CN1489672A - 在利用位移原理对液体加压或减压的设备和压力交换器中减少噪音和空蚀的方法 - Google Patents

在利用位移原理对液体加压或减压的设备和压力交换器中减少噪音和空蚀的方法 Download PDF

Info

Publication number
CN1489672A
CN1489672A CNA018109977A CN01810997A CN1489672A CN 1489672 A CN1489672 A CN 1489672A CN A018109977 A CNA018109977 A CN A018109977A CN 01810997 A CN01810997 A CN 01810997A CN 1489672 A CN1489672 A CN 1489672A
Authority
CN
China
Prior art keywords
pressure
passage
decompression
pressurization
displacement principle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA018109977A
Other languages
English (en)
Other versions
CN1489672B (zh
Inventor
R��A���ն���˹��
R·A·赫尔曼斯塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Recovery Inc
Original Assignee
Energy Recovery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Recovery Inc filed Critical Energy Recovery Inc
Publication of CN1489672A publication Critical patent/CN1489672A/zh
Application granted granted Critical
Publication of CN1489672B publication Critical patent/CN1489672B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F13/00Pressure exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2042Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/008Reduction of noise or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/047Preventing foaming, churning or cavitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Hydraulic Motors (AREA)
  • Rotary Pumps (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

一种在利用位移原理对流体加压或减压的设备和压力交换器中减少噪音和空蚀的方法,其中压力交换器的端盖中的至少一个设置有连接通道(14、17、18),在处于减压区(3)或加压区(4)内期间该连接通道实质上增加转子通道(15、16)中的流动介质的入口和出口。该方法包含不同的实施例,例如在通道(16)和相对的通道(15)之间设置有直接连接通道(14)。

Description

在利用位移原理对液体加压或减压的设备 和压力交换器中减少噪音和空蚀的方法
本发明涉及一种在利用位移原理工作的设备中减少噪音和空蚀的方法。当利用位移原理对一有限体积的液体极快加压时,将伴随产生噪音,或者当极快减压时,同样会产生噪音,但由于空蚀的原故噪音大大增强,空蚀还会损坏结构和缩短设备的寿命。
目前设备许多是已知的,其包括挪威专利Nos.161341、168548、306272中描述的液压泵、液压阀、液压致动器、液压马达和压力交换器,当其在过高的旋转频率或压力下使用时,其噪音水平便变得难以接受。实践中,因为在同一台设备内要同时完成两个过程的时间极其有限,故最后提到的那种设备特别容易受到这些工作条件的限制。
本发明的目的主要是提出一种对这些限制的敏感性大大减小的上述设备。
本发明方法的特别的特征呈现在权利要求书指出的技术特征中。
现在参看附图详细描述本发明。这些附图示意性地说明本发明如何在本发明的压力交换器中优选地实施。
图1示出了一压力交换器的端盖,其带有常规设计的高压口和低压口。
图2示出了转子旋转一周完成一个完整的工作过程中在不同位置处的经转子通道和端盖的横截面。
图3是假设流体为理想和不可压缩的且端盖上的孔口为对称的条件下,压力交换器工作过程中的转子通道压力和泄漏图。
图4是相同过程中用实际的可压缩或弹性流体工作时的压力和泄漏图。
图5示出了如何将本发明应用于压力交换器端盖上的一示例。
图6示出了本发明应用在压力交换器端盖上的另一实施例。
图1示一个具有高压口1和低压口2的对称端盖的全部主要元件。虽然图中孔口角域是一样的,但这并非必要并且在转子中与不同数目的通道结合可能是有利的。端盖上有两个密封区,其一为介于高压侧和低压侧之间的减压区3,另一为加压区4。根据转子通道按顺时针方向旋转的事实,所有转子通道都将从高压口1经过减压区3到低压口2,以便再经过加压区4又进入高压口1。此外,减压区3具有一入口边缘和一出口边缘6,相应地加压区4具有一入口边缘7和一出口边缘8。密封区3和4的角度延伸范围至少包含一个完整的转子通道及其径向壁元件。如果角度延伸范围较大,则密封区就具有一个附加区。减压区3具有的附加区用折线9表示,而加压区4具有的相应区用折线10表示。
图2a-d示出每个具有尾通道壁或后通道壁12和首通道壁或前通道壁13的转子通道11从高压口向低压口运动的循环。起始位置2a是当后通道壁12的前缘到达减区压3的入口边缘5的时刻,此时通道压力P2a相当于高压区中的压力HP。在此位置上,泄漏量最大,Q1经过前通道壁13受到最大流动阻力以及压差HP-LP(高压-低压)的作用。当转子通道的后壁12到达减压区3的位置上时,泄漏量减小,Q2受到愈益增大的流动阻力,直到转子通道到达位置2b上时为止,在该位置,两种泄漏受到相同的流动阻力,通道压力P2b相当于两个端口之间压差的一半。因为流动介质是理想的,并且在工作过程中流动介质既不蓄积,也不释放,故可假定两种泄漏量任何时候都相等。此种状态要一直保持到转子通道到达下个位置2C时为止,在该位置上,前通道壁13的前缘与出口边缘6重合。这时开始了另一状态,其导致转子通道内的压力逐渐减小,泄漏量逐渐增大以及对于泄漏流Q1的阻力逐渐下降,直到通道在位置2d处与低压口连通时为止。
图2e-h示每个转子通道从低压口向高压口运动的循环。起始位置2e是当转子通道后壁12的前缘和加压区的入口边缘7重合并且通道压力P2e相当于低压口中的压力的时刻。在此位置上,泄漏流Q3经过前通道壁13受到了大的流动阻力和压差HP-LP的作用。当转子通道的后壁12到达减压区的位置上时,泄漏流Q4受到愈益增加的流动阻力作用,直到通道到达位置2f时为止,在该位置处,两种泄漏流的流动阻力相等,而转子通道具有的压力P2f相当于两个端口之间压差的一半,即(HP-LP)/2。此种状态保持不变,直到转子通道到达下一个位置2g时为止,在该位置处,前通道壁13的前缘和出口边缘8重合。这标志着另一种状态的开始,其中转子通道内的压力逐渐增加,并且泄漏量Q4、Q3逐渐增加,直到通道在位置2h中与高压口连通为止。
图3为图2a-h所示一个转子通道完成整个工作过程中的理想压力图,其基于带有相反对称的通道的转子以及角度延伸范围相等的对称端口。该图表示两条相互间隔180°的通道,其中一条通道加压,而另一条则同时减压。该图还表示不同位置上不可压缩的理想流体介质的相对泄漏量大小。在此条件下,泄漏流Q在转子通道的端面和端盖的端面之间的间隙中建立起平衡,而且与Q=压差/流动阻力成比例。
此公式能用来对图示泄漏流进行量化分析。其清楚且明确地表明:当后通道壁12的后缘通过减压区3的入口边缘5时,转子通道中的压力逐渐降到高压口和低压口之间压差的一半。当转子通道的径向壁元件12和13完全位于减压区3内时,泄漏量Q1和Q2也逐渐减少到一半。相反的一转子通道从低压口运动到高压口,经历了和前面一转子通道相反的工作过程,压力逐渐增加到等于前面一转子通道压力的一半。泄漏量Q3和Q4在开始时最大,当后通道壁12的后缘通过加压区4的入口边缘7时逐渐减小到一半。当前通道壁13通过出口边缘8时,通道内压力增加到高压的全值,而泄漏量Q3和Q4要增加一倍。
图4示出了在使用实际弹性流体介质(即水)时压力交换器工作过程的压力图。其主要区别在于转子通道从高压侧输送流动介质,该流动介质受压缩并含有在通道与低压口连通前必须释放的额外体积,这要求泄漏量Q1和Q2不相等。由于被封闭且逐渐释放的额外体积,转子通道内的压力降极小,这产生一连续的高泄漏流量Q1和一迅速减小的泄漏流量Q2,此泄漏流Q2在压差逐渐增大的同时经过通道的后壁12重新填充转子通道。流动阻力增加很快,结果当转子的通道的壁元件12和13位于加压区4内的同时,Q2达到非常低的最小值,此后仅逐渐增加,直至其达到和理想情况下同样的最大值。该转子通道的前壁13经常受到高压差作用,并且当其前缘通过减压区的入口边缘6时,开始一个剧烈的工作过程,在此过程中,压力仅逐渐下降,而泄漏量Q1由于流动阻力大大减小而迅速增加。在该过程期间,存在大的危险,即空蚀和无法接受的噪音等级。在加压时,工作过程部分地相反并且有所不同。在此情况下,流动介质起初受到来自高压侧泄漏流Q3的作用,该泄漏流不会立即导致通道内的压力迅速增加,这是因为一部分体积由压缩所吸收,并且其压力曲线LP-HP如图中所示。这种情况还有一个结果便是泄漏量Q4虽未达到同样的量,但它一直大大低于Q3,直到转子通道差不多达到高压侧时为止,在此处相对较高的压差加上快速减小的流动阻力导致泄漏量Q4大量增加。此处还要补充一点:转子的旋转速度需要工作过程的效果的增加,因为当通道减压时,同向流动的泄漏流Q1和Q2接受较高的体积流,然而当转子通道加压时,反向流动的泄漏流Q3和Q4则减少了。这一点和实践经验符合:只有在减压区3中才可看到因空蚀而造成的破坏。
图5示出了一应用于压力交换器端盖上的本发明实施例。该提出的实施例基本上包含避免高泄漏量Q1和Q4的最大值的各种方法,因为Q1和Q4的高的最大值被认为是设备内存在较高压力和贯通流动时引起高噪音等级和空蚀破坏的原因。根据本发明,一种方法是在至少一个端盖上设置连接通道14。当两个具有壁元件12和13的通道在减压区3和加压区4内时,该通道14允许来自相对通道15和16的流体介质转移,其结果为使工作过程大致和理想压力图相当。在减压或加压时,即使每个通道都和连接通道1 4相通,也只有极短的时间存在同时连接,以允许压力平衡或均衡以及流体介质的转移。在通道16的后壁基本上已通过入口边缘5以及通道15的后壁紧接着通过入口边缘7之后,或者在两个通道同时处于与减压区3及加压区4密封接合的情况下,这种情况发生。此种通过连接通道14的同时连接在通道15的前壁到达高压口的位置之前或在通道16的前壁到达低压口的位置上之前便中断了。
亦可设想,通过为至少一个端盖设置独立且低流动阻力的连接通道17和18,将相应过程分开,即将减压和加压分别分开以实现本发明。每条通道17、18通向一高压口或一低压口,从而使在上述状态下流入或流出通道的流动大大增加。这可通过例如端盖中的设计成具有较短密封壁的长通道而实现,从而允许较高的泄漏量,但没有在低压口的出口间隙中产生空蚀的危险。此外,也可以用单独的或串联的管嘴实现通道和端口之间的连接。用此种方式将过程分开可以进一步降低噪音等级,这是因为这将可能产生一相移,从而减小图3和图4压力图中所示同时进行相反工作产生的谐振。本发明亦可结合不同数目的转子通道、不同尺寸的通道、同时处于减压或加压的更多通道以及具有不同角度延伸范围的不对称端口,以便优化本发明的效果。

Claims (5)

1.一种在利用位移原理对流体加压或减压的设备和压力交换器中减少噪音和空蚀的方法,其特征在于,压力交换器的端盖中的至少一个设置有连接通道(14、17、18),在处于减压区(3)或加压区(4)内期间该连接通道实质上增加转子通道(15、16)中的流动介质的入口和出口。
2.按照权利要求1所述的在利用位移原理对流体加压或减压的设备和压力交换器中减少噪音和空蚀的方法,其特征在于,至少一个端盖中的连接通道(14)布置成用于相对的通道(15、16)之间的直接连通,并且当所述通道同时在减压区(3)和加压区(4)内时该连接通道(14)提供压力平衡。
3.按照权利要求1所述的在利用位移原理对流体加压或减压的设备和压力交换器中减少噪音和空蚀的方法,其特征在于,至少一个端盖设置有分开的、流动阻力低的连接通道(17、18),该通道在所述阶段期间连接端口和转子通道(15、16)并分别允许加压和减压的相移。
4.按照权利要求1和3所述的在利用位移原理对流体加压或减压的设备和压力交换器中减少噪音和空蚀的方法,其特征在于,连接通道(17、18)非常长并具有一分别紧靠高压口和低压口的短密封表面,由此允许高的泄漏量。
5.按照权利要求1和3所述的在利用位移原理对流体加压或减压的设备和压力交换器中减少噪音和空蚀的方法,其特征在于,所述转子通道(15、16)在处于减压区(3)和加压区(4)内期间经流动阻力低的管嘴分别与该高压口及该低压口连接,由此提供压力平衡并且减少被认为是导致噪音和空蚀的原因的泄漏流(Q1和Q4),或者在第二实施例中设置有分开的、流动阻力低的连接通道(17、18),该通道在所述阶段期间连接端口和转子通道(15、16)并分别允许加压和减压的相移。
CN018109977A 2000-04-11 2001-04-11 在利用位移原理对液体加压或减压的设备和压力交换器中减少噪音和空蚀的方法 Expired - Lifetime CN1489672B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20001877A NO312563B1 (no) 2000-04-11 2000-04-11 Fremgangsmate for reduksjon av stoy og kavitasjon i en trykkveksler som oker eller reduserer trykket pa fluider ved fortrengningsprinsippet, og en sadan trykkveksler
NO20001877 2000-04-11
PCT/NO2001/000165 WO2001077529A2 (en) 2000-04-11 2001-04-11 Method for reducing noise and cavitation in machines and pressure exchangers which pressurize or depressurize fluids by means of the displacement principle

Publications (2)

Publication Number Publication Date
CN1489672A true CN1489672A (zh) 2004-04-14
CN1489672B CN1489672B (zh) 2012-11-07

Family

ID=19911011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN018109977A Expired - Lifetime CN1489672B (zh) 2000-04-11 2001-04-11 在利用位移原理对液体加压或减压的设备和压力交换器中减少噪音和空蚀的方法

Country Status (11)

Country Link
US (1) US6540487B2 (zh)
EP (1) EP1276991B1 (zh)
CN (1) CN1489672B (zh)
AT (1) ATE330121T1 (zh)
AU (2) AU9333901A (zh)
DE (1) DE60120679T2 (zh)
DK (1) DK1276991T3 (zh)
ES (1) ES2266244T3 (zh)
IL (1) IL152267A (zh)
NO (1) NO312563B1 (zh)
WO (1) WO2001077529A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102606548A (zh) * 2012-03-23 2012-07-25 大连理工大学 径流式射流气波增压器
CN104373396A (zh) * 2013-08-15 2015-02-25 丹佛斯公司 液压机,特别是液压压力交换器
CN104704274A (zh) * 2012-08-16 2015-06-10 芙罗服务管理公司 流体交换装置、压力交换器和相关方法
CN106103890A (zh) * 2013-10-03 2016-11-09 能量回收股份有限公司 带有液压能传递系统的frac系统
CN107795448A (zh) * 2016-08-29 2018-03-13 罗伯特·博世有限公司 液压静力轴向柱塞机

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007579A1 (en) * 2003-07-22 2005-01-27 Dct Double-Cone Technology Ag Integrated water decontamination plant and well pump arrangement
GB0319042D0 (en) * 2003-08-13 2003-09-17 Univ Surrey Osmotic energy
DE102004025289A1 (de) 2004-05-19 2005-12-08 Ksb Aktiengesellschaft Rotations-Druckaustauscher
DE102004038439A1 (de) * 2004-08-07 2006-03-16 Ksb Aktiengesellschaft Kanalform für rotierenden Druckaustauscher
DE102004038440A1 (de) * 2004-08-07 2006-03-16 Ksb Aktiengesellschaft Drehzahlregelbarer Druckaustauscher
CA2576580C (en) 2004-08-10 2013-02-12 Leif Hauge Pressure exchanger for transferring pressure energy from a high-pressure fluid stream to a low-pressure fluid stream
US20060243336A1 (en) * 2005-04-13 2006-11-02 Ingenieria Equipos Y Control Ltda Anti-cavitation system in pipelines which avoids that the fluid reaches its vapour pressure at the output of a given contraction using a device that connects the output section of the contraction with its downstream pressure
US20070104588A1 (en) * 2005-04-29 2007-05-10 Ksb Aktiengesellschaft Rotary pressure exchanger
US7201557B2 (en) * 2005-05-02 2007-04-10 Energy Recovery, Inc. Rotary pressure exchanger
KR101421461B1 (ko) 2006-05-12 2014-07-22 에너지 리커버리 인코포레이티드 하이브리드 알오/피알오 시스템
WO2008002819A2 (en) * 2006-06-29 2008-01-03 Energy Recovery, Inc. Rotary pressure transfer devices
AU2007272494B2 (en) 2006-07-14 2011-07-28 Wisconsin Alumni Research Foundation Adsorptive membranes for trapping viruses
EP2076678B1 (en) * 2006-10-04 2018-07-18 Energy Recovery, Inc. Rotary pressure transfer device
US8622714B2 (en) * 2006-11-14 2014-01-07 Flowserve Holdings, Inc. Pressure exchanger
US20080185045A1 (en) * 2007-02-05 2008-08-07 General Electric Company Energy recovery apparatus and method
MX2010003661A (es) * 2007-10-05 2010-05-21 Energy Recovery Inc Dispositivo giratorio de transferencia de presion con flujo mejorado.
DE102008038751B3 (de) * 2008-08-12 2010-04-15 Fresenius Medical Care Deutschland Gmbh Umkehrosmoseanlage mit einer Vorrichtung zur Geräuschminderung sowie Verfahren zur Geräuschminderung einer Umkehrosmoseanlage
DE102008044869A1 (de) * 2008-08-29 2010-03-04 Danfoss A/S Umkehrosmosevorrichtung
CN103537190B (zh) * 2009-05-15 2016-06-29 株式会社荏原制作所 海水淡化系统及能量交换腔室
US8323483B2 (en) * 2009-10-16 2012-12-04 Arne Fritdjof Myran Optimized work exchanger system
FR2952710A1 (fr) * 2009-11-19 2011-05-20 Air Liquide Appareil et procede de refroidissement et/ou d'epuration d'un gaz par lavage
DE102010009581A1 (de) 2010-02-26 2011-09-01 Danfoss A/S Umkehrosmosevorrichtung
CN101865191B (zh) * 2010-04-22 2013-04-24 浙江新时空水务有限公司 一种液体余压能量回收器
JP5571005B2 (ja) 2011-01-12 2014-08-13 株式会社クボタ 圧力交換装置及び圧力交換装置の性能調整方法
WO2013047487A1 (ja) 2011-09-30 2013-04-04 株式会社クボタ 圧力交換装置
WO2014172576A1 (en) * 2013-04-17 2014-10-23 Hauge Leif J Rotor positioning system in a pressure exchange vessel
US9739128B2 (en) 2013-12-31 2017-08-22 Energy Recovery, Inc. Rotary isobaric pressure exchanger system with flush system
US9759054B2 (en) 2014-07-30 2017-09-12 Energy Recovery, Inc. System and method for utilizing integrated pressure exchange manifold in hydraulic fracturing
US11047398B2 (en) * 2014-08-05 2021-06-29 Energy Recovery, Inc. Systems and methods for repairing fluid handling equipment
US9976573B2 (en) 2014-08-06 2018-05-22 Energy Recovery, Inc. System and method for improved duct pressure transfer in pressure exchange system
US20160160887A1 (en) * 2014-12-05 2016-06-09 Energy Recovery, Inc. Systems and Methods for Rotor Axial Force Balancing
US10465717B2 (en) * 2014-12-05 2019-11-05 Energy Recovery, Inc. Systems and methods for a common manifold with integrated hydraulic energy transfer systems
US20160160888A1 (en) * 2014-12-05 2016-06-09 Energy Recovery, Inc. Rotor duct spotface features
US10161421B2 (en) 2015-02-03 2018-12-25 Eli Oklejas, Jr. Method and system for injecting a process fluid using a high pressure drive fluid
US10871174B2 (en) 2015-10-23 2020-12-22 Aol Prime mover system and methods utilizing balanced flow within bi-directional power units
WO2017176268A1 (en) 2016-04-07 2017-10-12 Halliburton Energy Services, Inc. Pressure-exchanger to achieve rapid changes in proppant concentration
US10125594B2 (en) 2016-05-03 2018-11-13 Halliburton Energy Services, Inc. Pressure exchanger having crosslinked fluid plugs
WO2017193116A1 (en) * 2016-05-06 2017-11-09 Schlumberger Technology Corporation Pressure exchanger manifolding
US10527073B2 (en) * 2016-06-06 2020-01-07 Energy Recovery, Inc. Pressure exchanger as choke
US9810033B1 (en) * 2016-09-02 2017-11-07 Schlumberger Technology Corporation Subsea drilling systems and methods
US11174877B2 (en) 2017-02-09 2021-11-16 Natural Ocean Well Co. Submerged reverse osmosis system
US10156132B2 (en) 2017-02-10 2018-12-18 Vector Technologies Llc Method and system for injecting slurry using two tanks with valve timing overlap
US10156237B2 (en) 2017-02-10 2018-12-18 Vector Technologies Llc Method and system for injecting slurry using concentrated slurry pressurization
US10766009B2 (en) 2017-02-10 2020-09-08 Vector Technologies Llc Slurry injection system and method for operating the same
US10837465B2 (en) 2017-02-10 2020-11-17 Vector Technologies Llc Elongated tank for use in injecting slurry
US10156857B2 (en) 2017-02-10 2018-12-18 Vector Technologies Llc Method and system for injecting slurry using one slurry pressurizing tank
US10550857B2 (en) 2017-06-05 2020-02-04 Energy Recovery, Inc. Hydraulic energy transfer system with filtering system
US11034605B2 (en) 2018-03-29 2021-06-15 Katz Water Tech, Llc Apparatus system and method to extract minerals and metals from water
US10864482B2 (en) * 2017-08-24 2020-12-15 Katz Water Tech, Llc Apparatus system and method to separate brine from water
US11073169B2 (en) * 2018-06-26 2021-07-27 Energy Recovery, Inc. Power generation system with rotary liquid piston compressor for transcritical and supercritical compression of fluids
MX2021005199A (es) 2018-11-09 2021-07-15 Flowserve Man Co Dispositivos de intercambio de fluidos y controles, sistemas y metodos relacionados.
MX2021005200A (es) 2018-11-09 2021-07-15 Flowserve Man Co Pistones para uso en dispositivos de intercambio de fluidos y dispositivos, sistemas y metodos relacionados.
AU2019376162A1 (en) 2018-11-09 2021-05-27 Flowserve Pte. Ltd. Fluid exchange devices and related controls, systems, and methods
WO2020097553A1 (en) 2018-11-09 2020-05-14 Flowserve Management Company Fluid exchange devices and related systems, and methods
US11193608B2 (en) 2018-11-09 2021-12-07 Flowserve Management Company Valves including one or more flushing features and related assemblies, systems, and methods
MX2021005195A (es) 2018-11-09 2021-07-15 Flowserve Man Co Dispositivos de intercambio de fluidos y controles, sistemas y metodos relacionados.
WO2020106291A1 (en) * 2018-11-21 2020-05-28 Aoi (Advanced Oilfield Innovations, Dba A. O. International Ii, Inc.) Prime mover system and methods utilizing balanced fluid flow
US10933375B1 (en) 2019-08-30 2021-03-02 Fluid Equipment Development Company, Llc Fluid to fluid pressurizer and method of operating the same
AU2020401951A1 (en) 2019-12-12 2022-05-19 Flowserve Pte. Ltd. Fluid exchange devices and related controls, systems, and methods
US11397030B2 (en) * 2020-07-10 2022-07-26 Energy Recovery, Inc. Low energy consumption refrigeration system with a rotary pressure exchanger replacing the bulk flow compressor and the high pressure expansion valve
US11421918B2 (en) 2020-07-10 2022-08-23 Energy Recovery, Inc. Refrigeration system with high speed rotary pressure exchanger
CN114956263B (zh) * 2022-07-21 2022-10-25 威海海洋职业学院 一种船舶用海水淡化设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968435A (en) * 1951-06-25 1961-01-17 Jendrassik Developments Ltd Pressure exchangers
US3109580A (en) * 1961-01-20 1963-11-05 Power Jets Res & Dev Ltd Pressure exchangers
GB936427A (en) * 1961-05-02 1963-09-11 Power Jets Res & Dev Ltd Improvements in or relating to pressure exchangers
GB993288A (en) * 1962-11-15 1965-05-26 Dudley Brian Spalding Improvements in and relating to pressure exchangers
GB1098982A (en) * 1964-06-12 1968-01-10 Dowty Technical Dev Ltd Hydraulic reciprocating pumps or motors
GB1193743A (en) * 1968-02-16 1970-06-03 Rolls Royce Improvements relating to Rotary Pressure Exchangers
DE2333380C2 (de) * 1973-06-30 1982-04-08 Eckhard 7120 Bietigheim Aschke Hydraulische Maschine
EP0298097B1 (en) * 1987-01-05 1992-08-12 HAUGE, Leif J. Pressure exchanger for liquids
NO168548C (no) * 1989-11-03 1992-03-04 Leif J Hauge Trykkveksler.
NO180599C (no) * 1994-11-28 1997-05-14 Leif J Hauge Trykkveksler

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102606548A (zh) * 2012-03-23 2012-07-25 大连理工大学 径流式射流气波增压器
CN102606548B (zh) * 2012-03-23 2014-07-23 大连理工大学 径流式射流气波增压器
CN104704274A (zh) * 2012-08-16 2015-06-10 芙罗服务管理公司 流体交换装置、压力交换器和相关方法
CN104704274B (zh) * 2012-08-16 2017-11-07 芙罗服务管理公司 流体交换装置、压力交换器和相关方法
CN104373396A (zh) * 2013-08-15 2015-02-25 丹佛斯公司 液压机,特别是液压压力交换器
US9556736B2 (en) 2013-08-15 2017-01-31 Danfoss A/S Hydraulic machine, in particular hydraulic pressure exchanger
CN106103890A (zh) * 2013-10-03 2016-11-09 能量回收股份有限公司 带有液压能传递系统的frac系统
CN107795448A (zh) * 2016-08-29 2018-03-13 罗伯特·博世有限公司 液压静力轴向柱塞机

Also Published As

Publication number Publication date
EP1276991B1 (en) 2006-06-14
EP1276991A2 (en) 2003-01-22
NO312563B1 (no) 2002-05-27
AU9333901A (en) 2001-10-23
US20020025264A1 (en) 2002-02-28
NO20001877L (no) 2001-02-01
DK1276991T3 (da) 2006-10-02
CN1489672B (zh) 2012-11-07
NO20001877D0 (no) 2000-04-11
ATE330121T1 (de) 2006-07-15
ES2266244T3 (es) 2007-03-01
IL152267A (en) 2005-12-18
US6540487B2 (en) 2003-04-01
WO2001077529A3 (en) 2002-08-08
DE60120679T2 (de) 2007-06-14
WO2001077529A2 (en) 2001-10-18
IL152267A0 (en) 2003-05-29
DE60120679D1 (de) 2006-07-27
AU2001293339B2 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
CN1489672B (zh) 在利用位移原理对液体加压或减压的设备和压力交换器中减少噪音和空蚀的方法
US6776080B2 (en) Hydraulic pressure intensifier
AU2001293339A1 (en) Method for reducing noise and cavitation in machines and pressure exchangers which pressurize or depressurize fluids by means of the displacement principle
DE3441054C2 (zh)
US9945210B2 (en) Pressure exchanger system with integral pressure balancing system
DE19706114C2 (de) Vorrichtung zur Pulsationsverminderung an einer hydrostatischen Verdrängereinheit
US20200149380A1 (en) Fluid exchange devices and related controls, systems, and methods
US6116871A (en) Device to reduce pulsations on a hydrostatic positive displacement unit
EP0580196A1 (en) Pump comprising a partially hollow piston
WO1999050524A3 (en) Subsea mud pump
JPS59197603A (ja) ハイドロスタテイツクな駆動系
US20130192806A1 (en) Multilayer heat exchanger and heat exchange system
CN117328835A (zh) 用于在至少两个流体流之间交换压力的设备及其操作方法
US4606709A (en) Liquid pump with sequential operating fluid pistons
EP0830532A1 (en) A hydraulic directional-control valve
GB2584202A (en) Device for supplying ports to a machine section of a hydraulic machine arrangement
CN108571491A (zh) 一种液压缸加压试验测试装置
TW200801335A (en) Fluid pressure drive device
US20190219051A1 (en) Suction manifold for hydraulic fracturing pump
EP1262707B1 (en) Quick coupler
NO20160240A1 (en) Pump
CN108730145B (zh) 一种液压泥浆泵
CN106337852B (zh) 二通插装式激振阀
RU2154749C2 (ru) Способ сжатия и перекачки газа или газожидкостных смесей насосом и устройство для его осуществления
DE10206957B4 (de) Hydrostatische Verdrängereinheit mit einer Vorrichtung umfassend ein Speicherelement zur Verminderung von Pulsationen

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20121107

CX01 Expiry of patent term