CN1487313A - 光学部件安装方法和光学模块 - Google Patents

光学部件安装方法和光学模块 Download PDF

Info

Publication number
CN1487313A
CN1487313A CNA031550797A CN03155079A CN1487313A CN 1487313 A CN1487313 A CN 1487313A CN A031550797 A CNA031550797 A CN A031550797A CN 03155079 A CN03155079 A CN 03155079A CN 1487313 A CN1487313 A CN 1487313A
Authority
CN
China
Prior art keywords
groove
optics
overhang
overhangs
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA031550797A
Other languages
English (en)
Other versions
CN1278153C (zh
Inventor
前野仁典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Publication of CN1487313A publication Critical patent/CN1487313A/zh
Application granted granted Critical
Publication of CN1278153C publication Critical patent/CN1278153C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3684Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier
    • G02B6/3692Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier with surface micromachining involving etching, e.g. wet or dry etching steps
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment

Abstract

当具有在一光学基板表面上形成有一行多个光通量转换器的光学部件被安装在具有至少一个槽的支撑基板上时,该光学部件的至少两部分侧面与该槽接触,以实现定位,并且将粘合剂填充在光学部件平面上与槽相对并且不与该槽相接触的部位的至少一部分与该支撑基板之间,以使该光学部件与该支撑基板彼此粘接在一起。

Description

光学部件安装方法和光学模块
发明背景
发明领域
本发明涉及一种安装光学部件的方法,该光学部件优选用作光通信设备或计算机的装置;以及一种使用该光学部件的光学模块。
使用衍射光学元件的微透镜或微光学元件,被用作光通信或诸如CD播放机的光盘播放装置的光学部件。这种微透镜具有例如圆柱形状或拱背形状。制造这类光学部件,以便通过光刻过程并经受蚀刻处理在例如硅基板上形成所需形状的透镜等。微透镜或微光学元件的尺寸为大约100μm2到数百μm2
通常,该光学部件被用在一支撑基板,例如硅基板等上。在此支撑基板中,形成一具有V-形截面并通过蚀刻或切削形成的V-形槽;一用于设置半导体激光器的平台;一比该V-形槽大、用于设置光学部件的凹槽;等等。高精度地形成这些V-形槽,平台,凹槽等,预先以高精度形成将要安放的光学部件的轮廓,并且以亚微米级精度将这些光学部件设置在该V-形槽等之中,从而可以高精度安装此光学部件。通过使用被称作连接器的部件安装装置设置这些光学部件。
当使用由硅基板构成的光学部件制造光学模块时,通常采用将该光学部件设置在硅支撑基板中形成的V-形槽中,并将该光学部件固定的方法。作为固定方法,通常采用使用粘合剂、焊料等的方法。
不过在该安装方法中,要进行定位以使光学部件与V-形槽接触,将与V-形槽部分接触的光学部件粘合并固定到该V-形槽上。为此,光学部件的固定位置随粘合剂厚度而变,故不能高精度地实现定位,并且安装精度下降。此外,在该传统安装方法中,光学部件需要在大量部位具有较高精度。当不满足该条件时,该光学部件被确定为不合格的光学部件。该条件阻碍了生产率的提高。
发明内容
考虑到上述问题作出本发明,并且本发明的目的在于提供一种安装光学部件的方法,可实现高精度安装和高生产率;以及一种高精度安装的光学模块。
为了解决上述问题,根据本发明的第一方面,提供一种光学部件用的安装方法,其中将在一光学基板表面上形成有一行多个光通量转换器的光学部件安装在具有至少一个槽的支撑基板上。在这种安装方法中,使该光学部件的至少两部分侧面与该槽接触,以实现定位,并且粘合剂被填充在该光学部件平面上与槽相对且不与该槽接触的部位的至少一部分与支撑基板之间,以使该光学部件与支撑基板彼此粘结在一起。
根据本发明的第二方面,提供一种光学模块。该光学模块包括:在一光学基板表面上形成有一行多个光通量转换器的光学部件;和一具有至少一个用于安装光学部件的槽的支撑基板,其中该光学部件的至少两部分侧面与该槽接触,用于进行定位,并且粘合剂被填充在该光学部件平面上与槽相对并且不与该槽接触的部位的至少一部分与支撑基板之间,以使该光学部件与支撑基板彼此粘结在一起。
在上面的描述中,光通量转换器是一种具有转换光通量功能的元件。例如,光通量转换器对光通量进行会聚、发散、反射、偏转等。该光通量转换器包括一通过设置条件将入射光通量转换成平行光线的元件。举例来说,由透镜和衍射光学元件构成的元件之类,作为光通量转换器的一个具体例子。
作为光学部件中使用的光学基板,例如,可使用硅晶体基板。可以使用以GaAs,InP,GaP,SiC,Ge等为材料的其他晶体基板。此外,也可使用硅晶体基板作为支撑基板。
附图简要说明
图1为表示根据本发明一实施例的透镜阵列结构的透视图。
图2A和2B表示根据本发明第一实施例的光学模块的结构,其中图2A为沿图2B中位置A-A’的剖面图,图2B为一光学模块的俯视图。
图3为用于解释根据本发明第一实施例的光学模块结构的透视图。
图4A和4B表示根据本发明第二实施例的光学模块的结构,其中图4A为沿图4B中位置B-B’的剖面图,图4B为一光学模块的俯视图。
图5为用于解释根据本发明第二实施例的光学模块结构的透视图。
图6A和6B表示根据本发明第三实施例的光学模块的结构,其中图6A为沿图6B中位置C-C’的剖面图,图6B为一光学模块的俯视图。
图7为用于解释根据本发明第三实施例的光学模块结构的透视图。
图8A和8B表示根据本发明第四实施例的光学模块的结构,其中图8A为沿图8B中位置D-D’的剖面图,图8B为一光学模块的俯视图。
图9为用于解释根据本发明第四实施例的光学模块结构的透视图。
图10A和10B表示根据本发明第五实施例的光学模块的结构,其中图10A为沿图10B中位置E-E’的剖面图,图10B为一光学模块的俯视图。
图11为用于解释根据本发明第五实施例的光学模块结构的透视图。
图12为根据本发明第一变型例的光学模块的俯视图。
图13为根据本发明第二变型例的光学模块的俯视图。
图14为表示使用传统方法安装一透镜阵列的状态的透视图。
最佳实施例详细说明
下面将参照附图说明本发明的实施例。下面的描述和附图中,相同附图标记表示具有基本上相同功能和结构的构成元件,并将省略重复的说明。
图1为表示根据本发明第一实施例的光学模块中用作光学部件的透镜阵列结构的透视图。图2A和2B以及图3为表示根据本发明第一实施例的光学模块结构的剖面图、俯视图和透视图。
下面将参照图1说明透镜阵列1的结构。透镜阵列1由光学基板构成。该透镜阵列1主要具有:在该光学基板表面上形成的一行五个透镜部分2a,2b,2c,2d和2e;五个边缘部分3a,3b,3c,3d和3e;一杆形手柄/支撑4;和五个近似拱背形悬伸部分6a,6b,6c,6d和6e。
在图1中,将附图标记2a,2b,2c,2d和2e顺序赋予从最左侧到右侧的透镜部分。与透镜部分相同,附图标记3a,3b,3c,3d和3e以及附图标记6a,6b,6c,6d和6e顺序赋予图1中从最左侧到右侧的边缘部分和悬伸部分。
在这种情形中,五个透镜部分2a,2b,2c,2d和2e具有相同结构。根据这一情况,将透镜部分2a,2b,2c,2d和2e通称为透镜部分2。对于边缘部分和悬伸部分,根据这一情况,将悬伸部分6a,6b,6c,6d和6e通称为悬伸部分6,将边缘部分3a,3b,3c,3d和3e通称为边缘部分3。
透镜部分2起光通量转换器的作用。此处透镜部分2为圆形,并由衍射光学元件构成。透镜部分2为8相二元衍射光学元件,其通过重复光刻与蚀刻三次而制成。在这种情形中,假设透镜部分2的光轴垂直于透镜部分2的表面。在该透镜阵列中,其上形成有透镜部分的表面称为透镜部分形成表面。
在透镜部分2的下面,局部地设置作为透镜部分2外缘的边缘部分3,并且边缘部分3各自具有沿透镜部分2外缘的弧形。边缘部分3的弧形轮廓从透镜部分形成表面一侧延伸到与透镜部分形成表面一侧相对的表面一侧,并且分别形成包括边缘部分3的从手柄/支撑4向下延伸的拱背形悬伸部分6。例如,边缘部分3a部分地位于透镜部分2a的外缘上,并且悬伸部分6a被形成为包括边缘部分3a的弧形轮廓。与透镜部分2a相同,在透镜部分2b,2c,2d和2e的外缘上形成边缘部分和悬伸部分。如图1所示,分别由3a,3b,3c,3d,3e和6a,6b,6c,6d,6e表示与透镜部分2a,2b,2c,2d,2e相应的边缘部分和悬伸部分。
悬伸部分6为安装透镜阵列1时用于定位和粘结固定的部分。弧形悬伸部分6的外径尺寸最好等于与该透镜阵列1光耦合的光纤的外径尺寸。在这种情形中,例如该尺寸设定为φ125μm。
如图1所示,手柄/支撑4在透镜部分2外缘的上侧与透镜部分2相连,沿透镜部分2的阵列方向,在与透镜部分2的表面基本平行的平面上在透镜部分2上延伸,并与透镜部分2整体相连。使手柄/支撑4的上表面和侧面平坦。从而,支持装置易于通过手柄/支撑4从上面或侧面支持透镜阵列1。支持装置为例如密闭支持装置或负压支持装置,诸如通过吸力支持透镜阵列1的负压吸盘。
通过下列方法制造透镜阵列1。也就是,通过光刻将涂敷在硅基板上的抗蚀剂图案化成具有预定形状,使用该抗蚀剂作为蚀刻掩模进行干蚀刻,且此抗蚀剂形状被转印到硅基板上。作为此处使用的干蚀刻方法,可采用RIE方法(活性离子蚀刻方法),ICP-Bosch方法等。例如,作为待图案化的硅基板,可使用SOI(绝缘体上硅)基板。通过ICP-Bosch方法蚀刻该基板直到该基板的氧化硅层,并使用氢氟酸溶液从硅基板上去除氧化硅层,可以制造出透镜阵列1。透镜阵列1的厚度为100μm。
下面将参照图2A和2B以及图3描述根据第一实施例的光学模块100的结构和安装方法。图2A为光学模块100的剖面图,并且光学模块100的截面位置在图2B中表示为A-A’。截面位置A-A’与设置透镜阵列1透镜部分形成表面的位置基本相同。图2B为光学模块100的俯视图。图3为用于说明光学模块100结构的透视图。
光学模块100具有一支撑基板102,设置在该支撑基板102上的一透镜阵列1,五个激光二极管13a,13b,13c,13d和13e和五根光纤15a,15b,15c,15d和15e。在图2B中,附图标记13a,13b,13c,13d和13e顺序赋予从最左侧到右侧的激光二极管。同样,附图标记15a,15b,15c,15d和15e顺序赋予从最左侧到右侧的光纤。根据这一情况,将五个激光二极管13a,13b,13c,13d和13e通称为激光二极管13,并将五根光纤15a,15b,15c,15d和15e通称为光纤15。将光纤15的外径尺寸设定为φ125μm。
在图2B中,将透镜部分2的阵列方向定义为x方向,并将纸面内与x方向垂直的方向定义为y方向。平行于x方向设置五个激光二极管13和五根光纤15。顺序设置一个激光二极管、一个透镜部分和一根光纤,使它们具有相同的处于y方向的光轴,从而构成一个组合。例如,将激光二极管13a、透镜部分2a和光纤15a设置成具有相同光轴,从而构成一个组合。平行于x方向设置五个该配置的组合。
由例如硅晶体基板构成支撑基板102。支撑基板102具有五个拥有V-形截面的V-形槽104a,104b,104c,104d和104e,和一具有近似梯形截面的凹槽106。使用光刻和蚀刻技术精确形成这些V-形槽104a,104b,104c,104d和104e以及凹槽106。形成V-形槽,使相邻V-形槽之间的间距等于透镜阵列1中相邻透镜部分之间的间距。三个V-形槽104b、104c和104d与凹槽106连通。在图2B中,顺序将附图标记104a,104b,104c,104d和104e赋予从最左侧到右侧的V-形槽。根据这一情况,将这五个V-形槽104a,104b,104c,104d和104e通称为V-形槽104。在图2B中,用阴影区域表示V-形槽104和凹槽106。在图3中,为了清晰地表示出槽,表示出安装透镜阵列1之前的状态,并且在图中省略了激光二极管。
五个V-形槽104为沿y方向延伸的槽,其形成在支撑基板102的上表面上,并彼此平行且沿x方向排列。所有五个V-形槽104均从支撑基板102的一端开始形成。不过,沿y方向V-形槽104的长度并不总是彼此相等。沿y方向V-形槽104b,104c和104d的长度小于沿y方向V-形槽104a和104e的长度,并且沿y方向V-形槽104b、104c和104d的端部与凹槽106相连。凹槽106为纵向设定为x方向的槽。将凹槽106沿y方向的端部位置设计为基本上等于V-形槽104a和104e沿y方向的端部位置。
V-形槽104为用于安装光纤的槽,而凹槽106为用于安装光学部件的槽。各V-形槽104具有这样一种尺寸,即可以安装透镜阵列1的悬伸部分6之一或光纤15之一。如图2A所示,该凹槽106被设计成可将透镜阵列1的三个悬伸部分6未与凹槽106接触地容纳在凹槽106中。
如下所述将透镜阵列1安装在支撑基板102上。透镜阵列1两端处的悬伸部分6a和6e被设置在支撑基板102的V-形槽104a和104e中,而透镜阵列1的悬伸部分6b、6c和6d被设置在支撑基板102的凹槽106中。此时,如图2A中所示,使悬伸部分6a和6e的侧面与V-形槽104a和104e的侧壁部分接触,从而透镜阵列1与支撑基板102在四个部位彼此线接触。因此,可实现沿垂直于光轴方向的定位。由悬伸部分6a和6e的加工精度决定透镜阵列的安装位置精度。在使用ICP-Bosch方法中,加工精度为大约±0.5μm。
此时,悬伸部分6b、6c和6d被容纳在凹槽106中。这三个悬伸部分的侧面不与支撑基板102接触。在悬伸部分6b、6c和6d的下部与凹槽106的底面之间形成间隙。粘合剂108被填充在该间隙中。为此,将透镜阵列1粘结并固定到支撑基板102上。作为粘合剂108,例如,可使用基于树脂的热固粘合剂或基于树脂的UV固化粘合剂。
在支撑基板102上,分别将激光二极管13a,13b,13c,13d和13e设置成与透镜阵列1相对,并与透镜部分2a,2b,2c,2d和2e的光轴共用。如图2B所示,分别将五根光纤15a,15b,15c,15d和15e设置在五个V-形槽104a,104b,104c,104d和104e中。按照这种方式,如图2B所示,形成具有五个组合的光学模块100,其中每个组合通过将一个激光二极管、一个透镜部分和一根光纤彼此光耦合在一起获得。
下面将描述具有上述结构的光学模块100的操作。激光二极管13发出的光入射在透镜阵列1上,经受通过光耦合获得的该组合的透镜部分2的会聚作用,会聚在通过光耦合获得的该组合的光纤15的端面上,并被传输。例如,激光二极管13a发出的光入射在透镜阵列1上,经过透镜部分2a的会聚操作,被会聚在光纤15a的端面上,并被传输。
如上所述,根据本实施例,透镜阵列1的实际定位是利用透镜阵列1两端的两个悬伸部分6a和6e。从而,当两个悬伸部分6a和6e的制造精度处于预定范围之内时,可以将透镜阵列1设置在适当位置处。即使三个悬伸部分6b,6c和6d的制造精度处于该预定范围之外,该制造精度也不会使产品不合格。在传统安装方法中,要求全部五个悬伸部分的制造精度均处于该预定范围内。然而在本实施例中,仅两个悬伸部分的制造精度令人满意地处于预定范围内,这有助于提高生产率。
利用悬伸部分6b,6c和6d将透镜阵列1和支撑基板102彼此粘接。按照这种方式,该透镜阵列1的粘接部分被设计成与透镜阵列1的定位部分不同。为此,可以精确确定必须安装透镜阵列1的位置,与粘合剂的涂覆状态无关,从而能提高安装精度。
下面将参照图4和5描述根据第二实施例的光学模块200的结构和光学部件的安装方法。光学模块200具有这样一种结构,其中用支撑基板202和透镜阵列21替代第一实施例中的支撑基板102和透镜阵列1。将考虑到这一点进行说明。与第一实施例相同的附图标记在第二实施例中表示相同部分,并将省略其描述。
图4A为光学模块200的剖面图。光学模块200的截面位置在图4B中表示为B-B’。截面位置B-B’与设置透镜阵列21透镜部分形成表面的位置几乎相同。图4B为光学模块200的俯视图。图5为用于解释光学模块200结构的透视图。将透镜部分的阵列方向定义为x方向,并将纸面中垂直于x方向的方向定义为y方向。
在透镜阵列21中,形成由闪耀型衍射光学元件构成的透镜部分22a,22b,22c,22d和22e,分别代替透镜阵列1的透镜部分2a,2b,2c,2d和2e。除此以外,透镜阵列21的结构与图1中所示的透镜阵列1相同。透镜阵列21具有边缘部分、悬伸部分和杆形手柄/支撑4。在这种情形中,分别用26a,26b,26c,26d和26e表示与透镜阵列21中的透镜部分22a,22b,22c,22d和22e相应的悬伸部分。根据这种情况,透镜部分22a,22b,22c,22d和22e通称为透镜部分22,而且悬伸部分26a,26b,26c,26d和26e通称为悬伸部分26。分别用与制造透镜阵列1和透镜部分2时所用方法相同的方法制造透镜阵列21和透镜部分22。
支撑基板202在槽结构方面与支撑基板102不同。支撑基板202具有五个均具有V-形截面的V-形槽204a,204b,204c,204d和204e,和一具有近似梯形截面的凹槽206。使用光刻和蚀刻技术精确形成这些V-形槽204a,204b,204c,204d和204e以及该凹槽206。在图4中,附图标记204a,204b,204c,204d和204e赋予从最左侧到右侧的V-形槽。根据这种情况,这五个V-形槽通称为V-形槽204。这五个V-形槽204与凹槽206彼此连通。在图4B中,用阴影区域表示V-形槽204和凹槽206。在图5中,为了清楚表示出槽,表示出安装透镜阵列21之前的状态,并在该图中省略激光二极管。
这五个V-形槽204为沿y方向延伸的槽,形成在支撑基板202的上表面上,并沿x方向彼此平行排列。全部五个V-形槽204均从支撑基板202的一端开始形成,并且沿y方向五个V-形槽204的端部与凹槽206相连。形成V-形槽,使相邻V-形槽之间的间距等于透镜阵列21中相邻透镜部分之间的间距。凹槽206为其纵向设定为x方向的槽。V-形槽204为用于安装光纤的槽,而凹槽206为用于安装光学部件的槽。
相应V-形槽204具有可安装光纤15之一的尺寸。如图4A所示,凹槽206被设计成使透镜阵列21的五个悬伸部分26可以容纳在凹槽206中,两端的悬伸部分26a和26e与凹槽206的侧壁接触,而且悬伸部分26b、26c和26d不与凹槽206的内壁接触。
如下所述将透镜阵列21安装在支撑基板202上。将透镜阵列21的五个悬伸部分26设置在支撑基板202的凹槽206中。此时,如图4A所示,悬伸部分26a和26e的侧面与凹槽206的侧壁部分接触,而且透镜阵列21和支撑基板202在总共两个部位处彼此线接触。按照这种方式,实现沿垂直于光轴方向的定位。由悬伸部分26a和26e的精度决定透镜阵列的定位精度。在使用ICP-Bosch方法的加工过程中,加工精度为大约±0.5μm。
此时,悬伸部分26b、26c和26d被容纳在凹槽206中。这三个悬伸部分的侧面不与支撑基板202接触。在悬伸部分26b、26c和26d下部与凹槽206底面之间形成间隙。粘合剂108被填充在该间隙中。由此,透镜阵列21被粘接并固定到支撑基板202上。
在支撑基板202上,与透镜阵列21相对设置激光二极管13a、13b、13c、13d和13e,并分别与透镜部分22a、22b、22c、22d和22e的光轴共用。如图4B所示,将五根光纤15a,15b,15c,15d和15e分别设置在五个V-形槽204a,204b,204c,204d和204e中。通过上述结构,如图4B所示,形成具有五个组合的光学模块200,其中每个组合通过将一个激光二极管、一个透镜部分和一根光纤彼此光耦合在一起获得。
下面将说明具有上述结构的光学模块200的操作。激光二极管13发出的光入射在透镜阵列21上,经受通过光耦合获得的该组合的透镜部分22的会聚作用,会聚在由光耦合形成的该组合的光纤15的端面上,并被传输。
如上所述,根据本实施例,透镜阵列21的实际定位是利用透镜阵列21两端的两个悬伸部分26a和26e。从而,当这两个悬伸部分26a和26e的制造精度处于一预定范围之内时,该透镜阵列21可以设置在适当位置处。即使三个悬伸部分26b,26c和26d的制造精度在该预定范围之外,该制造精度也不会使产品不合格。在传统安装方法中,要求全部五个悬伸部分的制造精度均处于该预定范围内。然而在本实施例中,仅两个悬伸部分的制造精度令人满意地处于预定范围之内,这有助于提高生产率。
利用悬伸部分26b、26c和26d,透镜阵列21与支撑基板202彼此粘接在一起。按照这种方式,该透镜阵列21的粘接部分被设计成不同于透镜阵列1的定位部分。由此,可以精确确定透镜阵列21必须安装的位置,与粘合剂的涂覆状态无关,并且可提高安装精度。
下面将参照图6和7说明根据第三实施例的光学模块300的结构和光学部件的安装方法。该光学模块300具有这样一种结构,其中用支撑基板302取代第一实施例中的支撑基板102。将考虑到这一点进行解释。与第一实施例相同的附图标记在第三实施例中表示相同部分,并将省略其描述。
图6A为光学模块300的剖面图。光学模块300的截面位置在图6B中表示为C-C’。该截面位置C-C’与设置透镜阵列1透镜部分形成表面的位置基本相同。图6B为光学模块300的俯视图。图7为用于说明光学模块300结构的透视图。透镜部分的阵列方向定义为x方向,纸面中与x方向垂直的方向定义为y方向。
支撑基板302在槽的结构方面与支撑基板102不同。支撑基板302具有五个拥有V-形截面的V-形槽304a,304b,304c,304d和304e;和一具有近似梯形截面的凹槽306。使用光刻和蚀刻技术精确形成这些V-形槽304a,304b,304c,304d和304e以及该凹槽306。在图6中,附图标记304a,304b,304c,304d和304e赋予从最左侧到右侧的V-形槽。根据这种情况,这五个V-形槽通称为V-形槽304。四个V-形槽304b,304c,304d和304e与凹槽306彼此连通。在图6B中,用阴影区域表示V-形槽304和凹槽306。在图7中,为了清楚地表示槽,表示出安装透镜阵列1之前的状态,并且在该图中省略激光二极管。
这五个V-形槽304为沿y方向延伸的槽,形成在支撑基板302的上表面上,并沿x方向彼此平行排列。虽然所有五个V-形槽304从支撑基板302的一端形成,不过沿y方向V-形槽304的长度不一定总相等。V-形槽304b,304c,304d和304e沿y方向的长度小于V-形槽304a沿y方向的长度,并且沿y方向V-形槽304b,304c,304d和304e的端部与凹槽306相连。凹槽306是其纵向设定为x方向的槽。凹槽306沿y方向的端部位置被设计成基本等于V-形槽304a沿y方向的端部位置。
V-形槽304为用于安装光纤的槽,而凹槽306为用于安装光学部件的槽。各V-形槽304具有可安装透镜阵列1其中一个悬伸部分6或其中光纤15之一的尺寸。如图6A所示,该凹槽306被设计成使透镜阵列1的四个悬伸部分6可以容纳在凹槽306中。当这四个悬伸部分6其中之一与凹槽306的侧壁接触时,其他三个悬伸部分6不与凹槽306的内壁接触。
如下所述将透镜阵列1安装在支撑基板302上。将透镜阵列1的悬伸部分6a设置在支撑基板302的V-形槽304a中,并将透镜阵列1的悬伸部分6b,6c,6d和6e设置在支撑基板302的凹槽306中。此时,如图6A所示,悬伸部分6a和6e的侧面分别与V-形槽304a和凹槽306的侧壁部分接触,而且透镜阵列1与支撑基板302在总共三个部位处彼此线接触。按照这种方式,实现沿垂直于光轴方向的定位。由悬伸部分6a和6e的精度决定透镜阵列的定位精度。在使用ICP-Bosch方法的加工过程中,加工精度为大约±0.5μm。
此时,悬伸部分6b、6c和6d被容纳在凹槽306中。这三个悬伸部分的侧面不与支撑基板302接触。在悬伸部分6b、6c和6d的下部与凹槽306的底面之间形成间隙。粘合剂108被填充在该间隙中。由此,透镜阵列1被粘接并固定到支撑基板302上。
在支撑基板302上,与透镜阵列1相对设置激光二极管13a,13b,13c,13d和13e,并分别与透镜部分2a,2b,2c,2d和2e的光轴相同。如图6B所示,五根光纤15a,15b,15c,15d和15e分别设置在五个V-形槽304a,304b,304c,304d和304e中。通过上述结构,如图6B所示,形成具有五个组合的光学模块300,通过将一个激光二极管、一个透镜部分和一根光纤光耦合在一起获得每个组合。
下面将说明具有上述结构的光学模块300的操作。激光二极管13发出的光入射在透镜阵列1上,经受通过光耦合获得的该组合的透镜部分2的会聚作用,会聚在通过光耦合获得的组合的光纤15的端面上,并被传输。
如上所述,根据本实施例,透镜阵列1的实际定位是利用透镜阵列1两端的两个悬伸部分6a和6e。从而,当这两个悬伸部分6a和6e的制造精度处于一预定范围之内时,透镜阵列1可以设置在适当位置处。即使三个悬伸部分6b、6c和6d的制造精度在该预定范围之外,该制造精度也不会使产品不合格。在传统安装方法中,要求全部五个悬伸部分的制造精度均处于该预定范围内。然而在本实施例中,仅两个悬伸部分的制造精度令人满意地处于预定范围之内,这有助于提高生产率。
通过使用悬伸部分6b、6c和6d,透镜阵列1与支撑基板302彼此粘接在一起。按照这种方式,该透镜阵列1的粘接部分被设计成不同于透镜阵列1的定位部分。由此,可以精确确定透镜阵列1必须安装的位置,与粘合剂的涂覆状态无关,并且可提高安装精度。此外,将本实施例与第二实施例进行比较。结果,由于与第二实施例相比,本实施例中线接触部位数量较大,故可以防止透镜阵列1和支撑基板302固定不牢固,并且可以更高精度进行安装。
下面将参照图8和9说明根据第四实施例的光学模块400的结构和光学部件的安装方法。光学模块400具有这样一种结构,其中用支撑基板402取代第一实施例中的支撑基板102。将考虑到这一点进行解释。与第一实施例相同的附图标记在第四实施例中表示相同部分,并将省略其描述。
图8A为光学模块400的剖面图。光学模块400的截面位置在图8B中表示为D-D’。该截面位置D-D’与设置透镜阵列1透镜部分形成表面的位置基本相同。图8B为光学模块400的俯视图。图9为用于说明光学模块400结构的透视图。透镜部分的阵列方向定义为x方向,且纸面中与x方向垂直的方向定义为y方向。
支撑基板402在槽的结构方面与支撑基板102不同。支撑基板402具有五个拥有V-形截面的V-形槽404a,404b,404c,404d和404e;和两个具有近似梯形截面的凹槽406a和406b。通过使用光刻和蚀刻技术精确形成这些V-形槽404a,404b,404c,404d和404e以及凹槽406a和406b。在图8中,附图标记404a,404b,404c,404d和404e赋予从最左侧到右侧的V-形槽。根据这种情况,这五个V-形槽通称为V-形槽404。V-形槽404a和404b与凹槽406a彼此连通,且V-形槽404d和404e与凹槽406b连通。在图8B中,用阴影区域表示V-形槽404和凹槽406a与406b。在图9中,为了清楚地表示槽,表示出安装透镜阵列1之前获得的状态,并且在该图中省略激光二极管。
这五个V-形槽404为沿y方向延伸的槽,且形成在支撑基板402的上表面上,并沿x方向彼此平行排列。虽然所有五个V-形槽404均从支撑基板402的一端形成,不过沿y方向V-形槽404的长度不一定总相等。沿y方向V-形槽404a,404b,404d和404e的长度小于沿y方向V-形槽404c的长度,并且沿y方向V-形槽404a和404b的端部与凹槽406a相连,且沿y方向V-形槽404d和404e的端部与凹槽406b相连。凹槽406a和406b是其纵向设定为x方向的槽。凹槽406a和406b在y方向的端部位置被设计成基本等于V-形槽404c在y方向的端部位置。
V-形槽404为用于安装光纤的槽,而凹槽406a和406b为用于安装光学部件的槽。各V-形槽404具有可安装透镜阵列1其中一个悬伸部分6或其中光纤15之一的尺寸。如图8A所示,凹槽406a和406b被设计成使透镜阵列1的两个悬伸部分6可以容纳在凹槽406a和406b中。当这两个悬伸部分6之一与凹槽406a和406b的侧壁接触时,另一悬伸部分6不与凹槽406a和406b的内壁接触。
如下所述将透镜阵列1安装在支撑基板402上。将透镜阵列1的悬伸部分6a和6b设置在支撑基板402的凹槽404a中,将透镜阵列1的悬伸部分6c设置在V-形槽404c中,并将透镜阵列1的悬伸部分6d和6e设置在支撑基板402的凹槽406b中。此时,如图8A所示,悬伸部分6a的侧面与V-形凹槽406a的侧壁部分接触,悬伸部分6c的侧面与V-形槽404c的侧壁部分接触,悬伸部分6e的侧面与凹槽406b的侧壁部分接触,从而透镜阵列1与支撑基板402在总共四个部位处彼此线接触。按照这种方式,实现沿垂直于光轴方向的定位。由悬伸部分6a,6c和6e的精度决定透镜阵列的定位精度。在使用ICP-Bosch方法的加工过程中,加工精度为大约±0.5μm。
此时,悬伸部分6a和6b被设置在凹槽406a中,悬伸部分6d和6e被设置在凹槽406b中,并且悬伸部分6b和6d的侧面不与支撑基板402接触。在悬伸部分6b的下部与凹槽406a的底面之间形成间隙,并在悬伸部分6d的下部与凹槽406b的底面之间形成间隙。粘合剂108被填充到这些间隙中。由此,透镜阵列1被粘接并固定到支撑基板402上。
在支撑基板402上,与透镜阵列1相对设置激光二极管13a,13b,13c,13d和13e,并分别与透镜部分2a,2b,2c,2d和2e的光轴共用。如图8B所示,五根光纤15a,15b,15c,15d和15e分别设置在五个V-形槽404a,404b,404c,404d和404e中。通过上述结构,如图8B所示,形成具有五个组合的光学模块400,其中每个组合通过将一个激光二极管、一个透镜部分和一根光纤彼此光耦合在一起获得。
下面将说明具有上述结构的光学模块400的操作。激光二极管13发出的光入射在透镜阵列1上,经受通过光耦合获得的该组合的透镜部分2的会聚作用,会聚在通过光耦合获得的该组合的光纤15的端面上,并被传输。
如上所述,根据本实施例,透镜阵列1的实际定位是利用悬伸部分6a,6c和6e。从而,当这三个悬伸部分6a,6c和6e的制造精度处于一预定范围之内时,透镜阵列1可以设置在适当位置处。即使其他两个悬伸部分6b和6d的制造精度在该预定范围之外,该制造精度也不会使产品不合格。在传统安装方法中,要求全部五个悬伸部分的制造精度均处于该预定范围内。然而在本实施例中,仅三个悬伸部分的制造精度令人满意地处于预定范围之内,这有助于提高生产率。
使用悬伸部分6b和6d将透镜阵列1与支撑基板402彼此粘接在一起。按照这种方式,该透镜阵列1的粘接部分被设计成不同于透镜阵列1的定位部分。由此,可以精确确定透镜阵列1必须安装的位置,与粘合剂的涂覆状态无关,并且可提高安装精度。
在本实施例中,不仅通过使用两端的悬伸部分,而且还使用中间的悬伸部分实现定位。本实施例可用于高精度地安装可变形的诸如长透镜阵列的光学部件。
下面将参照图10和11说明根据第五实施例的光学模块500的结构和光学部件的安装方法。光学模块500具有这样一种结构,其中用透镜阵列51取代第二实施例的透镜阵列21。将考虑到这一点进行解释。与第二实施例相同的附图标记在第五实施例中表示相同部分,并将省略其描述。
图10A为光学模块500的剖面图。光学模块500的截面位置在图10B中表示为E-E’。该截面位置E-E’与设置透镜阵列51透镜部分形成表面的位置基本相同。图10B为光学模块500的俯视图。图11为用于说明光学模块500结构的透视图。透镜部分的阵列方向定义为x方向,且纸面中与x方向垂直的方向定义为y方向。在图11中,为了清楚表示出槽,表示出安装透镜阵列51之前的状态,并在该图中省略激光二极管。
透镜阵列51主要具有在一光学基板表面上一行形成的五个透镜部分52a,52b,52c,52d和52e。在图10A中,将附图标记52a,52b,52c,52d和52e赋予从最左侧开始到右侧的透镜部分。根据这种情况,这些透镜部分52a,52b,52c,52d和52e通称为透镜部分52。透镜阵列51的轮廓与透镜阵列1和21不同,并且在平行于透镜部分形成表面的平面内具有大体上为船形的轮廓。
与透镜部分2相同,透镜部分52为8相二元衍射光学元件。可以与透镜部分2相同制造透镜部分52。在制造透镜阵列51时,在硅基板上一行形成透镜部分52之后,通过切割等从硅基板上切下包含透镜部分52在内的矩形部分,并与硅基板分离。抛光该矩形部分,以形成图10A中所示的不透明侧面58a和58b。不透明侧面58a和58b的倾角与凹槽206侧壁的倾角相关。侧面58a和58b被形成为与支撑基板202的凹槽206的侧面紧密接触。在这种情形中,用于制造透镜阵列51的硅基板厚度为600μm,制成的透镜阵列51的厚度也为600μm。在图10A中,没有精确表示出透镜阵列51的厚度与透镜阵列1和21的厚度差别。
如下所述将透镜阵列51安装在支撑基板202上。将透镜阵列51船形部分的底部设置在支撑基板202的凹槽206中。此时,如图10A所示,侧面58a和58b与凹槽206的侧壁部分接触,并且透镜阵列51与支撑基板202彼此面接触。按照这种方式,实现沿垂直于光轴方向的定位。由侧面58a和58b的精度决定透镜阵列的定位精度。加工精度为大约-0.7μm。
此时,透镜阵列51船形部分的底部被容纳在凹槽206中。该底部的底面58c不与支撑基板202接触。在底面58c与凹槽206的底面之间形成间隙。粘合剂108被填充到该间隙中。由此,透镜阵列51被粘接并固定到支撑基板202上。
在支撑基板202上,与透镜阵列51相对设置激光二极管13a,13b,13c,13d和13e,并分别与透镜部分52a,52b,52c,52d和52e的光轴共用。如图10B所示,五根光纤15a,15b,15c,15d和15e分别设置在五个V-形槽204a,204b,204c,204d和204e中。通过上述结构,如图10B所示,形成具有五个组合的光学模块500,而且其中每个组合通过将一个激光二极管、一个透镜部分和一根光纤彼此光耦合在一起获得。
下面将说明具有上述结构的光学模块500的操作。激光二极管13发出的光入射在透镜阵列51上,经受通过光耦合获得的该组合的透镜部分52的会聚作用,会聚在通过光耦合获得的该组合的光纤15的端面上,并被传输。
如上所述,根据本实施例,透镜阵列51的实际定位是利用两个侧面58a和58b。从而,当这两个侧面58a和58b的制造精度处于一预定范围之内时,透镜阵列51可以设置在适当位置处。
利用底面58c将透镜阵列51与支撑基板202彼此粘接在一起。按照这种方式,该透镜阵列51的粘接部分被设计成与透镜阵列51的定位部分不同。由此,可精确确定必须安装透镜阵列51的位置,与粘合剂的涂覆状态无关,并且能提高安装精度。另外,可使本实施例中的粘接面积大于上述实施例中,可以提供具有高粘接强度和高可靠性的光学模块。
在上述实施例中,描述了仅具有一个透镜阵列的光学模块。不过,在改变支撑基板的槽的排列时,可以构成具有两个或多个透镜阵列的光学模块。图12和13中表示出第二实施例的第一变型例和第二变型例,作为这种光学模块的例子。
图12为作为第一变型例的光学模块210的俯视图。光学模块210具有这样一种结构,其中用两个透镜阵列21a和21b与支撑基板212代替第二实施例中的透镜阵列21与支撑基板202。考虑到这一点,不再重复与第二实施例相同的结构。
两个透镜阵列21a和21b均为与透镜阵列21具有相同结构的透镜阵列。在透镜阵列21a中,透镜部分被设置在激光二极管一侧,使透镜部分与相应激光二极管相对。在透镜阵列21b中,透镜部分被设置在光纤一侧,使透镜部分与相应光纤的端面相对。
支撑基板212在槽排列方面与支撑基板202不同。平行于凹槽206增加与凹槽206具有相同排列的凹槽216,得到支撑基板212。也是使用光刻和蚀刻技术精确形成凹槽216。与凹槽206一样,凹槽216是用于安装光学部件的槽。凹槽216位于凹槽206与光纤15的端面之间。在这种情形中,五个V-形槽204与两个凹槽206和216相通。在图12中,用阴影区域表示V-形槽204和凹槽206与216。
如第二实施例中,透镜阵列21a和21b分别设置在凹槽206和216中。透镜阵列21a和21b两端的两个悬伸部分与凹槽接触设置,并且利用三个中间悬伸部分将透镜阵列粘接到支撑基板212上。
在光学模块210中,激光二极管13发出的光入射在透镜阵列21a上,并被通过光耦合获得的该组合的透镜部分准直。经过准直的光入射在透镜阵列21b上,经受通过光耦合获得的该组合的透镜部分的会聚作用,会聚在通过光耦合得到的该组合的光纤15的端面上,并被传输。而且在第一变型例中,可获得与第二实施例相同的效果。
图13为作为第二变型例的光学模块220的俯视图。光学模块220具有这样一种结构,其中用支撑基板222取代第一变型例的支撑基板212。考虑这一点,不再重复与第一变型例相同的结构。
支撑基板222在槽排列方面与支撑基板212不同。支撑基板222具有下述结构。也就是说,在支撑基板212上凹槽206与凹槽216之间再形成一槽,并且凹槽206与凹槽216一起形成较大的凹槽226。使用光刻与蚀刻技术精确形成凹槽226。凹槽226是用于安装光学部件的槽。在这种情形中,五个V-形槽204与凹槽226相通。与凹槽206相同,凹槽226的横截面形状为近似梯形截面。在图13中,用阴影区域表示V-形槽204和凹槽226。
沿y方向靠近凹槽226两端面设置透镜阵列21a和21b。如在第二实施例中,将透镜阵列21a和21b设置成使每个透镜阵列21a和21b两端处形成的两个悬伸部分与凹槽226接触,并利用三个中间悬伸部分将透镜阵列21a和21b粘接到支撑基板222上。光学模块220的操作与光学模块210的操作相同。在第二变型例中,能获得与第二
实施例相同的效果。
不仅可以将如图12和13所示使用两个透镜阵列的变型例的结构应用于第二实施例,也可以应用于其他实施例。
在上述例子中,使用二元衍射光学元件或闪耀型衍射光学元件作为透镜部分。不过,本发明可以应用于可在基板上制造的光学元件。例如,可以使用折射透镜部分。不仅可以采用圆形,而且可以采用所需形状作为透镜部分的形状。透镜部分、边缘部分、手柄/支撑和悬伸部分的形状不限于上面的例子,可建议采用多种形状。在上述例子中,举例说明了具有五个透镜部分的透镜阵列。不过透镜阵列的透镜部分数量不限于五个,可以采用具有任意数量透镜部分的透镜阵列。
在第一到第四实施例中,使用ICP-Bosch方法作为对透镜阵列侧面进行蚀刻的方法,根据蚀刻掩模的选取,可以使用另一种蚀刻方法,如ICP-RIE方法。如在第五实施例中,也可以使用通过蚀刻和抛光形成的透镜阵列。使用硅基板作为透镜阵列的基板。不过,可以使用在通信波带内光学透明的基板。使用V-形槽作为形成在支撑基板上的用于安装光纤的槽。不过,如果能在不阻碍光纤的条件下支持光纤,则可以采用具有其他截面的槽,如近似梯形截面。
在上面的例子中,举例说明将用作发光器件的激光二极管与光纤耦合在一起。不过,本发明也可以用于耦合光接收器件与光纤。在上述例子中,分别以透镜部分和透镜阵列作为光通量转换器和光学部件的例子。不过,光通量转换器和光学部件分别不限于透镜部分和透镜阵列。
图14为表示使用传统方法安装透镜阵列的状态的透视图,用于进行比较。虽然透镜阵列91与图1中所示的透镜阵列1具有相同结构,不过透镜部分的数量不同。为了便于描述,举例说明具有三个透镜部分的透镜阵列91。不过,透镜部分的数量不限于三个。通过集成多个透镜部分92获得透镜阵列91。透镜阵列91主要具有在光学基板表面上一行形成的多个透镜部分92,和在透镜部分92外缘上侧将所有透镜部分92连接在一起的手柄/支撑94。分别在透镜部分92外缘下面形成边缘部分93。边缘部分93具有沿透镜部分92外缘的弧形形状。边缘部分93的弧形轮廓从透镜部分形成表面一侧延伸到相对表面一侧,以形成拱背形悬伸部分96。
图14表示透镜阵列91安装在支撑基板902上的状态。在支撑基板902中形成多个V-形槽904,并且V-形槽904的形状和间隔取决于悬伸部分96的形状和间隔。在安装透镜阵列91时,将透镜阵列91设置成使悬伸部分96与V-形槽904接触,从而定位透镜阵列91。粘接并固定接触部分
不过,在这种安装方法中,由于将接触部分粘接并固定,故粘合剂的厚度会导致光学部件的固定位置发生不对准,从而不能精确实现定位。结果,安装精度较差。在这种安装方法中,为了使悬伸部分96与V-形槽904匹配,必须精确形成悬伸部分96,以使所有悬伸部分96的尺寸均处于一预定范围之内。例如在制造过程中,即使仅透镜阵列91多个悬伸部分96其中之一的尺寸比预定值大,也不能将透镜阵列91安装在适当位置。由此,该产品变成不合格产品,导致生产率下降。
因此,传统安装方法在定位和生产率方面存在问题。与之相比,在本发明中,在安装光学部件时,定位位置不同于进行粘接的位置。由此,可在不产生粘合剂厚度引起的定位误差的条件下实现精确安装。在本发明中,可令用于定位光学部件的部位数量少于传统技术,并且减小要求制造精度处于一预定范围内的部位的数量。由此,本发明有助于提高生产率。
上面参照附图描述了本发明的最佳实施例。不过,本发明当然不限于这些实施例。在不偏离本发精神和范围的条件下,本领域技术人员显然可以想到多种改变或变型。应该理解,这些改变或变型当然包含在本发明精神和范围之内。

Claims (24)

1.一种光学部件安装方法,其中将在一光学基板的表面上形成有一行多个光通量转换器的光学部件安装在具有至少一个槽的支撑基板上,其中
该光学部件的至少两部分侧面与该槽接触,以实现定位,并且
粘合剂被填充在该光学部件平面上与槽相对并且不与该槽接触的部位的至少一部分与支撑基板之间,以使该光学部件与支撑基板彼此粘接在一起。
2.根据权利要求1所述的光学部件安装方法,其中:
该槽具有近似梯形截面形状,其具有两个倾斜侧壁和一具有较小宽度的底部,
该光学部件在两侧具有均与该倾斜侧壁相对的斜面,
使该光学部件的至少一部分斜面与该槽的倾斜侧壁接触,以实现定位,以及
该光学部件与槽底部相对的表面不与支撑基板接触,并将粘合剂填充在该光学部件与底部相对的表面与该底部之间。
3.根据权利要求1所述的光学部件安装方法,其中
该光学部件具有针对各光通量转换器而形成的悬伸部分,悬伸并包括分别部分地沿着多个光通量转换器外缘的边缘部分,
至少两个悬伸部分的侧面部位与该槽接触,以实现定位,以及
除用于定位的悬伸部分以外的悬伸部分,被容纳在支撑基板中形成的槽中,不与该槽接触,并且将粘合剂填充在容纳在槽中与该槽不接触的悬伸部分侧面的至少一部分与该支撑基板之间。
4.根据权利要求3所述的光学部件安装方法,其中
定位过程中使用的悬伸部分为形成在该行两端处的悬伸部分。
5.根据权利要求3所述的光学部件安装方法,其中
定位过程中使用的悬伸部分与之相接触的槽,与悬伸部分容纳在其中并且悬伸部分不与之相接触的槽相同。
6.根据权利要求3所述的光学部件安装方法,其中
该槽包括多个槽,并且定位过程中使用的悬伸部分与之相接触的槽,与悬伸部分容纳在其中并且悬伸部分不与之相接触的槽不同。
7.根据权利要求3所述的光学部件安装方法,其中
该槽包括多个槽,并且定位过程中使用的悬伸部分其具有两个接触部分与之接触的槽,与悬伸部分容纳在其中并且悬伸部分不与之相接触的槽不同。
8.一种光学模块,包括:
一光学部件,其在一光学基板的表面上形成有一行多个光通量转换器;和
一支撑基板,其具有至少一个用于安装光学部件的槽,其中
该光学部件的至少两部分侧面与该槽接触,用于定位,并且粘合剂被填充在该光学部件平面上与槽相对并且不与该槽接触的部位的至少一部分与该支撑基板之间,以使该光学部件与支撑基板彼此粘接在一起。
9.根据权利要求8的光学模块,其中
该用于安装该光学部件的槽具有近似梯形截面形状,其具有两个倾斜侧壁和一具有较小宽度的底部,
该光学部件在两侧具有均与该倾斜侧壁相对的斜面,
该光学部件的至少一部分斜面与该用于安装光学部件的槽的倾斜侧壁接触,用于定位,以及
该光学部件与该用于安装该光学部件的槽的底部相对的表面,不与该支撑基板接触,并且粘合剂被填充在该光学部件与该底部相对的该表面与该底部之间。
10.根据权利要求8的光学模块,其中
该光学部件具有针对各光通量转换器形成的悬伸部分,悬伸并包括部分地沿着多个光通量转换器外缘的边缘部分,
至少两个悬伸部分的侧面部位与该用于安装光学部件的槽接触,以实现定位,以及
除用于定位的悬伸部分以外的悬伸部分,被容纳在用于安装该光学部件的槽中,不与该槽接触,并且将粘合剂填充在容纳在槽中与该槽不接触的悬伸部分侧面的至少一部分与该支撑基板之间。
11.根据权利要求10的光学模块,其中
定位过程中使用的悬伸部分为形成在该行两端处的悬伸部分。
12.根据权利要求10的光学模块,其中
定位过程中使用的悬伸部分与之相接触的槽,与悬伸部分容纳在其中并且悬伸部分不与之相接触的槽相同。
13.根据权利要求10的光学模块,其中
用于安装光学部件的槽包括多个槽,并且定位过程中使用的悬伸部分与之相接触的槽,与悬伸部分容纳在其中并且悬伸部分不与之接触的槽不同。
14.根据权利要求10的光学模块,其中
该用于安装光学部件的槽包括多个槽,并且定位过程中使用的悬伸部分其具有两个接触部分与之接触的槽,与悬伸部分容纳在其中并且悬伸部分不与之相接触的槽不同。
15.根据权利要求10的光学模块,还包括:
多根光纤;
多个光学器件,每个光学器件均具有光发射或光接收功能;其中
该支撑基板还包括多个彼此平行设置用于安装光纤的槽,
该多根光纤分别被安装在用于安装多根光纤的槽中,以及
形成通过至少一个光通量转换器光耦合一根光纤与一个光学器件获得的至少一个组合。
16.根据权利要求15的光学模块,其中
光通量转换器的数量、光纤的数量和光学器件的数量彼此相等。
17.根据权利要求15的光学模块,其中
至少一个用于安装光学部件的槽与至少两个用于安装光纤的槽相通。
18.根据权利要求15的光学模块,其中
定位过程中使用的悬伸部分与之相接触的槽,与悬伸部分容纳在其中并且悬伸部分不与之接触的槽相同,并与所有用于安装光纤的槽相通。
19.根据权利要求15的光学模块,其中
该用于安装光学部件的槽包括多个槽,
该用于安装光纤的槽的数量至少为三,
定位过程中使用的悬伸部分其具有两个接触部分与之接触的槽,与悬伸部分容纳在其中并且悬伸部分不与之相接触的槽不同,
定位过程中使用的悬伸部分其具有两个接触部分与之接触的槽,与用于安装光纤的其中一个槽相通,以及
悬伸部分容纳在其中并且悬伸部分不与之相接触的槽,与多个用于安装光纤的槽相通。
20.根据权利要求15的光学模块,其中
该光学部件包括多个彼此平行设置的光学元件。
21.根据权利要求8的光学模块,其中
该光学部件由硅基板构成。
22.根据权利要求8的光学模块,其中
该支撑基板由硅基板构成。
23.根据权利要求8的光学模块,其中
该光通量转换器由衍射光学元件构成。
24.根据权利要求8的光学模块,其中
该光通量转换器为透镜。
CNB031550797A 2002-08-27 2003-08-27 光学部件安装方法和光学模块 Expired - Fee Related CN1278153C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002246615A JP3974480B2 (ja) 2002-08-27 2002-08-27 光学部材の実装方法および光モジュール
JP246615/2002 2002-08-27

Publications (2)

Publication Number Publication Date
CN1487313A true CN1487313A (zh) 2004-04-07
CN1278153C CN1278153C (zh) 2006-10-04

Family

ID=31972428

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031550797A Expired - Fee Related CN1278153C (zh) 2002-08-27 2003-08-27 光学部件安装方法和光学模块

Country Status (3)

Country Link
US (1) US7027693B2 (zh)
JP (1) JP3974480B2 (zh)
CN (1) CN1278153C (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565982A (zh) * 2011-09-28 2012-07-11 北京国科世纪激光技术有限公司 光学单元及其组装方法以及用于粘合光学元件的工装
CN103217756A (zh) * 2012-01-24 2013-07-24 日立电线株式会社 光学模块及其制造方法
CN111308639A (zh) * 2013-12-04 2020-06-19 Lg伊诺特有限公司 透镜驱动马达、摄像头模块和便携式终端
CN112817088A (zh) * 2021-04-20 2021-05-18 苏州海光芯创光电科技股份有限公司 一种具有低耦合插损的硅光芯片耦合结构及硅基晶圆
TWI783391B (zh) * 2020-03-26 2022-11-11 美商格芯(美國)集成電路科技有限公司 用於光纖凹槽之拐角結構

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683733B2 (en) * 2001-05-02 2004-01-27 Oki Electric Industry Co., Ltd. Optical member with handling portion and method for manufacturing optical member and method for mounting optical member and optical module
WO2006108024A1 (en) * 2005-04-04 2006-10-12 Molex Incorporated Multifiber mt-type connector and ferrule comprising v-groove lens array and method of manufacture
JP2007310083A (ja) 2006-05-17 2007-11-29 Fuji Xerox Co Ltd 光伝送モジュールおよびその製造方法
JP2008083355A (ja) * 2006-09-27 2008-04-10 Oki Electric Ind Co Ltd 光学素子並びにマイクロレンズの固定方法
JP2008089926A (ja) 2006-09-29 2008-04-17 Oki Electric Ind Co Ltd 微小光学素子、その製造方法及びフォトマスク
JP4915385B2 (ja) * 2008-04-11 2012-04-11 富士通株式会社 ファイバコリメータアレイ、波長選択スイッチ、光学部品及びファイバコリメータアレイの製造方法
TW201108332A (en) * 2009-08-27 2011-03-01 Univ Nat Central Package base structure and related manufacturing method
JP5184708B1 (ja) 2011-10-26 2013-04-17 古河電気工業株式会社 光モジュール
TWI550262B (zh) * 2012-11-08 2016-09-21 鴻海精密工業股份有限公司 用於光纖檢測的固定裝置
JP2016004224A (ja) * 2014-06-19 2016-01-12 富士通株式会社 光学モジュール、光学モジュールの製造方法及び光学装置
US10307867B2 (en) * 2014-11-05 2019-06-04 Asm Technology Singapore Pte Ltd Laser fiber array for singulating semiconductor wafers
WO2016103612A1 (ja) * 2014-12-22 2016-06-30 日本電気株式会社 レンズ保持部材、レンズホルダ、光モジュールおよびレンズホルダの製造方法
JP6596998B2 (ja) * 2015-07-08 2019-10-30 株式会社リコー 光学装置及び光照射装置
DE102015215833A1 (de) 2015-08-19 2017-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multiaperturabbildungsvorrichtung mit Optiksubstrat
US20190146152A1 (en) * 2017-11-15 2019-05-16 Source Photonics (Chengdu) Company , Ltd. Waveguide Array Module and Receiver Optical Sub-Assembly
JP7211236B2 (ja) * 2019-04-15 2023-01-24 日本電信電話株式会社 光接続構造
CN117296217A (zh) 2021-05-21 2023-12-26 三菱电机株式会社 光模块

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612665A (en) * 1979-07-13 1981-02-07 Canon Inc Projector
DE19861162A1 (de) * 1998-11-06 2000-06-29 Harting Elektrooptische Bauteile Gmbh & Co Kg Verfahren zur Herstellung einer Leiterplatte sowie Leiterplatte
US6748131B2 (en) * 2000-05-19 2004-06-08 Shipley Company, L.L.C. Optical waveguide devices and methods of fabricating the same
US6739760B2 (en) * 2001-09-17 2004-05-25 Stratos International, Inc. Parallel fiber optics communications module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565982A (zh) * 2011-09-28 2012-07-11 北京国科世纪激光技术有限公司 光学单元及其组装方法以及用于粘合光学元件的工装
CN102565982B (zh) * 2011-09-28 2014-06-11 北京国科世纪激光技术有限公司 光学单元及其组装方法以及用于粘合光学元件的工装
CN103217756A (zh) * 2012-01-24 2013-07-24 日立电线株式会社 光学模块及其制造方法
CN103217756B (zh) * 2012-01-24 2016-01-20 日立金属株式会社 光学模块及其制造方法
CN111308639A (zh) * 2013-12-04 2020-06-19 Lg伊诺特有限公司 透镜驱动马达、摄像头模块和便携式终端
CN111308639B (zh) * 2013-12-04 2022-04-12 Lg伊诺特有限公司 透镜驱动马达、摄像头模块和便携式终端
TWI783391B (zh) * 2020-03-26 2022-11-11 美商格芯(美國)集成電路科技有限公司 用於光纖凹槽之拐角結構
US11569180B2 (en) 2020-03-26 2023-01-31 Globalfoundries U.S. Inc. Corner structures for an optical fiber groove and manufacturing methods thereof
CN112817088A (zh) * 2021-04-20 2021-05-18 苏州海光芯创光电科技股份有限公司 一种具有低耦合插损的硅光芯片耦合结构及硅基晶圆

Also Published As

Publication number Publication date
US7027693B2 (en) 2006-04-11
CN1278153C (zh) 2006-10-04
JP3974480B2 (ja) 2007-09-12
JP2004085873A (ja) 2004-03-18
US20040042739A1 (en) 2004-03-04

Similar Documents

Publication Publication Date Title
CN1278153C (zh) 光学部件安装方法和光学模块
CN1885079A (zh) 光器件
CN1137520C (zh) 含有波导和光电接收器件的集成光学模块
TWI418869B (zh) 用於光學對準之結合系統
EP2916151A1 (en) Method of forming a fiber coupling device and fiber coupling device
US8693066B2 (en) Image reading device and method for manufacturing the same
JP6537891B2 (ja) 発光装置及びその製造方法
CN101075007A (zh) 光传输模块及其制造方法
US10685946B2 (en) Elastomeric layer fabrication for light emitting diodes
CN1940611A (zh) 光导保持部件和光学模块
CN1794029A (zh) 用于形成光学波导片镜面的加工头及加工设备和方法
CN111025757B (zh) 电子装置及其制造方法
CN1484049A (zh) 光学元件、光学元件的安装方法和光模块
JP4170920B2 (ja) 光学部品の製造方法および光インターコネクションシステムおよび光配線モジュール
CN1343895A (zh) 光开关
KR20210096010A (ko) 이재 기판
CN1476544A (zh) 带有凸起的光集成电路器,其制造方法以及采用该器件的光通信发射与接收装置模块
CN105229508A (zh) 用于形成可连接至光纤的光电模块的方法和可连接到至少一个光纤的光电模块
WO2023145248A1 (ja) 発光モジュール
CN113330549A (zh) 一种巨量转移装置及其制造方法、以及显示设备
TWI815512B (zh) 發光元件移轉設備及發光面板的製造方法
TWI841239B (zh) 顯示裝置及顯示面板的製造方法
US20240085645A1 (en) Assembly alignment structure for optical component
CN114079224B (zh) 光学元件和晶圆级光学模块
CN1867858A (zh) 液晶像差校正元件及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: OKI SEMICONDUCTOR CO., LTD.

Free format text: FORMER OWNER: OKI ELECTRIC INDUSTRY CO., LTD.

Effective date: 20090508

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20090508

Address after: Tokyo, Japan

Patentee after: OKI Semiconductor Co., Ltd.

Address before: Tokyo, Japan

Patentee before: Oki Electric Industry Co., Ltd.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061004

Termination date: 20110827