处理快要结束时,时钟脉冲控制判断单元214就停止向时钟脉冲控制单元202通知增大时钟频率的指令。但是,为了在执行排他处理的区间保持实时性,即使在排他处理快要结束时,时钟脉冲控制判断单元214也可以向时钟脉冲控制单元202通知增大时钟频率的指令。
时钟脉冲控制判断单元214为了判断排他处理是否很快就要结束,例如,如图9所示,在存储单元204保存着该排他处理区间的执行时间的信息。时钟脉冲控制判断单元214从存储单元204读取此信息并使用。如果有开始某种排他处理之处,也一定会有结束该排他处理区间之处,所述的开始到结束这一区间则被称为执行排他处理的区间(排他处理区间)。
如图9左侧一栏301所示,其中例举了几个执行排他处理的区间。在计算处理单元203所进行的处理中的若干之处,设有排他处理区间的禁止中断区间或抢先禁止区间。因此,为了保存各自的排他处理区间的执行时间的信息,有必要特别地指出处理区间是哪一处的排他处理区间。
作为特别指定排他处理区间的一种方式有通过程序的方式。这种方式是将通知哪一个排他处理区间开始或结束的方法汇编在程序中。例如,预先抽出由排他处理区间检测单元213检测出的排他处理区间,准备好一览特别指定各排他处理区间的数值等的识别记号。程序在执行排他处理区间时,将一览中的与其对应的识别记号例如“区间开始#1”等通知给存储单元204。由此,可以表明是哪一个排他处理区间。
更为详细地来说,可以采取这样的一种方法,例如,预先制作程序时,也附加制作唯一区别各处理区间的识别名称,这样,在程序执行中即将开始(或刚结束)排他处理区间之前(之后),将通知该区间的识别名称的代码加入到程序中。此时,将图9的左栏301的内容、即所有的(或一部分)被指定的排他处理区间的识别名称存储到存储单元204中。只存储一部分被指定的排他处理区间的识别名称,是因为如下面所要说明的,排他处理区间中只有一部分是时钟脉冲控制的对象。
作为另外一个例子,也可以采用这样一种方式,即对于已经制作好的程序,作为先前处理,可以预先解析静态程序,之后再抽出排他处理区间的开始和结束,在抽出的区间上附加排他处理区间的识别名称,并作为图9的左栏301的内容而被存储到存储单元204。这样,在执行程序时,可以在此先前处理的过程中,将用于通知排他处理区间的开始和结束的代码插入到程序中。
这里,所谓先前处理是指执行程序前所进行的处理。例如,信息处理装置接上电源后,在计算处理单元203刚开始工作不久,就可以通过执行特别指定的程序来进行先前处理。或者,将不同于CPU205的CPU装入计算处理单元203的内部,该CPU则可以通过执行特别指定的程序来进行先前处理。也可以在将已经制作成的程序存入到存储单元204之前,通过人工或用工具来解析该程序,从而进行先前处理。而且,所谓“静态”是与意味着程序执行中的“动态”相对立的一个概念。因此,“静态解析”就意味着不解析正在执行中的程序,而是解析不在执行中的程序,譬如说解析处于停止中的程序或使用前的程序。
另外,即使是以静态来对程序进行解析,向存储单元204存储图9的左栏301的内容的处理也可以是动态执行的。例如,在执行程序过程中执行排他处理的区间时,可以在执行静态程序解析的过程中,将用于使该区间的识别名称存储到存储单元204的代码,事先插入到程序中。
而且,作为特别指定排他处理区间的其他的方式,也可以是基于在进行排他处理时的计算处理单元203的内部信息而进行唯一的特别指定的方式。计算处理单元203的内部信息,是指为了在内部进行处理而被使用的寄存器的值等。计算处理单元203,在执行排他处理区间时,将可以将特别指定该处理区间的计算处理单元203的内部信息,通知给存储单元204。
更为详细的来说,此方式不是通过程序来通知排他处理区间,而是根据硬件或CPU250的状况来识别排他处理区间的。作为CPU250的内部信息,可以利用比如多个寄存器内容。通过取得特别指定的寄存器的值,则可以特别指定是哪个排他处理区间。例如,寄存器中的程序计数值是指定程序的执行地址的,而该程序计数值也可以被用于识别排他处理区间。在此情况下,可以预先将通知程序计数值的代码加入到程序中。
作为另一个例子,以寄存器中的堆栈指针值为依据,可以找到堆栈的信息、也就是存储在存储单元204的存储区中的按堆栈分配的领域的信息。根据此信息,又可以掌握函数的调出关系。而根据所掌握的函数的调出关系,则可以对排他处理区间进行动态检测。这里,“函数”是指,将称为C语言的函数作为一个例子,子程序或与此类似的、也就是主要处理单元可进行引用的处理单元。
通过以上所述的各种方式,存储单元204可以对图9所示的排他处理区间的执行时间的信息进行管理。另外,不仅对图9的左侧一栏301,对后面将要说明的图12的左侧一栏401也可以采取同样的方法。
图9的302、303、304的信息,是存储了到现在为止执行301所示的各排他处理区间而得到的时间信息的内容。详细地来说,就是302表示前一次执行时所需要的时间。而303表示执行各排他处理区间时所需要的时间总合计以及执行的总次数。304表示根据303所得到的执行时间合计值和执行次数进行计算而得到的各排他处理区间的平均执行时间。
图10的流程图用来说明在开始执行排他处理的区间时,根据其处理区间的执行时间的信息,而进行处理的流程图。首先,执行排他处理的区间一开始(步骤351),计算处理单元203,为了把握此排他处理区间的执行时间而开始计时(步骤352)。然后,排他处理区间检测单元213判断现在正在执行的排他处理区间的执行时间是否足够长(步骤353)。为了执行此判断,可以设定一个执行时间的极限值(阈值),并将其与现在正在执行的排他处理区间的预测执行时间相比较,从而进行判断。
极限值是考虑到电压上升所需要的时间而进行设定的。而预测执行时间是根据图9所示的排他处理区间的执行时间的信息来预测的。预测执行时间可以采用304所示的排他处理的平均执行时间,也可以采用302所示的前一次的执行时间。例如,在极限值为10微秒(10μsec),而预测执行时间采用304的平均执行时间的情况下,如图9所示,作为排他处理的识别号码为1的禁止中断区间一旦开始,由于预测执行时间的平均执行时间是98.99μsec,远大于极限值,所以可以判断此执行时间为足够长。相反,识别号码为2的禁止中断区间一旦开始,由于平均执行时间是0.72μsec,小于极限值,所以就不判断此执行时间为足够长。
如果排他处理区间检测单元213判断出执行中的排他处理区间有足够长的执行时间(步骤353为YES),时钟脉冲控制判断单元214则向时钟脉冲控制单元202发出增大时钟频率的命令(步骤354),然后计算处理单元203继续执行后续的处理(步骤355)。另一方面,如果判断执行中的排他处理区间没有足够长的执行时间(步骤353为NO),则不增大时钟频率而继续执行后续的处理(步骤355)。
如果排他处理区间检测单元213检测出有排他处理区间的结束(步骤356),计算处理单元203则判断,在步骤353的处理中是否判断出以前的执行时间是足够长、如是足够长是否在此处理区间增大了时钟频率(步骤357)。如果没有增大时钟频率(步骤357为NO),此处理区间的执行时间,则因没有增大时钟频率而变大。为此,计算出与本来应该增大时钟频率的比,将执行时间修正为已增大时钟频率而执行处理时的执行时间(步骤358)。例如,虽然设定时钟频率应增大到40MHZ,但如果是保持着4MHZ的较低时钟频率执行此处理区间时,时钟频率的比则为10,而执行时间应修正1/10倍(十分之一)。之后,计算处理单元203,结束此处理区间的计时,并将执行处理所需要的时间信息保存起来(步骤359)。例如,如图9所示,可以更新302的上一次执行时间、或303、或304的平均执行时间的信息。
另外,作为应该与极限值进行对比的预测执行时间,虽然最好是选择假设是保持着较低的时钟频率而进行的预测执行时间,但也可以采用与其他的时钟频率相对应的预测执行时间。并且,作为极限值(阈值),可以设定为电压控制单元212使电压上升所需要的时间、即电压上升时间。而且,作为极限值,也可以设定成在电压上升时间上附加某种容限(margin)的时间。进一步,作为极限值,也可以设定成电压上升时间和电压控制单元212使电压下降所需要的时间(即电压下降时间)之和。进一步,作为极限值,也可以设定成在所述时间之和上附加了某种容限的时间。
进一步,作为应该与极限值进行对比的预测执行时间,在选择了假设是保持着较低的时钟频率而进行的预测执行时间的情况下,作为极限值,也可以设定成在所述时间之和上加上增大了时钟频率时的预测执行时间的合计时间。更进一步,作为极限值,也可以设定成在此合计时间上附加了某种容限(margin)的时间。带有各自相应的准确度,在对确保实时性的基础上,当产生相反效果或者效果较小的情况下,也可以避免增大时钟频率。另外,当追加容限时,例如,可以加上一个正的常数,或者乘上一个大于1的常数来进行计算。
让电压上升时间和电压下降时间反映在极限值上,是考虑到电压控制单元212从接受到指令到完成电压的改变是需要时间的。以上所述的图10的处理过程,是以在改变电压所需要的期间内停止执行程序为前提的。也就是,图8中的增大时钟频率时的预测执行时间,相当于电压以较高的值252处于稳定的期间。
而且,代替应该反映在极限值上的电压上升时间,也可以使用时钟脉冲控制单元202使时钟频率上升所需要的时间的频率上升时间。同样,代替应该反映在极限值上的电压下降时间,也可以使用时钟脉冲控制单元202使时钟频率下降所需要的时间的频率下降时间。让频率上升时间和频率下降时间反映在极限值上,是考虑到时钟脉冲控制单元202从接受到指令到完成时钟频率改变是需要时间的。以上所述的图10的处理过程,是以在改变时钟频率所需要的期间内停止执行程序作为前提的。
图11是说明在改变时钟频率而需要时间时的时钟频率的变化的示意图。在图11中,时钟频率为从低值501上升到高值502是需要一些时间的。同样,时钟频率从高值502下降到低值501也是需要一些时间的。在图11中,增大时钟频率时的预测执行时间相当于时钟频率以较高的值502处于稳定时的期间,即时刻503至时刻504的期间。
利用图10已经说明了执行排他处理区间的处理过程,但在能够获得多个电压和与其对应的时钟频率的搭配组合时,则可以在步骤353和步骤354的程序中,选择使排他处理区间达到最短的电压和时钟频率。
下面来说明在步骤353和步骤354中选择最合适的电压和时钟频率的方法。首先,电压从图8所示的251上升到252而处于稳定状态所要的时间,可以根据现在的电压和改变后的电压的2个值以及电压的上升速度、即电压比时间的曲线的倾斜度来决定。而且,排他处理区间的预测执行时间,可以通过基于某时钟频率的预测执行时间和改变后的时钟频率的2个值来决定。改变后的时钟频率,由于是与改变后的电压相对应的最大的时钟频率,所以,可以根据改变后的电压来决定。因此,其结果,在排他处理区间的预测执行时间比电压的上升时间要长的条件下,可以选择使排他处理区间的预测执行时间达到最短的电压值。与该电压值相对应的最大时钟频率就是最合适的时钟频率。
更为详细地来说明,上述的处理程序是以在电压上升以及下降中不能执行程序为前提的。也就是,上述的处理程序是以只局限于在图8或图11中的电压处于平稳的期间才执行程序作为前提的。在此前提下,上述的处理程序不是单纯地在与“高速处理模式”和“低电力消耗模式”相对应的2个值之间改变电压和时钟频率,而是考虑电压的上升速度以及下降速度、换句话说,就是电压的上升时间及下降时间和用增大了的时钟频率来执行排他处理区间的处理时所需要的时间之间的关系,使时钟频率上升到与最合适的电压相对应的时钟频率。
下面举一个具体的例子。在通常工作模式的“低电力消耗模式”中,计算处理单元203以20MHZ的速度进行工作时,预测某排他处理区间的处理时间为60秒。在这种情况下,可以期待,一旦使时钟频率提高到60MHZ,根据单纯地计算,排他处理区间的处理时间将变成20秒。然而,为了使时钟频率提高10MHZ,如果假定使电压上升的时间需要5秒,则使时钟频率从20MHZ上升到60MHZ,之后再下降所需要的合计时间必须有40秒的时间。也就是说,包括排他处理区间的处理时间20秒在内,到电压恢复到原来的低值为止,需要20+40=60秒的时间。
对此,如果不使时钟频率提高到60MHZ,而是提高到40MHZ,则为了使时钟频率从20MHZ上升到40MHZ,之后再下降,合计20秒的时间就够了。如果时钟频率为40MHZ,与时钟频率为20MHZ的情况相比,处理时间变成了2倍,所以排他处理区间的处理时间则成为30秒。也就是说,包括排他处理区间的处理时间30秒在内,用30+20=50秒的时间,电压可以恢复到原来的低值。
这样,可以在预先规定的范围内选择应该增大的最合适的时钟频率。也就是说,与电压恢复到原来的低值所需要的时间、或者在此时间上附加了某容限的时间相比,如果在保持着较低的时钟频率来执行排他处理区间的处理时,被预测的时间有所增长的时钟频率的有效频率在预先规定的范围内,则使时钟频率增大到有效频率,而如果有效频率不在预先规定的范围内,则不必使时钟频率增大。预先规定的范围可以是阶段性规定的时钟频率的范围,也可以连续性规定的范围。对于一种时钟频率来说,如果可以获得关于排他处理区间的处理时间的预测值,则对于其他任意的时钟频率来说,可以用单纯的计算而获得排他处理区间的处理时间以及电压上升和下降所需要的时间。
这样,如果是选择了使排他处理区间成为最短的电压和时钟频率,则有必要在步骤357和358的步骤中,对按照所选择的时钟频率来进行测量的执行时间进行修正。在步骤359被保存的时间信息是根据某特别指定的时钟频率而测量的时间信息。例如,在基于信息处理装置所允许的最大时钟频率来测量排他处理区间的执行时间时,可以通过计算出与实际执行时的时钟频率的比,对执行时间进行修正。如果作为基准的最大时钟频率为40MHZ,而在排他处理区间所选择的时钟频率固定为20MHZ,或者平均为20MHZ,则所测量的执行时间可以修正20/40=0.5倍,并在步骤359,作为时间信息而保存起来。也就是说,在20MHZ的时钟频率下,如果执行时间是10秒,则将修正了0.5倍而成为5秒的时间作为时间信息而保存起来。作为用来记录排他处理区间的执行时间的基准时钟频率,可以定为一任意的值。
另一方面,如图8的257所示,在电压下降结束之前,执行排他处理的区间再次开始而必须立刻再次升高电压的情况下,由于在执行排他处理的区间,电压没有马上达到目标的电压标准252,所以无法立刻增大时钟频率,从而影响实时性。而且,电源控制单元212改变电压的处理,或时钟脉冲控制单元202随着电压的改变来改变时钟频率的处理也成为一种徒劳。因此,可以采取一种方法,在执行排他处理的区间一结束,下次的执行排他处理的区间立刻又要开始的情况下,时钟脉冲控制判断单元214不向时钟脉冲控制单元202通知降低时钟脉冲的指令,而是将电压保持在252的标准上,维持着较高的时钟频率。
时钟脉冲控制判断单元214,为了判断下次的执行排他处理的区间是否立刻开始,例如,如图12所示,可以将从排他处理结束到下次的排他处理开始的处理区间的执行时间信息保存在存储单元204。时钟脉冲控制判断单元214,从存储单元204读出该信息而预以利用。与图9所示的信息有较大不同的地方在于,某个排他处理结束之处和在其之后执行的排他处理开始之处不是1对1对应的。某个排他处理一旦结束,考虑到因中断等处理会导致各种各样的执行路径产生变化,所以有必要全面考虑和下次排他处理的开始之处的搭配组合。图12的401所记录的是,对各中断禁止区间或抢先禁止区间的结束之处,分别都配有作为可能性而预以考虑的下次排他处理区间的开始之处的搭配组合。
在计算处理单元203执行的处理的若干之处,设定有排他处理区间的开始和结束。因此,为了按照各搭配组合来保存执行时间的信息,有必要特别指定是哪一处的排他处理区间的开始及结束。其特别指定的方式,可以通过与前面所述的特别指定排他处理区间的方式同样的方式来实现。
例如,预先抽出由排他处理区间检测单元213检测出的排他处理区间的开始和结束,准备好一览特别指定各处的数值等识别记号。在程序中执行开始或结束排他处理区间时,可将其一览中的对应识别记号通知给存储单元204。这样,就可以表明是哪一个排他处理区间的开始或结束。
而且,作为特别指定排他处理区间的开始和结束的其他的方式,也可以是,根据在进行排他处理时的计算处理单元203的内部信息而进行唯一的特别指定。计算处理单元203的内部信息,是指为了在内部进行处理而被使用的寄存器的值等。计算处理单元203,在执行开始及结束排他处理区间时,将可以特别指定其所处之处的计算处理单元203的内部信息通知给存储单元204。
通过这些方式,存储单元204可以对图12所示的排他处理区间的执行时间的信息进行管理。
图12的402、403、404的信息是存储了到现在为止执行401所示的从结束之处到开始之处的各处理区间而得到的时间信息的内容。402表示前一次执行时所需要的时间。而403表示从结束之处到开始之处的各处理区间所需要的时间总合以及执行的总次数。404表示根据403所得到的执行时间合计值和执行次数进行计算而得到的从结束之处到开始之处的各处理区间的平均执行时间。
图13的流程图用来说明在结束执行排他处理的区间时,根据到下次排他处理区间开始为止的执行时间的信息而进行处理的过程。首先,执行排他处理的区间一结束(步骤451),计算处理单元203,为了把握到下次排他处理区间开始为止的执行时间而开始计时(步骤452)。然后,计算处理单元203判断现在正在执行的处理区间的执行时间是否足够长(步骤453)。为了执行此判断,可以设定一个执行时间的极限值,并与现在正在执行的排他处理区间的预测执行时间进行比较,从而判断执行时间是否足够长。
极限值是考虑到电压下降所需要的时间而进行设定的。而且,预测执行时间又是根据图12所示的从排他处理区间的结束之处到开始之处的执行时间的信息来预测的。预测执行时间也可以采用404所示的平均执行时间,或者也可以采用402所示的前一次的执行时间。例如,在极限值为10μsec,而预测执行时间采用404的平均执行时间中最短时间的情况下,如图12所示,识别号码为#1的禁止中断区间一结束,预测执行时间在其次的识别号码为#2的禁止中断区间开始的情况下为最短,由于预测执行时间的平均执行时间是446.04μsec,远大于极限值,所以,可以判断此此区间有足够长的执行时间。相反,识别号码为#1的抢先禁止区间一旦结束,预测执行时间在其次的识别号码为#1的禁止中断区间开始的情况下为最短,由于平均执行时间为4.86μsec,小于极限值,所以不判断此区间有足够长的执行时间。
如果判断出执行中的处理区间有足够长的执行时间(步骤453为YES),时钟脉冲控制判断单元214则向时钟脉冲控制单元202发出降低时钟频率的命令(步骤454),计算处理单元203则继续执行后续的处理(步骤455)。另一方面,如果判断执行中的排他处理区间没有足够长的执行时间(步骤453为NO),则不降低时钟频率而继续执行后续的处理(步骤455)。
如果排他处理区间检测单元213检测出执行中的排他处理区间的开始之处(步骤456),则判断在步骤453的处理中,是否判断出以前的执行时间有足够长,是否在此处理区间降低了时钟频率(步骤457)。如果没有降低时钟频率(步骤457为NO),
此处理区间的执行时间,则因没有降低时钟频率而变小。为此,计算出与本来应该降低的时钟频率的比,将执行时间修正为已降低时钟频率而执行处理时的执行时间(步骤458)。例如,虽然设定时钟频率应降低到4MHZ,但如果是保持着40MHZ的较高时钟频率执行此处理区间时,时钟频率的比则为1/10(十分之一),而执行时间应修正10倍。然后,计算处理单元203,结束此处理区间的计时,并将执行处理所需要的时间信息保存起来(步骤459)。例如,如图12所示,可以更新402的上一次执行时间、或403、或404的平均执行时间的信息。
另外,作为应该与极限值进行对比的预测执行时间,最好是选择假设是保持着较低的时钟频率而进行的预测执行时间。作为极限值,可以设定为电压控制单元212使电压下降所需要的时间、即电压下降时间。而且,作为极限值,也可以设定为在电压下降时间上附加了某种容限(margin)的时间。进一步,作为极限值,又可以设定为电压下降时间和电压控制单元212使电压上升所需要的时间(即电压上升时间)之和。进一步,作为极限值,也可以设定为在所述时间之和上附加了某种容限的时间。带有各自相应的准确度,在节约电力消耗的效果较小的情况下,也可以避免使时钟频率降低。
而且,代替应该反映在极限值上的电压上升时间,也可以使用时钟脉冲控制单元202使时钟频率上升所需要的时间的频率上升时间。同样,代替应该反映在极限值上的电压下降时间,也可以使用时钟脉冲控制单元202使时钟频率下降所需要的时间的频率下降时间。
图14是说明改变时钟频率而需要时间时的时钟频率的变化的示意图。如图14所示,时钟频率为从高值511下降到低值512而需要一些时间。同样,时钟频率为从低值512上升到高值511也需要一些时间。说明改变电压而需要时间时的电压变化情况的示意图与图14是一样的。
让电压上升时间和电压下降时间反映在极限值上,是考虑到电压控制单元212接受到指令之后,到完成电压变更是需要时间的。而且,让频率上升时间和频率下降时间反映在极限值上,也是考虑到时钟脉冲控制单元202接受到指令之后,到完成时钟频率改变是需要时间的。以上所述的图13的处理过程,是以在改变电压所需要的期间内或者改变时钟频率所需要的期间内,停止执行程序为前提的。在图14中,降低时钟频率时的预测执行时间,是指时钟频率以较低的值502处于稳定的期间、即相当于时刻513至时刻514的期间。
利用图13已经说明了从执行排他处理的区间结束、到下次的排他处理区间开始的处理过程,但在能够得到多个电压和与其对应的时钟频率的搭配组合时,可以在步骤453和步骤454的程序中,选择使从排他处理区间结束到下次的排他处理区间开始的区间达到最长的电压和时钟频率。
下面来说明在步骤453和步骤454中选择最合适的电压和时钟频率的方法。首先,电压从图8所示的252的标准下降到251的标准而处于稳定状态所要的时间,可以根据现在的电压标准和改变后的电压标准的2个值以及电压的下降速度、即电压比时间的曲线的倾斜度来决定。而且,从排他处理结束到下次排他处理开始的区间的预测执行时间,可以根据基于某时钟频率的预测执行时间和改变后的时钟频率的2个值来决定。改变后的时钟频率,由于是与改变后的电压标准相对应的最大的时钟频率,所以,可以根据改变后的电压标准来决定。因此,其结果,在从排他处理结束到下次排他处理开始的区间的预测执行时间比电压的下降时间要长的条件下,可以选择使预测执行时间达到最长的电压值。与该电压值相对应的最大时钟频率就是最合适的时钟频率。
更为详细地来说明,上述的处理程序是以在电压上升以及下降中不能执行程序作为前提的。也就是,上述的处理程序是以只局限于在图14中的电压处于平稳的期间才执行程序作为前提。在此前提下,上述的处理程序不是单纯地在与“高速处理模式”和“低电力消耗模式”相对应的2个值之间改变电压和时钟频率,而是考虑电压的下降速度以及上升速度、换句话说,就是电压的下降时间以及上升时间和以降低了的时钟频率来执行非排他处理区间的处理时所要的时间之间的关系,使时钟频率降低到与最合适的电压相对应的时钟频率。
下面举一个具体的例子。在计算处理单元203以60MHZ的速度执行的“高速处理模式”结束时,预测到下次的排他处理区间开始为止的处理时间为10秒。在这种情况下,可以预测,一旦使时钟频率降低到20MHZ,根据单纯地计算,非排他处理区间的处理时间将变成30秒。然而,为了使时钟频率减少10MHZ,如果假定使电压下降的时间需要5秒,则使时钟频率从60MHZ减少到20MHZ,之后再增大需要的合计时间必须有40秒的时间。也就是说,降低时钟频率来执行非排他处理区间的处理时的处理时间的30秒,比时钟频率下降及上升所需要的时间40秒要短。这时,因降低时钟频率而引起的电力消耗的节约效果较小,所以,可以不必降低时钟频率。
对此,如果不使时钟频率降低到20MHZ,而是降低到40MHZ,则为了使时钟频率从60MHZ降低到50MHZ,之后再进一步增大,合计10秒的时间就够了。假如时钟频率为50MHZ,非排他处理区间的处理时间则成为12秒。也就是说,将时钟频率降低到50MHZ来执行非排他处理区间的处理时的处理时间的12秒,比时钟频率下降及上升所需要的时间10秒要长。这时,可以说因降低时钟频率而引起的电力消耗的节约效果较大,所以,可以将时钟频率降低到比如50MHZ。
这样,就可以在预先规定的范围内选择应该降低的最合适的时钟频率。也就是,与电压恢复到原来的高值所需要的时间、或者在此时间上附加了某容限的时间相比,如果在降低时钟频率来执行非排他处理区间的处理时,被预测的时间有所增长的时钟频率的有效频率在预先规定的范围内,则使时钟频率降低到有效频率,而如果有效频率不在预先规定的范围内,则不必降低时钟频率。预先规定的范围可以是阶段性规定的时钟频率的范围,也可以连续性规定的范围。对于一种时钟频率来说,如果可以获得关于非排他处理区间的处理时间的预测值,则对于其他任意的时钟频率来说,可以用单纯的计算而获得非排他处理区间的处理时间以及电压上升和下降所需要的时间。
这样,如果是选择了使从排他处理区间结束到下次排他处理区间开始的区间成为最长的电压和时钟频率,则有必要在步骤457和458的处理中,对按照所选择的时钟频率来进行测量的执行时间进行修正。在步骤459被保存的时间信息是根据某特别指定的时钟频率而进行测量的时间信息。例如,根据信息处理装置所允许的最小时钟频率,来测量从排他处理区间结束到下次开始的执行时间时,计算和实际执行时的时钟频率的比,对其进行修正。如果成为基准的最小时钟频率为4MHZ,而在排他处理区间所选择的时钟频率固定为20MHZ,或者平均为20MHZ,则所测量的执行时间可以修正20/4=5倍,并在步骤459,作为时间信息而保存起来。也就是,在20MHZ的时钟频率下,如果执行时间是10秒,则将修正了5倍而成为50秒的时间作为时间信息而保存起来。另外,成为用来记录排他处理区间的执行时间的基准的时钟频率,可以定为任意的值。
其他的实施例
在以上,举例说明了在排他处理区间和除此以外的处理区间之间改变时钟频率的实施例。但是,并不只局限于排他处理区间,对于一般的特别指定的处理区间,也可以采用与上述的排他处理区间同样的进行处理的信息处理装置。在正在编制中的程序或者已经编制好的程序中,与排他处理区间一样,可以特别指定一些执行特别指定处理的区间,并加入通知识别名称的代码。这样,通过与排他处理区间检测单元110或213具有同样功能的特别指定区间检测单元,可以在程序执行中检测出特别指定处理区间的开始及结束。
而且,也可以采用一种让排他处理区间检测单元110或213,在程序中的多个排他处理区间中,只检测预先规定的特别指定排他处理区间的信息处理装置。例如,当执行抢先禁止区间时,不管被包括在该区间内的处理条件如何,一般都是不存在其他处理过程的,这时,也就不需要抢先禁止了。在正在编制中的程序或者已经编制好的程序中,也可以只对各种排他处理区间中的一个或多个特别指定区间进行特别指定,并加入通知识别名称的代码。这样,排他处理区间检测单元110或213,在程序执行中,可以只对排他处理区间中的特别指定的处理区间,来检测其开始及结束。而且,在基于硬件的方法中,例如,可以登记(或者取消)根据堆栈的追踪而特别指定的函数调用关系,或者登记(或取消)寄存器的特别指定状态的处理等。
本发明所涉及的信息处理装置、电器、信息处理装置的时钟脉冲控制方法、时钟脉冲控制程序以及其程序产品,可以同时实现处理的实时性和电力消耗的节省,所以,可以可被广泛地应用于各种产业上。
Claims (28)
1.一种信息处理装置,其特征在于包括:
产生时钟脉冲的时钟脉冲产生单元;
时钟脉冲控制单元,用于控制所述时钟脉冲产生单元所产生的时钟脉冲,并决定时钟频率;
存储程序的存储单元;
计算处理单元,根据由所述时钟脉冲控制单元提供的时钟脉冲,执行从所述存储单元中读取的程序;
特别指定处理区间检测单元,用于检测特别指定处理区间的开始和结束,其中,特别指定处理区间是所述计算处理单元执行预先规定的特别指定处理的区间;
时钟脉冲控制判断单元,根据所述特别指定处理区间检测单元所检测到的结果,将控制时钟频率的指令传送给所述时钟脉冲控制单元;其中,
所述时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的开始时,命令所述时钟脉冲控制单元增大时钟频率,而在所述特别指定处理区间检测单元检测出所述特别指定处理区间的结束时,则命令所述时钟脉冲控制单元降低时钟频率。
2.根据权利要求1所述的信息处理装置,其特征在于:
所述特别指定处理区间是执行排他处理的区间。
3.根据权利要求1所述的信息处理装置,其特征在于:
所述特别指定处理区间是执行排他处理的多个区间中的一个预先规定好的特别指定区间。
4.根据权利要求1至3的其中任何一项所述的信息处理装置,其特征在于还包括:
电源控制单元,用于从所述时钟脉冲控制单元取得有关时钟脉冲频率的信息,控制向所述计算处理单元和所述存储单元提供的电压;其中,
所述电源控制单元,对应于所述时钟频率的增大而使电压升高,对应于所述时钟频率的降低而使电压下降。
5.根据权利要求4所述的信息处理装置,其特征在于:
所述时钟脉冲控制单元,在所述电源控制单元使电压升高的期间,随着电压的上升,在所述计算处理单元可以工作的范围内,阶段性地增大所述时钟频率。
6.根据权利要求4所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的开始时,根据以前的所述特别指定处理所需要的时间,来预测到所述特别指定处理区间结束为止的特别指定处理期间,当被预测的所述特别指定处理期间超过指定的极限值时,向所述时钟脉冲控制单元通知增大时钟频率的指令,而当被预测的所述特别指定处理期间没有超过所述极限值时,则不向所述时钟脉冲控制单元通知增大时钟频率的指令。
7.根据权利要求6所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,将取决于所述电源控制单元为使电压升高所需要的电压上升时间、并且超过所述电压上升时间的时间作为所述极限值。
8.根据权利要求7所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,将取决于所述电压上升时间和所述电源控制单元为使电压下降所需要的电压下降时间之和、并且超过所述时间之和的时间作为所述极限值。
9.根据权利要求6所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,将取决于所述时钟脉冲控制单元为使时钟频率上升所需要的频率上升时间、并且超过所述频率上升时间的时间作为所述极限值。
10.根据权利要求9所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,将取决于所述频率上升时间和所述时钟脉冲控制单元为使时钟频率下降所需要的频率下降时间之和、并且超过所述时间之和的时间作为所述极限值。
11.根据权利要求4所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的开始时,根据以前的所述特别指定处理所需要的时间,来预测保持着较低的所述时钟频率直到所述特别指定处理区间结束为止的低速特别指定处理期间,以及提高了所述时钟频率之后直到所述特别指定处理区间结束为止的高速特别指定处理期间,如果被预测的所述低速特别指定处理期间,超过了一个取决于被预测的所述高速特别指定处理期间和所述电压控制单元为使电压上升或下降所需要的电压变更期间之和、并且高于所述之和的极限值时,则向所述时钟脉冲控制单元通知增大时钟频率的指令,如果被预测的所述低速特别指定处理期间没有超过所述极限值,则不向所述时钟脉冲控制单元通知增大时钟频率的指令。
12.根据权利要求4所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的开始时,根据以前的所述特别指定处理所需要的时间,来预测保持着较低的所述时钟频率直到所述特别指定处理区间结束为止的低速特别指定处理期间,以及提高了所述时钟频率之后直到所述特别指定处理区间结束为止的高速特别指定处理期间,如果被预测的所述低速特别指定处理期间,超过了一个取决于被预测的所述高速特别指定处理期间和所述时钟脉冲控制单元为使时钟频率上升或下降所需要的频率变更期间之和、并且超过所述之和的极限值时,则向所述时钟脉冲控制单元通知增大时钟频率的指令,如果被预测的所述低速特别指定处理期间没有超过所述极限值,则不向所述时钟脉冲控制单元通知增大时钟频率的指令。
13.根据权利要求4所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的开始时,根据以前的处理所需要的时间,来预测在规定的范围内提高了所述时钟频率之后直到该特别指定处理区间结束为止的高速特别指定处理期间,以及保持着较低的所述时钟频率直到所述特别指定处理区间结束为止的低速特别指定处理期间,如果被预测的所述低速特别指定处理期间,与取决于被预测的所述高速特别指定处理期间和所述电源控制单元为使电压上升或下降所需要的电压变更期间之和、并且超过所述之和的极限值相比,当使所述被预测的所述低速特别指定处理期间变大的有效频率在所述规定的范围内时,则向所述时钟脉冲控制单元通知将时钟频率增大到所述有效频率的指令,如果所述有效频率不在所述规定的范围内,则不向所述时钟脉冲控制单元通知增大时钟频率的指令。
14.根据权利要求13所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,当作为所述有效频率的多个频率在所述规定的范围内时,则向所述时钟脉冲控制单元通知,将所述时钟频率增大到所述多个频率中最高的频率的指令。
15.根据权利要求4所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的开始时,根据以前的处理所需要的时间,来预测在规定的范围内提高了所述时钟频率之后直到该特别指定处理区间结束为止的高速特别指定处理期间,以及保持着较低的所述时钟频率直到所述特别指定处理区间结束为止的低速特别指定处理期间,如果被预测的所述低速特别指定处理期间,与取决于所预测的所述高速特别指定处理期间和所述时钟脉冲控制单元为使时钟频率上升或下降所需要的频率变更时间之和、并且超过所述之和的极限值相比,当使所述被预测的所述低速特别指定处理期间变大的有效频率在所述规定的范围内时,则向所述时钟脉冲控制单元通知将时钟频率增大到所述有效频率的指令,如果所述有效频率不在所述规定的范围内,则不向所述时钟脉冲控制单元通知增大时钟频率的指令。
16.根据权利要求4所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的结束时,根据以前的处理所需要的时间,来预测在降低了所述时钟频率之后直到检测出下次的该特别指定处理区间开始为止的低速非特别指定处理期间,当预测的所述低速非特别指定处理期间超过指定的极限值时,则向所述时钟脉冲控制单元通知降低时钟频率的指令,如果预测的所述低速非特别指定处理期间没有超过所述极限值,则不向所述时钟脉冲控制单元通知降低时钟频率的指令。
17.根据权利要求16所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,将取决于所述电源控制单元为使电压下降所需要的电压下降时间、并且超过所述电压下降时间的时间,作为所述极限值。
18.根据权利要求17所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,将取决于所述电压下降时间和所述电源控制单元为使电压上升所需要的电压上升时间之和、并且超过所述之和的时间,作为所述极限值。
19.根据权利要求16所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,将取决于所述时钟脉冲控制单元为使时钟频率降低所需要的频率下降时间、并且超过所述频率下降时间的时间,作为所述极限值。
20.根据权利要求19所述的信息处理装置,其特征在于:
所述脉冲控制判断单元,将取决于所述频率下降时间和所述时钟脉冲控制单元为使时钟频率上升所需要的频率上升时间之和、并且超过所述之和的时间,作为所述极限值。
21.根据权利要求4所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的结束时,根据以前的所述特别指定处理以外的处理所需要的时间,来预测在规定的范围内降低了所述时钟频率之后直到下次所述特别指定处理区间开始为止的低速非特别指定处理期间,如果被预测的所述低速非特别指定处理期间,与取决于所述电源控制单元为使电压下降或升高所需要的电压变更期间、并且超过所述电压变更期间的极限值相比,当使所述被预测的所述低速非特别指定处理期间变大的有效频率在所述规定的范围内时,则向所述时钟脉冲控制单元通知将时钟频率降低到所述有效频率的指令,而所述有效频率如果不在所述规定的范围内时,则不向所述时钟脉冲控制单元通知降低时钟频率的指令。
22.根据权利要求21所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,在作为有效频率的多个频率处于所述规定的范围内时,则向所述时钟脉冲控制单元通知,将所述时钟频率降低到所述多个频率中最低的频率上的指令。
23.根据权利要求4所述的信息处理装置,其特征在于:
所述时钟脉冲控制判断单元,在所述特别指定处理区间检测单元检测出所述特别指定处理区间的结束时,根据以前的所述特别指定处理以外的处理所需要的时间,来预测在规定的范围内降低了所述时钟频率之后直到下次所述特别指定处理区间开始为止的低速非特别指定处理期间,如果被预测的所述低速非特别指定处理期间,与取决于所述时钟脉冲控制单元为使时钟频率下降或上升所需要的频率变更期间、并且超过所述频率变更期间的极限值相比,当使所述被预测的所述低速非特别指定处理期间变大的有效频率在所述规定的范围内时,则向所述时钟脉冲控制单元通知将时钟频率降低到所述有效频率的指令,而所述有效频率如果不在所述规定的范围内时,则不向所述时钟脉冲控制单元通知降低时钟频率的指令。
24.一种电器,其特征在于包括,
权利要求1至23的其中任何一项所述的信息处理装置。
25.一种信息处理装置的时钟脉冲控制方法,其特征在于包括:
用于检测执行预先规定的特别指定处理的特别指定处理区间的开始和结束的特别指定处理区间检测工序;
在所述特别指定处理区间检测工序检测出所述特别指定处理区间的开始时,则提高所述信息处理装置的时钟频率,而在所述特别指定处理区间检测工序检测出所述特别指定处理区间的结束时,则降低所述信息处理装置的时钟频率的时钟脉冲控制工序。
26.一种时钟脉冲控制程序,其特征在于,使信息处理装置实现:
对预先规定的执行特别指定处理的特别指定处理区间的开始以及结束进行检测的特别指定处理区间检测功能;
在所述特别指定处理区间检测功能检测出所述特别指定处理区间的开始时,则增大所述信息处理装置的脉冲频率,而在所述特别指定处理区间检测功能检测出所述特别指定处理区间的结束时,则降低所述信息处理装置的脉冲频率的时钟脉冲控制功能。
27.一种程序产品,其特征在于包括:
时钟脉冲控制程序,该程序使信息处理装置实现:
对预先规定的执行特别指定处理的特别指定处理区间的开始以及
结束进行检测的特别指定处理区间检测功能;
当所述特别指定处理区间检测功能检测出所述特别指定处理区间的开始时,则增大所述信息处理装置的脉冲频率,而当所述特别指定处理区间检测功能检测出所述特别指定处理区间的结束时,则降低所述信息处理装置的脉冲频率的时钟脉冲控制功能;和
保存所述时钟脉冲控制程序的信号存储媒体。
28.根据权利要求27所述的程序产品,其特征在于:所述信号存储媒体是记录媒体和传输媒体中的至少其中之一。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003085042 | 2003-03-26 | ||
JP2003085042 | 2003-03-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1532666A true CN1532666A (zh) | 2004-09-29 |
CN1328639C CN1328639C (zh) | 2007-07-25 |
Family
ID=32821489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB200410033215XA Expired - Fee Related CN1328639C (zh) | 2003-03-26 | 2004-03-26 | 信息处理装置、该装置的时钟脉冲控制方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7346791B2 (zh) |
EP (1) | EP1462915A3 (zh) |
KR (1) | KR20040084832A (zh) |
CN (1) | CN1328639C (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100535825C (zh) * | 2005-08-26 | 2009-09-02 | 佳能株式会社 | 信息处理设备和设置从处理器提供的时钟的频率的方法 |
CN102257454A (zh) * | 2008-11-24 | 2011-11-23 | 艾色拉公司 | 主动电源管理 |
US8266470B2 (en) | 2008-09-24 | 2012-09-11 | Asmedia Technology Inc. | Clock generating device, method thereof and computer system using the same |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI351818B (en) | 2005-01-11 | 2011-11-01 | Altera Corp | Power management of components having clock proces |
JP2007034839A (ja) * | 2005-07-28 | 2007-02-08 | Matsushita Electric Ind Co Ltd | 集積回路の動作周波数制御方法 |
JP2007233718A (ja) * | 2006-03-01 | 2007-09-13 | Canon Inc | 制御装置及び半導体集積回路 |
TWI313806B (en) * | 2006-05-12 | 2009-08-21 | Asustek Comp Inc | Virtual sleep method |
US8125243B1 (en) | 2007-03-12 | 2012-02-28 | Cypress Semiconductor Corporation | Integrity checking of configurable data of programmable device |
US8108708B2 (en) * | 2007-05-03 | 2012-01-31 | Microchip Technology Incorporated | Power optimization when using external clock sources |
US7992015B2 (en) | 2008-02-05 | 2011-08-02 | Dell Products L.P. | Processor performance state optimization |
FR2928496B1 (fr) * | 2008-03-06 | 2015-09-25 | Commissariat Energie Atomique | Dispositif d'alimentation d'un circuit electrique, en particulier d'un circuit numerique |
WO2009125257A1 (en) * | 2008-04-11 | 2009-10-15 | Freescale Semiconductor, Inc. | Microprocessor having a low-power mode and a non-low power mode, data processing system and computer program product. |
JP5328445B2 (ja) * | 2008-05-02 | 2013-10-30 | キヤノン株式会社 | 情報処理装置及び情報処理装置の制御方法 |
TWI425366B (zh) * | 2009-03-30 | 2014-02-01 | Mstar Semiconductor Inc | 根據通訊協定處理來執行資料存取的方法與裝置 |
US8566618B2 (en) * | 2009-10-05 | 2013-10-22 | International Business Machines Corporation | Reliable setting of voltage and frequency in a microprocessor |
US8407492B2 (en) * | 2010-01-14 | 2013-03-26 | The Boeing Company | System and method of asynchronous logic power management |
EP2657840A4 (en) | 2010-12-22 | 2016-09-28 | Fujitsu Ltd | MULTIC UR PROCESSOR SYSTEM AND POWER CONTROL METHOD |
JP5696603B2 (ja) * | 2011-06-29 | 2015-04-08 | 富士通株式会社 | 計算機システム、計算機システムの電力制御方法およびプログラム |
JP5917132B2 (ja) * | 2011-12-22 | 2016-05-11 | 株式会社東芝 | 電気機器の運転制御システム及び方法 |
JP5787096B2 (ja) * | 2012-06-20 | 2015-09-30 | 横河電機株式会社 | 物理量測定装置、物理量測定方法 |
US9367114B2 (en) | 2013-03-11 | 2016-06-14 | Intel Corporation | Controlling operating voltage of a processor |
US10783146B2 (en) | 2016-07-19 | 2020-09-22 | Sap Se | Join operations in hybrid main memory systems |
US20180025094A1 (en) * | 2016-07-19 | 2018-01-25 | Sap Se | Increasing performance of in-memory databases using re-ordered query execution plans |
US11977484B2 (en) | 2016-07-19 | 2024-05-07 | Sap Se | Adapting in-memory database in hybrid memory systems and operating system interface |
US10423206B2 (en) | 2016-08-31 | 2019-09-24 | Intel Corporation | Processor to pre-empt voltage ramps for exit latency reductions |
US11010379B2 (en) | 2017-08-15 | 2021-05-18 | Sap Se | Increasing performance of in-memory databases using re-ordered query execution plans |
US20190101969A1 (en) * | 2017-09-29 | 2019-04-04 | Intel Corporation | Control Blocks for Processor Power Management |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5142684A (en) * | 1989-06-23 | 1992-08-25 | Hand Held Products, Inc. | Power conservation in microprocessor controlled devices |
US5222239A (en) * | 1989-07-28 | 1993-06-22 | Prof. Michael H. Davis | Process and apparatus for reducing power usage microprocessor devices operating from stored energy sources |
JPH0776894B2 (ja) | 1991-02-25 | 1995-08-16 | インターナショナル・ビジネス・マシーンズ・コーポレイション | プロセッサ用クロック信号の制御方法及び情報処理システム |
US5237694A (en) * | 1991-05-30 | 1993-08-17 | Advanced Micro Devices, Inc. | Processing system and method including lock buffer for controlling exclusive critical problem accesses by each processor |
JPH05108191A (ja) | 1991-10-11 | 1993-04-30 | Toshiba Corp | ポータブルコンピユータ |
US5546568A (en) * | 1993-12-29 | 1996-08-13 | Intel Corporation | CPU clock control unit |
JPH0876874A (ja) | 1994-09-06 | 1996-03-22 | Hitachi Ltd | 中央処理装置のクロック制御装置およびクロック制御方法 |
US5745375A (en) * | 1995-09-29 | 1998-04-28 | Intel Corporation | Apparatus and method for controlling power usage |
JPH10301661A (ja) * | 1997-04-23 | 1998-11-13 | Matsushita Electric Ind Co Ltd | クロック供給装置 |
US6425086B1 (en) * | 1999-04-30 | 2002-07-23 | Intel Corporation | Method and apparatus for dynamic power control of a low power processor |
US6501999B1 (en) * | 1999-12-22 | 2002-12-31 | Intel Corporation | Multi-processor mobile computer system having one processor integrated with a chipset |
KR100487543B1 (ko) * | 2000-09-01 | 2005-05-03 | 엘지전자 주식회사 | 시피유 스케쥴링 방법 |
JP3877518B2 (ja) * | 2000-12-13 | 2007-02-07 | 松下電器産業株式会社 | プロセッサの電力制御装置 |
JP4139579B2 (ja) * | 2001-06-19 | 2008-08-27 | 株式会社ルネサステクノロジ | 半導体装置および半導体装置の動作モード制御方法 |
US6622253B2 (en) * | 2001-08-02 | 2003-09-16 | Scientific-Atlanta, Inc. | Controlling processor clock rate based on thread priority |
-
2004
- 2004-03-25 EP EP04007243A patent/EP1462915A3/en not_active Withdrawn
- 2004-03-25 KR KR1020040020367A patent/KR20040084832A/ko not_active Application Discontinuation
- 2004-03-25 US US10/808,438 patent/US7346791B2/en active Active
- 2004-03-26 CN CNB200410033215XA patent/CN1328639C/zh not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100535825C (zh) * | 2005-08-26 | 2009-09-02 | 佳能株式会社 | 信息处理设备和设置从处理器提供的时钟的频率的方法 |
US8266470B2 (en) | 2008-09-24 | 2012-09-11 | Asmedia Technology Inc. | Clock generating device, method thereof and computer system using the same |
CN102257454A (zh) * | 2008-11-24 | 2011-11-23 | 艾色拉公司 | 主动电源管理 |
CN102257454B (zh) * | 2008-11-24 | 2014-09-17 | 辉达技术英国有限公司 | 主动电源管理 |
TWI492041B (zh) * | 2008-11-24 | 2015-07-11 | Nvidia Technology Uk Ltd | 作動電源管理技術 |
US9141165B2 (en) | 2008-11-24 | 2015-09-22 | Icera Inc. | Method and system for controlling clock frequency for active power management |
Also Published As
Publication number | Publication date |
---|---|
EP1462915A3 (en) | 2009-01-21 |
CN1328639C (zh) | 2007-07-25 |
US20040193935A1 (en) | 2004-09-30 |
KR20040084832A (ko) | 2004-10-06 |
EP1462915A2 (en) | 2004-09-29 |
US7346791B2 (en) | 2008-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1532666A (zh) | 信息处理装置、该装置的时钟脉冲控制方法及控制程序 | |
CN1152305C (zh) | 虚拟机系统 | |
CN1310148C (zh) | 程序执行处理终端装置和程序执行处理方法 | |
CN1770111A (zh) | 具有温度传感器的处理器系统及其控制方法 | |
CN1162777C (zh) | 中断管理装置和中断管理方法 | |
CN1253806C (zh) | 仲裁电路和数据处理系统 | |
CN1760836A (zh) | 信息处理系统、信息处理方法和程序 | |
CN1159021A (zh) | 系统时钟确定装置 | |
CN1517869A (zh) | 处理器、运算处理方法和优先度决定方法 | |
CN1725234A (zh) | 数据处理装置、数据处理方法和便携式通信终端装置 | |
CN1394308A (zh) | 运算处理系统和控制方法,任务管理系统和方法 | |
CN1993670A (zh) | 信息处理装置 | |
CN1272704C (zh) | 低电力动作控制装置及程序最佳化装置 | |
CN1906583A (zh) | 信息处理设备、中断处理控制方法、以及计算机程序 | |
CN1591374A (zh) | 直接存储器存取传输控制器 | |
CN1920952A (zh) | 信息记录装置、信息记录方法及计算机程序 | |
CN1908904A (zh) | 实时内部简易监视器 | |
CN101065725A (zh) | 命令供给装置 | |
CN1932783A (zh) | 存储器控制装置 | |
CN1517868A (zh) | 信息处理装置、方法和程序 | |
CN101031884A (zh) | 处理器 | |
CN1924761A (zh) | 数据处理装置、程序、记录介质和内容回放装置 | |
CN1598797A (zh) | 实时处理器系统及控制方法 | |
CN1501255A (zh) | 竞争仲裁装置、竞争仲裁方法及竞争仲裁程序 | |
CN1961600A (zh) | 用于通信网络中的资源管理的方法和系统、其相关网络及计算机程序产品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070725 Termination date: 20100326 |