CN1438711A - 具有超薄的应变矽通道的金氧半导体场效晶体管及其制作方法 - Google Patents

具有超薄的应变矽通道的金氧半导体场效晶体管及其制作方法 Download PDF

Info

Publication number
CN1438711A
CN1438711A CN03102137A CN03102137A CN1438711A CN 1438711 A CN1438711 A CN 1438711A CN 03102137 A CN03102137 A CN 03102137A CN 03102137 A CN03102137 A CN 03102137A CN 1438711 A CN1438711 A CN 1438711A
Authority
CN
China
Prior art keywords
layer
source
mosfet
effect transistor
semiconductor field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03102137A
Other languages
English (en)
Other versions
CN1191639C (zh
Inventor
杨育佳
杨富量
胡正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN1438711A publication Critical patent/CN1438711A/zh
Application granted granted Critical
Publication of CN1191639C publication Critical patent/CN1191639C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明提供一种利用超薄的应变矽层作为通道层的金氧半导体场效晶体管,且可结合SOI技术可将超薄的应变矽层制作于绝缘层上。金氧半导体场效晶体管包括有:矽基材;绝缘层,形成于矽基材的表面上;矽层,形成于绝缘层表面上,且具有伸张应变的晶格特性,用作通道层;闸极绝缘层,形成于矽层的表面上;闸极层,限定形成于闸极绝缘层的表面上;以及源/汲极区,形成于闸极层两侧的矽层内。

Description

具有超薄的应变矽通道的金氧半导体 场效晶体管及其制作方法
技术领域
本发明涉及一种金氧半导体场效晶体管(以下简称MOSFET)及其制造工艺,特别涉及一种具有超薄的应变矽通道(strained-silicon channel)的MOSFET及其结合SOI技术的制作方法。
背景技术
在现今MOSFET制程中,为了提高组件的积集度并增加驱动能力,必须尽量将闸极的线宽设计缩短,但是当晶体管的信道长度缩短至某一定程度之后便会衍生出短信道效应(short channel effect)。为了有效抑制短信道效应,第一种解决的方法是增加矽基板的掺杂浓度,但是会导致接面漏电流增加、通道的载子迁移率降低以及寄生电容等问题。第二种方法是浅化源/汲极区的掺杂轮廓以使接面深度变浅,但是仍会遭遇到漏电流、寄生电阻以及制程热预算等限制。第三种方法是降低闸极氧化层的厚度,不但可改善短信道效应还可增加驱动能力,不过却易直接穿遂闸极而导致漏电流增加,而且闸极氧化层的可靠度不易控制。有鉴于此,目前MOSFET制程采用一种具有伸张应变(tensile-strained)的晶格特性的矽层作为电晶体的信道,可有效增加电子在信道层的迁移率,以解决上述的问题。
美国专利第6,310,367号揭露一种以应变Si层作为信道的MOSFET。如图1所示的矽基底10上包含有:具有松弛(relaxed)晶格特性的SiGe层12夹设于源/汲极区11之间,具有伸张应变特性的Si层13形成于SiGe层12的表面上,SiO2层14形成于源/汲极区11表面上并于Si层13上方构成一沟槽,Ta2O5层15覆盖于沟槽的底部与侧壁上,TiN层16形成于Ta2O5层15的表面上,以及铝金属层17填满沟槽。其中,铝金属层17与TiN层16是作为闸极层,Ta2O5层15是用作闸极绝缘层,Si层13是用作通道层,而SiGe层12是用作缓冲层。如此一来,具有伸张应变特性的Si层13可提高通道层的电子迁移率,以使MOSFET的操作速度加快。不过,为了能够在SiGe层12上制作出具有伸张应变特性的Si层13,SiGe层12的缓冲厚度必须大于2微米,以使晶格达到完全松弛的状态。然而在矽基底10上制作如此厚的SiGe层12,会使源/汲极区11之间的寄生电容增加,进而影响到MOSFET的操作速度。
美国专利第6,326,667号专利揭露一种将应变Si层制作在绝缘层上的MOSFET。如图2所示,矽基底20上依序堆叠形成有SiO2绝缘层22、具有晶格松弛特性的SiGe层24、具有晶格应变特性的Si层26、闸极绝缘层27以及闸极层28。此外,源/汲极区29形成于闸极层28两侧的Si层26内。此种技术可以结合应变Si信道以及SOI的优点,以降低短通道效应、基材漏电流以及源/汲极区的寄生电容等问题。
请参阅图3A至图3D,其显示习知利用SOI(磊晶矽绝缘层上,silicon-on-insulator)技术制作Si层与SiGe层的剖面示意图。首先,如图3A所示,于矽基材30上长成应变SiGe层31,且随着应变SiGe层31的厚度增加至一定程度,其表面会形成一松弛SiGe层32,然后藉由氢离子布植制程33可于应变SiGe层31与松弛SiGe层32之间形成一切割线。接着,如图3B所示,提供晶圆34,其表面上包含有SiO2层36,再利用晶圆接合技术将晶圆34与矽基材30接合,以使SiO2层36与松弛SiGe层32的界面黏合。跟着,如图3C所示,利用热处理方式将切割线处劈裂,使松弛SiGe层32自矽基材30分离而形成于晶圆34上,以构成SGOI(SiGe-on-insulator)基底35,其厚度约200-300nm。最后,如图3D所示,利用化学机械研磨(chemical mechanical olishing,CMP)方法将松弛SiGe层32的表面平坦化处理的后,可于表面上长成应变Si层38。
发明内容
本发明则提出一种利用应变矽层作为通道层的MOSFET,且结合SOI技术可将超薄的应变矽层制作于绝缘层上。
本发明的MOSFET包括有:矽基材;绝缘层,其形成于矽基材的表面上;矽层,其形成于绝缘层表面上,且具有伸张应变的晶格特性,用作通道层;闸极绝缘层,形成于矽层的表面上;闸极层,界定形成于闸极绝缘层的表面上;以及源/汲极区,形成于闸极层两侧的矽层内。
本发明还提供了这种晶体管的制作工艺,包括下列步骤:
提供矽基材,其表面上包含有SiGe层,且该SiGe层具有松弛的晶格特性;
于该SiGe层上形成Si层,且该Si层具有伸张应变的晶格特性;
提供晶圆,其表面上包含有绝缘层;
利用晶圆接合技术,将该晶圆的绝缘层与该矽基材的Si层接合;
将该Si层自该SiGe层上切离,以使该Si层形成于该晶圆的绝缘层表面上。
附图说明
图1显示习知以应变Si层作为通道的MOSFET的剖面示意图。
图2显示习知将应变Si层制作在绝缘层上的MOSFET的剖面示意图。
图3A至图3D显示利用SOI技术制作Si层与SiGe层的剖面示意图。
图4显示本发明实施例1的MOSFET的剖面示意图。
图5A至图5C显示本发明利用SOI技术制作应变Si层的剖面示意图。
图6显示本发明实施例2的MOSFET的剖面示意图。
图中组件的标号说明:习知技术(图1-图3D)矽基底-10;             SiGe层-12;源/汲极区-11;          Si层-13;SiO2层-14;            Ta2O5层-15;TiN层-16;              铝金属层-17;矽基底-20;             SiO2绝缘层-22;SiGe层-24;            Si层-26;闸极绝缘层-27;          闸极层-28;源/汲极区-29;           矽基材-30;应变SiGe层-31;         松弛SiGe层-32;氢离子布植制程-33;      晶圆-34;SiO2层-36;             SGOI基底-35;应变Si层-38。本发明技术(图4-图6)矽基底-40;                绝缘层-42;应变Si层-44;            闸极绝缘层-46;闸极层-48;                侧壁子结构-49;源/汲极区-47;             矽基材-50;应变SiGe层-52;          松弛SiGe层-54;应变Si层-56;            晶圆-60;绝缘层-62;                上升式源/汲极结构-45。
具体实施方式
本发明提出一种利用应变Si层作为通道层的MOSFET,且结合SOI技术可将厚度小于20nm的应变Si层制作于绝缘层上,以提供作一般MOSFET的制程使用。
以下结合具体实施例详细介绍本发明的实施过程及所具有的有益效果,但不构成对本发明实施范围的限定。
实施例1
请参阅图4,其显示本发明实施例1的MOSFET的剖面示意图。矽基底40上包含有:绝缘层42,应变Si层44形成于绝缘层42上,闸极绝缘层46形成于应变Si层44上,闸极层48限定形成于闸极绝缘层46上,侧壁子结构49形成闸极层48的两侧壁上,以及源/汲极区47形成于闸极层48两侧的应变Si层44内。其中,绝缘层42是由SiO2、SI3N4或其它绝缘材质所构成,而应变Si层44具有伸张应变的晶格特性,且厚度小于20nm。相较于整体Si层于室温下的电子迁移率为400cm2/Vs,由于应变Si层44具有伸张应变的晶格特性,可提高电子与电动的迁移率,验证得知其于室温下的电子迁移率可达3000cm2/Vs,可有效改善短通道效应的问题,并使MOSFET的操作速度加快。因此在本发明的MOSFET中,不必藉由对通道层进行重掺杂制程来解决短通道效应,可避免产生原本担心的杂质散射、无规则分布的掺质所导致的起始电压起伏等问题。
请参阅图5A至图5C,其显示利用SOI技术制作应变Si层的剖面示意图。首先,如图5A所示,于矽基材50上长成应变SiGe层52,且随着应变SiGe层52的厚度增加至一定程度,其表面会形成一松弛SiGe层54。然后,于松弛SiGe层54的表面上形成应变Si层56,其厚度小于20nm。接下来,如图5B所示,提供晶圆60,其表面上包含有绝缘层62,再利用晶圆接合技术将晶圆60与矽基材50接合,以使绝缘层62与应变Si层56的界面黏合。跟着,如图5C所示,利用热处理或其它切离处理方式,将应变Si层56自松弛SiGe层54表面上分离而形成于晶圆60的绝缘层62上。最后,可利用CMP方法将应变Si层56的表面平坦化。
实施例2
实施例1的源/汲极区47是形成于超薄的应变Si层44中,为避免超薄的源/汲极区47导致高电阻而降低驱动电流,实施例2提供一种具有上升式源/汲极结构的MOSFET。请参阅图6,其显示本发明实施例2的MOSFET的剖面示意图。于制作完成闸极层48与侧壁子结构49之后,可在源/汲极区47上方分别制作上升式源/汲极结构45。一种制作方法是利用沉积多晶矽层与回蚀刻多晶矽层的步骤,仅使多晶矽层残留在源/汲极区47上方,以用作为上升式源/汲极结构45。另一种方法是以选择性的磊晶成长方式,仅在源/汲极区47上方成长磊晶层,以用作为上升式源/汲极结构45。
以上实施方案仅用以更加清楚地解释本发明,对本发明的实施范围不构成任何限定。任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当以权利要求书为准。

Claims (10)

1、一种金氧半导体场效晶体管,包括有:
矽基材;
绝缘层,形成于该矽基材的表面上;
矽层,形成于该绝缘层表面上,且具有伸张应变的晶格特性,用作通道层;
闸极绝缘层,形成于该矽层的表面上;
闸极层,限定形成于该闸极绝缘层的表面上;以及
源/汲极区,形成于该闸极层两侧的矽层内。
2、如权利要求1所述的金氧半导体场效晶体管,其中所述矽层的厚度小于20nm。
3、如权利要求1所述的金氧半导体场效晶体管,其中所述绝缘层是由SiO2、Si3N4或其它绝缘材质所构成。
4、如权利要求1所述的金氧半导体场效晶体管,另包含有上升式的源/汲极结构,分别形成于该源/汲极区的上方。
5、一种金氧半导体场效晶体管制程,包括下列步骤:
提供矽基材,其表面上包含有SiGe层,且该SiGe层具有松弛的晶格特性;
于该SiGe层上形成Si层,且该Si层具有伸张应变的晶格特性;
提供晶圆,其表面上包含有绝缘层;
利用晶圆接合技术,将该晶圆的绝缘层与该矽基材的Si层接合;
将该Si层自该SiGe层上切离,以使该Si层形成于该晶圆的绝缘层表面上。
6、如权利要求5所述的金氧半导体场效晶体管制程,其中该Si层的厚度小于20nm。
7、如权利要求5所述的金氧半导体场效晶体管制程,另包括下列步骤:
于该Si层的表面上形成闸极绝缘层;
于该闸极绝缘层上限定形成闸极层;以及
于该闸极层两侧的Si层内形成源/汲极区。
8、如权利要求7所述的金氧半导体场效晶体管制程,另包括步骤:于形成该源/汲极区之后,于该源/汲极区上方形成上升式的源/汲结构。
9、如权利要求8所述的金氧半导体场效晶体管制程,其中该上升式的源/汲结构的制作方法包括下列步骤:
沉积一多晶矽层;以及
回蚀刻该多晶矽层,以使该多晶矽层残留在该源/汲极区上方。
10、如权利要求8所述的金氧半导体场效晶体管制程,其中所述上升式的源/汲结构的制作方法是以选择性的磊晶成长方式,在该源/汲极区上方成长一磊晶层。
CNB031021379A 2002-02-07 2003-01-31 一种金属氧化物半导体场效应晶体管及其制作方法 Expired - Lifetime CN1191639C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/068,928 2002-02-07
US10/068,928 US7202139B2 (en) 2002-02-07 2002-02-07 MOSFET device with a strained channel

Publications (2)

Publication Number Publication Date
CN1438711A true CN1438711A (zh) 2003-08-27
CN1191639C CN1191639C (zh) 2005-03-02

Family

ID=27732261

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031021379A Expired - Lifetime CN1191639C (zh) 2002-02-07 2003-01-31 一种金属氧化物半导体场效应晶体管及其制作方法

Country Status (3)

Country Link
US (1) US7202139B2 (zh)
CN (1) CN1191639C (zh)
TW (1) TWI226704B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2874455B1 (fr) * 2004-08-19 2008-02-08 Soitec Silicon On Insulator Traitement thermique avant collage de deux plaquettes
US6995430B2 (en) 2002-06-07 2006-02-07 Amberwave Systems Corporation Strained-semiconductor-on-insulator device structures
US20030227057A1 (en) * 2002-06-07 2003-12-11 Lochtefeld Anthony J. Strained-semiconductor-on-insulator device structures
US6900521B2 (en) * 2002-06-10 2005-05-31 Micron Technology, Inc. Vertical transistors and output prediction logic circuits containing same
EP1439570A1 (en) * 2003-01-14 2004-07-21 Interuniversitair Microelektronica Centrum ( Imec) SiGe strain relaxed buffer for high mobility devices and a method of fabricating it
DE10314989A1 (de) * 2003-04-02 2004-10-14 Robert Bosch Gmbh Verfahren zur Herstellung von mikromechanischen Strukturen sowie mikromischanische Struktur
US6909186B2 (en) * 2003-05-01 2005-06-21 International Business Machines Corporation High performance FET devices and methods therefor
US20050070070A1 (en) * 2003-09-29 2005-03-31 International Business Machines Method of forming strained silicon on insulator
JP2005223109A (ja) * 2004-02-05 2005-08-18 Renesas Technology Corp 半導体装置およびその製造方法
US6972461B1 (en) * 2004-06-30 2005-12-06 International Business Machines Corporation Channel MOSFET with strained silicon channel on strained SiGe
TWI274402B (en) * 2005-06-17 2007-02-21 Powerchip Semiconductor Corp Non-volatile memory and fabricating method thereof
DE102006019934B4 (de) * 2006-04-28 2009-10-29 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Ausbildung eines Feldeffekttransistors
US7923373B2 (en) 2007-06-04 2011-04-12 Micron Technology, Inc. Pitch multiplication using self-assembling materials
GB2467935B (en) * 2009-02-19 2013-10-30 Iqe Silicon Compounds Ltd Formation of thin layers of GaAs and germanium materials
US8796759B2 (en) 2010-07-15 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-like field effect transistor (FinFET) device and method of manufacturing same
US11348944B2 (en) 2020-04-17 2022-05-31 Taiwan Semiconductor Manufacturing Company Limited Semiconductor wafer with devices having different top layer thicknesses

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142925A (en) * 1978-04-13 1979-03-06 The United States Of America As Represented By The Secretary Of The Army Method of making silicon-insulator-polysilicon infrared image device utilizing epitaxial deposition and selective etching
US4771016A (en) * 1987-04-24 1988-09-13 Harris Corporation Using a rapid thermal process for manufacturing a wafer bonded soi semiconductor
US5013681A (en) * 1989-09-29 1991-05-07 The United States Of America As Represented By The Secretary Of The Navy Method of producing a thin silicon-on-insulator layer
CA2062134C (en) 1991-05-31 1997-03-25 Ibm Heteroepitaxial layers with low defect density and arbitrary network parameter
US5234535A (en) * 1992-12-10 1993-08-10 International Business Machines Corporation Method of producing a thin silicon-on-insulator layer
US5344524A (en) * 1993-06-30 1994-09-06 Honeywell Inc. SOI substrate fabrication
JP3265493B2 (ja) * 1994-11-24 2002-03-11 ソニー株式会社 Soi基板の製造方法
SG63832A1 (en) * 1997-03-26 1999-03-30 Canon Kk Substrate and production method thereof
US5891769A (en) 1997-04-07 1999-04-06 Motorola, Inc. Method for forming a semiconductor device having a heteroepitaxial layer
US5906951A (en) 1997-04-30 1999-05-25 International Business Machines Corporation Strained Si/SiGe layers on insulator
US6162705A (en) * 1997-05-12 2000-12-19 Silicon Genesis Corporation Controlled cleavage process and resulting device using beta annealing
CA2295069A1 (en) 1997-06-24 1998-12-30 Eugene A. Fitzgerald Controlling threading dislocation densities in ge on si using graded gesi layers and planarization
JP4439020B2 (ja) 1998-03-26 2010-03-24 株式会社東芝 半導体記憶装置及びその製造方法
DE19859429A1 (de) 1998-12-22 2000-06-29 Daimler Chrysler Ag Verfahren zur Herstellung epitaktischer Silizium-Germaniumschichten
TW447018B (en) 1999-12-13 2001-07-21 United Microelectronics Corp Method for manufacturing raised source/drain

Also Published As

Publication number Publication date
TWI226704B (en) 2005-01-11
US7202139B2 (en) 2007-04-10
CN1191639C (zh) 2005-03-02
US20050003599A1 (en) 2005-01-06
TW200305284A (en) 2003-10-16

Similar Documents

Publication Publication Date Title
CN1438711A (zh) 具有超薄的应变矽通道的金氧半导体场效晶体管及其制作方法
CN1320628C (zh) 通过掩埋氧化物层中的压缩材料导入张力应变硅的半导体器件及其形成方法
US8253134B2 (en) Oxide thin film transistor
CN100342507C (zh) 制造应变mosfet的结构和方法
JP2572003B2 (ja) 三次元マルチチャンネル構造を有する薄膜トランジスタの製造方法
CN1295796C (zh) 场效应晶体管及其制作方法
CN1253943C (zh) 具有多重栅极及应变的沟道层的晶体管及其制造方法
CN101356650B (zh) 半导体装置和显示装置
US8507951B2 (en) High performance CMOS device design
CN1716554A (zh) 一种p型mosfet的结构及其制作方法
CN1691350A (zh) 在体硅和soi mos器件中制造无位错应力沟道的结构和方法
CN1716629A (zh) 在拉伸应变绝缘体上SiGe上的应变SiMOSFET
CN1707809A (zh) 半导体器件
CN1643697A (zh) 应变翅片式场效应晶体管的结构和方法
CN1819201A (zh) 具有提高的载流子迁移率的半导体结构及其制造方法
CN1825625A (zh) 具混成应变诱导层的应变晶体管及其形成方法
WO2011160477A1 (zh) 一种应变沟道场效应晶体管及其制备方法
US9722049B2 (en) Methods for forming crystalline IGZO with a seed layer
WO2022001030A1 (zh) 半导体器件
CN1870243A (zh) 具有氘化掩埋层的半导体衬底和器件
CN1956214A (zh) 场效应晶体管及其制造方法
KR19980065168A (ko) 불소가 함유된 산화막을 게이트 절연막으로 이용한 박막 트랜지스터 및 그 제조 방법
US11121254B2 (en) Transistor with strained superlattice as source/drain region
KR20120107334A (ko) 핀 fet 반도체 소자 및 그 제조 방법
CN1215930A (zh) 亚四分之一微米级硅-绝缘体的mos场效应晶体管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20050302