CN1419701A - 电容器用铌粉及其烧结体和使用该烧结体的电容器 - Google Patents

电容器用铌粉及其烧结体和使用该烧结体的电容器 Download PDF

Info

Publication number
CN1419701A
CN1419701A CN01804321A CN01804321A CN1419701A CN 1419701 A CN1419701 A CN 1419701A CN 01804321 A CN01804321 A CN 01804321A CN 01804321 A CN01804321 A CN 01804321A CN 1419701 A CN1419701 A CN 1419701A
Authority
CN
China
Prior art keywords
capacitor
sintered body
niobium
powder
organic semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN01804321A
Other languages
English (en)
Inventor
内藤一美
永户伸幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of CN1419701A publication Critical patent/CN1419701A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

一种电容器用铌粉及其烧结体。所述铌粉具有10-500μm的平均粒径,它是具有3-9质量%氧含量的粒状粉末。电容器是由作为一部分电极的烧结体、形成于该烧结体表面的电介质材料及位于电介质材料上的另一部分电极所构成的。由本发明的铌粉烧结体制造的电容器可防止长时间使用过程中的性能下降,可靠性高。

Description

电容器用铌粉及其烧结体和使用该烧结体的电容器
                    对相关申请的交互参照
本申请以美国法典第35篇第111(a)条的规定为基础,依据美国法典第35篇第119(e)(1)条,要求取得根据美国法典第35篇第111(b)条的规定、于2001年2月16日提交的美国临时申请No.60/268,967的申请日的利益。
                               技术领域
本发明涉及一种铌粉,用它可制造能长时间维持性能,可靠性良好的电容器。本发明还涉及一种铌烧结体和使用该烧结体的电容器。
                               背景技术
应用于电子仪器如手提电话和个人电脑的电容器,需要有小体积和大电容。在这些电容器中,优选钽电容器,因为相对于其体积,其电容大且性能良好。在钽电容器中,钽粉的烧结体通常用作阳极部分。为了增加钽电容器的电容,有必要增加烧结体的份量或使用通过研磨钽粉而表面积增加的烧结体。
前一种增加烧结体份量的方法必然会涉及电容器形状的扩大,这样便不能满足降低尺寸的需求。另一方面,后一种方法中通过研磨钽粉来增加表面积会导致在烧结阶段钽烧结体的孔径减小或者闭合孔增多,从而使后面的工序中浸渗阴极试剂变得艰难。作为解决这些问题的一种方法,正研究使用介电常数大于钽的材料的粉状烧结体的电容器。该具有较大介电常数的材料包括铌。
比之钽,铌对氧具有更大的亲和力,因此它很容易被氧化,这种趋势在铌为粉末时和其比表面积较大时表现得更明显。而且,周围环境温度越高,氧化反应越容易进行。用铌粉制备烧结体时,铌粉的模制品通常在真空中加热烧结。在此步骤中,当从加热炉中拿出烧结体使大量氧得以附着于其表面时,在某些情况下会与空气中的氧发生反应。如果所附着的氧量大,在极端情况下,烧结体的形状将背离其设计值。如果用这样的烧结体制造电容器,在高温下对其进行加速试验时,电容器的性能有时大大下降,不能满足可靠性的要求。
在与本发明相关的技术方面,已有使用通过在氢的存在下对五氧化二铌(Nb2O5)进行热处理而得到的部分还原的氧化铌(NbOn,n=0.7~1.1,氧含量:11~16质量%)、制备具有大电容和优异的漏泄电流特性的电容器的方案(参见WO00/15555)。可是,当本发明者用试验中得到的氧化铌制造电容器,并在高温下对其进行加速测试时,电容器的性能下降,不能令人满意。
                               发明内容
作为对解决上述问题的广泛研究的结果,本发明者发现,当用通过研磨氧含量已预先调整至特定范围的粉末而得到的铌粉作为铌烧结体的铌粉原材料时,可得到在高温加速试验中的劣化程度减小,并具有高可靠性的电容器。本发明正是基于上述发现而完成的。
更具体地说,本发明的目的是提供下述电容器用铌粉及其烧结体和使用该烧结体的电容器。
1.电容器用铌粉,具有10-500μm的平均粒径,它是含氧量为3-9质量%的粒状粉末。
2.如上述1所述的电容器用铌粉,其比表面积为0.2-15m2/g。
3.如上述1或2所述的电容器用铌粉,它被部分氮化。
4.如上述3所述的电容器用铌粉,其氮化量为10-100000ppm。
5.烧结体,它使用上述1-4中任一项所述的电容器用铌粉。
6.上述5所述的烧结体,其比表面积在0.2-5m2/g之间。
7.电容器,它是由上述5或6所述的作为一部分电极的烧结体、形成于该烧结体表面的电介质材料及位于电介质材料上的另一部分电极所构成的。
8.如上述7所述的电容器,其电介质材料主要由氧化铌构成。
9.如上述8所述的电容器,其氧化铌通过电解氧化而形成。
10.如上述7-9中任一项所述的电容器,其另一部分电极是选自电解溶液、有机半导体或无机半导体的至少一种材料。
11.如上述10所述的电容器,其另一部分电极由有机半导体组成,此有机半导体选自下列有机半导体中的至少一种:包含苯并吡咯啉四聚物和氯醌的有机半导体,主要包含四硫代并四苯的有机半导体,主要包含四氰基醌二甲烷的有机半导体,以及主要包含一下述导电性聚合物的有机半导体,所述导电性聚合物是通过将掺杂剂掺入聚合物而制得的,被掺入掺杂剂的聚合物包含两种以上的由以下化学式(1)或(2)表示的重复单元:
(式中,R1-R4可以是相同的,也可以是不同的,各表示氢原子、1-6个碳原子的烷基、或1-6个碳原子的烷氧基;X表示氧原子、硫原子或氮原子;R5仅存在于X为氮原子时,表示氢或1-6个碳原子的烷基;R1与R2,以及R3与R4能互相结合成环。)
12.如上述11所述的电容器,其有机半导体是选自聚吡咯、聚噻吩聚苯胺和它们的取代衍生物中的至少一种。
                               发明的详细描述
本发明的电容器用铌粉是通过将初始颗粒状铌粉(以下简称为初始粉)研磨到适宜的大小而得到的。
初始粉可用传统所知的方法研磨。例如,一种方法是将粉状颗粒在500-2000℃的高温下静置于真空中,然后用干法或湿法裂化;一种方法是将粉状颗粒与适宜的粘合剂如丙烯酸树脂或聚乙烯醇混合,然后裂化;一种方法是将粉状颗粒与适宜的化合物如丙烯酸树脂、樟脑、磷酸或硼酸混合,在高温下静置于真空中,然后用干法或湿法裂化。通过研磨和裂化的程度可自由控制粒状粉末的粒径。通常使用的粒状粉末的平均颗粒直径在10-500μm之间。在研磨和裂化后,可将粒状粉末分级。研磨后,也可将粒状粉末与适宜量的非粒状粉末混合。
将本发明的电容器用铌粉初步调整为含有3-9质量%的氧。
如上所述,当将铌粉烧结和模压,然后将烧结体取出并暴露于空气中时,会很快发生氧化反应。而反应放出的热会加热烧结体,从而加速氧化反应的进行。使用的铌粉粒径越小,这种趋势表现得越明显。在本发明中,使用具有预定粒径的粒状铌粉。而且,粒状铌粉预先含有3-9质量%的氧,从而使烧结后取出烧结体并暴露于空气中时发生的急剧的氧化反应得以减缓,并可得到具有稳定性能的电容器。
如果铌粉的氧含量低于3质量%,则在烧结后取出烧结体并暴露于空气中时发生的急剧的氧化反应的减缓效应将减小;而当铌粉的氧含量高于9质量%时,在某些情况下,所得电容器的漏泄电流(LC)特性会向不利的方面恶化。
通过预先氧化初始铌粉或它的粒状粉末,可制备含预定氧量的铌粉。反应可用如下方法进行氧化:例如,将铌粉静置于空气中或在适宜的温度和大气压下搅拌铌粉。其氧含量易通过初步实验加以调整和控制。
这样制得的本发明的粉,其比表面积为0.2-15m2/g。
用作初始铌粉的原料可以是市场上通常供应的材料。例如,可以使用下列物质:用镁或钠还原铌的卤化物而得到的初始粉;通过用钠还原氟代铌酸钾而得到的初始粉;通过在镍阴极上电解氟代铌酸钾的融熔盐(NaCl+KCl)而得到的初始粉;使用碱金属、碱土金属或氢气还原五氧化二铌粉末而得到初始粉;或者通过将氢气导入金属铌锭中,然后研磨和脱氢而得到的初始粉。此外,也可使用通过在惰性气体中用电子束、等离子体或激光作为热源对金属钽进行蒸发或烧蚀或者通过铌复合物的分解而得到的铌细颗粒初始粉。在这些初始粉中,例如可以使用平均粒径为0.1-10μm的初始粉。
本发明中使用的一部分初始铌粉最好经过氮化。
氮化量为10ppm-100000ppm。通过该部分氮化,可改善制得的电容器的漏泄电流(LC)性能。更具体地说,氮化量最好在300-7000ppm之间,以减小LC值。LC值是在用铌粉制得烧结体和电介质材料形成于该烧结体表面后,于磷酸水溶液中测量的。此处所述的“氮化量”是指与铌粉反应并与其结合的氮的量,不包括吸附于铌粉上的氮。
铌粉的氮化方法包括液体氮化法、离子氮化法、气体氮化法或者它们的组合。其中,优选气体氮化法,因为其设备简单且易于操作。
通过将铌粉静置于氮气氛中可进行气体氮化。在氮化气氛中用不高于2000℃的温度和数小时以内的静置时间,可得到具有目标氮化量的铌粉。在高温下进行处理能缩短处理时间。用通过对材料的氮化温度和氮化时间进行初步测试等而确定的条件,可容易地控制铌粉的氮化量。
氮化反应可在制得初始粉或粒状粉末之后进行,可在每次粉末生产后多次进行。
本发明的铌粉烧结体是通过烧结上述铌粉而制得的。对烧结体的制造方法没有特别的限制,例如可以将铌粉加压成型成预定的形状,然后在10-4-10-1Pa的压力、500-2000℃的温度下加热几分钟到几小时,得到烧结体。
可将包含诸如铌或钽这样的起阀门作用的导线制成适宜的形状和长度,并在进行上述铌粉的加压成型时将一部分该导线插入模制品内部并压模成一个整体,这样就可将此导线设计成烧结体导线。
这样制得的本发明的铌粉烧结体的比表面积可以自由调整,但通常使用的为0.2-5m2/g。
本发明的电容器是由上述作为一部分电极的烧结体、形成于该烧结体表面的电介质材料及位于电介质材料上的另一部分电极所构成的。
电容器用电介质材料包括由氧化钽、氧化铌、聚合物或陶瓷化合物组成的电介质材料,其中优选由氧化铌组成的电介质材料。由氧化铌组成的电介质材料可通过在电解溶液中用化学方法形成作为一部分电极的铌粉烧结体而得到。在电解溶液中用化学方法形成铌电极时,通常使用质子酸水溶液,如0.1%磷酸水溶液或硫酸水溶液。在通过在电解溶液中用化学方法形成铌电极而得到氧化铌所组成的电介质材料的情况下,本发明的电容器是电解电容器,其铌侧作为阳极。
在本发明的电容器中,对另一部分电极没有特别的限制,例如可以使用选自铝电解电容器领域已知的电解溶液、有机半导体和无机半导体中的至少一种化合物。
电解溶液的具体例子包括溶解了5质量%的异丁基三丙基铵-四氟化硼电解质的二甲基甲酰胺-乙二醇的混合液,以及溶解了7质量%的四甲基铵-四氟化硼的碳酸丙烯酯-乙二醇的混合液。通过将掺杂剂掺入聚合物而制得的,被掺入掺杂剂的聚合物包含由以下化学式(1)或(2)表示的重复单元:(式中,R1-R4可以是相同的,也可以是不同的,各表示氢原子、1-6个碳原子的烷基、或1-6个碳原子的烷氧基;X表示氧原子、硫原子或氮原子;R5仅存在于X为氮原子时,表示氢或1-6个碳原子的烷基;R1与R2,以及R3与R4能互相结合成环。)
本说明书中的“主要包含一导电性聚合物”是指,甚至能包含含有从有机半导体的原料单体中的杂质得到的成分的导电性聚合物。也就是说,“导电性聚合物作为主要有效成分而含有。”
包含由结构式(1)或(2)所表示的重复单元的聚合物包括:聚苯胺、聚苯醚、聚苯硫醚、聚噻吩、聚呋喃、聚吡咯、聚甲基吡咯以及这些聚合物的衍生物。
可使用的掺杂剂的例子包括:硫醌系掺杂剂、蒽单磺酸系掺杂剂和其它各种阴离子掺杂剂。也可使用电子受体掺杂剂,如NO+或NO2 +盐。
无机半导体的具体例子包括:主要包含二氧化铅或二氧化锰的无机半导体,以及包含四氧化三铁的无机半导体。
这些半导体可单独使用或两种以上结合使用。
当使用的有机或无机半导体具有10-2-103S·cm-1的电导率时,制得的电容器可具有较低的阻抗值,且高频下,电容可有较大的增加。
当另一部分电极是固体电极时,可将导电层置于其上,以使其与外导线(例如,导线框)之间产生很好的电接触。
导电层可用以下方法形成,例如可以是导电膏固化、电镀、金属化或形成耐热导电性树脂。较佳的导电膏包括银膏、铜膏、铝膏、碳膏和镍膏,它们可单独使用或两种以上结合使用。当使用两种以上膏浆时,可将膏浆混合或者作为分开的层互相叠置。然后将施加的导电膏静置于空气中或者加热,使之固化。电镀包括镀镍、镀铜、镀银和镀铝。用于汽相淀积的金属包括铝、镍、铜和银。
在实际使用中,例如将碳膏和银膏依次层积在另一部分电极上,并与环氧树脂之类的材料一起模压,由此构成电容器。此电容器可具有铌或钽导线,此导线经烧结,并与铌烧结体压模成一体或焊接于铌烧结体上。
这样制得的本发明的电容器用诸如树脂模制件、树脂外壳、金属套壳、树脂浸渍物或层压膜作外套,然后作为电容器产品用于各种用途。
当另一部分电极是液体时,将用上述两个电极和电介质材料制成的电容器放入例如一个与另一部分电极电连接的容器中,构成一个完整的电容器。在这种情况下,铌烧结体的电极侧通过上述铌或钽导线导出。与此同时,使用绝缘橡胶等使铌烧结体的电极侧与容器绝缘。
                       实施本发明的最好方式
下面通过实施例和比较例对本发明进行更详细的描述。
各实施例中的测试和评价物理性能的方法描述如下。
(1)铌粉的氧和氮含量
它们的含量用LEKO生产的氮氧分析器进行测定。
(2)电容器的容量
电容器容量以制得的50个单元的电容器的平均容量值的形式测取。
(3)漏泄电流特性(LC)
室温下将额定电压(4V)于电容器的两端之间持续施加一分钟,然后测定漏泄电流值。评定电流值在100μA以下的电容器为合格。用50个单元的电容器进行上述评估。
此外,将制得的电容器在125C放置1000小时,然后恢复到室温状态,以相同的方式进行高温快速测试,测定其漏泄电流值。评定电流值在100μA以下的电容器为合格。该评估也是用50个单元的电容器进行。实施例1-5和比较例1-2
将平均粒径为1μm的初始铌粉在1100℃、6×10-3Pa下静置30分钟,然后取出粉碎,研磨成平均粒径为80μm的铌粉。将此铌粉在300℃下静置于氮气流中,得到氮化量为2500ppm的氮化铌粉。接着,将50g所得铌粉于130℃下静置于空气中。通过改变静置时间,可得到各自具有示于表1的含氧量的铌粉(比表面积:2.8m2/g)。
将此铌粉与0.30mmΦ的铌引线一起模压,得到尺寸为4.5×3.5×1.8mm的模制品。将此模制品在1150℃下于真空中烧结100分钟。降温后,在50℃时将其取出,从而制得烧结体(比表面积:0.9m2/g)。然后,在80℃于0.1%磷酸水溶液中用电化学的方法处理所得的烧结体,在其表面形成由氧化铌构成的氧化物电介质膜层。
重复进行这样一种操作,即交替地将烧结体浸渍于吡咯蒸气以及含过硫酸铵和蒽硫酸醌钠的饱和水溶液中。这样,在氧化无电介质膜的表面会形成由聚吡咯构成的阴极层。在该阴极层上,依次层积碳膏层和银膏层。在安装在导线框上后,将它们与环氧树脂一起模压制得电容器。测定所得的电容器的电容,漏泄电流特性和高温静止试验后的漏泄电流特性并进行评价。所得结果示于表1。实施例6-10和比较例3和4
将平均粒径为0.7μm的初始铌粉在950℃、6×10-3Pa下静置30分钟,然后取出粉碎,制得平均粒径为3μm的团聚粉末。在1100℃、6×10-3Pa下将此团聚粉末再静置30分钟,然后取出粉碎,从而研磨平均粒径为100μm的铌粉。将该经过研磨的铌粉在300℃下静置于氮气流中,得到部分氮化的铌粉,该铌粉的氮化量为3400ppm。接着,将50g所得铌粉于130℃下在空气中静置。通过改变静置时间,可得到各具有示于表2的含氧量的铌粉(比表面积:4.9m2/g)。
使用上述各铌粉,按与实施例1所述的相同的方法制备烧结体(比表面积:1.4m2/g)。在其上面形成了氧化物电介质膜层后,重复进行这样一种操作,即交替地将各烧结体浸渍于饱和乙酸铅水溶液以及饱和过硫酸铵水溶液中,在氧化物电介质膜层的表面形成包含二氧化铅和硫酸铅(二氧化铅:97质量%)的阴极层。在此阴极层上,将各个膏层如实施例1中那样层积,从而制得电容器。测定这样制得的电容器的电容、漏泄电流特性和高温静止试验后的漏泄电流特性并进行评价。所得结果示于表2。
                              表1
  氧含量质量%   电容μf 合格的LC单元的数量 快速测试后的合格的LC单元的数量
  实施例1     3.2     630     50/50     50/50
  实施例2     4.5     620     50/50     50/50
  实施例3     5.7     640     50/50     50/50
  实施例4     7.6     620     50/50     50/50
  实施例5     8.8     640     50/50     50/50
  比较例1     2.7     630     50/50     39/50
  比较例2     9.6     640     49/50     49/49
                                表2
  氧含量质量%    电容μf 合格的LC单元的数量 快速测试后的合格的LC单元的数量
  实施例6     3.3     950     50/50     50/50
  实施例7     4.8     930     50/50     50/50
  实施例8     5.5     950     50/50     50/50
  实施例9     7.4     940     50/50     50/50
  实施例10     8.6     950     50/50     50/50
  比较例3     2.6     940     50/50     38/50
  比较例4     10.2     950     47/50     47/47
将实施例1-5与表1中的比较例1进行对比,并将实施例6-10与表2中的比较例3进行比较,可以看出,通过在铌粉中加入预定量的氧,可防止快速测试后其性能下降。同样地,从实施例及比较例2和3的结果可以看出,如果氧含量超过9质量%,一些电容器的初始LC值会不合格。
                               工业应用性
使用本发明的平均粒径为10-500μm、氧含量已调整为3-9质量%的铌粉,可制造快速测试后的劣化减小、可避免长时间使用导致的性能下降、可靠性高的电容器。

Claims (12)

1.电容器用铌粉,具有10-500μm的平均粒径,它是含氧量为3-9质量%的粒状粉末。
2.依据权利要求1所述的电容器用铌粉,其比表面积在0.2-15m2/g之间。
3.依据权利要求1或2所述的电容器用铌粉,它被部分氧化。
4.依据权利要求3所述的电容器用铌粉,其氮化量为10-100,000ppm。
5.烧结体,它使用上述权利要求1-4中任一项所述的电容器用铌粉。
6.依据权利要求5所述的烧结体,其比表面积在0.2-5m2/g之间。
7.电容器,它是由上述权利要求5或6所述的作为一部分电极的烧结体、形成于该烧结体表面的电介质材料及位于电介质材料上的另一部分电极所构成的。
8.依据权利要求7所述的电容器,其电介质材料主要由氧化铌组成。
9.依据权利要求8所述的电容器,其氧化铌通过电解氧化形成。
10.依据权利要求7-9中任一项所述的电容器,其另一部分电极是选自电解溶液、有机半导体或无机半导体的至少一种材料。
11.依据权利要求10所述的电容器,其另一部分电极由一个有机半导体组成,此有机半导体选自下列有机半导体中的至少一种:包含苯并吡咯啉四聚物和氯醌的有机半导体,主要包含四硫代并四苯的有机半导体,主要包含四氰基醌二甲烷的有机半导体,以及主要包含一下述导电性聚合物的有机半导体,所述导电性聚合物是通过将掺杂剂掺入聚合物而制得的,被掺入掺杂剂的聚合物包含两种以上的由以下化学式(1)或(2)表示的重复单元:
Figure A0180432100031
(式中,R1-R4可以是相同的,也可以是不同的,各表示氢原子、1-6个碳原子的烷基、或1-6个碳原子的烷氧基;X表示氧原子、硫原子或氮原子;R5仅存在于X为氮原子时,表示氢或1-6个碳原子的烷基;R1与R2,以及R3与R4能互相结合成环。)
12.依据权利要求11所述的电容器,其有机半导体是选自聚吡咯、聚噻吩聚苯胺和它们的取代衍生物中的至少一种。
CN01804321A 2000-11-30 2001-11-30 电容器用铌粉及其烧结体和使用该烧结体的电容器 Pending CN1419701A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP366044/2000 2000-11-30
JP2000366044A JP5020433B2 (ja) 2000-11-30 2000-11-30 コンデンサ用ニオブ粉、焼結体及びその焼結体を用いたコンデンサ

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CNA2008100883273A Division CN101335133A (zh) 2000-11-30 2001-11-30 电容器用铌粉及其烧结体和使用该烧结体的电容器
CNA2008100883269A Division CN101335132A (zh) 2000-11-30 2001-11-30 电容器用铌粉及其烧结体和使用该烧结体的电容器

Publications (1)

Publication Number Publication Date
CN1419701A true CN1419701A (zh) 2003-05-21

Family

ID=18836721

Family Applications (3)

Application Number Title Priority Date Filing Date
CNA2008100883273A Pending CN101335133A (zh) 2000-11-30 2001-11-30 电容器用铌粉及其烧结体和使用该烧结体的电容器
CNA2008100883269A Pending CN101335132A (zh) 2000-11-30 2001-11-30 电容器用铌粉及其烧结体和使用该烧结体的电容器
CN01804321A Pending CN1419701A (zh) 2000-11-30 2001-11-30 电容器用铌粉及其烧结体和使用该烧结体的电容器

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CNA2008100883273A Pending CN101335133A (zh) 2000-11-30 2001-11-30 电容器用铌粉及其烧结体和使用该烧结体的电容器
CNA2008100883269A Pending CN101335132A (zh) 2000-11-30 2001-11-30 电容器用铌粉及其烧结体和使用该烧结体的电容器

Country Status (4)

Country Link
JP (1) JP5020433B2 (zh)
CN (3) CN101335133A (zh)
AT (1) ATE336792T1 (zh)
DE (1) DE60122297T2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1883021B (zh) * 2003-11-13 2011-04-06 昭和电工株式会社 固体电解电容器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE424371T1 (de) * 2005-06-03 2009-03-15 Starck H C Gmbh Niobiumsuboxide
JP5289669B2 (ja) * 2005-06-10 2013-09-11 ローム株式会社 Nb化合物の微粉末の製造方法、Nb化合物の微粉末を用いた固体電解コンデンサの製造方法
JP5497076B2 (ja) * 2012-01-10 2014-05-21 ローム株式会社 Nb化合物の微粉末、多孔質焼結体、これを用いた固体電解コンデンサ、およびこれらの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3196832B2 (ja) * 1998-05-15 2001-08-06 日本電気株式会社 固体電解コンデンサ及びその製造方法
GB2359823A (en) * 1998-08-28 2001-09-05 Kemet Electronics Corp Phosphate anodizing electrolyte and its use to prepare capacitors valve metal anodes produced from very fine metal powders
US6387150B1 (en) * 1999-02-16 2002-05-14 Showa Denko K.K. Powdered niobium, sintered body thereof, capacitor using the sintered body and production method of the capacitor
US6375704B1 (en) * 1999-05-12 2002-04-23 Cabot Corporation High capacitance niobium powders and electrolytic capacitor anodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1883021B (zh) * 2003-11-13 2011-04-06 昭和电工株式会社 固体电解电容器

Also Published As

Publication number Publication date
CN101335132A (zh) 2008-12-31
DE60122297T2 (de) 2007-08-09
JP5020433B2 (ja) 2012-09-05
CN101335133A (zh) 2008-12-31
JP2002167601A (ja) 2002-06-11
ATE336792T1 (de) 2006-09-15
DE60122297D1 (de) 2006-09-28

Similar Documents

Publication Publication Date Title
US6452777B1 (en) Capacitor
CN100339917C (zh) 铌烧结体及其生产方法以及使用这种铌烧结体的电容器
CN1196552C (zh) 用于电解电容器的钽烧结体的制造方法
JP5283240B2 (ja) コンデンサ用ニオブ、及び該ニオブ焼結体を用いたコンデンサ
CN1539031A (zh) 酸土金属的合金构成的金属箔和具备该金属箔的电容器
CN1930647A (zh) 固体电解电容器及其用途
CN100338702C (zh) 电容器用铌粉及其烧结体和使用该烧结体的电容器
Qiu et al. Development of a γ-polyglutamic acid binder for cathodes with high mass fraction of sulfur
CN1419701A (zh) 电容器用铌粉及其烧结体和使用该烧结体的电容器
US20090147445A1 (en) Micropowder of nb compound and process for production thereof
US6755884B2 (en) Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body
CN1484842A (zh) 钽烧结体和使用该烧结体的电容器
CN1533444A (zh) 铌粉、其烧结体和使用同样材料的电容器
CN1478287A (zh) 用于电容器的粉末、其烧结体及使用该烧结体的电容器
CN1471717A (zh) 用于电容器的粉、烧结体及使用该烧结体的电容器
CN87104241A (zh) 固体电解电容器制造方法
CN115159497A (zh) 一种钠离子电池硬碳负极材料及其制备方法与应用
JPH115864A (ja) 導電性高分子及びその製造方法
JP2003178935A (ja) コンデンサ用粉体、それを用いた焼結体及びそれを用いたコンデンサ
JP2002100542A (ja) コンデンサ用粉体、それを用いた焼結体及び該焼結体を用いたコンデンサ
CN1823397A (zh) 制造固体电解电容器的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication