CN1521273A - Dna单分子有序化测序方法 - Google Patents

Dna单分子有序化测序方法 Download PDF

Info

Publication number
CN1521273A
CN1521273A CNA03115428XA CN03115428A CN1521273A CN 1521273 A CN1521273 A CN 1521273A CN A03115428X A CNA03115428X A CN A03115428XA CN 03115428 A CN03115428 A CN 03115428A CN 1521273 A CN1521273 A CN 1521273A
Authority
CN
China
Prior art keywords
dna
utilize
molecule
mica
atomic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA03115428XA
Other languages
English (en)
Other versions
CN1266283C (zh
Inventor
钧 胡
胡钧
李民乾
吕军鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI INST OF ATOMIC NUCLEU
Original Assignee
SHANGHAI INST OF ATOMIC NUCLEU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI INST OF ATOMIC NUCLEU filed Critical SHANGHAI INST OF ATOMIC NUCLEU
Priority to CN 03115428 priority Critical patent/CN1266283C/zh
Publication of CN1521273A publication Critical patent/CN1521273A/zh
Application granted granted Critical
Publication of CN1266283C publication Critical patent/CN1266283C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种DNA单分子有序化测序的方法,该方法包括下列步骤:(1)将DNA样品溶液滴加在基底表面,利用“分子梳”技术将DNA单分子拉直并固定;(2)利用原子力显微镜(AFM)对样品分子进行成像;(3)利用AFM的“逐线反馈纳米操纵技术”将DNA分子依次切隔成小片段;(4)利用“单个生物大分子的分离方法”依次对DNA小片段进行拾取;(5)利用PCR技术分别对所分离到的DNA分子进行扩增;(6)对扩增后的DNA样品进行测序。

Description

DNA单分子有序化测序方法
技术领域
本发明涉及DNA测序方法,特别是一种基于原子力显微镜纳米操纵的在单个DNA分子水平上进行有序化测序的方法。
背景技术
目前DNA测序方法大都以Sanger(Sanger et al.(1977)Proc.Natl.Acad.Sci.74:5463-55467)与Maxam和Gilbert(Maxam&Gilbert(1977)Proc.Natl.Acad.Sci.74:560-564)的方法为基础,在试剂和方法等方面加以改进和完善。多路测序(multiplexsequencing)、毛细管凝胶电泳和自动凝胶电泳技术的引进,使基于Sanger方法的测序效率大大提高。但这些方法都只能测定短的DNA片段,因此DNA首先内切酶或超声波随机打断成小片段,然后对每个片段的碱基序列进行分析。很显然,DNA小片段在其原始位置信息的丧失导致了DNA序列测定是十分困难的。
也有一些与Sanger方法完全不同的新方法,如扫描探针显微术(Minne etal.(1998)Appl.Phys.Lett.72:2340-2342)、纳米孔(Vercoutere at al.(2001)Nature Biotechnol19:248;Deamer&Akeson.(2000)TIBTECH APRIL 18:147-151)、时间飞行质谱(Wu et al.(1994)Anal.Chem.66:1637-45)、焦磷酸检测分析(Ronaghi et al.(1996)Anal.Biochem.242:84-89;Ronaghi et al.(1996)Science 281:363-365)、外切酶测序(Sauer et al.(1999)Phys.Chem.Chem.Phys.1:2472-77)、杂交测序(Service(1998)Science 282:396-399&399-401)等。这些方法能较快速的对较少量的DNA样品进行测序,但在核苷酸的读出长度、分辨相邻核苷酸的鉴别能力以及操作的实用性上存在局限性。(Marziali&Akeson(2001)Annu.Rev.Biomed.Eng 3:195-223;Meldrum(2001)Science 292:515-517)。
发明内容
本发明的主要目的是克服上述已有方法的困难和局限,提供一种可对单个分子数量的样品进行较为简单快速地获得DNA序列的方法。
为了实现本发明的目的,本发明的技术解决方案是:一种DNA单分子有序化测序方法就是对DNA单分子按次序进行测序,本方法是通过分子梳技术将DNA分子拉直并固定在基底上,再利用原子力显微镜依次进行切割和分离DNA片段,然后进行PCR扩增和测序。
该方法包括下列步骤:
(1)将DNA样品溶液滴加在基底表面,利用分子梳技术将DNA单分子拉直并固定;
(2)利用原子力显微镜(AFM)对样品分子进行成像;
(3)利用AFM的“逐线反馈纳米操纵技术”将DNA分子依次切隔成小片段;
(4)利用“单个生物大分子的分离方法”依次对DNA小片段进行分离;
(5)利用PCR技术分别对所分离的DNA分子进行扩增;
(6)对放大后的DNA样品进行测序。
所说的基底可以是云母,也可以是硅,也可以是化学修饰后云母。
所说的化学修饰后的云母,即新剥离的云母表面用0.5~1%的APTES水溶液处理2分钟,用双蒸水洗涤后,在80℃~200℃环境下烘烤1~4小时,然后放在干燥器中备用。
所说的DNA单分子可以为质粒DNA、基因组DNA、BAC、YAC、cDNA、染色体以及克隆了的或经PCR技术扩增得到的DNA片段,可以是各种方法制备的DNA片段包括机械打断的片段、直接提纯的片段。
所说的原子力显微镜探针可在空气、液体或真空环境中进行操作。
所说原子力显微镜的探针的针尖可以是针尖阵列,可以进行并行分离、拾取和测序。
附图说明
图1是DNA单分子有序化测序的流程示意图。
图2是利用AFM的“逐线反馈纳米操纵技术”将拉直固定在云母表面的DNA分子依次切隔形成小片段的AFM探测所获得的图像。
图3是利用“单个生物大分子分离方法”对切割制备的DNA分子片段进行分离前后的AFM探测结果。
具体实施方式
下面着重以λDNA分子为例来说明本发明的方法:
本发明对DNA分子进行有序化测序方法,包括下列步骤:
1、将DNA样品溶液滴加在基底表面,利用“分子梳”技术将DNA单分子拉直并固定。
为了使DNA分子在基底表面的有适中的吸附力以同时满足AFM成像和可以分离的需要,我们采用了用0.5~1%的APTES水溶液处理基底2分钟,然后在80℃~200℃环境下烘烤的过程,最后用“分子梳”技术将DNA拉直固定在基底上(关于基底处理以适合于DNA拉直的要求,请参见我们的专利:胡钧,黄一波,张益,欧阳振乾,李民乾。一种用于DNA操纵的云母衬底的制造方法。发明专利,申请号:00116715.4,申请日:20000623)。
2、利用原子力显微镜(AFM)对样品分子进行成像。
3、利用AFM的“逐线反馈纳米操纵”技术将DNA分子依次切隔成小片段。
“逐线反馈纳米操纵”技术的具体过程为:先用AFM轻敲模式(tapping)扫描一条线,获得这条线的信息(力,或者它所转换成的高度),然后对同一条线进行第二次接触模式(contact)扫描时进行监视和调整(改变扫描力的大小)从而实现对这条线的操纵。整个成像和操纵过程不用退出AFM的反馈系统而连续进行。在实行“切割”的纳米操纵时,先获得一幅图像,选定感兴趣的区域;接下来,通过增加力来驱动AFM针尖与选定区域接触,从而利用AFM针尖的移动(来回移动的次数与所用力的大小有关)将DNA切断。这样的操纵可以获得很高的精确性,切割DNA时的空间精确度达到<5nm,而这主要是受针尖尺度的限制。
4、利用“单个生物大分子的分离方法”依次对DNA小片段进行分离。
利用“单个生物大分子的分离方法”依次对DNA小片段进行分离的操作类似于“逐线反馈纳米操纵”技术中的“切割”过程,不同的是所用的力要小于切割时的域值,通常要小10nN(随针尖的不同而变化),并且扫描的区域要尽量小(比要分离的目标物体稍大即可),然后执行二维扫描过程,在此扫描过程中通过改变探针针尖对样品分子所施力的大小,克服基底对样品的吸附使样品转移吸附到针尖上,从而完成DNA小片段的分离。
5、利用PCR技术分别对所分离的DNA分子进行放大。
6、对放大后的DNA样品进行测序。
下面再具体详细地说明DNA单分子有序化测序的方法。
1、基底的选择与处理
采用了硅烷化的云母作为基底。新剥离的云母表面用0.5-1%的3-氨基丙基三乙氧基硅烷(3-aminopropyl triethoxysilane,APTES)水溶液处理,时间为2分钟。处理过的APTES-云母表面用双蒸水洗涤后,在80℃~200℃环境下烘烤1~4小时(优选120℃干燥2小时),然后放在干燥器中备用。
2、DNA样品准备和拉直操纵
λDNA购自Sigma公司(美国);DNA用TE缓冲液(40mM tris-Hcl,1mM EDTA)稀释至1~5ng/μl,取4μl上述DNA溶液滴加于洁净的盖玻片一端,接下来用“分子疏”将DNA拉直。具体做法是,首先将该盖玻片反转,先使带有溶液的一端轻轻地接触处理好的APTES一云母表面,然后慢慢地将整个盖玻片盖在云母表面上,在此过程中,水流弯液面将溶液中的DNA拉直,APTES对DNA的吸附力使DNA得以固定在基底上。样品表面在空气或液氮中干燥后,用AFM进行探测和操纵。
3、DNA单分子的AFM成像、切割与分离
DNA单分子的AFM成像、切割与分离都是在NANOScope IIIa AFM系统(DigitalInstrument,美国)上完成的。扫描头为E或J型。AFM针尖为硅针尖(Silicon-MDT Ltd.,俄罗斯)或Force modulation针尖(Digital Instrument,美国)。成像时,采用AFM轻敲模式(tapping mode),在相对湿度为30~40%下的大气条件下获取。切割和分离过程都是通过“逐线反馈纳米操纵”技术完成的。两种不同的是,切割时的AFM针尖在一维方向上来回移动,且用的力较大;而分离DNA小片段时,AFM针尖在二维方向上运动,用的力也比切割时要小。
对其他DNA也可以采用上述基于原子力显微镜纳米操纵的方法进行单分子有序化测序,在此不在赘述。

Claims (6)

1、一种DNA单分子有序化测序的方法,其特征在于该方法包括下列步骤:
(1)将DNA样品溶液滴加在基底表面,利用“分子梳”技术将DNA单分子拉直并固定;
(2)利用原子力显微镜(AFM)对样品分子进行成像;
(3)利用AFM的“逐线反馈纳米操纵技术”将DNA分子依次切隔成小片段;
(4)利用“单个生物大分子的分离方法”依次对DNA小片段进行分离;
(5)利用PCR技术分别对所分离到的DNA分子进行扩增;
(6)对扩增后的DNA样品进行测序。
2、根据权利要求1所述的DNA单分子有序化测序方法,其特征在于所说的基底可以是云母,也可以是硅,也可以是化学修饰后云母,可以是平整的玻璃表面。
3、根据权利要求2所述的DNA单分子有序化测序方法,其特征在于所说的化学修饰后的云母,即新剥离的云母表面用0.5~1%的3一氨基丙基三乙氧基硅烷(APTES)水溶液处理2分钟,用双蒸水洗涤后,在80℃~200℃环境下烘烤1~4小时,然后放在干燥器中备用。
4、根据权利要求1所述的DNA单分子有序化测序方法,其特征在于所说的DNA单分子可以为质粒DNA、基因组DNA、BAC、YAC、cDNA、染色体以及克隆了的或经PCR技术扩增得到的DNA片段,可以是各种方法制备的DNA片段包括机械打断的片段、直接提纯的片段。
5、根据权利要求1所述的DNA单分子有序化测序方法,其特征在于所说原子力显微镜探针可在空气、液体或真空环境中进行操作;
6、根据权利要求1所述的DNA单分子有序化测序方法,其特征在于所述的单个生物大分子的分离方法中,所说原子力显微镜的探针的针尖可以是针尖阵列,可以进行并行分离、拾取和测序。
CN 03115428 2003-02-14 2003-02-14 Dna单分子有序化测序方法 Expired - Fee Related CN1266283C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03115428 CN1266283C (zh) 2003-02-14 2003-02-14 Dna单分子有序化测序方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03115428 CN1266283C (zh) 2003-02-14 2003-02-14 Dna单分子有序化测序方法

Publications (2)

Publication Number Publication Date
CN1521273A true CN1521273A (zh) 2004-08-18
CN1266283C CN1266283C (zh) 2006-07-26

Family

ID=34284284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03115428 Expired - Fee Related CN1266283C (zh) 2003-02-14 2003-02-14 Dna单分子有序化测序方法

Country Status (1)

Country Link
CN (1) CN1266283C (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424174C (zh) * 2005-09-01 2008-10-08 上海交通大学 原子力显微镜诱导单分子dna定位突变方法
CN101221148B (zh) * 2008-01-24 2011-01-05 上海交通大学 基于纳米颗粒提高电泳分辨率与测序质量的方法
CN105928910A (zh) * 2009-03-26 2016-09-07 波士顿大学董事会 在两液体间的薄固态界面上成像的方法
CN109929748A (zh) * 2019-03-08 2019-06-25 东南大学 基于针尖增强拉曼散射光谱技术实现dna测序的仪器平台

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932039B (zh) * 2006-09-21 2010-06-16 上海交通大学 外切酶-纳米孔的单分子核酸测序方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424174C (zh) * 2005-09-01 2008-10-08 上海交通大学 原子力显微镜诱导单分子dna定位突变方法
CN101221148B (zh) * 2008-01-24 2011-01-05 上海交通大学 基于纳米颗粒提高电泳分辨率与测序质量的方法
CN105928910A (zh) * 2009-03-26 2016-09-07 波士顿大学董事会 在两液体间的薄固态界面上成像的方法
CN109929748A (zh) * 2019-03-08 2019-06-25 东南大学 基于针尖增强拉曼散射光谱技术实现dna测序的仪器平台

Also Published As

Publication number Publication date
CN1266283C (zh) 2006-07-26

Similar Documents

Publication Publication Date Title
CN1125342C (zh) 用于生物反应的高度特异性的表面,制备它们的方法及其使用方法
JP3670019B2 (ja) 巨大分子を平行に整列させる装置およびその使用
CN1417574A (zh) 芯片上的微电子检测器
JP2010506583A (ja) 核酸の増幅及び検出装置
IL296318B1 (en) Application of barriers to controlled environments during sample processing and identification
CN1266283C (zh) Dna单分子有序化测序方法
Stine et al. Formation of primary amines on silicon nitride surfaces: a direct, plasma-based pathway to functionalization
US6849397B2 (en) Label-free detection of nucleic acids via surface plasmon resonance
Burkarter et al. Electrosprayed superhydrophobic PTFE: a non-contaminating surface
JP2004532400A (ja) プロテインチップ
US20080268493A1 (en) Identification Method Based On Surface-Enhanced Raman Scattering
Reed et al. A quantitative study of optical mapping surfaces by atomic force microscopy and restriction endonuclease digestion assays
CN104726559A (zh) 一种检测生物分子的方法
WO2009137713A2 (en) Particle-based electrostatic sensing and detection
An et al. Single-base resolution and long-coverage sequencing based on single-molecule nanomanipulation
CN1238370C (zh) 单个生物大分子的分离方法
US20170082612A1 (en) Sensor device for biosensing and other applications
WO1992015709A1 (en) Scanning probe microscopy immunoassay
AU2020204938A1 (en) Force based sequencing of biopolymers
CN1431316A (zh) 构建纳米图形和纳米结构的操纵方法
CN1303013A (zh) 压电基因诊断芯片
US20220026441A1 (en) Method of processing samples
CN1142290C (zh) 一种椭圆偏振术检测dna芯片杂交的方法及其装置
Behera Engineered Nanomaterials: Array-based Sensing of Biological and Chemical Analytes
Schlotter et al. Aptamer-functionalized interface nanopores enable amino acid-specific single-molecule proteomics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060726

Termination date: 20130214