CN1476047A - γ-LiAlO2/α-Al2O3复合衬底材料的制备方法 - Google Patents

γ-LiAlO2/α-Al2O3复合衬底材料的制备方法 Download PDF

Info

Publication number
CN1476047A
CN1476047A CNA031296025A CN03129602A CN1476047A CN 1476047 A CN1476047 A CN 1476047A CN A031296025 A CNA031296025 A CN A031296025A CN 03129602 A CN03129602 A CN 03129602A CN 1476047 A CN1476047 A CN 1476047A
Authority
CN
China
Prior art keywords
lialo
platinum
crucible
preparation
lining material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA031296025A
Other languages
English (en)
Other versions
CN1204598C (zh
Inventor
军 徐
徐军
王海丽
周圣明
杨卫桥
彭观良
周国清
蒋成勇
宋词
杭寅
司继良
赵广军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN 03129602 priority Critical patent/CN1204598C/zh
Publication of CN1476047A publication Critical patent/CN1476047A/zh
Priority to PCT/CN2004/000303 priority patent/WO2005001907A1/zh
Application granted granted Critical
Publication of CN1204598C publication Critical patent/CN1204598C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种γ-LiAlO2/α-Al2O3复合衬底材料的制备方法,包括如下具体步骤:在铂金坩埚内,放置有带气孔的LiAlO2和Li2O混合料块;将双面抛光或单面抛光的蓝宝石α-Al2O3晶片置于或悬于铂金丝上,加上覆盖有LiAlO2和Li2O混合粉料和热电偶的坩埚盖,坩埚顶部加铂金盖密闭,置于电阻炉中;该电阻炉加热升温至1000~1400℃左右,恒温20~100小时,Li2O扩散到α-Al2O3晶片中,降温后可得到LiAlO2/α-Al2O3复合衬底材料。本发明克服了α-Al2O3衬底晶格失配度大和难以获得大尺寸高质量LiAlO2单晶衬底等问题,可用于生长高质量InN-GaN薄膜外延生长。

Description

γ-LiAlO2/α-Al2O3复合衬底材料的制备方法
技术领域
本发明涉及一种γ-LiAlO2/α-Al2O3复合衬底材料的制备方法。γ-LiAlO2/α-Al2O3复合衬底材料主要用作InN-GaN基蓝光半导体外延生长。
背景技术
III族氮化物半导体材料InN-GaN具有优异的特性,如稳定的物理和化学性质、高热导和高电子饱和速度、直接带隙材料的光跃迁几率比间接带隙的高一个数量级,因此,宽带隙InN-GaN基半导体在短波长发光二极管、激光器和紫外探测器以及高温电子器件方面显示出广阔的应用前景。由于InN-GaN熔点比较高,N2饱和蒸汽压较大,InN-GaN体单晶制备十分困难,因此InN-GaN一般是在异质衬底上用外延技术生长的。
白宝石晶体(α-Al2O3),易于制备,价格便宜,且具有良好的高温稳定性等特点,α-Al2O3是目前最常用的InN-GaN外延衬底材料(参见Jpn.J.Appl.Phys.,第36卷,1997年,第1568页)。
铝酸锂(γ-LiAlO2)是近几年才受到重视的InN-GaN外延衬底材料,由于其与GaN外延膜的晶格失配度相当小,只有1.4%,这使它成为一种相当理想的GaN外延衬底材料(参见美国专利USP6218280,KrylioukOlga,Anderson Tim,Chai Bruce,“Method and apparatus for producinggroup-III nitrides”)。
在先衬底(α-Al2O3和γ-LiAlO2)存在的显著缺点是:(1)用α-Al2O3作衬底,α-Al2O3和GaN之间的晶格失配度高达14%,使制备的GaN薄膜具有较高的位错密度和大量的点缺陷;(2)由于LiAlO2熔体在高温下容易发生非化学计量比挥发,晶体生长困难,难以获得大尺寸、高质量的LiAlO2单晶体,而且,衬底的加工过程造成了大量的原材料的浪费。
发明内容
本发明要解决的技术问题在于克服上述现有技术的不足,提供一种用于生长高质量InN-GaN薄膜外延生长的γ-LiAlO2/α-Al2O3复合衬底材料的制备方法。
本发明的复合衬底材料(γ-LiAlO2/α-Al2O3)的制备方法是利用气相传输平衡(Vapor Transport Equilibration,简称VTE)技术,在高温、富锂的气氛中,通过锂离子的扩散,使Li2O和α-Al2O3发生固相反应,制备具有γ-LiAlO2覆盖层的α-Al2O3复合衬底材料(γ-LiAlO2/α-Al2O3)。
本发明的γ-LiAlO2/α-Al2O3复合衬底材料的制备方法,包括具体工艺流程如下:
<1>在铂金坩埚内,放置有带气孔的LiAlO2和Li2O混合料块;
<2>将双面抛光或单面抛光的蓝宝石α-Al2O3晶片置于或悬于铂金丝上,加上覆盖有LiAlO2和Li2O混合粉料和热电偶的坩埚盖,坩埚顶部加铂金盖密闭,置于电阻炉中;
<3>该电阻炉加热升温至1000~1400℃左右,恒温20~100小时,Li2O扩散到α-Al2O3晶片中,降温后可得到LiAlO2/α-Al2O3复合衬底材料。
所述的LiAlO2和Li2O混合料块的重量比的选取范围是[LiAlO2]/[Li2O]=(0~95)∶(100~5)。
所述的电阻炉也可用硅碳棒炉或硅钼棒炉代替。
本发明与在先衬底(α-Al2O3和γ-LiAlO2)相比,其优点是:克服了在先α-Al2O3衬底晶格失配度大和难以获得大尺寸高质量LiAlO2单晶衬底等问题,可用于生长高质量InN-GaN薄膜外延生长。
附图说明
图1是气相传输平衡实验装置示意图。
具体实施方式
本发明所用的气相传输平衡(VTE)技术制备复合衬底材料γ-LiAlO2/α-Al2O3的实验装置示意图见图1,铂金坩埚1内,放置有带气孔2的一定配比的LiAlO2和Li2O混合料块3,料块3上部是铂金丝4,双面抛光或单面抛光的蓝宝石α-Al2O3晶片5置于铂金丝4上,料块3上部有铂金片6和LiAlO2和Li2O混合粉料7覆盖,热电偶8插入粉料7中,坩埚1顶部加铂金盖9密闭。
气相传输平衡(VTE)技术是一种质量传输过程,因此坩埚内应保证有足够的Li2O供应量,其次,气相的平衡是依靠Li2O源源不断地从LiAlO2和Li2O混合料块中挥发来维持的,为防止混合料块表面Li2O耗尽造成的平衡破坏,应使混合料块具有多孔结构。以尽量增加Li2O的挥发表面。
白宝石(α-Al2O3)晶片置于或悬于密闭的铂金坩埚内,然后将密闭的铂金坩埚放入电炉(硅碳棒炉或硅钼棒炉)内,加热到预定的平衡温度,保温一定的时间进行气相平衡扩散,为了加快扩散过程和结构调整过程,应选取尽可能高的平衡温度,一般选取1000~1400℃。
本发明的气相传输平衡(VTE)技术制备复合衬底材料γ-LiAlO2/α-Al2O3的具体工艺流程如下:
<1>在铂金坩埚1内,放置有带气孔2的LiAlO2和Li2O混合料块3,选取[LiAlO2]/[Li2O]=(0~95)∶(100~5)重量比。
<2>将双面抛光或单面抛光的蓝宝石α-Al2O3晶片,置于或悬于铂金丝上,加上覆盖有LiAlO2和Li2O混合粉料7和热电偶8的坩埚盖,坩埚顶部加铂金盖9密闭,置于电阻炉中。
<3>加热升温至1000~1400℃左右,恒温20~100小时,Li2O扩散到α-Al2O3晶片中。从而得到了LiAlO2/α-Al2O3复合衬底材料。
下面是用上述的气相传输平衡实验装置和具体的工艺流程制备γ-LiAlO2/α-Al2O3复合衬底材料的具体实施例。
在φ100×80mm的鉑金坩埚内,放置有带气孔的LiAlO2和Li2O混合料块,选取[LiAlO2]/[Li2O]=75∶25重量比。将双面抛光或单面抛光的蓝宝石α-Al2O3晶片,置于或悬于铂金丝上,加上覆盖有LiAlO2和Li2O混合粉料和热电偶的坩埚盖,坩埚顶部加铂金盖密闭,置于电阻炉中。加热电阻炉升温至1150℃,恒温100小时,Li2O扩散到α-Al2O3晶片中。从而得到了γ-LiAlO2/α-Al2O3复合衬底材料。该复合衬底可用于生长高质量InN-GaN薄膜外延生长。

Claims (3)

1一种γ-LiAlO2/α-Al2O3复合衬底材料的制备方法,其特征在于包括如下具体步骤:
①在铂金坩埚内,放置有带气孔的LiAlO2和Li2O混合料块;
②将双面抛光或单面抛光的蓝宝石α-Al2O3晶片置于或悬于铂金丝上,加上覆盖有LiAlO2和Li2O混合粉料和热电偶的坩埚盖,坩埚顶部加铂金盖密闭,置于电阻炉中;
③该电阻炉加热升温至1000~1400℃,恒温20~100小时,Li2O扩散到α-Al2O3晶片中,降温后可得到LiAlO2/α-Al2O3复合衬底材料。
2、根据潜力要求1所述的γ-LiAlO2/α-Al2O3复合衬底材料的制备方法,其特征在于所述的LiAlO2和Li2O混合料块(3)的重量比的选取范围是[LiAlO2]/[Li2O]=(0~95)∶(100~5)。
3、根据权利要求1或2所述的γ-LiAlO2/α-Al2O3复合衬底材料的制备方法,其特征在于所述的电阻炉也可用硅碳棒炉或硅钼棒炉代替。
CN 03129602 2003-06-27 2003-06-27 γ-LiAlO2/α-Al2O3复合衬底材料的制备方法 Expired - Fee Related CN1204598C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN 03129602 CN1204598C (zh) 2003-06-27 2003-06-27 γ-LiAlO2/α-Al2O3复合衬底材料的制备方法
PCT/CN2004/000303 WO2005001907A1 (en) 2003-06-27 2004-04-02 THE METHOD OF PREPARING COMPOSITE SUBSTRATE MATERIALS OF Ϝ-LiAlO2 /α-Al2O3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03129602 CN1204598C (zh) 2003-06-27 2003-06-27 γ-LiAlO2/α-Al2O3复合衬底材料的制备方法

Publications (2)

Publication Number Publication Date
CN1476047A true CN1476047A (zh) 2004-02-18
CN1204598C CN1204598C (zh) 2005-06-01

Family

ID=31195180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03129602 Expired - Fee Related CN1204598C (zh) 2003-06-27 2003-06-27 γ-LiAlO2/α-Al2O3复合衬底材料的制备方法

Country Status (2)

Country Link
CN (1) CN1204598C (zh)
WO (1) WO2005001907A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045223B2 (en) 2003-09-23 2006-05-16 Saint-Gobain Ceramics & Plastics, Inc. Spinel articles and methods for forming same
CN1308499C (zh) * 2005-02-23 2007-04-04 中国科学院上海光学精密机械研究所 掺钛铝酸锂晶片的制备方法
CN1322175C (zh) * 2004-09-28 2007-06-20 中国科学院上海光学精密机械研究所 脉冲激光沉积制备γ-LiAlO2单晶薄膜覆盖层衬底的方法
CN1322176C (zh) * 2004-09-28 2007-06-20 中国科学院上海光学精密机械研究所 具有γ-LiAlO2单晶薄膜覆盖层衬底的制备方法
US7326477B2 (en) 2003-09-23 2008-02-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel boules, wafers, and methods for fabricating same
CN100457630C (zh) * 2006-12-18 2009-02-04 天津理工大学 一种铝酸锂衬底材料制备法
US7919815B1 (en) 2005-02-24 2011-04-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel wafers and methods of preparation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295227A (ja) * 1985-06-20 1986-12-26 Sumitomo Chem Co Ltd リチウムアルミネ−ト粉末の製造方法
US5625202A (en) * 1995-06-08 1997-04-29 University Of Central Florida Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth
CN1062317C (zh) * 1997-01-30 2001-02-21 中国科学院上海光学精密机械研究所 垂直温梯法生长铝酸锂和镓酸锂晶体
CN1185690C (zh) * 2002-05-31 2005-01-19 南京大学 制备ZnAl2O4/α-Al2O3复合衬底并在ZnAl2O4上生长GaN薄膜的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045223B2 (en) 2003-09-23 2006-05-16 Saint-Gobain Ceramics & Plastics, Inc. Spinel articles and methods for forming same
US7326477B2 (en) 2003-09-23 2008-02-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel boules, wafers, and methods for fabricating same
CN1322175C (zh) * 2004-09-28 2007-06-20 中国科学院上海光学精密机械研究所 脉冲激光沉积制备γ-LiAlO2单晶薄膜覆盖层衬底的方法
CN1322176C (zh) * 2004-09-28 2007-06-20 中国科学院上海光学精密机械研究所 具有γ-LiAlO2单晶薄膜覆盖层衬底的制备方法
CN1308499C (zh) * 2005-02-23 2007-04-04 中国科学院上海光学精密机械研究所 掺钛铝酸锂晶片的制备方法
US7919815B1 (en) 2005-02-24 2011-04-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel wafers and methods of preparation
CN100457630C (zh) * 2006-12-18 2009-02-04 天津理工大学 一种铝酸锂衬底材料制备法

Also Published As

Publication number Publication date
CN1204598C (zh) 2005-06-01
WO2005001907A1 (en) 2005-01-06

Similar Documents

Publication Publication Date Title
CA1186599A (en) Epitaxial crystals and fabrication thereof
CN103305903B (zh) 一种高氮压助熔剂-坩埚下降法制备GaN晶体的方法
CN110129880A (zh) 一种低碳包裹物密度SiC单晶的生长装置及生长方法
CN109023516A (zh) 制备自支撑GaN衬底的自分离方法
CN1204598C (zh) γ-LiAlO2/α-Al2O3复合衬底材料的制备方法
CN108193282B (zh) 一种高纯碳化硅原料的合成方法及其应用
US7294199B2 (en) Nitride single crystal and producing method thereof
CN110306239A (zh) 一种碳化硅材质籽晶托
CN108987257A (zh) 利用卤化物气相外延法在Si衬底上生长Ga2O3薄膜的方法
CN109023515A (zh) 制备GaN衬底的自分离方法
US4489128A (en) Structure containing epitaxial crystals on a substrate
CN105603519A (zh) 具有半导体性质Ⅱb型金刚石单晶的人工生长方法及装置
EP1818430B1 (en) Method for preparation of iii group nitride single crystal
CN1207756C (zh) ZnAl2O4/α-Al2O3复合衬底材料的制备方法
CN101275075A (zh) 一种发光碳化硅薄膜的制备方法
JPH01232732A (ja) 半導体結晶製造方法
CN1624864A (zh) LiGaO2/β-Ga2O3复合衬底材料的制备方法
CN107039250B (zh) 一种在蓝宝石衬底上生长氮化镓材料的方法、氮化镓材料及其用途
CN1279732A (zh) 垂直舟生长工艺用炉料及其应用
CN1528958A (zh) 提高铝酸锂和镓酸锂晶片表层晶格完整性的方法
JP2000044399A (ja) 窒化ガリウム系化合物半導体のバルク結晶製造方法
Saparin et al. Polytype transformations in SiC‐epitaxial layers: The color cathodoluminescence‐sem studies
CN1523640A (zh) 适用于InN-GaN外延生长的复合衬底材料及其制备方法
JP4078996B2 (ja) 窒化物単結晶の製造方法
JP2004099390A (ja) 化合物半導体単結晶の製造方法及び化合物半導体単結晶

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Assignee: Jiangsu Jixing New Materials Co.,Ltd.

Assignor: Shanghai Optical Precision Machinery Inst., Chinese Academy of Sciences

Contract record no.: 2012320000410

Denomination of invention: Method for preparing gamma -LiAlO2/ alpha -Al2O3 composite substrate material

Granted publication date: 20050601

License type: Exclusive License

Open date: 20040218

Record date: 20120406

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050601

Termination date: 20170627