CN1455854A - 氧气燃料燃烧系统及其应用 - Google Patents

氧气燃料燃烧系统及其应用 Download PDF

Info

Publication number
CN1455854A
CN1455854A CN02800125A CN02800125A CN1455854A CN 1455854 A CN1455854 A CN 1455854A CN 02800125 A CN02800125 A CN 02800125A CN 02800125 A CN02800125 A CN 02800125A CN 1455854 A CN1455854 A CN 1455854A
Authority
CN
China
Prior art keywords
oxygen
stove
fuel
carbon
based fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02800125A
Other languages
English (en)
Other versions
CN1221760C (zh
Inventor
迪特里希·M·格罗斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jupiter Oxygen Corp
Original Assignee
Jupiter Oxygen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25290706&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1455854(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jupiter Oxygen Corp filed Critical Jupiter Oxygen Corp
Publication of CN1455854A publication Critical patent/CN1455854A/zh
Application granted granted Critical
Publication of CN1221760C publication Critical patent/CN1221760C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0084Obtaining aluminium melting and handling molten aluminium
    • C22B21/0092Remelting scrap, skimmings or any secondary source aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/003Dry processes only remelting, e.g. of chips, borings, turnings; apparatus used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0003Monitoring the temperature or a characteristic of the charge and using it as a controlling value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0034Regulation through control of a heating quantity such as fuel, oxidant or intensity of current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0034Regulation through control of a heating quantity such as fuel, oxidant or intensity of current
    • F27D2019/004Fuel quantity
    • F27D2019/0043Amount of air or O2 to the burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S266/00Metallurgical apparatus
    • Y10S266/90Metal melting furnaces, e.g. cupola type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S266/00Metallurgical apparatus
    • Y10S266/901Scrap metal preheating or melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S588/00Hazardous or toxic waste destruction or containment
    • Y10S588/90Apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Air Supply (AREA)
  • Furnace Details (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Incineration Of Waste (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

一种氧气燃料燃烧系统,包括至少有一个燃烧器的炉(14)、提供预定纯度氧气的供氧气系统和提供碳基燃料的碳基燃料供给系统。氧气和碳基燃料按照相互比例各自均不超过化学计量比5%的比例投入炉(14)内。碳基燃料燃烧产生超过4500°F的火焰温度。从炉(14)排出的废气流基本上不含有来自氧化剂的因燃烧产生的气态含氮化合物,其他温室气也大为减少。实际上,较常规的燃烧系统,需要较少的碳基燃料而没有能量输出损失。

Description

氧气燃
本发明涉及一种氧气燃料燃烧系统。更具体地涉及一种温室气的产生量减少并且矿物燃料的消耗量降低的氧气燃料燃烧系统。
氧气燃料燃烧系统是已知的,但是其使用受到很大的限制。氧燃料燃烧系统一般只能用在需要极高火焰温度的场合。例如,该系统可用于玻璃制造行业,以达到所需必要的高温加热硅石使其达到熔化状态。然而,众所周知,结构和材料的限制决定了许多工业系统所能承受的温度上限。因此,空气燃料或空气燃烧系统就被用于工业生产的几乎各种场合,包括加工业,发电业和其他行业的锅炉,燃烧炉等类似设备。
特别是,空气燃料燃烧系统或电加热系统可用于整个炼钢和铝制造业,以及发电业等其它依赖碳基燃料的行业。在空气燃料系统中,含氮气79%和含氧气21%的空气和燃料一起被投入燃烧炉。空气燃料混合物被点燃,产生连续的火焰。火焰将能量以热的形式从空气燃料混合物转移到燃烧炉中。
在钢铁和铝制造业中,空气燃料燃烧炉和电加热炉是用来熔化金属的主要热源。就空气燃料燃烧炉来说,人们通常认为它是既符合工艺设备的耐热要求,又能满足能量需要的燃烧系统,强制地或大大地支持了此类燃烧系统的应用。至于铝制造业中的电加热炉,人们也通常认为是能取得制铝工艺所需温度的一种理想的热源。
使用空气燃料燃烧系统的一个缺陷是这些系统能产生NOx和其它如二氧化碳,二氧化硫等温室气,这是燃烧过程的固有结果。NOx和其它温室气是环境污染的罪魁祸首,可导致酸雨,且不仅限于此。因此,人们渴望减少NOx和其他温室气的排放量,而且由于法规规定的限制,通过一些常规的措施,排放量也确实被大大地降低了。只是这样以来,为了限制和/或降低NOx和其它温室气的排放水平,空气燃料燃烧系统中必须加装各种各样的相关设备。
空气燃料燃烧炉的另一缺陷是,燃烧过程所产生的大量热量都被送入燃烧炉的空气中的氮气所吸收或被用来加热这些氮气。这些能量必然被浪费了,因为加热了的氮气一般都从热源如加热炉中排出去了。因此,大量的能量费用又通过废气烟道等而被浪费在环境中。已知的空气燃料燃烧系统的其它缺陷,本领域技术人员可以认识到。
电加热炉同样有其缺陷。例如,该系统固有的缺陷是需要一个连续无间断供电的电源。因为需要大量的电以使电加热炉运转,一般需要把这些炉子安装在发电厂和/或大型电力传输站的附近。此外,电加热炉需要大量的维护,以确保其车最佳效率或接近最佳效率的状态下操作。而且,电加热炉的另一个固有的问题是将燃料转化为电能的效率本来就不高(多数大型使用蒸汽透平机的矿物燃料发电厂的效率在约40%以下,一般的甚至低于约30%)。另外,这些大型矿物燃料电厂制造了极大量的NOx和其它温室气。
例如,在铝加工业中,尤其在废铝回收行业中,通常的观点认为炉内的火焰温度应当保持在大约2500°F到3000°F之间,这个范围既能提供足够的能量使废铝熔化,又能使约1450°F的融熔态的金属保持在适当的熔融温度下。已知加热炉的设计为其火焰温度一般不超过3000°F,以确保炉子结构的完好。就是说,如果超过这一温度限制,可能破坏炉子的支撑结构的强度,从而导致灾难性的后果。而且,对于常规的炉子,其烟囱温度一般为约1600°F。这样,火焰温度和排出气的温度差只有1400°F左右,这使得燃烧产生的能量的利用率低。
如果炉内火焰超过了3000°F,人们确信热量损失和对设备的潜在损害已远超过使用更高温火焰所能取得的效益。因此,常规的考虑是选用火焰温度上限是约3000°F(根据化学计量式得出)的空气燃料炉,这样能保证炉子的完好和降低热量损失。
因此,需要一种这样的燃烧系统,它既具有减少环境污染(减少NOx和其它温室气的排放)的优点,同时又能具有高效率的能量利用。可期望,这种燃烧系统能被广泛应用于各个工业行业,从发电工业到化学工业,金属制造和加工业等行业。这种燃烧系统可以应用于金属如铝的加工行业,它既能提供高能效又能减少环境污染。因此,特别是在废铝加工业,也还需要一套加工设备(专门的燃烧炉),其设计和结构可以耐受与这种高效燃烧系统相联系的升高了的火焰温度,并且可以提高能效和减少污染物的生产量。
发明概述
氧气燃料燃烧系统包括具有可控环境的燃烧炉,并包括至少一个燃烧器。该系统具有氧气供给系统以供给预定纯度的氧气,和碳基燃料供给系统以供给碳基燃料。本发明的氧气燃料燃烧系统提高了燃料燃烧效率(即减少了燃料消耗),不产生Nox(除非燃料中含氮),大幅减少其他温室气的产生。
将氧气和碳基燃料按照氧气或碳基燃料的量不超过化学计量比例5%的比例投入炉内。碳基燃料燃烧产生超过4500°F左右的火焰温度,而从炉内排出的废气的温度不超过约1100°F。
优选地,该燃烧系统含有控制系统,用以控制氧气和碳基燃料的供给量。在该控制系统中,燃料的投入量随氧气投入量的变化而变化。而氧气和燃料的投入量由预定的熔融铝的温度决定。在此系统中,由传感器测定熔融铝的温度。
碳基燃料可以是任何类型的燃料。在一实施方案中该燃料为气体,如天然气,甲烷等。或者燃料是固体燃料,如煤或煤屑。也可以是液体燃料,如燃料油,包括废油。
作为应用的例子,该燃料系统可用于废铝回收系统以实现废铝的回收。该系统包括装载预定温度的熔融铝的炉子和至少一个燃烧器。回收系统包括氧气供给系统,通过燃烧系统向炉内提供氧气。为取得最大的效率,所供给的氧的纯度应不低于约85%。
碳基燃料供给系统提供碳基燃料。按照氧气或碳基燃料量不超过化学计量比例5%的比例,将氧气和碳基燃料投入炉内,碳基燃料燃烧产生温度超过约4500°F的火焰,而炉内排出的废气流的温度不高于约1100°F。
在该回收系统中,氧气和燃料燃烧产生热量,用以从废铝中回收铝,比例为每收回一磅铝大约需要约1083BTU热量。燃料可为气体如天然气,也可为固体或液体燃料。
在此回收系统中,从炉内释放出的热可被一个废热回收系统回收,回收热可转化成电能。
在最优选的系统中,燃烧系统应包括一个供氧系统。这样的系统把空气分离成氧气和氮气。例如深冷分离系统就是这样一个系统。其它分离系统还有膜分离系统等。氧气还可以由水分解成氧气和氢气而得。在这样的系统中,氧气可以被贮藏以备用。另外还有一些已知的氧气发生/分离系统。
氧气燃料燃烧系统一般来说可和任何具有可控环境的燃烧炉配套使用。就是说使用与外部环境基本上无泄露的任何燃烧炉。这样的燃烧系统具有供给既定纯度氧气的供氧系统和供给碳基燃料的供燃料系统。
按照氧气和碳基燃料不超过化学计量比例的5%的比例将氧气和燃料投入炉内。从这种燃烧炉排出的废气流里,基本不含有因为含氮燃烧而产生的气体化合物。也就是说,由于无氮气和燃料一起通入炉内,除非燃料中含有氮,废气中基本没有含氮燃烧物(NOx),而其他温室气的含量也大大降低。
这种燃烧系统可使用各种碳基燃料,包括气体燃料,例如天然气和甲烷;固体燃料,例如煤或煤屑;或任何液体燃料如石油,包括废油和精制油。在这种燃烧系统中,任何含氮燃烧产生的气体化合物的产生都是因为燃料中含有氮。
由废铝回收铝的方法包括把废铝送入熔化炉内,氧气和碳基燃料也在炉内燃烧。在燃烧过程中,按照氧气或碳基燃料不超过化学计量比例的5%的比例将氧气和碳基燃料投入燃烧炉,燃烧的火焰温度超过约4500°F,而从炉里排出的废气流的温度不超过约1100°F。
铝在炉内熔化,含铝污物被从炉内除去,基本纯净的熔融铝被卸出炉外。该方法还可以包括将铝从含污染物铝即浮渣中回收,并且把回收的铝又送入熔化炉的步骤。
这种方法还可以包括回收从炉中排出的废热,这些回收的废热可被转化成电能。
从废铝中回收铝的燃烧炉含有用来盛装既定温度的熔融铝的熔化池和至少一个燃烧器。供氧系统供给纯度不低于85%的氧气,以及燃料供给系统供给碳基燃料如天然气,煤和石油等。
按照氧和碳基燃料不超过化学计量比5%的比例将它们投入炉内。燃料燃烧产生的火焰的温度在4500°F以上,而废气流的温度不高于约1100°F。
在一实施方案中,炉体可由钢板、钢柱和耐火材料制成。炉壁构造成钢柱和钢板的外壳,并至少有一层耐压绝热材料,至少一层耐火砖和至少一层可铸耐火材料。炉底面构造成钢柱和钢板的外壳,并有至少两层耐火材料和至少一层可铸耐火材料。
将铝从废渣中分离的无盐回收法已经公开,它包括将含铝废渣投入炉内的步骤。炉子的氧气燃料燃烧系统可产生大约5000°F的火焰,氧基本不过量。含铝废渣在炉内融化。
熔化的含铝废渣的上面部分可被撇去,得到较重的含铝废渣产品,可用机械压榨法将其中的铝压榨出来,并得到富集的重含铝废渣产物。该方法可以包括再将上述废渣产品重新投入熔化炉中。加入炉内的含铝废渣在炉内受到近乎于直接火焰的冲击,从废渣释放出氧化物。
通过下面的详细描述和所附的权利要求书,本发明的特点和优势将更加明晰。
附图的几个视图的简要说明
根据下面的详细说明和附图,本领域普通技术人员可以更加清楚地理解本发明的特点和好处。
图1是一例示的废铝回收工艺的总流程示意图,其中包括具有氧气燃料燃烧系统的熔化炉。在这样的燃烧系统中,温室气体的产生量和燃料的消耗量都降低,体现了本发明的实质。
图2是图1的废渣处理过程总流程示意图的后续操作部分,具有体现本发明实质的氧气燃料燃烧系统的回收炉。
图3是例示的用于氧气燃料燃烧系统的天然气供给系统和氧气供给系统流程图。
图4是整个装置示意图,显示了从深冷装置流向燃烧炉的氧气供给系统,还进一步说明了例示的废热回收装置。
图5是根据本发明原理,应用了氧气燃料燃烧系统的铝熔化炉的示意图。
图6是图5中熔化炉的侧视图。
图7是图6中熔化炉的前视图。
图8和图9分别是熔化炉的侧墙和底部局部剖面图。
图10是使用氧气燃料燃烧系统的燃烧器装配图。
图11是用于本发明的氧燃料燃烧系统的例示的控制系统示意图。
图12是例示的动力锅炉或燃烧炉前墙的示意图,显示了燃烧器和空气送入系统的排布,并显示了与体现本发明实质的氧气燃料燃烧系统的结合。
图13是废物焚化炉的示意图,显示了其与体现本发明实质的氧气燃料燃烧系统的结合。
本发明的详细描述
本发明有各种的具体实施方式,附图所示的和后面详细描述的优选实施方式应理解为只是本发明公开的示例,而不是将本发明限于所示的具体实施例之内。更进一步的理解是,本说明书此部分标题,即“发明的详细描述”,与美国专利局所要求的条件有关,而不是在暗示,也不应推定是在限制所公开的本发明主题。
氧气燃料燃烧系统使用基本上纯的氧气,和燃料一起,通过火焰的产生(即燃烧),以一种有效的、环境上不可逆的方式产生热量。作为氧化剂的氧气,浓度应在约85%-约99%之间,当然,优选氧气的浓度(即供给氧气的纯度)尽可能的高。在这样的系统中,高纯度氧气和燃料一起按化学计量的比例被送入燃烧炉中的燃烧器。氧气和燃料被点燃,释放出储藏在燃料中的能量。为本发明公开之目的,所述燃烧炉可被广义理解为包括所有工业或商业的燃烧矿物质(碳基燃料)燃料的热量发生器。在一个优选系统中,氧气的浓度或纯度根据实际情况尽可能地高,以降低温室气的产生。
可以期望的是,基本上任何燃料都可使用。例如,下文将要详细描述的应用中,氧气是和天然气一起被送入炉内燃烧的。别的可用燃料包括石油,如精制油和废油,木材,煤,煤屑,废弃物(垃圾废物)等等。本领域技术人员知道可用于本氧气燃料燃烧系统的多种燃料源。
本系统和常规系统有两个主要不同点。首先,常规燃烧系统使用空气(作为氧化剂以提供氧),而不是用基本上纯的氧气来发生燃烧。空气中的氧气成分(含量为21%)被用于燃烧,而其他成分(主要是氮气)在炉内被加热并被排出炉外。其次,在本发明的系统中,使用的氧气是按和燃料的化学计量比例进行配比的,也就是说,只要按照比例投入足够的氧气就可保证充分燃烧,而无过量的氧气投入系统。
使用本系统有许多优点和好处。已发现,产生同样量的电或热的燃料消耗量减少了,在某些应用中减少可高达70%,这一点在下文将要描述。重要的是,该系统使燃烧产生的污染物量极大的降低。而在某些应用中,NOx的排放量可基本上降到零,而且与常规空气燃料燃烧系统相比,其他温室气的排放量的减少也可高达约70%。废铝回收工艺实例
在一个具体应用中,氧气燃料燃烧系统(也称氧燃料系统)可被用于废铝回收装置10。一个示例的装置的流程见图1-2。废铝(通常标示为12)被送入熔化炉14,并被液化。装置10可有与14并联的多个炉子,其中一个已被画出。液态或熔融态铝被从熔化炉14中抽出,并被送入较小的储料炉或储料室16中储存,储料炉16也是一个氧气燃料燃烧炉。如有必要,融化态的铝被从熔化炉14中抽出到储料炉16中,在储料炉16中保持一定高度的液位。这可使得从熔化炉14中的抽出持续进行或按要求“间歇”抽出。
在储料炉16中,如18和20所示的氯气和氮气(为气体)分别被送入储料炉16,有利于吸收熔融态铝中的杂质。氯气和氮气的功能是作为气态融合剂,吸收铝中的杂质。为提高油性和污废铝的洁净度,这一步也可在熔化炉14中进行。其他可考虑的融合剂包括是气态的氩的六氟化物。储料炉16应予加热,使其温度保持在铝的融化温度约1300°F。储料炉16中的空气温度应稍高些。
然后将熔融的铝过滤。目前使用的是一个袋状的微粒过滤器22。当然,其他类型的过滤器是已知的并可使用。将过滤后的熔融态的铝送入脱气炉24。
在脱气炉24内,将融合剂如惰性气体(使用的是氮气,如26所标示)通入熔融铝中。搅动熔融铝,可使用如28所示的机械搅拌器搅动,融合剂26在熔融铝中鼓泡,将杂质(如氧化物)带离铝。
然后将熔融铝通入串联的铸型机30中。在铸型机30中,铝被浇铸成连续的板,其厚度可为0.1---0.75英寸或更厚。然后铝可被绕成如32所示的盘卷,以供使用或作进一步加工之用。在本方法中,上述铝产品从铸型机30中行进通过一对热轧机34,在热轧机34中,板状铝被轧成最终厚度或标准规格,目前约为0.082英寸(约82密耳),然后被盘绕成盘卷32。本领域技术人员可以理解并懂得对金属进行各种加工和成型的工艺。所有这些加工和成型工艺都在本发明的范围和实质内容之内。
回到上述的熔化炉14,它是一个氧气燃料燃烧炉。碳基燃料如天然气和氧气按化学计量比例投入炉中。这不同于使用空气和燃料混合物的已知的燃烧炉,燃料/空气混合物将氧气和氮气都带进炉内,支持燃烧。这导致产生了不想要的NOx废气。而且氮气从熔融铝中吸收能量,因此降低了该工艺的整体效率。也就是说,由于氮气在空气中所占的比例很大,大量的热被用来加热氮气而不是铝。
在熔化和储料炉14,16中,氧气/天然气比约为2.36∶1。这一比例随所供氧气纯度和燃料的性质而变化。例如,在100%纯氧的理想条件下,理论上这一比例计算为2.056∶1。但是,所供氧气中可能含有至多15%的非氧气成分,而且天然气的纯度也不总是100%纯度。因此,本领域技术人员知道并理解这一比例可能会有轻微的变化,但以燃料和氧气化学计量作为计算的基础总是正确的。
氧气、燃料的这一比例有很多优点。首先,化学计量比使燃料完全燃烧,这样可减少一氧化碳、NOx和其他有害气体的产生(一般是其他温室气)。而且,严格控制氧气的比例也可减少熔融铝中氧化物的量。这样反过来又可得到更高质量的最终铝产品,减少了许多为除掉这些不想要的氧化物污染物而进行的处理。
重要的是,要注意精确控制氧气与燃料之比,保证燃料的充分燃烧。这一点与比如使用矿物燃料的电厂(如公用发电厂)形成鲜明的对比,后者往往会发生LOI(点火损失)。事实上,LOI就意味着燃料的不完全燃烧。而本方法中,基本上纯的氧气按严格控制的与燃料的化学计量比投入,尽可能地减少了和消除了这些损失。而且,本方法中,理论上,NOx只可能由燃料中的氮生成,而不可能由于使用了空气而生成。因此,如果NOx的产生不能完全消除,相对于常规燃烧系统,也减少到了微不足道的水平。
铝中的氧化物有两个主要来源。首先来自于燃烧过程;其次铝中本来就有氧化物。尤其对于铝含量低的废铝或主要金属更是如此。本方法考虑了氧化物的这两个来源,并减少或消除其对最终铝产品的影响。首先,本方法减少由于加入氧气使燃料燃烧而产生的氧化物。这是通过严格按照计量比控制氧的供给量以使燃料完全燃烧而实现的。
本方法也考虑了氧化物的第二个来源(存在于铝中的氧化物),通过脱气和过滤工艺可除去这些氧化物。这样做的好处是双重的。首先以浮渣D形成的副产物会减少,其次是大大提高了最终铝产品的质量。
已经发现,使用燃料/氧气混合物(再次强调,不是燃料/空气混合物),可在熔化炉中产生更高温度的火焰。使用氧气燃料混合物可使炉内火焰温度达到5000°F。这要高出其他已知熔化炉内的火焰温度大约1500°F到2000°F。还发现,使用氧气燃料混合物,伴随更高的火焰温度,可使整个过程的效率有很大提高。在一种效率测定中,可测量生产一磅铝所消耗的能量(BTU)。在已有的工艺中,所需能量约是3620BTU/1b加工的产品。在本方法和设备中,能量需求减少,约为1083BTU/1b加工的产品。也应注意,尽管本方法中上述讨论的“燃料”都是指天然气,但是任何有机质燃料,例如石油(包括废油),煤,煤屑等也都可使用。
为理解本方法的热力学之目的,熔化一磅铝所需的理论热量是504BTUs。但是在具体的过程中效率降低是不可避免的,因此对于空气燃料燃烧系统,这一实际热量值为3620BTU/1b。低效率包括如实际加工处理时间少于“点燃”炉子的实际时间,以及其它下游工艺改变如铸造机宽度增大或减小。另外,其他“损失”如烟道(热)损失,炉壁的热损失,都能增大这个能量差。
而且,即便考虑了这些损失,1083BTU/1b数值也是一个平均能量需要量。已经发现,如果在较高效率下运行,即对铝进行几乎是连续的处理,而不是使熔化炉空烧,“平均”能耗可降至大约750BTU/1b到900BTU/1b。熔化炉
本发明的熔化炉14主要是由钢材和耐火材料制成。参看图5-9,炉壳的外侧尺寸为:宽约20英尺,长约40英尺,高约12英尺。钢壳结构42由钢板和钢柱制成。除了指明的以外,炉壳42结构中的钢板和钢柱分别与44和46中的是相同的。底层48是由一英寸厚的钢板44焊接而成。为了保护炉壳42的完整性,每一个焊缝都在钢柱46上。
为支撑炉的底层48,要外加钢柱46。钢柱46在中心每隔18英寸提供一个8英寸宽的法兰支撑。所有钢柱46(除了完全对口焊接的连接柱)都要焊接在底部钢板50上。这样就可以承受加热时由于热膨胀而使钢材“增大”。
钢柱46可为炉子底板52提供支撑和刚性。钢柱46使炉子14保持刚性,以防在安装耐火材料和长期使用时发生屈曲。钢柱46也提供支撑,使得炉子14工作时对耐火材料的机械载荷能降至最小。钢柱46还能提高炉底52从炉14的安装位置,这可使聚集在炉14下的热得以释放。
炉的侧墙54同样是钢板和钢柱结构,两墙区分位于金属线上和金属线下。做这种划分是出于强度和热值的考虑。
金属线下的部分,钢板厚度为3/4英寸厚,线上部分钢板厚度为5/8英寸。在本炉子上,根据设计,金属线下的高度是8英尺,金属线上的高度是4英尺。
钢柱46被用来为炉的侧墙54提供支撑。钢柱46在18英寸中心线上沿炉14垂直固定。水平钢柱46固定在金属线下18英寸中心处和金属线上24英寸中心处。尽管炉14的金属线有各种变化,出于设计考虑,上述尺寸代表熔化炉14正常运转时金属处于最高液位时的情况。还可考虑其它因素,例如,假定金属线在炉14的最大填充线上9英寸。
熔化炉14的顶部56为悬挂式耐热设计。钢柱46位于沿炉14宽度于18英寸中心处。外加钢柱46与横跨炉宽的钢柱相焊接。外加钢柱沿炉14的长度方向排列。固定夹安装在这些钢柱上。预铸耐火材料也由这些钢柱固定。
炉子14在炉侧墙54上有两个主要的门58。门58用来在运转时撇去浮渣或清理主炉加热室或浴区60,并用于主炉室60的装载。浮渣D(存在于熔融铝的表层的渣滓)经常沉积在炉子中,为保持传热率,一天至少得清理一次。浮渣D通过打开门58撇去熔融金属池表面物而除去。
尽管在通常的运转中,金属或废渣都先放置在装载井42中,然后被熔化并被转移到炉加热室60中,但对于有些废渣,如炉底结块和铸块,最好直接将其送往主加热室60。门58可打开用于向加热室60转运这些废渣。
门60属于钢加耐火结构。门60悬挂于一个机械滑轮系统上(未画出),用安全链阻止门60掉落地面,以防滑轮系统万一出现故障。电动铰链用于操纵该门。门60应悬离由炉14的侧墙54支撑的通用交叉构件。
主装载井62位于炉14前部64处。井62与炉主加热室60隔开,并被分成两个区域:装载区66和循环泵区68。循环泵70使金属从主加热室60中的热熔融铝池循环到废渣装载区62。
在60,66和68室之间有三个开孔,如72、74和76所示。第一个开孔72在主加热室60和泵井68之间的隔板上。第二个开孔74在泵井68和废铝装载区66之间的隔板上。第三个开孔76在装载井66和主加热室60之间的隔板上。
三个开孔72、74、76都在炉14物理或实际金属线下约一英尺的地方。开孔72、74、76在金属线以下是为了保持加热室60中的热量不散失,同时防止氧化物在炉14的分离区之间流动,并可保持整个炉子的气密性(即维持熔化炉14内为可控的环境)。泵70的位置稍高,以防大量加热炉的废物,石块和浮渣积聚在泵70内或其周围。
废气处理罩78安装在装载室66的上方。罩78为刚制,并固定在钢柱46上,类似于侧壁54的结构。钢柱46固定在覆盖于装载井侧壁的钢板上,基本上覆盖住它。罩78通过烟道80开孔于主加热室60(见图4)。烟道80将熔化炉14中的废气排出,并能关闭,以使炉14内压力得以保持。
废气排出熔化炉14,并流向袋形室82(见图4)。袋形室82主要用来收集来源于涂料,油,溶剂等存在于废铝工艺中的未燃烧的碳。
熔化炉14具有四个氧气燃料燃烧器84,氧气燃料燃烧器84安装在炉14的侧壁54上,和门58相对。钢结构环绕燃烧器84将其固定,并保持周围的壁的刚性。
炉14中充填耐火材料。底部48有两种不同的耐火材料。第一种材料86是浇铸铁板,约6英寸厚,具有高强度,是可铸型耐火材料,例如AP Green KS-4,其形成次炉底。底层材料88以整块的厚约13-14英寸的方式浇铸在次炉底86上。底层材料88是AP Green 70AR耐火材料,是含70%的氧化铝的耐铝的可铸性耐火材料。
墙54,64,和65都有两层绝热层90,然后是70AR可浇铸的或整块的结合了85%氧化铝的磷酸盐(MONOP85)的紧密弹性耐火材料92,该材料的氧化铝含量为85%。背衬绝热层90为绝缘板,在炉的侧墙54处为约2英寸厚,炉的前墙和尾墙64,65处为3英寸厚。绝热层90的厚度不同是为适应熔化炉14的热膨胀。炉墙54,64和65每一直线英尺要增长1/8。这样,炉14总共要增长约5英寸(按40英寸计)。由于背衬绝热层90有6英寸的厚度(前墙和尾墙各3英寸),这样绝热层90会被压紧,可以使炉墙54,64,65的增长不会破坏炉壳42。
绝热砖94安装在可压紧的绝热板90和铸型耐火材料92之间。顶56为含氧化铝70%的可铸耐火材料。该材料被浇铸进顶棚的六个区。门58的每个门框为含氧化铝70%的AR耐火材料。
炉14有两套排放口(图上未显示)。一套安装炉子底部52上,作为排出口。另一套安装在距炉底16英寸的地方,作为输送口。为了方便更换,输送口安装在炉子外侧。炉内做好后再在外面安装输送口,并用弹性塞子将其塞住。
炉里有两个斜道(图上未画出)。在各个主装载门58旁边,斜道用以从熔融金属中去除渣或撇去浮渣,并可使废铝滑入炉内。斜道由两种材料组成,基材主要是低等级的耐铝砖,构成斜道。砖上覆盖可铸型耐火材料(约18英寸厚),例如70AR材料。斜道由底梁边缘延伸到炉内。
将主炉室60与装载井62分隔开的墙96厚约22英寸,为70AR耐火材料。墙96为浇铸而成的整体结构。
从空载到装载并保持熔融铝,炉14有多种运行方式。当炉14处于极限工作状态时,炉子大约装填80%到90%。熔融铝的温度约为1400°F,炉内气体的温度约为1800°F,烟道(废气)的温度约为1000°F,气体温度由安装在炉14的上部侧墙54的热电偶98测定。金属的温度在循环泵基处测定。
废铝以大约一次3000磅的流量进入炉内装载井62里。可以理解的是,进入炉内的废铝的尺寸和重量应随着炉子14的尺寸大小和容量的变化而变化。
循环泵70将主室60中的熔融金属送入冷金属装载室。通过传导,熔融金属将热传递给冷金属装载室。装载室内的金属迅速被加热并熔化。
热向装载铝转移的主要方式是传导。盛满熔融铝的炉子是一个大热量槽,增强了热传导效率。当炉子有80%到90%容量的时候,有约220,000磅温度为1400°F的熔融铝。当废铝进入炉14后,池子就成为了一个热量槽,并向进入的铝传递所需的热量。适应于本氧气燃料燃烧系统,不管炉子的大小和规模,这一点总是一致的。循环泵70通过把熔融铝从主炉室60运送到装载室62,有助于废铝的熔化。此外,通过运送熔融铝,整个炉子14中的热分层现象不大。
已经发现,通过泵送或运送熔融铝,炉14的顶部和底部(其高度差为42英寸)温度差只有几华氏度,因此燃烧炉14可被作为一个稳定的热量槽,为向装载金属传导热连续提供一个持续的热源。
热量由燃烧器84输入炉14。可以相信,向炉14传送热量的主要方式为辐射,伴随一些对流。因为有很高的火焰温度,氧气燃料燃烧系统可以供给高效的辐射热传送。为提高热传递效率,炉子14的几何尺寸也作进一步的设计,使从火焰到金属发生热传递的金属表面积最大化。
此外,金属线以上的耐火材料中的氧化铝含量很高。这种材料可把热从燃烧器反射回熔融铝。与此相对照,常规炉子的设计不是把热量反射回熔融金属池,而是把热量由炉散失掉了。
例如,传统炉子在其侧墙上部使用氧化铝含量低,绝热率高的耐火材料。与此相反,本系统的设计使用氧化铝含量高的耐火材料,以便将更多的辐射热从燃烧器84反射回池区60。这与常规炉子也是不一样的。传统炉子中较低的侧墙(定义为金属线以下)使用较高氧化铝含量的耐火材料,以增加强度。与此相反,本系统的设计使用氧化铝含量低的可铸型耐火材料,其性能先进,并且有更高的绝热率。从某种意义上说,本系统的设计与耐火材料传统的应用方式完全相反。
而且,由于没有氮气送入炉14内(不是指燃料中所含的氮),通过炉子14的热气量(如废气)非常少。有利的是,这增加了气体在炉内停留的时间,为把热传送给熔融金属提供了更多的可能。对流传热尽管相对要少,但也较常规炉子更高效。因为热气在炉14中温度接近5000°F并有相对长的停留时间,所以在排废气之前,大量的热都传递出去了。
炉14向每磅铝提供1083BTU热量以使其熔化。向炉子14输入的最大热量是每小时大约4千万BTU(40MMBTU),而常规炉子的热量输入约为10-20MMBTU每小时。当然,输入多少热量,要由将要熔化的废料的量和要求的生产量来决定。本炉每小时可熔化40,000磅废料。燃烧系统
燃烧系统见图3,如100所示,是一个二元燃烧组,依靠燃料如天然气、燃料油、废油、煤(粉状煤、渣煤和液化煤)和氧气源工作。此系统设计成两个完整的燃烧系统,以方便维护,以及在使用率低时能保存能量。图3显示了一个供氧系统102和一个例示的天然气燃料供给系统104。
燃烧系统100由一个控制系统所控制(见图11,如120所示),控制系统包括一个中央处理单元(CPU)106,处理所有输入数据,包括金属温度、气体温度、燃料和氧气流量等,并提供一个操作界面。每个燃烧系统可单独运行,也可根据运行条件和需要,将两个系统协作运行。
用来控制燃烧系统100的主要过程输入参数是金属浴温度,由热电偶108测定。可选择的过程输入参数包括来自几个气体温度传感器98,110之一的信号。控制内容包括从安装在炉墙上部、烟囱和炉顶的热电偶(K型)输入的信号,如112所示。主热电偶108安装于融熔金属浴60中。气温热电偶112外面为氧化铝或类似材料所覆盖,以保护测量器件与大气隔离。熔融金属浴热电偶108由陶瓷覆盖物所保护,免受熔融金属的损害,该陶瓷覆盖物可以耐受熔融金属中高温和腐蚀的环境。只有当金属浴温度降至预设温度以下时,热电偶108才开始测定燃烧系统的温度。
烟道热电偶或炉顶热电偶116也有超温保护设计。热电偶116与一个超温电路相联接,当达到一定温度极限,此电路可关闭燃烧系统102、104以保护耐火材料和炉14。
安装于墙体上部的热电偶98主要用于监测炉14中的气体温度。当缺少熔融浴热电偶108时,该热电偶也可用来监控炉14的运行。当金属首先被投入炉14内或融熔金属的液面在熔融浴热电偶108之下时,上部墙体上的热电偶112的信号也被用作工艺输入参数。
操作人员完全控制各个温度的预定值。控制板118包括热电偶92、108、110、112、114、116的温度显示器。操作人员可调节每个热电偶的预定值直至达到操作极限。操作预定值的极限可在CPU内设置,以便获得任意范围内的温度。
燃烧系统的控制系统120分为两部分。第一部分122包括硬线安全装置,如继电器,限制开关等,本领域技术人员知道这一点。这些装置包括气压开关,开关阀和截止阀,以及火焰探测器。控制系统120第二部分124具有监测和自动控制功能,由CPU106执行。
输气线104有两条,以便当一条工作时,另一条可以不工作,如进行维护,或使其进入低载期。每条输气线104的合适尺寸由氧气流量的要求而定。每条输气线104都开始于球形截止阀130。管线132输送的气体,通过滤网134以除去管路中的任何杂质。通过滤网134后,气体指示管线136从管线132延伸出去。
回压调节阀138用于降低管内压力。目前,氧气压力设定为大约每平方英寸18磅(psig)。沿管线设有截止阀140和安全阀142。压差流量计144安装于安全阀142的下游。当气体流过孔板146时,流量计144测定气体的温度和压差。流量计144为Rosemount 3095型压差流量计。
通过这些测定,流速就被确定,然后将信号传输给控制系统120。流量计144下游有一个控制阀148。在此布局中,调控阀被用来接收来自控制系统120的输出信号。阀148将信号传输给控制系统120,具体是CPU106,指出了阀148的实际位置。
输气线104分为独立的两根线104a、b,每根线上有阀150a、b,阀150a、b用以平衡每个燃烧器84的供气量,使气流能合理分配。
氧气输送线102类似于输气线104,就是其尺寸和管件要大一些,以与较大的氧气流量相适应。一个示例的氧气输送线102如图3所示,相对应于燃料输送线104,其上的管件都用200系列标注符注明。
参看图10,燃烧器84基本为直线型设计。在4个燃烧器84中,每一个燃烧器都有一个主进口喷嘴152伸入炉内。燃料气进口154在炉墙54外伸入主喷嘴152。氧气输入主喷嘴152与燃料气混合。点火器(图中未标示)通过中央开口156伸入主喷嘴152,点火器打火,点燃燃料/氧气混合物。
燃烧系统100的运行由操作启动和CPU106自动控制相结合进行的,容易操作。电流通向控制系统,使控制系统120的CPU106和硬线安全区122工作。CPU106启动,与构成硬线安全区122部件的控制阀、热电偶和继电器联系。燃料气和氧气的压力开关都是高低双开关设计。正常情况下,低压开关是关的信号,而高压开关是开的信号,CPU106判定信号是否正常和工作是否继续进行。如果查觉了不正常信号,就有听觉和视觉警示出现。控制程序也能监视燃烧气和氧气控制阀148、248是否处于“小火”位置。如果控制阀148、248处于适当位置,允许控制系统120执行启动程序的信号就会被传输,超温信号必须清晰,以使系统120能够通过启动程序。
当所有开车条件都满足时,启动氮气吹扫循环。氮气被用来吹扫残留在炉14内的所有可燃气体。氮气吹扫的时间要使通过炉14的置换氮气的体积为炉子14容量的2.5倍。
当吹扫结束后,一个或两个燃烧系统被启动。控制开关将一套或所有燃烧器84置于工作状态。火焰控制器打开引导螺线管。引导螺线管正常情况下是关闭的。但系统启动时,引导螺线管打开,燃料气和氧气通过引导装置流入。
在引导装置尖端部,气体混合并被火焰控制器发射出的火花点燃。点燃时,火焰探测器126探测是否有火焰产生,并将信号传送给控制系统120。一旦探测到火焰,控制系统120就为燃料气和氧气打开主截止阀。
主燃料和氧气开关阀140、240可独立操作。安全阀142、242的设计是,如果燃料气阀140不打开,则安全阀142、242也不打开。当主燃料阀140打开,燃料气和氧气安全阀142、242也打开。一旦所有主阀都打开,控制板118上各气路的指示灯和继电器都会发出信号。在预设时间内,导向计时器会一直处于工作状态,大约为30秒。一旦预设时间结束,导向电路关闭,正常情况下,关闭了的螺线管阀也会断电,与导向装置和每个燃料系统的导向指示灯相脱离。
火焰探测器126连续监测火焰。当没有火焰指示,示警信号会传输到CPU106,控制电路会关闭燃料气和氧气开关阀140,240和截止阀142、242。
一旦引导装置关闭,燃烧炉在控制系统120的控制下自动运行。如果系统120被设置成“小火”,不管流程和设定值如何,氧气控制阀248都保持在关闭状态。由于燃料气流量随氧气流量变化,所以燃料气控制阀在其范围内不受限制。控制系统120按预定比例保持着燃料气。
当处于自动运行模式时,如果操作和设定值发生偏差,控制系统120会有响应。炉温会被监测,并与温度设定值进行比较。当运行温度偏离设定值,发出误差信号时,控制系统120会向氧气控制阀248传输一个信号。燃料气控制阀148也由控制系统120控制。设定参数随氧气流量(与化学计量比例相一致)变化,氧气流量由氧气流量计测定。控制系统120限制控制阀148、248,这样也就限制了燃烧器84的输出能量。
燃烧系统100,特别是控制系统120可以设计成能满足任何依赖于碳基燃料的工业行业使用。例如,在本发明废铝回收装置10中,氧气燃料系统100就有3种应用或用途。第一是在高产量环境中(即在熔化炉14中)熔化铝。第二是在储存槽16中,系统100主要用于保持温度稳定状态和熔融铝或合金的混合。最后一个应用是浮渣熔化炉166中,在此熔化炉中,高温燃烧器用来利用热冲击使金属单元(这里指可被回收的铝)与熔渣D(熔融的副产物)相分离。在每一种用途中,为贮备能量和环境保护的原因,都要安装燃烧器。
本燃料系统100的用途随热输出量(按每小时输出最大的MMBTU单位计)、燃烧器84的尺寸和方向,以及炉14、16和166的设计操作温度不同而变化。本领域技术人员知道为满足这些不同的需要,机械上的差异(如管的尺寸大小)是必需的,并且知道控制系统120和CPU106的具体操作程序也可有所变化。
相对于已知和现在使用的燃烧系统,本燃烧系统100具有很多优点。例如通过运行已经表明,使用本燃烧系统100,可以节省相当多的能量。相对于常规燃烧器,氧气燃料燃烧器84能在更高的温度下工作。因此可用以熔化金属的热量显著增加(在其他工业应用中,增加的能量例如可用来蒸汽发电,废物焚烧等)。这也使运行燃烧炉14、16、166所需的燃料大为减少。在本发明实践中,已发现熔化每磅铝所需平均(和估计)热输入量已由约3620BTU(使用常规炉)下降到使用炉14时为约1083BTU,降幅约70%。此外,也已表明,储料炉16中保持温度所需的燃料约为常规炉的一半。
确信燃料的节省归因于三个主要因素:第一,在氧气并不过量的情况下,燃烧系统100增加的热量使所有燃料能充分燃烧;第二,有理论根据表明,燃烧系统100的运行在辐射传热区运行,伴有部分热传导。
系统100设计上利用了在炉14、16和166内的辐射热传递的优点,将热量高效地传送给金属浴。第三,由于在燃烧过程中没有氮气的参与,通过炉14、16、166的气流量低。因此,增加了热气流的停留时间,使热气在排出炉14、16和166前,能将大部分能量(以热量的形式)释放出来。
典型的废气量是常规燃烧炉废气量的一小部分。因为在氧气燃料燃烧炉中所用气量就少了近80%(基本上是空气中的氮气),燃烧效率大大提高。使用常规炉,空气中的氮气组分从熔化过程吸收了大量能量(也是以热量的形式)。本燃烧系统100中,氧气(而不是空气)和燃料接化学计量比送入炉14、16、166中并燃烧,并不需要过量的氧气。因此,没有能量被与燃烧无关的原料(如氮气和过量的氧气)所吸收。
本燃烧系统100也能使产量提高。当其安装作为熔化炉的一部分时,熔化炉的熔融能力或总生产量增加了。这同样归因于炉14内热量的快速高效传递。当有新的金属投入燃烧炉14中,燃烧系统100迅速做出反应,为熔化新加入的金属并保持池60中熔融金属的热(温度)在设定的温度提供热量。已经发现,铝能高效吸收辐射热。
也许最重要的一点是,相对于现在已知的和使用的燃烧系统,本系统100降低了对环境的影响。本系统100优势之处在于在燃烧过程中不使用氮气(来自空气)。一般来说,燃烧系统中作为送入的已加热的空气的反应产物,炉内会产生NOx。但是由于本系统100使用氧气而不是空气,本系统中产生的任何NOx,只是由于燃料(如含氮燃料)中存在氮元素。由于燃料中氮的含量极低(相对于常规炉中的空气中的氮气),因此本燃烧系统中NOx的生成量要远低于任何工业标准和政府的限定。除了减少NOx的生成外,别的温室气如一氧化碳的量也大大减少了。
而且,为了减少对环境的影响,本氧气燃料燃烧系统因为能够用较少的燃料(任何碳基燃料,包括煤、煤屑、天然气和石油)加工更多的铝,因而节省了能量。结果,由于较少使用燃料,燃料资源也得以节省。实际上,与加工每磅铝一样,在集合体中使用的燃料也减少了,这降低了处理(如燃料)成本和矿物燃料的使用税。供氧系统
如本领域技术人员所知,本燃烧系统100对氧的要求相当高。为此,尽管可以买氧,储氧以供系统使用,但最好还是有氧气生产装置,就安装在系统附近或干脆就作为系统的一部分,如示例的废铝加工系统那样。
参见图4,本燃烧系统100附带了一个自身使用的深冷装置180。例示的深冷装置180每天生产纯度至少为95%的氧气105吨,每小时生产氮气60,000标准立方英尺,氮气中含有0.1ppm的氧气。装置180具有一台1850马力的三级压缩机182,71psig的压缩空气进入净化器/膨胀器184中,空气离开膨胀器184时的压力6.9Psig,温度为-264°F。接着进入深冷精镏柱186。在柱186中,空气被分离(精馏)成气态氮,液态氮,气态氧和液态氧。气态氧如188中所示,直接被送燃烧系统100,液态氧如190中所示,被储藏在如储存罐191中,以备燃烧系统100以后之用。从深冷装置180出来的氧气的压力可能低于燃烧系统100所要求的压力,所以在柱186的氧气出处与燃烧系统100进料之前装有1台氧气鼓风机192用于将氧气的压力提高到燃烧系统100所需要的压力。
194标示的气态氮被送入装置10下游的退火/应力消除系统(未画出)。用氮气对铝进行处理来消除金属内的压力并使之退火的这些系统,是本领域技术人员知道的。而且氮气194可用于脱气单元24。装置10也有氧和氮各自的备用供应系统191和196,在例如维修期间或其他出现深冷装置180不能满足需求的情况时,其液态形式可备用。备用系统191、196设计成根据需要如深冷装置180停工时自动供给氧气和/或氮气。过量的氮气可被储存、瓶装和卖掉。这些系统都能很方便地从许多生产商,如Praxair,Inc of Danbury,Connecticut那里买到。热量回收
铝处理系统10也利用了来自不同过程的余热。具体地,铝处理系统10可包括一个余热回收系统,如图4中200所示。202所示的来自熔化炉14的和储料炉16中的废气直接被送到废热回收热交换器204的一侧,由于废气202的温度约为1000°F,所以大量的能量可被回收。而且,能量也可以从主炉浴区60上方的气体中回收。
废气202被直接送入废气换热器204。206标示的工作介质,如戊烷,在一定压力下从换热器204的另一端流入。可以理解,板式换热器和板-管式换热器最适合这一场合。本领域专业技术人员知道可用于这些余热回收系统的各种工作介质,以及使用这些工作介质的换热系统。所有这样的系统都在本发明的范围和内容之内。
接着,热流体206被直接送往蒸发器208,在那里,热流体206可膨胀成蒸汽。然后将蒸汽206送往透平发电机组210,用以发电。在冷凝器212中,蒸汽被冷凝又返回换热器204。可以预计,从上述废铝加工装置10的废气202中回收的热量足够发电1.5到2兆瓦。
尽管有多种工作介质206可被用于这种余热或余能回收系统200,但在一个成熟的系统中,工作介质206使用戊烷。这一有机为基础的系统较例如许多蒸汽基介质有多种优点。可以预期,戊烷基工作介质206,在标准Rankine循环体系中,要比气体介质更稳定地供给蒸汽。由于炉(熔化炉14和储料炉16)的热量输出依赖于金属生产量,而不是电力需求,因而输给回收系统200的能量可能有所变化,会成为电力生产的控制性特征。因此,工作介质206如戊烷会为回收系统200提供其所需的更大的灵活性。
如本领域专业技术人员所知,所发的电又可为废铝加工装置10,包括深冷装置180提供部分所需的能量。装置10所需的能量可由用于发电厂(使用燃炉或锅炉)为蒸汽发电机提供蒸汽的氧气燃料燃烧系统提供。在此设计中,如果所生产的电能大于装置10所需,多余的电可被卖掉,例如卖给当地的用电单位。浮渣处理
参看图2,污染物和浮渣D从熔化炉14出来后要在浮渣处理系统中作进一步的处理,使之与回收铝分离,如164所示。浮渣D可通过撇的方式将其从熔化炉14上部的熔融铝池60中除去。可用机械方法,在筛碗168中对浮渣挤压,挤压机可将铝A从浮渣D中挤压出去,通过筛碗168的开口170从筛网中流出。对从浮渣D中挤压出来的铅进行回收,并将其返回熔化炉14。
含氧化物的浮渣被送回回收炉166重新加热。回收炉166和熔化炉14有相同的设计,因为它们都使用氧气燃料燃烧系统100。但在运行过程中,炉166是用约5000°F的直火对废渣进行处理,以将铝从其中“冲击”(shocks)出来。回收炉166的熔融池172的温度也较高,约为1450到1500°F。而炉内的气体温度约为2000-2200°F。此外,由于炉166中基本上没有过量的氧气,“冲击”的过程是在高还原性气氛中进行的(与之相反,常规炉中过量的氧气含量约为3%-5%)
回收炉166中的浮渣同样要被撇去,并被挤压。回收的铝A被返回熔化炉14。剩余的浮渣D2被送到废渣处理器,对铝作进一步的回收。已经发现,包括废渣回收处理的本工艺,金属的回收率大大提高。最终被送去作进一步处理的浮渣D2只是原有浮渣D的一部分,所以降低了处理成本并提高了铝回收率。
重要的是,该废渣回收处理方法164没有使用盐和其它添加剂,所以可用热冲击把金属从氧化物中分离出来。已知的回收方法用盐分离氧化物和金属。在该方法中盐残存在氧化物中,最终也要一起被送去处理。这些盐对环境有危害和/或有毒。因此,本方法164对环境有利,因为其不用盐更不用对其处理。
就整个回收流程164而言,已经发现,本回收步骤(如中间再加热的同时两次挤压)可使铝回收率较已知方法步骤有显著的提高,其中,铝回收率也有赖于废铝等级。从废渣D中回收的金属量可得到成倍百分数的增长。燃烧系统的其他应用
如以上所讨论,明显地,在所有的连续工艺步骤中使用氧气可以提高效率。例如:发电厂可以通过将氧气引入燃烧的配方中(而非空气),升高火焰温度,或减少锅炉中的LOI。这样可使工作效率增加。实际上,使用氧气能增强任何碳基燃料的燃烧。不论在经济上,还是对环境都是有益的。截止目前,除了玻璃制造工业,还没有其他行业使用氧气燃料燃烧技术。在玻璃工业中,使用这项技术,非是为了提高效率,而是加工玻璃需要高温火焰之故。
然而,在所有工业和发电行业使用氧气燃料燃烧系统确实能在产出等量电力和热能输出的前提下,减少燃料的消耗。由于燃料的高效利用(即高效燃烧),燃料消耗降低,NOx的排放量大大减少,基本上是零排放,其他温室气的排放也大大降低。
由于可以使用多种工业燃料,例如煤、天然气、各种油(加热油和废油),木材和其他回收废料,氧气也可用多种办法,用常用的或建议的方法制取。本领域专业技术人员知道,在各行业使用本燃烧系统的潜在价值是非常巨大的。燃料可以基于便利、经济因素、环境因素来选择,所以没有指定燃料,而是有无数的燃料。事实上,所有碳基燃料都适用于本燃烧系统。而且,有很多可行的技术可用来生产高纯度的氧气。这些技术包括深冷技术,膜分裂技术,吸收技术,水解技术等。所有这些燃料的用途以及供氧方法都在本发明范围内。本领域技术人员知道,随氧气生产而得到的其他气体如氮气和氢气,可以贮存,装瓶和卖掉。
如上所述,本燃烧系统的一项应用就是废铝的加工或回收,其他例示性的应用如下面所讨论,包括工业发电锅炉和焚烧炉。这些示例性应用突出了这项技术在广泛的工业应用中很具灵活性和实用性。
总的来说,相对于现用的和传统的燃烧系统,氧气燃料燃烧系统的优势是多方面的。首先是其精确的计量配比,使燃烧体系内无氮气的干扰。这使燃料的利用率大为提高,并减少了NOx的产生。重要的是,较少的燃料可提供相同水平的能量产出,这样使运行成本大为降低。在提供等量的能量产出而使用较少的燃料过程中,自然使废气排放减少,节约燃料和降低排放并不是本系统仅有的两点优势。
发电的蒸汽发生机如工业动力锅炉各种各样,但其基本上都是依靠其燃烧系统产生蒸汽并输给透平发生机。所用燃料根据蒸汽发电机设计的不同也各有差别,但所有锅炉都需要氧化剂。使用本氧气燃料燃烧系统时,高纯度的氧气是整个锅炉唯一的氧化剂,用以替代空气为燃烧供氧。
象用于别的行业那样,本系统用于发电行业同样具有很多优点。例如,由于向燃烧过程提供稳定氧气供给,使得燃烧区的火焰温度升高,同时减少了LOI(点火损失)。由于火焰温度升高,即便保持相同的燃料燃烧率,也可获得更多的蒸汽。由于提高了火焰温度,使用同样的燃料燃烧能产生更大的蒸汽量。反过来说,产生或输出相同的电力,燃料燃烧量降低。火焰温度依赖于供给燃烧系统的氧气的纯度。为此,没有氧气的补入和富集(即燃烧仅仅为纯的空气),火焰温度约3000°F。参考上面的讨论,若使用纯氧气作氧化剂,火焰温度可达约4500°F到5000°F。用内推法(可认为线性),根据氧气纯度的变化可得到在这些温度之间的预期火焰温度。
根据化学计算式,在保证火焰稳定的前提下,氧气可和过热空气系统125及低NOx燃烧炉联合使用,以减少NOx和其他温室气的产生。一般的低NOx燃烧炉LOI有所增加,这就意味着燃掉更多的燃料。通过向燃烧系统加入富氧,使得燃料完全燃烧,而由于按剂量加入而没有产生NOx的额外的氮气存在(通过另外的空气输入)。
可以预期,如果锅炉也能围绕氧气燃料燃烧系统设计,那么这些系统的优势就会得到充分发挥。也可预期,现有设备的改进和更换也为使用者(如公司)和环境带来便利和好处。
例如图12图示了一个燃煤锅炉或燃烧炉300。风箱302安装在炉300的炉墙304上。煤从燃烧器306进入燃烧炉300,燃烧器306和风箱302相连。煤由输煤管道308运入燃烧炉300。主气流(显示为310)用来将煤(来自粉碎机,图中未显示)通过输煤管道308和燃烧器306送入燃烧炉300。第三气流(以312显示)用来对输煤管道308鼓风,确保煤能运向燃烧器306。
来自风箱302的第二气流(以314显示)通过安装在炉墙304上的流量计316,直接进入燃烧炉。第二气流314是进行燃烧的主气源。在一个已被广泛认可的系统中,为了控制NOx的生成,一个过热空气系统(如318所标示)将气流(来自风箱302)直接通入炉300里的火焰F上,使用过热空气的主要目的有两个。第一是为了提供足够的氧气以使燃料充分燃烧。第二是为了降低火焰温度,从而减少NOx的生成。
可以预期,本系统能够完全取代现有燃烧系统,或作部分替换,用来给进行燃烧的空气补充氧气。具体地说,可以期望高纯氧气可用来取代已知燃烧系统的主气流310、第二气流314和第三气流312中的全部或之一。本领域技术人员可意识到将本氧气燃料系统(或在某些应用领域为氧补给系统)用于那些使用其它矿物燃料如石油或气的电厂的锅炉或燃烧炉。
将本燃烧系统用于工业废物的焚烧系统同样是可行的。典型的废物焚烧炉是以共振时间,温度和过量的氧气为基础工作的。氧气燃料燃烧系统使得焚烧过程有更高效率。
共振时间依赖于加热室或烟道的物理尺寸,以及通过加热室或烟道的气体的速度和体积。当将氮气从混合气中除去,共振时间自然增大,因为燃烧过程中的气体量减少了(将近80%),如果焚烧炉专门设计使用氧气燃料燃烧系统,意味着该焚烧炉只需少量的投资,因为其尺寸减少了许多。
氧气燃料燃烧系统的一般火焰温度比空气燃料系统的火焰温度要高出许多。因此,高效的燃烧使得对燃料的需求量减少,从而降低了成本。氧气燃料燃烧系统的一个好处是能控制氧气的过量水平。使用常规焚烧炉的情况下,必须要求氧气过量,用以燃烧易挥发的有机碳(VOCs)和未经烧过的碳。这过量的氧是通过将空气注入燃烧室或烟道提供的,氧气(来自空气)在燃烧室或烟道用来使VOCs和未烧的碳完全燃烧。尽管空气能够提供所需过量的氧气,但氮气也进入了燃烧室。过量引入的氮气(为了提供过量的氧气)导致了NOx产生量增大。而且过量的空气也导致了其他温室气的产生,还进一步使燃烧室冷却了。不想要的冷却需要从燃烧系统那里取得额外的能量以克服这种冷却效应。
图13示意地显示了一个典型的工业炉400。废物(402所标示)被送入烟道404,将空气(408所标示)和燃料(410所标示)送入燃烧器406,产生火焰F,以焚烧废物402。在火焰F上方安装了一个一氧化碳(CO)监测器412,以测定排出气中的CO含量,当CO含量太高时,向燃烧器406中附加空气。任选地,空气可由远离燃烧器406的位置414送入烟道以提供附加的空气。
这种操作方式有诸多不足。如上所讨论,废物燃烧的两个控制因素是时间和温度。就是说,高温和较长的共振时间能提高废物的燃烧。但是空气的加入(为降低CO含量)增加了通过烟道404的流速,因此降低了共振时间。此外,尽管增加的空气流降低了火焰温度(进而减少了NOx的产生),但却引入了高含量的氮气,氮气倾向于提高NOx的产生量,并抵消冷却(和减少NOx的产生)效应。而且由于空气的冷却效应,焚烧过程的效率下降。
另一方面,本氧气燃料燃烧系统使用高纯度氧气,能使未燃材料燃烧而不产生NOx和其他温室气体,并且没有冷却效应。因此相对于常规或传统的焚烧炉系统,本氧气燃料燃烧系统拥有很多优点。由于焚烧炉主要用来在VOCs和其他废物进入大气前对其进行焚烧,所以本燃烧系统减少了使用的燃料,因而产生较少的NOx和其他温室气,并通常减少了烟道气量。
此外,使用本氧气燃料燃烧系统的焚烧炉的安装(如投资)和运行成本将大大下降。因为通过系统的气量可望减少不少,焚烧炉基本投资降低。如上面所提到的,因为气体的通过量减少许多,在保持相同共振时间的前提下,焚烧炉的整体尺寸也会比常规系统小很多。这样,处理相同量的废物,焚烧炉在体积上较小,而且所需的支持系统和辅助设备和系统同样也变小了。
而且,氧气燃料燃烧系统相比常规焚烧炉系统,通常有高得多的效率,只需要要求能量输入量的一部分。本系统很好地用在焚烧炉系统上,燃料是未燃碳或VOCs。同样,由于火焰区内无氮气,NOx的产生降至最低,且仅归因于来自含氮燃料而形成的NOx。
上述各行业只是几个从使用本氧气燃料燃烧系统获益的示例性工业。本领域技术人员可以理解本系统在化工行业、石油化工行业、发电行业、塑料加工业及运输业等行业的应用。氧气燃料燃烧系统的好处和优点
本领域技术人员可以理解氧气燃料燃烧系统的好处和优点。然而,在例示的废铝加工设备中,已发现,使用以天然气为燃料的空气燃料燃烧炉时,加工或熔化一磅废铝所需能量(通过所用天然气的立方英尺测定)为3620BTUs(以3620BTU/1b表示)。也就是说,熔化每磅铝需要3.45标准立方英尺(SCF)的天然气。3620BTU的能量需求是以每立方英尺天然气的热值为1050BTUs来计算得到的。
与此相对照,已发现,使用本氧气燃料燃烧系统熔化一磅铝所需要的天然气只有1.03SCF(或1083BTUs)。这样本氧气燃料燃烧系统所需能量只使用了空气燃料燃烧炉所需燃料的1083BTU/3620BTU或29.9%。这在燃料消耗上从1.0减少到0.299或者是减少了约70%。
如果氧气燃料燃烧系统使用废油为燃料,可以看到燃料消耗量尽管不是大幅降低,但也相似。已发现,使用废油熔化每磅铝所需热量为1218BTU,这样,使用废油可见的降低量1218/3620或33.6%。结果是燃料消耗量降低约66%。因此,即使在考虑产生污染物的量减少之前,本氧气燃料系统在使用在使用天然气和废油时,燃料消耗量相对于空气天然气燃料燃烧炉系统分别减少约70%和66%。
下表1显示了使用空气燃料燃烧系统(燃料为天然气、以“AIR-GAS”表示)、氧气燃料燃烧系统(燃料为天然气,以“OXY-GAS”表示)和另一氧气燃料燃烧系统(废油燃料,以“OXY-OIL”表示)污染物产生的对比情况。所列污染物为一氧化碳(CO),气态氮化物(NOx)、10微米以下的颗粒物(PM10),总颗粒物(PT)、含硫气态化合物(SOx)和挥发性有机碳化合物(VOC)。
数据以两种形式表示,即:每年所产生的污染物吨数(TPY)和每使用一百万BTU所生产的磅数(1bs/MMBTU)。OXY-G和XY-OIL数据后面的括号表示相对于空气天然气燃料燃烧系统污染物减少量。
表1,AIR-GAS,OXY-GAS和OXY-OIL燃烧系统的烟道气分析
    AIR-GAS            OXY-GAS           OXY-OIL
污染物   TPY     1b/MMBT   TPY   1b/MMBTU   TPY   1b/MMBTU
CO   4.88     2.0E-2   1.51   6.0E-3(68.9)   1.32   5.0E-3(73.0)
NOx   24.38     1.E-1   0   0(100.0)   10.04   0.041(58.8)
PM10   0.028     1.0E-4   0.0023   9.4E-6(92)   0.146   6.0E-4(-410)
PT   0.028     1.0E-4   0.0023   9.4E-6(92)   0.169   6.9E-4(-490)
SOx   0.146     6.0E-4   4.5E-2   1.9E-4(69)   1.39   5.7E-3(-848)
VOC   0.582     2.4E-3   4.0E-1   1.6E-3(31)   3.33   1.4E-2(-471)
氧气废油燃料燃烧系统的PM10、PT、SOx和VOC值显示出增大(负减少)。这部分是由于在本例示的燃烧系统中没有采用“燃烧后”处理操作。可以预期,适当的“燃烧后”处理将包括沉降室(除去颗粒物)和洗涤室(除去含硫气体),并会使排出物的量分别至少减少约98.99%和95%。表中所列数据是以燃料消耗减少为基础,根据已实行的美国环境保护局(USEPA)的标准所测定,该标准是USEPA表AP42(可由USEPA的网页上得到)。
必须注意,上述数据以使用氧气燃料燃烧系统的炉子内为可控环境为基础。也就是说,对于OXY-GAS和OXY-OIL燃烧系统而言,上表所列表明污染物的产生减少的数据,要求在其中安装燃烧系统的炉子为极少空气渗入(即燃烧环境中的氮气)的设计。
因此,如本领域的技术人员所知,使用高纯氧气(或高度富氧空气)和任何碳基燃料可以很好地适应许多现在工业系统。可以预计,在标准的和一般的工业应用领域使用这样的系统,相对于已知的、目前使用的空气燃料和空气过热系统,具有许多优点和好处。虽然许多现在的物理装置为引入本氧气燃料燃烧系统需要重新设计和改造,以提高性能和产量,但这是明智的。对设计和结构改造后所带来的好处,如运行成本降低,燃料成本减少,基本资金下降,排放量减少,要远远超过进行这些改造所用的成本。
在本文的描述中,所用术语可以表示单数或复数,除非另外特别指明。
由上述可以发现,本发明的许多改进和变体都能实现而不脱离本发明新概念的真正实质和范围。应该理解,关于例举的具体实施方式不是也不应推测为对本发明的限制。这些描述意在通过所附的权利要求书覆盖所有这些改进,所以这些改进都落入权利书的范围。

Claims (59)

1.一种用于废铝回收的氧气燃料燃烧系统,包括:
在预定温度下盛装熔化铝的炉子,该炉子至少有一个燃烧器;
供给纯度至少约85%的氧气的氧气供给系统;
供给碳基燃料的碳基燃料供给系统;
其中,氧气供给系统中的氧气和碳基燃料量按相互比例各自均不超过化学计量比5%的比例送入炉内;碳基燃料燃烧产生出超过约4500°F的火焰温度;以及从炉子排出的废气流的温度不超过约1100°F。
2.权利要求1所述的氧气燃料燃烧系统,包括控制向炉内供给碳基燃料和氧气的控制系统。
3.权利要求2所述的氧气燃料燃烧系统,其中,在向炉内供氧之后供给燃料。
4.权利要求2所述的氧气燃料燃烧系统,其中由预定的熔化铝温度来控制氧气和碳基燃量的供给量。
5.权利要求2所述的氧气燃料燃烧系统,其中包括测量熔融铝温度的传感器。
6.权利要求1所述的氧气燃料燃烧系统,其中碳基燃料是气体。
7.权利要求1所述的氧气燃料燃烧系统,其中气体是天然气。
8.权利要求1所述的氧气燃料燃烧系统,其中碳基燃料是固体燃料。
9.权利要求1所述的氧气燃料燃烧系统,其中碳基燃料是液体燃料。
10.一种从废铝中回收铝的废铝回收系统,其中包括:
在预定温度下盛装熔化铝的炉子,该炉子至少有一个燃烧器;
氧气燃料燃烧系统;
通过氧气燃料燃烧系统向炉子供给氧气的供氧系统,供氧系统的氧气纯度至少约85%;
供应碳基燃料的碳基燃料供给系统;
其中,氧气供给系统中的氧气和碳基燃料量按相互比例各自均不超过化学计量比5%的比例送入炉内;碳基燃料燃烧产生出超过约4500°F的火焰温度;以及从炉子排出的废气流温度不超过约1100°F。
11.权利要求10所述的废铝回收系统,其中氧气和碳基燃料燃烧产生能量,以及其中从废铝中回收铝所用的能量是每回收一磅铝为约1083BTU。
12.权利要求10所述的废铝回收系统,其中碳基燃料为气体。
13.权利要求12所述的废铝回收系统,其中气体燃料是天然气。
14.权利要求10所述的废铝回收系统,其中燃料是固体燃料。
15.权利要求10所述的废铝回收系统,其中燃料碳基燃料是液体燃料。
16.权利要求10所述的废铝回收系统,其中炉子排出的热由废热回收系统回收。
17.权利要求16所述的废铝回收系统,其中从炉子回收的热被转化成电能。
18.权利要求10所述的废铝回收系统,包括由空气分离氧气和氮气的深冷装置。
19.权利要求18所述的废铝回收系统,其中氧气被贮存。
20.一种从废铝中回收铝的方法,包括以下步骤:
将废铝送入熔化炉;
在炉内点燃氧气和碳基燃料,氧气和碳基燃料在炉中燃烧,其中,氧气供给系统中的氧气和碳基燃料量按相互比例各自均不超过化学计量比5%的比例送入炉内;碳基燃料燃烧产生出超过约4500°F的火焰温度;从炉子排出的废气流温度不超过约1100°F;
在炉内熔化铝;
在炉内除去含铝污物;和
从炉中卸出基本上纯的铝。
21.权利要求20所述从废铝中回收铝的方法,包括从炉里回收废热的步骤。
22.权利要求20所述从废铝中回收铝的方法,包括从含铝污物中回收铝,并将这些铝送回到熔化炉的步骤。
23.权利要求20所述从废铝中回收铝的方法,包括从所述炉里回收废热的步骤。
24.权利要求23所述从废铝中回收铝的方法,包括将废热转化为电能的步骤。
25.一种氧气燃料燃烧系统,包括:
至少具有一个燃烧器的燃烧炉;
供给纯度不低于约85%氧气的供氧系统;
供给碳基燃料的燃料供给系统;
其中,氧气供给系统中的氧气和碳基燃料量按相互之间的比例各自均不超过化学计量比5%的比例送入炉内;碳基燃料燃烧产生出超过约4500°F的火焰温度;以及从炉子排出的废气流温度不超过约1100°F。
26.权利要求25所述的氧气燃料燃烧系统,其中碳基燃料是气体。
27.权利要求26所述的氧气燃料燃烧系统,其中气体燃料是天然气。
28.权利要求25所述的氧气燃料燃烧系统,其中还包括生产氧气的深冷装置。
29.权利要求25所述的氧气燃料燃烧系统,其中碳基燃料是固体燃料。
30.权利要求25所述的氧气燃料燃烧系统,其中碳基燃料是液体燃料。
31.一种从废铝中回收铝的炉,其中包括:
在预设温度下盛装熔融铝金属池;
至少一个燃烧器;
供给纯度不少于约85%氧气的供氧系统;
供给碳基燃料的碳基燃料供应系统;
其中,氧气供给系统中的氧气和碳基燃料量按相互比例各自均不超过化学计量比5%的比例送入炉内;碳基燃料燃烧产生出超过约4500°F的火焰温度;和从炉子排出的废气流温度不超过约1100°F。
32.权利要求31所述的炉,其中炉体由钢板、钢柱和耐火材料构成。
33.权利要求31所述的炉,其中炉有炉壁,该炉壁的构造有钢柱和钢板壳,并有至少一层耐压绝热材料,至少一层耐火砖和至少一层可铸耐火材料。
34.权利要求31所述的炉,其中炉有底层,所述底层的构造有钢柱和钢板壳,并有至少两层耐火材料,其中至少有一层为可铸耐火材料。
35.权利要求31所述的炉,其中包括四个氧气燃料燃烧器。
36.一种氧气燃料燃烧系统,其中包括:
具有可控环境的炉子,基本上从外界环境没有渗入;
供给预定纯度氧气的氧化剂供给系统;
提供碳基燃料的碳基燃料供给系统;
其中,氧化剂供给系统中的氧气和碳基燃料量按相互比例各自均不超过化学计量比5%的比例送入炉内;碳基燃料燃烧产生出超过约4500°F的火焰温度;从炉子排出的废气流基本上不含有来自氧化剂的含氮燃烧生成的气态化合物。
37.权利要求36所述的氧气燃料燃烧系统,其中碳基燃料为气体。
38.权利要求37所述的氧气燃料燃烧系统,其中气体为天然气。
39.权利要求36所述的氧气燃料燃烧系统,其中包括制氧装置。
40.权利要求36所述的氧气燃料燃烧系统,其中碳基燃料是固体燃料,以及其中任何含氮燃烧产生的气态化合物都来自固体燃料。
41.权利要求36所述的氧气燃料燃烧系统,其中碳基燃料是液体燃料,以及其中任何含氮燃烧产生的气态化合物都来自液体燃料。
42.权利要求36所述的氧气燃料燃烧系统,其中可控环境中基本上不含氮气。
43.一种从含铝浮渣中分离铝的无盐方法,包括以下步骤:
将含铝浮渣装入加热炉,加热炉具有产生约5000°F的火焰温度的氧气燃料燃烧系统,基本上不需要过量的氧气,含铝浮渣在该加热炉中熔化;
撇去熔化的含铝浮渣的上面部分,得到重浮渣产品;
用机械挤压机挤压重浮渣产品,使铝与其分离,得到富集的重浮渣产品。
44.权利要求43所述从含铝浮渣中分离铝的无盐方法,包括将富集的重浮渣产品送回加热炉的步骤。
45.权利要求43所述从含铝浮渣中分离铝的无盐方法,包括将含铝浮渣投入炉内进行直接火处理的步骤。
46.一种炉,包括:
燃烧区;
燃烧器;
通过燃烧器将碳基燃料送入燃烧区的碳基燃料供给系统;
将预定纯度的氧气送入炉内以与碳基燃料燃烧的氧化剂供给系统;
其中,燃烧产生超过约3000°F的火焰温度,从炉里排出的废气流的温度不高于约1100°F。
47.权利要求46所述的炉,包括空气供给系统,将含有氧气的空气送入燃烧区以供碳基燃料和预定纯度的氧气燃烧。
48.权利要求46所述的炉,包括将碳基燃料供给燃烧器的燃料输送管道,并且预定纯度的氧气通过燃料输送管道输入炉内。
49.权利要求46所述的炉,其中预定纯度的氧单独和与碳基燃料分开供入炉内。
50.权利要求46所述的炉,其中氧气纯度至少约85%。
51.一种用于从液体制取蒸气的炉,包括:
燃烧区,燃烧区用以加热液体制取蒸气;
燃烧器;
通过燃烧器将碳基燃料送入燃烧区的碳基燃料供给系统;
将预定纯度的氧气送入炉内以与碳基燃料燃烧的氧化剂供给系统;
其中,燃烧产生超过约3000°F的火焰温度,从炉里排出的废气流的温度不高于约1100°F。
52.权利要求51所述制取蒸汽的炉,包括空气供给系统,将含有氧气的空气送入燃烧区以供碳基燃料和预定纯度的氧气燃烧。
53.权利要求51所述制取蒸汽的炉,包括将碳基燃料供给燃烧器的燃料输送管道,并且预定纯度的氧气通过燃料输送管道输入炉内。
54.权利要求51所述制取蒸汽的炉,其中预定纯度的氧单独和与碳基燃料分开供入炉内。
55.权利要求51所述制取蒸汽的炉,其中氧气纯度至少约85%。
56.权利要求51所述制取蒸汽的炉,其中蒸汽被输送给蒸汽透平机发电。
57.一种废物焚烧炉,包括:
燃烧区;
燃烧器;
供给燃料的燃料供应系统;
供给预定纯度氧气的氧化剂供给系统;和
废物供应系统;
其中废物被送入燃烧区,燃料和氧气在燃烧器中燃烧产生火焰以焚烧废物,其中火焰温度超过约4500°F。
58.权利要求51所述的焚烧炉,其中氧化剂是氧浓度至少约85%的氧气。
59.权利要求51所述的焚烧炉,其中还包括附加氧气注入器,用以将氧气注入燃烧区。
CNB028001257A 2001-04-27 2002-03-22 氧气燃料燃烧系统及其应用 Expired - Lifetime CN1221760C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/843,679 2001-04-27
US09/843,679 US6436337B1 (en) 2001-04-27 2001-04-27 Oxy-fuel combustion system and uses therefor

Publications (2)

Publication Number Publication Date
CN1455854A true CN1455854A (zh) 2003-11-12
CN1221760C CN1221760C (zh) 2005-10-05

Family

ID=25290706

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028001257A Expired - Lifetime CN1221760C (zh) 2001-04-27 2002-03-22 氧气燃料燃烧系统及其应用

Country Status (28)

Country Link
US (5) US6436337B1 (zh)
EP (3) EP1325158A4 (zh)
JP (3) JP2004520490A (zh)
KR (4) KR20040015148A (zh)
CN (1) CN1221760C (zh)
AU (1) AU2002252439B2 (zh)
BR (1) BR0209224B1 (zh)
CA (2) CA2393187C (zh)
DE (1) DE20221612U1 (zh)
DK (1) DK1746375T3 (zh)
EA (1) EA004027B1 (zh)
EC (1) ECSP034819A (zh)
GE (1) GEP20063947B (zh)
HR (1) HRP20030934A2 (zh)
IL (2) IL158313A0 (zh)
LT (1) LT5141B (zh)
LV (1) LV13188B (zh)
MA (1) MA26110A1 (zh)
ME (1) ME00128B (zh)
MX (1) MXPA02008493A (zh)
NO (1) NO330226B1 (zh)
NZ (1) NZ528736A (zh)
PL (1) PL202159B1 (zh)
RS (1) RS50421B (zh)
TN (1) TNSN03103A1 (zh)
UA (1) UA75640C2 (zh)
WO (1) WO2002088400A1 (zh)
ZA (1) ZA200308111B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147110A (zh) * 2010-02-05 2011-08-10 林德股份公司 用于使低级燃料燃烧的方法
CN101283161B (zh) * 2005-03-01 2012-01-11 朱比特氧气公司 基于模块的氧燃料锅炉
CN101511731B (zh) * 2006-09-14 2012-02-22 希利贝坎库公司 用于提纯低级硅材料的方法和装置
CN102681554A (zh) * 2011-03-10 2012-09-19 中国恩菲工程技术有限公司 熔炼系统中氧气供应的控制方法
CN103216844B (zh) * 2005-12-28 2016-08-24 丘比特氧气公司 燃烧和综合污染移除的方法及装置
CN107620957A (zh) * 2017-08-30 2018-01-23 昆明理工大学 一种基于高粘度生物质燃油的工业炉窑高效雾化燃烧系统及其方法
CN108253428A (zh) * 2016-12-28 2018-07-06 宝钢工程技术集团有限公司 富氧氛围下的垃圾焚烧装置及其使用方法
CN110173702A (zh) * 2019-05-14 2019-08-27 中国空分工程有限公司 一种带水封的VOCs预收集处理系统及其处理方法

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6622470B2 (en) * 2000-05-12 2003-09-23 Clean Energy Systems, Inc. Semi-closed brayton cycle gas turbine power systems
AT409269B (de) * 2000-09-08 2002-07-25 Heribert Dipl Ing Dr Summer Verfahren zum salzlosen und oxidationsfreien umschmelzen von aluminium
US20020134287A1 (en) * 2001-03-23 2002-09-26 Olin-Nunez Miguel Angel Method and system for feeding and burning a pulverized fuel in a glass melting furnace, and burner for use in the same
US6436337B1 (en) * 2001-04-27 2002-08-20 Jupiter Oxygen Corporation Oxy-fuel combustion system and uses therefor
US7475569B2 (en) * 2001-05-16 2009-01-13 Owens Corning Intellectual Captial, Llc Exhaust positioned at the downstream end of a glass melting furnace
US7392668B2 (en) * 2003-06-10 2008-07-01 Ocv Intellectual Capital Llc Low heat capacity gas oxy fired burner
US20050072379A1 (en) * 2003-08-15 2005-04-07 Jupiter Oxygen Corporation Device and method for boiler superheat temperature control
US7028478B2 (en) * 2003-12-16 2006-04-18 Advanced Combustion Energy Systems, Inc. Method and apparatus for the production of energy
WO2005100754A2 (en) 2004-04-16 2005-10-27 Clean Energy Systems, Inc. Zero emissions closed rankine cycle power system
US20060134569A1 (en) * 2004-12-21 2006-06-22 United States Of America As Respresented By The Department Of The Army In situ membrane-based oxygen enrichment for direct energy conversion methods
US7499763B2 (en) * 2005-07-20 2009-03-03 Fuel And Furnace Consulting, Inc. Perturbation test method for measuring output responses to controlled process inputs
DE602005008994D1 (de) * 2005-11-29 2008-09-25 Linde Ag Kontrolle eines Schmelzprozesses
US8038773B2 (en) * 2005-12-28 2011-10-18 Jupiter Oxygen Corporation Integrated capture of fossil fuel gas pollutants including CO2 with energy recovery
AU2012202742B2 (en) * 2005-12-28 2012-09-27 Jupiter Oxygen Corporation Oxy-fuel combustion with integrated pollution control
US20080145281A1 (en) * 2006-12-14 2008-06-19 Jenne Richard A Gas oxygen incinerator
US20080163625A1 (en) * 2007-01-10 2008-07-10 O'brien Kevin M Apparatus and method for producing sustainable power and heat
US8088196B2 (en) * 2007-01-23 2012-01-03 Air Products And Chemicals, Inc. Purification of carbon dioxide
US9651253B2 (en) * 2007-05-15 2017-05-16 Doosan Power Systems Americas, Llc Combustion apparatus
DE102007056841A1 (de) * 2007-11-23 2009-05-28 Forschungszentrum Jülich GmbH Membran-Kraftwerk und Verfahren zum Betreiben eines solchen
US20090188449A1 (en) * 2008-01-24 2009-07-30 Hydrogen Technology Applications, Inc. Method to enhance and improve solid carbonaceous fuel combustion systems using a hydrogen-rich gas
US20110072857A1 (en) * 2008-06-05 2011-03-31 Agc Glass Europe Glass melting furnace
US9353945B2 (en) 2008-09-11 2016-05-31 Jupiter Oxygen Corporation Oxy-fuel combustion system with closed loop flame temperature control
EP2177635A1 (fr) * 2008-10-09 2010-04-21 Jean Armabessaire Procédé de récupération par fusion d'au moins un métal non ferreux et additif siliceux pour la mise en oeuvre du procédé
FR2937119B1 (fr) * 2008-10-15 2010-12-17 Air Liquide Procede de production d'energie et capture de co2
KR100886568B1 (ko) 2008-12-04 2009-03-02 김종성 액화산소를 열원으로 하는 완전연소식 고효율 보일러의 연소방법
US8986002B2 (en) 2009-02-26 2015-03-24 8 Rivers Capital, Llc Apparatus for combusting a fuel at high pressure and high temperature, and associated system
WO2010099452A2 (en) * 2009-02-26 2010-09-02 Palmer Labs, Llc Apparatus and method for combusting a fuel at high pressure and high temperature, and associated system and device
US9068743B2 (en) * 2009-02-26 2015-06-30 8 Rivers Capital, LLC & Palmer Labs, LLC Apparatus for combusting a fuel at high pressure and high temperature, and associated system
JP4542190B1 (ja) * 2009-03-11 2010-09-08 月島環境エンジニアリング株式会社 廃棄物の燃焼発電方法及びその燃焼設備
DE102009014223A1 (de) * 2009-03-25 2010-09-30 Hitachi Power Europe Gmbh Feuerungssystem eines für den Oxyfuel-Betrieb ausgelegten Dampferzeugers
US20100319348A1 (en) * 2009-05-26 2010-12-23 Worleyparsons Group, Inc. Waste heat recovery system
JP5417068B2 (ja) * 2009-07-14 2014-02-12 株式会社日立製作所 酸素燃焼ボイラ及び酸素燃焼ボイラの制御方法
JP5717754B2 (ja) 2009-11-26 2015-05-13 リンデ アクチエンゲゼルシャフトLinde Aktiengesellschaft 高炉熱風炉を加熱する方法
CH702754A2 (de) * 2010-02-19 2011-08-31 Stopinc Ag Überwachungseinrichtung für einen Schiebeverschluss, einen Giessrohrwechsler oder dergleichen an einem metallurgischen Gefäss.
DE102010029648A1 (de) 2010-06-02 2011-04-07 Kutzner, Dieter, Dipl.-Ing. Verfahren zum Schmelzen von Metallen oder Glas oder zur Wärmebehandlung von Metallen
RU2447363C1 (ru) * 2010-08-11 2012-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования " Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Способ утилизации попутного нефтяного газа и энергетическая машина для его осуществления
US8869889B2 (en) 2010-09-21 2014-10-28 Palmer Labs, Llc Method of using carbon dioxide in recovery of formation deposits
US9151492B2 (en) 2011-02-22 2015-10-06 Linde Aktiengesellschaft Heating apparatus
US8689709B2 (en) 2011-05-04 2014-04-08 Southern Company Oxycombustion in transport oxy-combustor
US8820312B2 (en) 2011-12-06 2014-09-02 King Fahd University Of Petroleum And Minerals Oxygen transport reactor-based oven
US9995481B2 (en) 2011-12-20 2018-06-12 Eclipse, Inc. Method and apparatus for a dual mode burner yielding low NOx emission
JP5579346B1 (ja) * 2012-12-03 2014-08-27 東京博善株式会社 火葬システム
CN104359113B (zh) * 2014-11-04 2016-08-24 宜兴市智博环境设备有限公司 一种废气、废液焚烧系统及方法
WO2018162994A1 (en) 2017-03-07 2018-09-13 8 Rivers Capital, Llc System and method for operation of a flexible fuel combustor for a gas turbine
MX2019010633A (es) 2017-03-07 2019-12-19 8 Rivers Capital Llc Sistema y metodo para la combustion de combustibles solidos y sus derivados.
US11572828B2 (en) 2018-07-23 2023-02-07 8 Rivers Capital, Llc Systems and methods for power generation with flameless combustion
FR3090739A1 (fr) * 2018-12-21 2020-06-26 Morou Boukari Procede et dispositif permettant de reduire l’augmentation de la temperature a la surface du globe terrestre, vehicule et station permettant de mettre en oeuvre ledit procédé
EP3938708A1 (en) * 2019-03-11 2022-01-19 Thermal Recycling (UK) Ltd. Kiln control
CN110332805A (zh) * 2019-07-17 2019-10-15 吉林建筑科技学院 一种自动调温的冶炼炉
US10845052B1 (en) 2019-12-20 2020-11-24 Jupiter Oxygen Corporation Combustion system comprising an annular shroud burner
EE05859B1 (et) * 2021-09-08 2023-10-16 Meelis Puusild Süsinikkiududega tugevdatud fiiberalumiiniumi valmistamismeetod ja selle meetodiga saadud fiiberalumiinium, mis sisaldab kuni 40 massiprotsenti süsinikkiudu

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE962540C (de) 1954-01-12 1957-04-25 Licentia Gmbh Mechanischer Wechselrichter mit Frequenzkonstanthaltung
US3547624A (en) 1966-12-16 1970-12-15 Air Reduction Method of processing metal-bearing charge in a furnace having oxy-fuel burners in furnace tuyeres
US3573017A (en) 1968-11-04 1971-03-30 Owens Corning Fiberglass Corp Method and apparatus for melting and supplying heat-softenable materials in a process
US3734719A (en) 1968-11-13 1973-05-22 Airco Inc Oxy-fuel process for melting aluminum
US3904180A (en) 1973-05-18 1975-09-09 Southwire Co Apparatus for fluxing and filtering of molten metal
US3955970A (en) 1974-04-08 1976-05-11 Aluminum Company Of America Continuous melting of aluminum scrap
JPS5252233A (en) * 1975-10-24 1977-04-26 Kimura Kakoki Kk Combustion method with reduced pollution
JPS5328829A (en) * 1976-08-30 1978-03-17 Michiaki Adachi Combustor for engine*boiler*etc*that burn fuel by air*which nitrogen is reduced and which oxygen is increased by phystcal or chemical method
US4108594A (en) 1976-12-06 1978-08-22 Venetta, Inc. Method for fuel/air feed pressure control by stack temperature
US4169584A (en) 1977-07-18 1979-10-02 The Carborundum Company Gas injection apparatus
US4583936A (en) * 1983-06-24 1986-04-22 Gas Research Institute Frequency modulated burner system
EP0145389A3 (en) * 1983-12-15 1985-12-18 The Babcock & Wilcox Company Combustion of coal-water slurries
USRE34298E (en) * 1984-08-17 1993-06-29 American Combustion, Inc. Method for waste disposal
US4586895A (en) * 1985-05-13 1986-05-06 The Cadre Corporation Method of removing slag from oxygen fuel burner
US4649834A (en) 1986-01-27 1987-03-17 Armature Coil Equipment, Inc. Temperature control system for pyrolysis furnace
US4730336A (en) 1986-06-16 1988-03-08 G & H Oxy-Fuel, Inc. Oxy-fuel burner system
JPH01271059A (ja) 1988-04-21 1989-10-30 Honda Kinzoku Gijutsu Kk 金属連続溶解保持炉
DK0627014T4 (da) * 1992-02-25 2004-10-25 Aga Ab Genvinding af ikke-jernholdige metaller fra slagger
EP0563828B1 (en) 1992-03-27 1999-12-22 Nippon Sanso Corporation Method of melting metals
KR0130635B1 (ko) * 1992-10-14 1998-04-09 모리시타 요이찌 연소 장치의 적응 소음 시스템
FR2711769B1 (fr) * 1993-10-29 1995-12-08 Air Liquide Procédé de combustion dans un four industriel.
CA2116249A1 (en) * 1994-02-23 1995-08-24 Han Spoel Method and apparatus for recovery of non-ferrous metals from scrap and dross
JPH08133748A (ja) * 1994-11-04 1996-05-28 Tokyo Gas Co Ltd ガラス溶解方法及び装置
JPH08296811A (ja) * 1995-04-24 1996-11-12 Tokinori Tsuda 排気循環燃焼装置
GB2303690B (en) 1995-07-21 1999-05-26 Queenborough Rolling Mill Comp An oxy:fuel melting furnace
DE69522801T3 (de) * 1995-07-27 2008-08-14 Air Products And Chemicals, Inc. Verfahren zum Schmelzen von Aluminium, Schrott und Aluminiumrückständen
JPH0979754A (ja) * 1995-09-14 1997-03-28 Toyota Motor Corp 連続溶解炉
US5743723A (en) * 1995-09-15 1998-04-28 American Air Liquide, Inc. Oxy-fuel burner having coaxial fuel and oxidant outlets
US5955042A (en) 1995-12-08 1999-09-21 Goldendale Aluminum Company Method of treating spent potliner material from aluminum reduction cells
ES2169843T3 (es) * 1996-05-14 2002-07-16 L Air Liquide S A Direct Et Co Procedimiento para la reparacion de un horno de vidrio con ayuda de un quemador auxiliar con combustion de oxigeno.
DE19619919A1 (de) * 1996-05-17 1997-08-14 Sorg Gmbh & Co Kg Verfahren zum Beheizen von Schmelzöfen und Brenneranordnung hierfür
FR2757845B1 (fr) * 1996-12-31 1999-01-29 Air Liquide Procede pour ameliorer le profil thermique des fours de verre et four de fusion de verre pour sa mise en oeuvre
US5904475A (en) * 1997-05-08 1999-05-18 Praxair Technology, Inc. Dual oxidant combustion system
JPH10330857A (ja) * 1997-06-03 1998-12-15 Nippon Sanso Kk 金属の溶解方法
US6021723A (en) * 1997-06-04 2000-02-08 John A. Vallomy Hazardous waste treatment method and apparatus
JPH1111954A (ja) * 1997-06-17 1999-01-19 Nippon Sanso Kk ガラスの溶解方法
US6237369B1 (en) * 1997-12-17 2001-05-29 Owens Corning Fiberglas Technology, Inc. Roof-mounted oxygen-fuel burner for a glass melting furnace and process of using the oxygen-fuel burner
JPH11230682A (ja) * 1998-02-16 1999-08-27 Nippon Sanso Kk 金属溶解設備及び金属溶解方法
US5954498A (en) 1998-02-26 1999-09-21 American Air Liquide, Inc. Oxidizing oxygen-fuel burner firing for reducing NOx emissions from high temperature furnaces
US5961689A (en) * 1998-03-03 1999-10-05 Praxair Technology, Inc. Method of protective atmosphere heating
US5871343A (en) 1998-05-21 1999-02-16 Air Products And Chemicals, Inc. Method and apparatus for reducing NOx production during air-oxygen-fuel combustion
US6560967B1 (en) * 1998-05-29 2003-05-13 Jeffrey Mark Cohen Method and apparatus for use with a gas fueled combustor
DE19824573A1 (de) * 1998-06-02 1999-12-09 Linde Ag Verfahren zum Schmelzen von Metallen
FR2781039B1 (fr) 1998-07-08 2000-09-22 Air Liquide Procede de combustion d'un combustible avec un comburant riche en oxygene
JP3395689B2 (ja) * 1999-01-22 2003-04-14 日本軽金属株式会社 アルミドロス残灰の処理方法
JP2000303123A (ja) * 1999-04-20 2000-10-31 Nippon Light Metal Co Ltd アルミニウムドロス中メタル分回収方法およびその回収用加熱装置
US6314896B1 (en) 1999-06-10 2001-11-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for operating a boiler using oxygen-enriched oxidants
JP3688944B2 (ja) * 1999-08-30 2005-08-31 大同特殊鋼株式会社 焼却飛灰溶融処理用酸素バーナ
US6372010B1 (en) * 1999-12-10 2002-04-16 Process Technology International, Inc. Method for metal melting, refining and processing
US6398547B1 (en) * 2000-03-31 2002-06-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Oxy-fuel combustion firing configurations and methods
US6436337B1 (en) * 2001-04-27 2002-08-20 Jupiter Oxygen Corporation Oxy-fuel combustion system and uses therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283161B (zh) * 2005-03-01 2012-01-11 朱比特氧气公司 基于模块的氧燃料锅炉
CN103216844B (zh) * 2005-12-28 2016-08-24 丘比特氧气公司 燃烧和综合污染移除的方法及装置
CN101511731B (zh) * 2006-09-14 2012-02-22 希利贝坎库公司 用于提纯低级硅材料的方法和装置
CN102147110A (zh) * 2010-02-05 2011-08-10 林德股份公司 用于使低级燃料燃烧的方法
CN102147110B (zh) * 2010-02-05 2014-09-17 林德股份公司 用于使低级燃料燃烧的方法
CN102681554A (zh) * 2011-03-10 2012-09-19 中国恩菲工程技术有限公司 熔炼系统中氧气供应的控制方法
CN102681554B (zh) * 2011-03-10 2016-10-12 中国恩菲工程技术有限公司 熔炼系统中氧气供应的控制方法
CN108253428A (zh) * 2016-12-28 2018-07-06 宝钢工程技术集团有限公司 富氧氛围下的垃圾焚烧装置及其使用方法
CN107620957A (zh) * 2017-08-30 2018-01-23 昆明理工大学 一种基于高粘度生物质燃油的工业炉窑高效雾化燃烧系统及其方法
CN110173702A (zh) * 2019-05-14 2019-08-27 中国空分工程有限公司 一种带水封的VOCs预收集处理系统及其处理方法
CN110173702B (zh) * 2019-05-14 2023-12-05 中国空分工程有限公司 一种带水封的VOCs预收集处理系统及其处理方法

Also Published As

Publication number Publication date
NO330226B1 (no) 2011-03-07
LV13188B (en) 2004-10-20
PL202159B1 (pl) 2009-06-30
EA200200830A1 (ru) 2003-06-26
KR20090117962A (ko) 2009-11-16
DE20221612U1 (de) 2006-08-31
US20020190442A1 (en) 2002-12-19
AU2002252439B2 (en) 2005-07-28
JP2006145198A (ja) 2006-06-08
NO20034809L (no) 2003-10-27
KR20040015148A (ko) 2004-02-18
MEP17908A (en) 2010-06-10
MA26110A1 (fr) 2004-04-01
JP2004520490A (ja) 2004-07-08
CA2461051A1 (en) 2002-10-27
GEP20063947B (en) 2006-10-25
CN1221760C (zh) 2005-10-05
EP1746375B1 (en) 2012-11-07
EP1746375A2 (en) 2007-01-24
RS50421B (sr) 2009-12-31
ZA200308111B (en) 2005-03-30
EP2290312B2 (en) 2017-05-10
EA004027B1 (ru) 2003-12-25
BR0209224B1 (pt) 2014-04-08
US6596220B2 (en) 2003-07-22
US20020185791A1 (en) 2002-12-12
KR20080015522A (ko) 2008-02-19
JP2006144127A (ja) 2006-06-08
EP1746375A3 (en) 2010-08-18
ME00128B (me) 2010-10-10
US20020180122A1 (en) 2002-12-05
US20040046293A1 (en) 2004-03-11
EP1325158A1 (en) 2003-07-09
EP2290312A1 (en) 2011-03-02
US7282171B2 (en) 2007-10-16
TNSN03103A1 (en) 2005-04-08
HRP20030934A2 (en) 2005-08-31
NO20034809D0 (no) 2003-10-27
IL158313A0 (en) 2004-05-12
NZ528736A (en) 2005-06-24
KR20080015521A (ko) 2008-02-19
LT2003091A (en) 2004-04-26
EP2290312B1 (en) 2013-09-18
WO2002088400A1 (en) 2002-11-07
EP1325158A4 (en) 2004-07-14
MXPA02008493A (es) 2003-10-14
CA2393187C (en) 2004-06-01
US6436337B1 (en) 2002-08-20
US6818176B2 (en) 2004-11-16
ECSP034819A (es) 2003-12-24
CA2461051C (en) 2005-04-12
PL365214A1 (en) 2004-12-27
UA75640C2 (en) 2006-05-15
US6797228B2 (en) 2004-09-28
IL158313A (en) 2007-07-04
BR0209224A (pt) 2004-06-08
EP1746375B2 (en) 2017-05-10
LT5141B (lt) 2004-06-25
CA2393187A1 (en) 2002-10-27
DK1746375T3 (da) 2013-02-11
YU85003A (sh) 2006-01-16

Similar Documents

Publication Publication Date Title
CN1221760C (zh) 氧气燃料燃烧系统及其应用
AU2002252439A1 (en) Oxy-fuel combustion system and uses therefor
JPH02503306A (ja) 溶解炉
CN201827897U (zh) 化工含盐废水环保焚烧炉
US20160194232A1 (en) Submerged combustion burners
CN104870382A (zh) 利用燃气轮机和热交换器从熔化炉的烟气回收能量
CN210765454U (zh) 一种再生铅多室熔炼蓄热式节能炉装置
JP4248767B2 (ja) 廃棄物焼却灰の溶融方法および溶融装置
JP2001227713A (ja) 塵芥の溶融炉
JP2002364817A (ja) 塵芥の溶融方法
JPH06207782A (ja) 非鉄金属用溶解装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20051005