CN1411385A - 用于照射肿瘤组织的离子束照射装置 - Google Patents
用于照射肿瘤组织的离子束照射装置 Download PDFInfo
- Publication number
- CN1411385A CN1411385A CN01806133A CN01806133A CN1411385A CN 1411385 A CN1411385 A CN 1411385A CN 01806133 A CN01806133 A CN 01806133A CN 01806133 A CN01806133 A CN 01806133A CN 1411385 A CN1411385 A CN 1411385A
- Authority
- CN
- China
- Prior art keywords
- ion beam
- patient
- deflection
- bed
- irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1077—Beam delivery systems
- A61N5/1078—Fixed beam systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1077—Beam delivery systems
- A61N5/1079—Sharing a beam by multiple treatment stations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1077—Beam delivery systems
- A61N5/1081—Rotating beam systems with a specific mechanical construction, e.g. gantries
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
- A61N2005/1087—Ions; Protons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1042—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
- A61N5/1043—Scanning the radiation beam, e.g. spot scanning or raster scanning
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Radiation-Therapy Devices (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明涉及一种用于相对水平设置的病人卧榻在不同角度下照射肿瘤组织的离子束照射装置及进行该离子束照射的方法,其中病人卧榻设有一个可绕垂直轴转动的转动装置,及离子束照射装置具有下列照射系统中的至少一个:第一照射系统,它具有一个对称的或不对称的、位置固定的扫描系统,后者具有相对水平方向的偏转角度达±15°的一个中心离子束偏转范围及可作到在中心离子束偏转范围中扫描肿瘤容积,及具有一个用于病人卧榻的附加升降装置,第二照射系统,它具有一个比第一照射系统更大偏转角度的离子束偏转装置,及一个设在离子束偏转装置下游并可与离子束偏转装置的偏转角度同步摆动的、用于扫描肿瘤容积的对称扫描单元。
Description
本发明涉及根据独立权利要求前序部分的用于照射肿瘤组织的离子束照射装置及运行该装置的方法。
由US 4,870,287公知了一种由一个中心质子源选择产生质子射束及使其通过一个加速装置传送到多个病人治疗站的质子束照射装置,其中每个治疗站具有一个可转动的滚筒支架,以下它被称为门架(Gantry)。在该公知装置中,在不同的照射角度下对病人提供质子束,该质子束固定地对准一个病人的卧榻。门架系统的组合已以“Pedroni”公知,即由肿瘤学中强子治疗法的“射束传送”,第434-452页公知,编者U.A.Maldi及B.Larsson,Elsevier,1994年出版。
只要这种用于照射肿瘤组织的离子束照射装置使用周期表中最轻元素的离子、即氢离子或质子来工作,用于门架的转向磁铁(Umlenkmagnet)及其质量相对地小及可被控制。但使用较重的离子如碳或其它元素的离子,则必需使用多倍大的偏转磁铁,以便使高加速度的离子从门架的轴线偏转到门架的周围及再回到门架的中心,而病人被定位在该门架中。同时,必需在门架中设置相应的大质量作为偏转磁铁的配重,以致一个门架的可精确控制到几毫米的用于转动的转动台重达几百吨。因此随着离子质量数的增大,该传统的门架方案变得困难、不实用及需要愈来愈大的建筑来安装治疗装置。
任何照射治疗的目的在于,将尽可能高的射束剂量注入一个窄范围的区域、即肿瘤容积中及最大可能地保护周围的健康组织。在传统的X射线治疗中由于光剂量随进入深度指数地下降,对于深位的肿瘤的通常皮下射线治疗仅可这样地达到高的抗瘤剂量,即使用交叉照射技术使射线从多个方向偏转到肿瘤容积上。由此减小肿瘤容积前、后健康组织的负担。在临床实践中通常使用两至三个入射角及在用光子的强度调制治疗时使用逆转剂量方案则通常安排九或十个入射通道、即照射角度位置。这种多部位照射(Mehrfeldbestrahlung)尤其可用公知的门架系统实现。
与光子射线治疗类似地,在离子束照射治疗时也希望有多个输入口,-即使通过离子束逆转剂量方案输入通道中的剂量小于肿瘤容积区域中的剂量。但是该不可避免的输入剂量在多个照射角上的分配在离子束照射治疗中意味着另一临床治疗的优点。因此用于质子束治疗的公知离子束照射装置设有由通过相应门架系统的所有方向施加照射的装置。
在这方面,由专利文献US-PS4,870,287公知的门架系统适合作光子或X射线治疗的门架系统。该系统首先使射线从病人轴线偏转开然后再使射线弯转90°回到病人身上。接着这样地达到可变的照射角度,即借助门架使整个偏转系统沿射线方向转动360°。该机械转动主要用于不改变磁铁的调节而仅需要进行机械转动。但是,该不改变电磁铁的调节而简单机械转动的优点仅适用于这样的情况,即治疗用的门架使用发散的离子束。但在使用聚焦的、铅笔尖那样细的离子束及使用激励扫描系统扫描肿瘤容积时不再具有磁场的恒定及不变性,因为射束能量及由此磁场强度必需根据该细射束应用所需的供能步骤来使用。因此就失去了使用具有固定磁铁调节的门架的主要理由,尤其是对于扫描系统需要使细射束相对中心离子束偏转范围在X及Y方向上正交地偏转。
此外,由专利文献US-PS4,870,287公知的质子束治疗系统得到的经验表明:在深位肿瘤的离子束治疗时并不是门架的所有可能入射角能以相同的频度使用。而它表明,具有一个大范围的很少使用的照射角区域,因为经常出现的肿瘤类型要求经常重复地限制的门架角度调节。在这方面它表明,传统的用于离子束照射治疗的门架系统不是一个最佳的方案,因为门架的大量的可能照射角度很少被利用。
公知的及已生产的离子束照射治疗系统的特征是,粒子射束在固定角度下通过门架系统引导及角度的变化仅可在机械上通过整个系统的转动来实现。由于质子具有200MeV及碳离子具有约400MeV/U的粒子的高能量及对于离子束扫描所需的大面积的孔隙(Aperturen),要求具有大面积孔隙的高磁场强度的偏转磁铁。这意味着,电磁铁将达到很大尺寸及重量。于是用于碳离子的一种筒形的门架将设计成直径为7m及长度为15-20m以及重量为300-400t,其中约50t仅用于作为磁铁的配重的水泥的重量。在这样大的重量情况下,位置公差及由此射束的位置精确度更加重要。对于病人该公差极限在毫米范围中。该公差极限用迄今制造的门架系统很难保证。
在制造用于医院的离子束照射装置时多个门架系统的制造是一个很大的成本因素。该成本涉及每个系统用于本身的门架将高于1千5百万马克(DM),在建造适合的工作间时高度及宽度将超过14m及长度将超过20m。这意味着所建造的建筑物将大于4.000m3。该建筑物将用水泥厚壁屏蔽。此外,所计划的离子束扫描方法的应用在所需的机械精确度上至今仍是一个未解决的问题。因此,在使用离子束扫描方法时必需在每次调节后达到所需的1mm的精确度及对于每个新的治疗必需进行检查、验证及校正。
本发明的任务在于,克服现有技术中离子束照射装置的缺点并给出一种照射系统,该照射系统能在减小成本及节省空间并同时提高精确度方面满足其要求。
该任务将通过独立权利要求主题的特征来解决。本发明优选的进一步构型将由从属权利要求的特征中得到。
该任务的解决则在于:病人以卧姿被固定在一个病人卧榻上及该水平位置在照射前及照射期间不再改变。在病人卧榻上的水平位置具有其优点,即可避免不可控制的器官移动,而在坐姿或治疗期间转动时会不利地出现器官移动。这意味着,病人卧榻上设有的转动装置仅用于调节照射角度,而非在激励照射期间被操作。因此对躺着的病人的照射角度可有利地由所有可能的角度(4π)组合,其方式是通过病人卧榻的转动装置可实现水平病人卧榻对照射平面的360°定位(2π)及附加地射束方向180°(π)地与此正交地定位,即通过根据本发明的照射系统可从病人的垂直上方及侧面向垂直下方进行照射。因此在根据本发明的装置中可放弃使用360°转动的门架,并且根据本发明的任务也不希望使用它,因为可360°转动的门架使病人周围的位置受到限制及由此防碍了诊断单元、如PET照相机的进入及安装。
为此,根据本发明的方案除了使病人卧榻绕垂直轴转动的转动装置外还设有下列照射系统中的至少一个:第一照射系统,它具有一个对称的或不对称的、位置固定的扫描系统,后者具有相对水平方向的偏转角度达±15°的一个中心离子束偏转范围及可作到在中心离子束偏转范围中扫描肿瘤容积,及具有一个用于病人卧榻的附加升降装置,及第二照射系统,它具有一个比第一照射系统更大偏转角度的离子束偏转装置,及一个设在离子束偏转装置下游并可与离子束偏转装置的偏转角度同步摆动的、用于扫描肿瘤容积的对称扫描单元。
最好该离子束照射装置在各个分开的照射室中具有至少两个第一照射系统及一个第二照射系统。具有有限偏转角度达±15°的两个照射系统的优选配置是考虑到这样的事实:这种离子束照射装置可覆盖三分之二的肿瘤组织治疗,及由此在该具有有限偏转角度±15°的照射系统中设置一个非对称的扫描系统,该扫描系统在X方向上覆盖肿瘤容积的宽度及在Y方向上不仅考虑要达到肿瘤容积的深度,而且通过偏转磁铁系统在Y方向上的扩大使中心离子束偏转范围扩展到+15°并同时在中心离子束偏转范围内作到对肿瘤容积深度的扫描。为此,病人卧榻除转动可能性外还设有升降的可能性,以便控制中心离子束偏转范围的偏转角或照射角度的定位。而其余的约三分之一的肿瘤病人需要较大的中心离子束偏转范围,将用第二照射系统来治疗他们,该第二照射系统首先与扫描单元无关地借助一个外部的偏转磁铁单元可使离子束相对水平面偏转到±90°。一个用于在偏转角度方向上扫描肿瘤容积的对称扫描单元将与该第二照射系统的离子束偏转装置的偏转角度同步地摆动,以使得用于这样大的偏转角度的偏转磁铁及其孔隙可保持小尺寸及对称扫描单元仅设计用于扫描肿瘤容积及偏转,这样就相对迄今所提出的门架系统节省了大量的重量及体积。
因为将病人固定在病人卧榻上的准备工作在用于照射肿瘤组织的离子束照射装置的整个照射周期中占用了最多的时间,因此该离子束照射装置的每个照射系统设有至少一个准备室,各个准备室设有一个病人卧榻。最好每个照射系统设有两个或更多的准备室及疗后护理室。因此所需照射室的数目随使用的照射系统的数目的增加而增加,及准备室的数目随在水平病人卧榻上固定病人花费的时间与照射室中实际照射过程时间之比的增大而增大。
对于-15°及+15°之间照射角度仅需要第一照射系统中的一个非对称扫描单元,及除病人卧榻的升降及转动调节装置外仅需要提供用于扫描系统偏转磁铁的激磁电流及设置一个用于来自非对称扫描单元的离子束的扩展输出窗口;而在本发明的一个优选实施例中对于第二照射系统设置了一个可变偏转角度的、位置固定的离子束偏转装置,该离子束偏转装置设在病人卧榻的侧面,其中病人卧榻设有一个附加的升降装置,该升降装置的高度差比第一照射系统的病人卧榻升降装置的高度差大得多。但大照射角度所需的偏转磁铁可作成具有小的孔隙,因为细笔尖状的离子束仅通过偏转磁铁而无需受到扫描单元在X方向上的预偏转。仅在偏转后才耦合一个相应尺寸的对称扫描单元,后者可随偏转角度摆动,以使得可在中心离子束偏转范围中扫描整个肿瘤容积。
作为对设在病人卧榻侧面的离子束偏转磁铁的变换,在本发明的另一实施形式中,该磁铁也可设在病人卧榻的垂直上方,及病人卧榻不设升降装置,而设置可在水平面上移动的装置。通过该优选的变换实施例亦可实现:不用转动式门架即可提供治疗肿瘤的的大照射角度范围。
在本发明的另一优选实施例中,第二照射系统具有一个可变偏转角度、可在水平直线轨道上移动的离子束偏转装置,及病人卧榻在侧向的所有方向上被固定着。这就是说,病人卧榻既不具有升降装置也不具有在水平面的两个轴向上移动的可能性。它仅可绕垂直轴转动,以便使病人卧榻相对照射方向以相应转动角度被固定。在其上离子束偏转装置可移动地滑动的水平直线轨道可被设置在病人上方或下方,其中随着移动同时地改变磁铁的激磁电流,以便使离子束以不同的角度偏转到固定着的病人方向上。
在本发明的另一优选实施例中,第二照射系统具有一个可变偏转角度、位置固定的离子束偏转装置及一个可在垂直直线轨道上移动的、可变偏转角度的离子束偏转装置。这两个可变偏转角度将彼此这样地协同调节,即病人卧榻总可保持侧向地固定及尽管不同的照射角度而不需要病人卧榻的任何侧向移动。扫描单元被设置在可在垂直直线轨道上移动的离子束偏转装置的后面及由此可构成完全对称的,以便扫描肿瘤组织。该方案相对离子束偏转装置的水平移动具有其优点,即对于可移动离子束偏转装置的垂直直线轨道仅需要使偏转磁铁设置一个升降装置。而病人仍被保持在其固定位置中无需侧向移动,在此情况下为了调节离子束的位置用一个升降装置使第二偏转磁铁上、下移动,以改变照射角度。一旦照射角度被调节,则照射时该照射角保持恒定不变。并且病人在照射期间不再被移动。
在本发明的另一优选实施例中,第二照射系统具有一个可沿相对水平方向以一角度α倾斜的直线轨道线性移动的离子束偏转装置,其偏转角度在-α至-(α+90°)的范围中,而病人卧榻在侧向上保持固定。为此,从水平方向进入照射室的离子束首先以角度α偏转到可线性移动的离子束偏转装置的方向上,及仅需要一个线性移动机构的该离子束偏转装置使离子束以预定角度偏转到病人身上。该角度可从0°达到90°及在一个变换的结构中也可设计成从0°达到-90°。在前一情况下,倾斜轨道在病人侧面向病人上方地定向,而在后一情况下,离子束偏转装置在其上滑动的倾斜轨道从病人侧面的位置延伸到病人下方的位置。借助这样一个第二照射系统及线性移动的离子束偏转装置可免于使用门架的昂贵结构,及实质上得到以下优点:
1.由于在倾斜面上的直线移动,与门架的转动相比提高了机械稳定性,
2.去除了传统所需的平衡配重,
3.所有运动部分具有相对小的重量,
4.使用相对轻的偶极磁铁,因为仅需要小的孔隙,
5.围建的屏蔽照射室被缩小到约600cm3,它小于一个转动式门架的室的四分之一,及
6.病人卧榻周围空间上的限制小及由此改善了设立其它监测系统如PET(光子发射形貌测量装置)的可能性。
当在本发明的另一优选实施例中,第二照射系统具有一个可变偏转角度、位置固定的离子束偏转装置及一个可沿相对水平方向以一角度α倾斜的直线轨道线性移动的离子束偏转装置,其偏转角度在-α至-(α+90°)的范围中,及其中病人卧榻在侧向上被固定时,可以获得相同的优点。在该实施例中考虑:离子束从病人上方进入照射室及由一个固定的离子束偏转装置偏转到不同的偏转角度上,及再通过可在一个倾斜直线轨道上移动的离子束偏转装置使离子束偏转到病人身上。在该实施例中磁铁孔隙也很小,因为对称扫描单元设在可移动离子束偏转装置的后面及其本身随着离子束偏转角度摆动。
在本发明的一个优选实施形式中,倾斜直线轨道的角度α为45°。借助该45°的倾斜轨道可作到:离子束可从病人侧面到垂直于病人的一个四分之一圆的区域中的所有照射角度照射到病人身上,而无需调整病人卧榻。
为了使离子束从水平方向偏转到倾斜轨道上,最好第二照射系统具有用于偏转高加速度的水平离子束的第一转向磁铁。属于可移动离子束偏转装置的第二转向磁铁最好使离子束从倾斜直线轨道偏转到水平方向,以及一个后置的合适磁偏转系统或螺线管磁铁在整个离子束偏转装置同时运动时使离子束在0及90°之间进行另一偏转,该偏转视该合适磁偏转系统或螺线管磁铁激磁电流的调节而定。
第一照射系统的一个优选实施形式设置了第一偏转磁铁,用于在与中心离子束偏转范围正交的平面的X方向上扫描肿瘤容积,及具有一个偏转磁铁,用于偏转到中心离子束偏转范围的方向上在与中心离子束偏转范围正交的平面的Y方向上以附加的重叠量在该方向上扫描肿瘤容积。
第一照射系统的该实施形式具有的优点是,不需要附加的偏转磁铁及对大部分的肿瘤病人可用具有有限偏转角度的第一照射系统的该实施形式进行治疗。
最好是,在第一照射系统中Y方向上的偏转磁铁与病人卧榻之间的距离在5及7m之间。另一方面,第二照射系统的螺线管磁铁的可移动直线轨道与病人卧榻之间的距离最好为3至6m,其中可一起移动的对称扫描单元可设在该3及6m之间的范围中。
只要在本发明的一个实施形式中需要病人卧榻的升降装置,也可与病人卧榻同时地提升照射室的整个地板,由此可有利地使病人保持被固定在一个常规照射室中的印象,及操作人员在照射前、后可在正常的工作位置上操作病人。
为了对扫描离子束进行位置测量及监视,最好离子束照射装置在每个照射室中具有电离室测量装置及多线室测量装置。这些测量装置可有利地既指示离子束的强度又指示离子束的位置。
整个离子束照射装置是这样设计的,即照射系统被设置在照射室中,后者则紧凑地及彼此扇形地相邻布置。它的优点是:仅需使具有少量的偏转磁铁的短离子束路径与作为离子束源的加速器相连接。此外该结构可在任何时候有利地实现系统的扩大,-如果后来需要的话。因此作为最佳方案得到一种具有多个照射室的整个离子束照射装置的径向结构。
在本发明的另一优选实施形式中,离子束照射装置在照射室中设有用于病人卧榻的视觉检查装置,以监视多部位照射的不同调节之间的确定的转动角度变化。该视觉检查可有利地实现:在照射位置转变后使病人系统的坐标与照射室的坐标相比较及被控制。可通过视觉检查从外部来控制在由不同照射角度的多部位照射情况下可能有必要的病人卧榻的转动。
在本发明的另一优选实施形式中,照射系统具有锁定装置,用于在照射室中接收及定位一个病人卧榻。这种锁定装置是复杂的机械装置,它们可保证病人卧榻相对照射方向及照射角度调节到毫米级的精度。此外该锁定装置可保证:用于病人卧榻接收装置及定位装置之间的完全耦合,以使得在照射室中的离子束可精确地扫描肿瘤组织。
在本发明的离子束照射装置中进行离子束照射的方法具有下列的方法步骤:
a)在离子束照射装置的准备室中将病人固定到病人卧榻上,
b)确定用于照射治疗的最佳照射角度,
c)选择合适的第一或第二照射系统,
d)对于中心离子束偏转范围调整偏转装置的偏转角度及局部位置,
e)将病人卧榻驶入相应的照射室及相对预定最佳照射角度锁定及调整该病人卧榻,
f)进行照射,根据情况对于多部位照射用中断来改变病人卧榻的位置和/或离子束偏转装置的偏转角度,
g)将病人送回到一个疗后护理室,及
h)解除病人在病人卧榻上的固定。
在此情况下,病人卧榻可有利地用作可移动的照射单元,其中病人待照射的部分相对机械支承系统被固定。为此在准备室中将一个立体脉冲系统与病人相连接,及相对该系统通过譬如X射线照相装置来核对病人的位置。该方法步骤a)对每个病人需要30至60分钟及由此是治疗中最花费时间的部分,并同时需要高技能的合格人员。因此最好为每个照射室设置多个准备室。接着向照射室的转移则无需多花费时间地进行。在那里具有病人的照射单元将被机械地锁定在给定的照射系统中。
在转移到照射室中后,将使照射单元的坐标与照射室的坐标相比较及调整,然后才可对病人进行照射。在多部位照射的情况下,可从外部借助最好内设的视觉控制装置来控制病人卧榻可能需要的转动。在照射后将病人及其照射单元送到一个疗后护理室中,及在解除其固定后接着便可让病人离开。
现在将参照附图通过实施例来详细描述本发明的其它优点,特征及应用可能性。
图1表示根据本发明一个实施形式的用于照射肿瘤组织的离子束照射装置的一个原理图,
图2表示具有位置固定的非对称扫描系统的第一照射系统的一个原理图,
图3表示具有位置固定的离子束偏转装置及一个病人卧榻垂直升降装置的第二照射系统的一个实施形式的原理图,
图4表示具有位置固定的离子束偏转装置及可水平移动的病人卧榻的第二照射系统的另一实施形式的原理图,
图5表示具有位置固定的、可转动的病人卧榻及一个可沿水平直线轨道移动的离子束偏转装置的第二照射系统的另一实施形式的原理图,
图6表示具有位置固定的、可转动的病人卧榻及一个可沿垂直的直线轨道移动的离子束偏转装置的第二照射系统的另一实施形式的原理图,
图7表示具有位置固定的、可转动的病人卧榻及一个可沿倾斜直线轨道移动的离子束偏转装置的第二照射系统的另一实施形式的原理图,
图8表示具有位置固定的、可转动的病人卧榻及一个固定的与可沿倾斜直线轨道移动的离子束偏转装置组合的第二照射系统的另一实施形式的原理图,
图9表示具有位置固定的、可转动的病人卧榻及一个用于可移动离子束偏转装置的相对水平方向成45°角的倾斜直线轨道的第二照射系统的另一实施形式的原理图,
图10表示图9中所示实施形式在可移动离子束偏转装置的两个其它位置上的原理图。
图1表示根据本发明的一个实施形式的、用于照射躺在一个病人卧榻1上的病人25的肿瘤组织的离子束照射装置4的原理图。该离子束照射装置具有不同的离子源26,27,它们在一个质谱仪中选择不同的气体电离的离子及首先在一个线性加速室28中将选择的离子加速。然后在一个同步加速器29中使离子加速到更高的加速度及接着在达到相应的吸收能量后作为离子束16从同步加速器29输出。该离子束16可偏转地照射到布置成圆弧形的照射室22,23,24及30中。在照射室22,23,24中,相对水平设置的病人卧榻1以不同角度用离子束照射肿瘤组织,以对病人肿瘤组织进行治疗。为此,离子源26及27提供离子如碳离子,它在穿过组织、尤其在人体中离子路径的减速区域中可特别有效地破坏肿瘤组织。
这个实施形式的离子束照射装置包括设有一个可绕垂直轴转动的转动装置的病人卧榻1及两个设有第一照射系统的照射室22及23,第一照射系统具有位置固定的非对称扫描系统。该扫描系统可使水平离子束在一个相对水平方向具有到±15°的偏转角的中心离子束偏转区域中偏转。同时,该非对称扫描系统可在中心离子束偏转区域中执行肿瘤容积的扫描,对此借助一个用于病人卧榻的附加升降装置使有肿瘤组织的病人升高到中心离子束偏转区域的有效区域内。
在该实施形式中,设置了两个具有这种非对称扫描系统及一个用于病人卧榻1的、同时可绕其垂直轴转动的附加升降装置的照射室22及23,而第三照射室24则设有一个第二照射系统,后者具有:一个离子束偏转装置,用于相对照射室22及23的第一照射系统偏转更大的偏转角度范围;及一个设置在该离子束偏转装置下游的并与该离子束偏转装置偏转角度同步的可摆动的对称扫描单元,用于扫描肿瘤容积。
照射室30是一个测试及检验室,在该室中尤其可检验及调整监视装置及测量装置。此外图1还用虚线所示的离子束方向31及32和准备室12表示出该离子束照射装置扩大的可能性,在准备室12中照射治疗的病人可以作准备。该离子束照射装置由两个照射系统组合成一个照射单元,及基于由US4,870,287公知的质子门架装置的经验,后者是至今全世界使用的唯一装置,该装置能以高的病人治愈率施行临床质子治疗。使用该公知装置每年可照射约1000个病人,其中有三分之二至四分之三仅在相对水平病人卧榻1总是0至15°的两侧上被照射。该公知的质子门架装置的其它转动区域由于角度范围的限制不能用于该照射。
因此,在根据图1的一个离子束照射装置的该实施例中,三个室中的两个设有根据本发明的既在成本上又在重量上优化的第一照射系统5,它避免了在材料、空间及费用上用量大的门架方案,及借助新的非对称扫描系统可保证相对水平方向±15°的中心离子束偏转范围。
对于具有必要的较大照射角度范围及可快速重复的调节的其它照射,提供了第二照射系统,它同样放弃使用由现有技术所公知的可转动式门架,-假如直线式台架的技术转换是可行的话。否则必要时照射室可装备一个传统的转动式门架。在根据图1的离子束照射装置的例子中,在照射室24中设置了该第二照射系统的装置。两个照射系统,即非对称扫描系统及具有大偏转角度范围的第二照射系统提供了在必要的建筑尺寸方面的紧凑性及高机械稳定性。由此在建造上减小了投资成本及在运行中使在门架系统中所需的附加检验及再调准成为多余。
病人的通过量取决于在水平病人卧榻1上引导病人及对病人的位置检查。为了在不影响安全的情况下优化该病人通过量,必需使各个工作区段分开,由此可由相应的专家无时间压力及人道地进行照射。
在根据图1的这种装置中进行照射的方法包括下列的方法步骤:
a)在离子束照射装置4的准备室12中将病人固定到病人卧榻1上,
b)确定用于照射治疗的最佳照射角度,
c)选择合适的第一或第二照射系统5或9,
d)对于中心离子束偏转范围调整离子束偏转装置的偏转角度及局部位置,
e)将病人卧榻1驶入相应的照射室22,23,24及相对预定最佳照射角度锁定及调整该病人卧榻,
f)进行照射,根据情况对于多部位照射用中断来改变病人卧榻1的位置和/或偏转装置的偏转角度,
g)将病人卧榻1上的病人送回到一个疗后护理室37,及
h)解除病人在病人卧榻1上的固定。
根据病人的适应症来确定对照射室22,23,24的需要。如果根据公知的US专利4,870,287装备3个转动式门架的质子治疗系统所包括的分配方式,则得到需要至少两个根据第一照射系统5的非对称扫描系统的照射室及一个具有第二照射系统的第三照射室24的必要性,其中第二照射系统具有比第一照射系统大的照射角度。为了避免瓶颈现象,将这样设置根据图1的离子束照射装置的准备室12,即由每个准备室12可到达每个照射室22,23及24。根据使用迄今门架系统的经验,大约20%至30%的肿瘤治疗例需要以大于15°的照射角度照射。因此,根据图1的离子束照射装置可充分地满足迄今存在的照射要求,而不需要使用昂贵的、仅有的转动式门架装置。此外在图1中可清楚地看到,照射室可紧凑地彼此相邻地设置及可通过特别短的射束路径及尽可能小的偏转角度与作为照射源的加速装置28及29相连接。
来自加速器的离子束16通过作为射束分向器的小角度偏转部分33,35及36被导入三个扇形的、彼此相邻布置的照射室22,23及24。两个相邻的照射室22及23各设有装备一个非对称扫描系统的第一照射系统5。它们以相对水平线成0至15°的角度照射,即用于前列腺病人及大部分脑肿瘤及颅底肿瘤的病人。第三照射室24设有相对水平线成0及90°之间的大照射角度的一个离子束偏转装置。照射室22,23及24被准备室及疗后护理室12或37的环状部分围绕,它们可通过照射室22,23及24与准备室及疗后护理室12或37之间的一个公共通道40到达。需要时,根据本发明的该离子束照射装置可用其它的照射系统在旁边作补充,如用虚线表示的离子束方向31及32所指示的。
图2表示具有位置固定的非对称扫描系统的第一照射系统5的一个原理图,该扫描系统主要由用于在一个与中心离子束偏转范围7成正交的平面中的X方向上水平扫描的偏转磁铁20组成。对于偏转磁铁20仅在原理上表示出在两个磁极靴之间的作用面。在X方向上的偏转相对中心离子束偏转范围7的所示的-15°偏转来说是相对小的,因为非对称扫描系统的偏转仅需在X方向上扫过肿瘤容积宽度。相反地,作用在Y方向的偏转磁铁21被设计得明显地大,以便相对0°的水平线在Y方向上可作用到-15°的中心离子束偏转范围。在照射肿瘤容积时该中心离子束偏转范围7覆盖着一个未示出的Y方向上的扫描范围。对于偏转磁铁21也仅表示出在两个磁极靴之间的作用面。因此该非对称扫描系统产生达到+15°的相对小的照射角度,在此情况下,在病人卧榻1上方足够的高度上引导离子束及通过对该非对称扫描系统组成部分的垂直磁铁21的激励使离子束在该图2的实施例中向下偏转。然后对可变高度h的病人卧榻1上的病人25进行照射,该高度可根据所需的照射角度γ被调整。
在垂直扫描磁铁21及肿瘤容积位置上的病人等角中心(Patientenisozentrum)之间5m的距离上,得到表1的高度调节值:
表1
病人卧榻为1.35m的高度适配可借助既用于病人卧榻1也用于地板的升降装置仅通过病人卧榻的调节或通过整个照射室地板及病人卧榻1的调节来实现。
“门架”角度 | 病人高度 | 有效长度 |
0° | 0cm | 5m |
+5° | -45cm | 5.02m |
+10° | -90cm | 5.08m |
+15° | -135cm | 5.18m |
在借助垂直偏转磁铁21改变中心离子束偏转范围时,偏转磁铁21及病人等角中心之间的有效长度也改变,但最大为20cm,其值保持相对地小,如从表1中看到的,这在离子束调节及照射安排时可加以考虑。总体地借助用于垂直方向的偏转磁铁21可得到30°的总偏转范围,即从-15°到+15°。为此在该实施例中,仅需要设置一个具有至2.7m的足够升程的病人卧榻1的升降装置。除了借助该升降装置8的病人卧榻的高度调节外,在该非对称扫描系统中,不具有射束导向系统的可机械地改变的部件。为了保证射束的足够灵活性,在图2所示的该例中在15 °偏转角的情况下,射束管道被作成约20cm的必要宽度及1.35m的必要高度的区段及以一个相应的20cm×1.35cm的窗口闭合,该射束管道由纺织的支承织物及位于其上的密封薄膜组成。控制系统的检测器,如用于强度及位置测量的电离及多线室,可延伸在整个窗口面上,由此可实现在第一照射系统中与机械影响无关的离子束位置及强度的控制测量。
图3表示具有位置固定的离子束偏转装置14及一个垂直可移动的病人卧榻1的第二照射系统9的一个实施形式的原理图。在超过可被第一照射系统覆盖的15°角及照射情况的三分之二至四分之三被覆盖的情况下,根据图3可不用昂贵的转动式门架,原则上实现从-30°到+30°的照射角度,并且不用如转动式门架那样使照射系统本身运动。它仅需要对属于离子束偏转装置14的偏转磁铁38的激磁电流进行控制。扫描装置11本身可被作成对称的,即无论在X方向还是在Y方向与中心离子束偏转范围正交的偏转可在两个方向上具有相同的数量级。在图3的例中,用于病人卧榻的升降装置8可一直移动到0°处的等角中心。在该实施形式中随着照射角度在-30°到+30°的范围中变化,不仅通过病人卧榻1的升降装置8的高度调节使病人移动,而且对称扫描装置11也随着照射角度γ的变化而摆动。
图4表示具有位置固定的离子束偏转装置14及可水平移动的病人卧榻1的第二照射系统的另一实施形式的原理图。与图3不同的是,在第二照射系统9的该实施形式中病人卧榻1不是垂直地、而是水平地在照射位置中移动。为此,位置固定的离子束偏转装置14被设置在病人的上方及由偏转磁铁38引起来一个自水平源的离子束16的偏转,以提供相对水平线成45°至90°的偏转角度β。随着病人卧榻1的移动必需同时地使对称扫描装置11同步地摆动,以便使病人25的肿瘤容积可被完全地扫描。
图5表示具有位置固定的、可转动的病人卧榻1及一个可沿水平直线轨道13移动的离子束偏转装置10的第二照射系统9的另一实施形式的原理图。在该情况下,即当用于离子束偏转装置10移动的水平直线轨道13设置在病人上方时,相对水平方向的偏转角度β可达到45°至90°,而无需大程度的移动,因为偏转磁铁38的孔隙可作得特别小,尤其是对称扫描单元11设置在该偏转磁铁的后面。并且在该实施形式中,除了改变偏转磁铁38中的激磁电流及在水平直线轨道13上移动该偏转磁铁外,还要根据偏转角度β摆动对称扫描单元11。该实施形式的优点在于,病人卧榻1可被作成完全位置固定的及为了扩大照射角度γ的范围仅使它作成可绕垂直轴3转动。
图6表示具有位置固定的、可转动的病人卧榻1及一个可沿垂直的直线轨道13移动的离子束偏转装置10的第二照射系统9的另一实施形式的原理图。由于离子束源提供水平的离子束16,首先在准备好一个可在垂直直线轨道上移动的离子束偏转装置的情况下由一个位置固定的偏转磁铁39使离子束从水平线偏转一个偏转角度β,及然后由可在垂直直线方向上移动的偏转磁铁38使离子束对准到位置固定的病人卧榻1上。根据图6的该实施形式具有的优点是,也仅需要一个升降装置,确切地说用于可垂直移动的离子束偏转装置10,其中这种升降装置可借助液压机械相对便宜及节省空间地实现。在此情况下,也必需借助该升降装置一起移动一个对称扫描单元11,后者同时地摆动偏转角度β。
图7表示具有位置固定的、可转动的病人卧榻1及一个可沿倾斜直线轨道13移动的离子束偏转装置10的第二照射系统9的另一实施形式的原理图。用于离子束偏转装置10的这种倾斜直线轨道13具有其优点,即在图3至6中可看到的角度限制现在可被解除,这时通过该实施形式可实现照射角度γ从0°开始直到90°为止。而无需采用昂贵的转动式门架系统。根据图7的实施形式是基于:水平方向的离子束16在病人卧榻1位置的下方进入照射室。第一转向磁铁15使离子束16偏转到倾斜直线轨道13的方向上,及再由可在倾斜直线轨道13上移动的离子束偏转装置10通过电磁铁激磁电流的改变这样地偏转到不同的角度上,即总是使位置固定的、可转动的病人卧榻1处于等角中心上。同样,这里亦是使对称扫描单元11与可移动的离子束偏转装置10一起被引导及被这样地摆动,即该对称扫描单元保持对准在离子束的方向上。
图8表示具有位置固定的、可转动的病人卧榻1及一个固定的与可沿倾斜直线轨道移动的离子束偏转装置的组合的第二照射系统9的另一实施形式的原理图。为此在该实施形式中假定:离子束16从病人卧榻1的上方引入照射室并首先遇到位置固定的偏转磁铁39,后者使离子束相对水平方向在0°至90°之间偏转。可移动的离子束偏转装置10在一个倾斜角度为α的倾斜直线轨道移动并使由位置固定的偏转磁铁39偏转的离子束16偏转到病人卧榻1上。同样在该实施形式中也是使对称扫描单元11与可移动的离子束偏转装置10一起被引导,以便对病人卧榻1上等角中心处的整个肿瘤容积进行扫描。
图9表示具有位置固定的、可转动的病人卧榻1及一个用于可移动离子束偏转装置10的相对水平方向成45°角的倾斜直线轨道13的第二照射系统9的另一实施形式的原理图。这里离子束偏转装置10也是由一个位置固定的转向磁铁组成,它使在水平方向上进入照射室的离子束16偏转到倾斜的直线轨道上,该轨道相对水平方向倾斜一个角度α=45°。然后该偏转的离子束18通过第二转向磁铁17首先恒定不变地偏转到水平方向上。然后一个后置的螺线管磁铁19可根据它的激磁电流使离子束偏转0°至90°。为此图9表示一个状态,其中螺线管磁铁19未被激磁及由此离子束在水平方向上被引导到病人卧榻1上。在图9的该位置上在螺线管磁铁19的后面水平地设置了一个对称扫描系统11,后者通过相应的偏转磁场可在与中心离子束偏转范围7正交的X方向及Y方向上扫描肿瘤容积。
图10表示图9中所示实施形式在可移动离子束偏转装置10的两个其它位置41及42上的原理图。由虚线画的离子束16所示的中间位置41表示第二转向磁铁17的不变偏转作用及螺线管磁铁19增大的偏转角度,在第二位置42上该螺线管磁铁表示出使离子束16偏转90°的最大作用。在此情况下,对称扫描单元11总是与离子束16一起摆动,以致在照射角度γ的所有位置上可完全地扫描肿瘤容积。
因此借助该45°的直线台架可免于使用昂贵的转动式门架系统,一个在倾斜面上-如该例中倾斜45°-直线移动的磁铁系统便可满足要求。在此情况下离子束将首先从水平面偏转到45°的平面上。在该平面上必需安装一组具有最大偏转能力为135°的可移动的磁铁。对于0°(水平)的照射,该可移动系统位于其最下点及通过一个45°的偶极磁铁的激磁使离子束以0°偏转动病人身体上。
在垂直照射(90°)的情况下,可移动的磁铁组被移动到45°倾斜面的上端,及在该例中由螺线管磁铁表示的第二磁铁偏转系统被附加地在90°上激磁。因此0°及90°之间的所有角度可通过中间位置及相应的磁铁激磁来实现。而90°及180°之间的照射可通过病人卧榻1的简单转动来实现。
在病人卧榻1上面6m的最大高度上该离子束偏转单元11可被设置在最后偶极磁铁的后面。由此可使偶极磁铁的孔隙保持很小及由此使其重量相对门架方案有显著减小。图9及10中所示的具有倾斜面的系统的主要优点已有详细的描述。
Claims (20)
1.用于相对水平设置的病人卧榻(1)在不同照射角度(γ)下照射肿瘤组织的离子束照射装置,其特征在于:
病人卧榻(1)设有一个可绕垂直轴(3)转动的转动装置(2),及离子束照射装置(4)具有下列照射系统中的至少一个:
第一照射系统(5),它具有一个对称的或不对称的、位置固定的扫描系统(6),后者具有相对水平方向的偏转角度(β)达±15°的一个中心离子束偏转范围(7)及可作到在中心离子束偏转范围(7)中扫描肿瘤容积,及具有一个用于病人卧榻(1)的附加升降装置(8),
第二照射系统(9),它具有一个比第一照射系统(5)更大偏转角度(β)的离子束偏转装置(10),及一个设在离子束偏转装置(10)下游并可与离子束偏转装置(10)的偏转角度(β)同步摆动的、用于扫描肿瘤容积的对称扫描单元(11)。
2.根据权利要求1的离子束照射装置,其特征在于:离子束照射装置(4)具有至少两个第一照射系统(5)及一个第二照射系统(9)。
3.根据权利要求1或2的离子束照射装置,其特征在于:离子束照射装置的每个照射系统(5,9)具有至少一个准备室(12),各个准备室设有一个病人卧榻(1)。
4.根据以上权利要求中一项的离子束照射装置,其特征在于:第二照射系统(9)具有一个可变偏转角度(β)、位置固定的离子束偏转装置(14),后者设在病人卧榻(1)的侧面,及病人卧榻(1)具有一个附加的垂直升降装置(8)。
5.根据权利要求1至3中一项的离子束照射装置,其特征在于:第二照射系统(9)具有一个可变偏转角度(β)、位置固定的离子束偏转装置(14),后者设在病人卧榻(1)的垂直上方,及病人卧榻(1)可在水平方向上移动。
6.根据权利要求1至3中一项的离子束照射装置,其特征在于:第二照射系统(9)具有一个可变偏转角度(β)、可在水平直线轨道(13)上移动的离子束偏转装置(10),及病人卧榻(1)在侧向上被固定。
7.根据权利要求1至3中一项的离子束照射装置,其特征在于:第二照射系统(9)具有一个可变偏转角度(β)、位置固定的离子束偏转装置(14)及一个可在垂直直线轨道(13)上移动的、可变偏转角度(β)的离子束偏转装置(10),及病人卧榻(1)在侧向上被固定。
8.根据权利要求1至3中一项的离子束照射装置,其特征在于:第二照射系统(9)具有一个可沿相对水平方向以一角度α倾斜的直线轨道(13)线性移动的离子束偏转装置(10),其偏转角度(β)在-α至-(α+90°)的范围中,及病人卧榻(1)在侧向上被固定。
9.根据权利要求1至3中一项的离子束照射装置,其特征在于:第二照射系统(9)具有一个可变偏转角度(β)、位置固定的离子束偏转装置(14)及一个可沿相对水平方向以一角度α倾斜的直线轨道(13)线性移动的离子束偏转装置(10),其偏转角度(β)在-α至-(α+90°)的范围中,及病人卧榻(1)在侧向上被固定。
10.根据权利要求8或9的离子束照射装置,其特征在于:倾斜直线轨道的角度α为45°。
11.根据权利要求9或10的离子束照射装置,其特征在于:第二照射系统(9)具有用于偏转高加速度的水平离子束(16)的第一转向磁铁(15),它使离子束(16)偏转一个偏转角α到倾斜直线轨道(13)上,及具有第二转向磁铁(17),它使偏转的离子束(18)从在其上第二转向磁铁(17)可移动的倾斜直线轨道(13)偏转回水平方向,以及具有一个可与第二转向磁铁(17)一起移动的螺线管磁铁(19),用于使离子束(16)以预定照射角度(8)偏转到病人卧榻(1)的方向上。
12.根据以上权利要求中一项的离子束照射装置,其特征在于:第一照射系统(5)具有第一偏转磁铁(20),用于在与中心离子束偏转范围(7)正交的平面的X方向上扫描肿瘤容积,及具有一个偏转磁铁(21),用于偏转到中心离子束偏转范围(7)的方向上在与中心离子束偏转范围(7)正交的平面的Y方向上以附加的重叠量在该方向上扫描肿瘤容积。
13.根据以上权利要求中一项的离子束照射装置,其特征在于:Y方向的偏转磁铁(21)与第一照射系统(5)的病人卧榻(1)之间的距离在5至7米之间。
14.根据以上权利要求中一项的离子束照射装置,其特征在于:螺线管(19)的可移动直线轨道(13)与病人卧榻(1)之间的距离为3至6米及在该范围中设置可一起移动的磁性扫描单元(11)。
15.根据以上权利要求中一项的离子束照射装置,其特征在于:在提升病人卧榻(1)时照射室(22,23,24)的整个地板一起被提升。
16.根据以上权利要求中一项的离子束照射装置,其特征在于:离子束照射装置(4)具有电离室测量装置及多线室测量装置,用于对扫描离子束(16)进行位置测量及监视。
17.根据以上权利要求中一项的离子束照射装置,其特征在于:照射系统(5,9)被设置在紧凑地彼此相邻的扇形照射室(22,23,24)中。
18.根据以上权利要求中一项的离子束照射装置,其特征在于:离子束照射装置(4)在照射室(22,23,24)中设有用于病人卧榻(1)的视觉检查装置,以监视病人卧榻(1)的多部位照射的不同调节之间的确定的转动角度变化。
19.根据以上权利要求中一项的离子束照射装置,其特征在于:照射系统(5,9)具有锁定装置,用于在照射室(22,23,24)中接收及定位一个病人卧榻(1)。
20.在具有以上权利要求之一的特征的离子束照射装置(4)中进行离子束照射的方法,包括下列的方法步骤:
a)在离子束照射装置(4)的准备室(12)中将病人固定到病人卧榻(1)上,
b)确定用于照射治疗的最佳照射角度,
c)选择合适的第一或第二照射系统(5,9),
d)对于中心离子束偏转范围(7)调整离子束偏转装置(10,14)的偏转角度及局部位置,
e)将病人卧榻(1)驶入相应的照射室(22,23,24)及相对预定最佳照射角度锁定及调整该病人卧榻,
f)进行照射,根据情况对于多部位照射用中断来改变病人卧榻(1)的位置和/或离子束偏转装置(10,14)的偏转角度,
g)将病人送回到一个疗后护理室(37),及
h)解除病人在病人卧榻(1)上的固定。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10010523.8 | 2000-03-07 | ||
DE10010523A DE10010523C2 (de) | 2000-03-07 | 2000-03-07 | Ionenstrahlanlage zur Bestrahlung von Tumorgewebe |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1411385A true CN1411385A (zh) | 2003-04-16 |
CN1310687C CN1310687C (zh) | 2007-04-18 |
Family
ID=7633461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB018061338A Expired - Fee Related CN1310687C (zh) | 2000-03-07 | 2001-03-07 | 用于照射肿瘤组织的离子束照射装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US6730921B2 (zh) |
EP (1) | EP1261394B1 (zh) |
JP (1) | JP4549604B2 (zh) |
CN (1) | CN1310687C (zh) |
AT (1) | ATE303843T1 (zh) |
BR (1) | BR0108976A (zh) |
DE (2) | DE10010523C2 (zh) |
WO (1) | WO2001066187A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102543245A (zh) * | 2010-11-11 | 2012-07-04 | 住友重机械工业株式会社 | 带电粒子束照射装置、照射方法及传输管路的装卸方法 |
CN102687230A (zh) * | 2009-11-02 | 2012-09-19 | 普罗丘尔治疗中心有限公司 | 紧凑型等中心机架 |
CN102725029A (zh) * | 2009-11-26 | 2012-10-10 | Gsi亥姆霍兹重离子研究中心有限责任公司 | 用于在辐照期间控制剂量施用的方法和装置 |
CN107635348A (zh) * | 2017-09-25 | 2018-01-26 | 合肥中科离子医学技术装备有限公司 | 一种超导质子装置能量选择系统及其实现方法 |
CN111249631A (zh) * | 2013-02-27 | 2020-06-09 | 住友重机械工业株式会社 | 中子捕捉疗法系统 |
Families Citing this family (135)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1358908A1 (en) * | 2002-05-03 | 2003-11-05 | Ion Beam Applications S.A. | Device for irradiation therapy with charged particles |
DE10235116B4 (de) * | 2002-08-01 | 2005-03-17 | Gesellschaft für Schwerionenforschung mbH | Abgeschirmter Raum für die Ionentherapie für Neutronen bis in den Energiebereich GeV |
DE10261099B4 (de) * | 2002-12-20 | 2005-12-08 | Siemens Ag | Ionenstrahlanlage |
CN101006541B (zh) * | 2003-06-02 | 2010-07-07 | 福克斯·彻斯癌症中心 | 高能多能离子选择系统、离子束治疗系统及离子束治疗中心 |
CA2967536C (en) | 2003-08-12 | 2020-08-25 | Vision Rt Limited | Patient positioning system for radiation therapy system |
KR101164150B1 (ko) * | 2003-08-12 | 2012-07-13 | 로마 린다 유니버시티 메디칼 센터 | 방사선 테라피 시스템을 위한 환자 배치 시스템 |
WO2005057738A2 (en) * | 2003-12-02 | 2005-06-23 | Fox Chase Cancer Center | Method of modulating protons for radiation therapy |
DE102004025502B4 (de) * | 2004-05-21 | 2006-12-28 | Gesellschaft für Schwerionenforschung mbH | Beschleunigeranlage für eine Strahlentherapie mit Ionenstrahlen |
DE102004029026A1 (de) * | 2004-06-09 | 2005-12-29 | Rhön-Klinikum AG | Bestrahlungseinrichtung |
DE202004009421U1 (de) | 2004-06-16 | 2005-11-03 | Gesellschaft für Schwerionenforschung mbH | Teilchenbeschleuniger für die Strahlentherapie mit Ionenstrahlen |
DE102004041063A1 (de) * | 2004-08-19 | 2006-02-23 | Rhön-Klinikum AG | Bestrahlungseinrichtung mit versenkbarer Tür |
US20060293644A1 (en) * | 2005-06-21 | 2006-12-28 | Donald Umstadter | System and methods for laser-generated ionizing radiation |
DE102005035141A1 (de) | 2005-07-22 | 2007-02-01 | GSI Gesellschaft für Schwerionenforschung mbH | Bestrahlungseinrichtung |
DE102005034912B4 (de) * | 2005-07-26 | 2007-10-04 | Siemens Ag | Partikeltherapieanlage, Verfahren zum Bestimmen von Steuerparametern einer derartigen Therapieanlage, Strahlentherapieplanungsvorrichtung und Bestrahlungsverfahren |
DE102005041122B3 (de) * | 2005-08-30 | 2007-05-31 | Siemens Ag | Gantry-System für eine Partikeltherapieanlage, Partikeltherapieanlage und Bestrahlungsverfahren für eine Partikeltherapieanlage mit einem derartigen Gantry-System |
DE102005056698B4 (de) * | 2005-11-28 | 2008-11-27 | Siemens Ag | Medizinische Strahlentherapieeinrichtung mit verschiebbarer Position des Strahlaustrittsfensters |
AU2007323660B2 (en) | 2006-11-21 | 2013-06-27 | Loma Linda University Medical Center | Device and method for immobilizing patients for breast radiation therapy |
IL191676A (en) * | 2007-05-24 | 2013-05-30 | Cure Ltd P | A device for positioning and approval for remote healing |
US7847275B2 (en) * | 2007-05-24 | 2010-12-07 | Pcure Ltd. | Method and apparatus for teletherapy positioning and validation |
US20090003522A1 (en) * | 2007-06-29 | 2009-01-01 | Stanley Chien | Method for radiation therapy delivery at varying source to target distances |
DE102007050168B3 (de) * | 2007-10-19 | 2009-04-30 | Siemens Ag | Gantry, Partikeltherapieanlage sowie Verfahren zum Betreiben einer Gantry mit beweglichem Stellelement |
CN101951853B (zh) | 2008-02-22 | 2013-01-23 | 洛马林达大学医学中心 | 用于在3d成像系统内将空间失真特征化的系统和方法 |
US7943913B2 (en) | 2008-05-22 | 2011-05-17 | Vladimir Balakin | Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US8045679B2 (en) * | 2008-05-22 | 2011-10-25 | Vladimir Balakin | Charged particle cancer therapy X-ray method and apparatus |
US8373145B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Charged particle cancer therapy system magnet control method and apparatus |
US8378311B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Synchrotron power cycling apparatus and method of use thereof |
US8710462B2 (en) | 2008-05-22 | 2014-04-29 | Vladimir Balakin | Charged particle cancer therapy beam path control method and apparatus |
US8198607B2 (en) * | 2008-05-22 | 2012-06-12 | Vladimir Balakin | Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US9579525B2 (en) | 2008-05-22 | 2017-02-28 | Vladimir Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US9974978B2 (en) | 2008-05-22 | 2018-05-22 | W. Davis Lee | Scintillation array apparatus and method of use thereof |
US8288742B2 (en) * | 2008-05-22 | 2012-10-16 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US9737733B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle state determination apparatus and method of use thereof |
US9056199B2 (en) * | 2008-05-22 | 2015-06-16 | Vladimir Balakin | Charged particle treatment, rapid patient positioning apparatus and method of use thereof |
US8144832B2 (en) * | 2008-05-22 | 2012-03-27 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8374314B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system |
US8093564B2 (en) * | 2008-05-22 | 2012-01-10 | Vladimir Balakin | Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system |
US8718231B2 (en) | 2008-05-22 | 2014-05-06 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8569717B2 (en) | 2008-05-22 | 2013-10-29 | Vladimir Balakin | Intensity modulated three-dimensional radiation scanning method and apparatus |
US7953205B2 (en) * | 2008-05-22 | 2011-05-31 | Vladimir Balakin | Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system |
US8487278B2 (en) * | 2008-05-22 | 2013-07-16 | Vladimir Yegorovich Balakin | X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US10092776B2 (en) | 2008-05-22 | 2018-10-09 | Susan L. Michaud | Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof |
US8309941B2 (en) * | 2008-05-22 | 2012-11-13 | Vladimir Balakin | Charged particle cancer therapy and patient breath monitoring method and apparatus |
MX2010012714A (es) * | 2008-05-22 | 2011-06-01 | Vladimir Yegorovich Balakin | Metodo y aparato de control de la trayectoria de haces para la terapia contra el cancer mediante particulas cargadas. |
US9498649B2 (en) | 2008-05-22 | 2016-11-22 | Vladimir Balakin | Charged particle cancer therapy patient constraint apparatus and method of use thereof |
US7940894B2 (en) * | 2008-05-22 | 2011-05-10 | Vladimir Balakin | Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8637833B2 (en) | 2008-05-22 | 2014-01-28 | Vladimir Balakin | Synchrotron power supply apparatus and method of use thereof |
US9095040B2 (en) | 2008-05-22 | 2015-07-28 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US9782140B2 (en) | 2008-05-22 | 2017-10-10 | Susan L. Michaud | Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof |
US8975600B2 (en) * | 2008-05-22 | 2015-03-10 | Vladimir Balakin | Treatment delivery control system and method of operation thereof |
US8896239B2 (en) | 2008-05-22 | 2014-11-25 | Vladimir Yegorovich Balakin | Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system |
US9981147B2 (en) * | 2008-05-22 | 2018-05-29 | W. Davis Lee | Ion beam extraction apparatus and method of use thereof |
US9937362B2 (en) | 2008-05-22 | 2018-04-10 | W. Davis Lee | Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof |
US8089054B2 (en) | 2008-05-22 | 2012-01-03 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US9616252B2 (en) | 2008-05-22 | 2017-04-11 | Vladimir Balakin | Multi-field cancer therapy apparatus and method of use thereof |
US9682254B2 (en) | 2008-05-22 | 2017-06-20 | Vladimir Balakin | Cancer surface searing apparatus and method of use thereof |
US8129699B2 (en) * | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US9177751B2 (en) | 2008-05-22 | 2015-11-03 | Vladimir Balakin | Carbon ion beam injector apparatus and method of use thereof |
US9737272B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle cancer therapy beam state determination apparatus and method of use thereof |
US8129694B2 (en) * | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system |
US8378321B2 (en) * | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Charged particle cancer therapy and patient positioning method and apparatus |
US10143854B2 (en) | 2008-05-22 | 2018-12-04 | Susan L. Michaud | Dual rotation charged particle imaging / treatment apparatus and method of use thereof |
CA2725498C (en) | 2008-05-22 | 2015-06-30 | Vladimir Yegorovich Balakin | Multi-field charged particle cancer therapy method and apparatus |
US9168392B1 (en) | 2008-05-22 | 2015-10-27 | Vladimir Balakin | Charged particle cancer therapy system X-ray apparatus and method of use thereof |
US8373146B2 (en) * | 2008-05-22 | 2013-02-12 | Vladimir Balakin | RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US9155911B1 (en) | 2008-05-22 | 2015-10-13 | Vladimir Balakin | Ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US9044600B2 (en) * | 2008-05-22 | 2015-06-02 | Vladimir Balakin | Proton tomography apparatus and method of operation therefor |
US8436327B2 (en) | 2008-05-22 | 2013-05-07 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus |
US10029122B2 (en) | 2008-05-22 | 2018-07-24 | Susan L. Michaud | Charged particle—patient motion control system apparatus and method of use thereof |
WO2009142545A2 (en) | 2008-05-22 | 2009-11-26 | Vladimir Yegorovich Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8598543B2 (en) * | 2008-05-22 | 2013-12-03 | Vladimir Balakin | Multi-axis/multi-field charged particle cancer therapy method and apparatus |
US10070831B2 (en) | 2008-05-22 | 2018-09-11 | James P. Bennett | Integrated cancer therapy—imaging apparatus and method of use thereof |
US9744380B2 (en) | 2008-05-22 | 2017-08-29 | Susan L. Michaud | Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof |
EP2283711B1 (en) * | 2008-05-22 | 2018-07-11 | Vladimir Yegorovich Balakin | Charged particle beam acceleration apparatus as part of a charged particle cancer therapy system |
US8368038B2 (en) * | 2008-05-22 | 2013-02-05 | Vladimir Balakin | Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron |
US10684380B2 (en) | 2008-05-22 | 2020-06-16 | W. Davis Lee | Multiple scintillation detector array imaging apparatus and method of use thereof |
US8188688B2 (en) | 2008-05-22 | 2012-05-29 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US9737734B2 (en) | 2008-05-22 | 2017-08-22 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US8373143B2 (en) * | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy |
US7939809B2 (en) * | 2008-05-22 | 2011-05-10 | Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8519365B2 (en) | 2008-05-22 | 2013-08-27 | Vladimir Balakin | Charged particle cancer therapy imaging method and apparatus |
US9910166B2 (en) | 2008-05-22 | 2018-03-06 | Stephen L. Spotts | Redundant charged particle state determination apparatus and method of use thereof |
US10548551B2 (en) | 2008-05-22 | 2020-02-04 | W. Davis Lee | Depth resolved scintillation detector array imaging apparatus and method of use thereof |
US8907309B2 (en) | 2009-04-17 | 2014-12-09 | Stephen L. Spotts | Treatment delivery control system and method of operation thereof |
US8178859B2 (en) | 2008-05-22 | 2012-05-15 | Vladimir Balakin | Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system |
US9855444B2 (en) | 2008-05-22 | 2018-01-02 | Scott Penfold | X-ray detector for proton transit detection apparatus and method of use thereof |
US8969834B2 (en) | 2008-05-22 | 2015-03-03 | Vladimir Balakin | Charged particle therapy patient constraint apparatus and method of use thereof |
EP2283713B1 (en) | 2008-05-22 | 2018-03-28 | Vladimir Yegorovich Balakin | Multi-axis charged particle cancer therapy apparatus |
US8399866B2 (en) | 2008-05-22 | 2013-03-19 | Vladimir Balakin | Charged particle extraction apparatus and method of use thereof |
US8624528B2 (en) | 2008-05-22 | 2014-01-07 | Vladimir Balakin | Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods |
US8642978B2 (en) | 2008-05-22 | 2014-02-04 | Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
EP2283705B1 (en) | 2008-05-22 | 2017-12-13 | Vladimir Yegorovich Balakin | Charged particle beam extraction apparatus used in conjunction with a charged particle cancer therapy system |
US8229072B2 (en) | 2008-07-14 | 2012-07-24 | Vladimir Balakin | Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8627822B2 (en) | 2008-07-14 | 2014-01-14 | Vladimir Balakin | Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
US8625739B2 (en) | 2008-07-14 | 2014-01-07 | Vladimir Balakin | Charged particle cancer therapy x-ray method and apparatus |
JP5430115B2 (ja) * | 2008-10-15 | 2014-02-26 | 三菱電機株式会社 | 荷電粒子線ビームのスキャニング照射装置 |
EP2196241A1 (en) * | 2008-12-12 | 2010-06-16 | Koninklijke Philips Electronics N.V. | Therapeutic apparatus |
US8053745B2 (en) * | 2009-02-24 | 2011-11-08 | Moore John F | Device and method for administering particle beam therapy |
AU2009341615B2 (en) | 2009-03-04 | 2013-03-28 | Zakrytoe Aktsionernoe Obshchestvo Protom | Multi-field charged particle cancer therapy method and apparatus |
EP2404640B1 (en) * | 2009-06-09 | 2015-01-28 | Mitsubishi Electric Corporation | Particle beam therapy apparatus and method for calibrating particle beam therapy apparatus |
JP2011182987A (ja) * | 2010-03-09 | 2011-09-22 | Sumitomo Heavy Ind Ltd | 加速粒子照射設備 |
US10518109B2 (en) | 2010-04-16 | 2019-12-31 | Jillian Reno | Transformable charged particle beam path cancer therapy apparatus and method of use thereof |
US10556126B2 (en) | 2010-04-16 | 2020-02-11 | Mark R. Amato | Automated radiation treatment plan development apparatus and method of use thereof |
US11648420B2 (en) | 2010-04-16 | 2023-05-16 | Vladimir Balakin | Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof |
US10625097B2 (en) | 2010-04-16 | 2020-04-21 | Jillian Reno | Semi-automated cancer therapy treatment apparatus and method of use thereof |
US10751551B2 (en) | 2010-04-16 | 2020-08-25 | James P. Bennett | Integrated imaging-cancer treatment apparatus and method of use thereof |
US10086214B2 (en) | 2010-04-16 | 2018-10-02 | Vladimir Balakin | Integrated tomography—cancer treatment apparatus and method of use thereof |
US10179250B2 (en) | 2010-04-16 | 2019-01-15 | Nick Ruebel | Auto-updated and implemented radiation treatment plan apparatus and method of use thereof |
US10751555B2 (en) * | 2010-04-16 | 2020-08-25 | Daniel J. Raymond | Multi-direction proton therapy apparatus and method of use thereof |
US10349906B2 (en) | 2010-04-16 | 2019-07-16 | James P. Bennett | Multiplexed proton tomography imaging apparatus and method of use thereof |
US9737731B2 (en) | 2010-04-16 | 2017-08-22 | Vladimir Balakin | Synchrotron energy control apparatus and method of use thereof |
US10376717B2 (en) | 2010-04-16 | 2019-08-13 | James P. Bennett | Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof |
US10589128B2 (en) | 2010-04-16 | 2020-03-17 | Susan L. Michaud | Treatment beam path verification in a cancer therapy apparatus and method of use thereof |
US10638988B2 (en) | 2010-04-16 | 2020-05-05 | Scott Penfold | Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof |
US10555710B2 (en) | 2010-04-16 | 2020-02-11 | James P. Bennett | Simultaneous multi-axes imaging apparatus and method of use thereof |
US10188877B2 (en) | 2010-04-16 | 2019-01-29 | W. Davis Lee | Fiducial marker/cancer imaging and treatment apparatus and method of use thereof |
US8755489B2 (en) | 2010-11-11 | 2014-06-17 | P-Cure, Ltd. | Teletherapy location and dose distribution control system and method |
JP5489295B2 (ja) * | 2010-12-06 | 2014-05-14 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置及び荷電粒子線照射方法 |
US9067065B2 (en) * | 2011-03-07 | 2015-06-30 | Mitsubishi Electric Corporation | Particle beam irradiation apparatus and particle beam therapy system utilizing a beam position monitor to provide feedback adjustments based on the beam position |
WO2012161852A2 (en) | 2011-03-07 | 2012-11-29 | Loma Linda University Medical Center | Systems, devices and methods related to calibration of a proton computed tomography scanner |
US8963112B1 (en) | 2011-05-25 | 2015-02-24 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8933651B2 (en) | 2012-11-16 | 2015-01-13 | Vladimir Balakin | Charged particle accelerator magnet apparatus and method of use thereof |
JP6091263B2 (ja) * | 2013-03-07 | 2017-03-08 | 三菱電機株式会社 | 粒子線治療設備 |
US20160051844A1 (en) * | 2013-04-01 | 2016-02-25 | Mitsubishi Electric Corporation | Particle beam irradiation room and particle beam therapy system |
JP6256974B2 (ja) * | 2013-10-29 | 2018-01-10 | 株式会社日立製作所 | 荷電粒子ビームシステム |
EP3222321A4 (en) * | 2014-11-21 | 2018-08-01 | Mitsubishi Electric Corporation | Method for supporting design of facility for particle radiotherapy, method for constructing facility for particle radiotherapy, and facility for particle radiotherapy |
US9907981B2 (en) | 2016-03-07 | 2018-03-06 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US20180028835A1 (en) * | 2016-05-27 | 2018-02-01 | James P. Bennett | Counter balanced / cantilevered charged particle cancer therapy gantry system and method of use thereof |
US10037863B2 (en) | 2016-05-27 | 2018-07-31 | Mark R. Amato | Continuous ion beam kinetic energy dissipater apparatus and method of use thereof |
EP3281674A1 (en) * | 2016-08-09 | 2018-02-14 | Paul Scherrer Institut | Particle therapy system having an additional degree of freedom on the synthesis of the angle of treatment |
JP7094375B2 (ja) * | 2018-02-09 | 2022-07-01 | パウル・シェラー・インスティトゥート | 陽子アークビーム照射システム |
JP7145000B2 (ja) * | 2018-08-01 | 2022-09-30 | 住友重機械工業株式会社 | 荷電粒子線治療装置 |
NL2021421B1 (en) | 2018-08-03 | 2020-02-12 | Itrec Bv | Proton Therapy Gantry |
US12042672B2 (en) * | 2020-06-17 | 2024-07-23 | Daniel J. Raymond | Multi-direction proton therapy apparatus and method of use thereof |
CN115569310B (zh) * | 2022-09-01 | 2023-05-30 | 中国科学院近代物理研究所 | 一种基于组合旋转束线的辐照终端及应用 |
JP2024134729A (ja) * | 2023-03-22 | 2024-10-04 | 株式会社日立製作所 | 粒子線照射システム及び粒子線照射方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4870287A (en) | 1988-03-03 | 1989-09-26 | Loma Linda University Medical Center | Multi-station proton beam therapy system |
JPH078300B2 (ja) * | 1988-06-21 | 1995-02-01 | 三菱電機株式会社 | 荷電粒子ビームの照射装置 |
US5260581A (en) * | 1992-03-04 | 1993-11-09 | Loma Linda University Medical Center | Method of treatment room selection verification in a radiation beam therapy system |
JPH0779813B2 (ja) * | 1992-03-24 | 1995-08-30 | 潤 池辺 | 放射線治療装置 |
JPH067462A (ja) * | 1992-06-29 | 1994-01-18 | Hitachi Medical Corp | 放射線治療装置 |
JP2824363B2 (ja) * | 1992-07-15 | 1998-11-11 | 三菱電機株式会社 | ビーム供給装置 |
EP0864337A3 (en) * | 1997-03-15 | 1999-03-10 | Shenzhen OUR International Technology & Science Co., Ltd. | Three-dimensional irradiation technique with charged particles of Bragg peak properties and its device |
CN1052919C (zh) * | 1997-03-15 | 2000-05-31 | 深圳奥沃国际科技发展有限公司 | 具有布拉格峰特性的带电粒子的三维照射技术及其装置 |
JP3577201B2 (ja) | 1997-10-20 | 2004-10-13 | 三菱電機株式会社 | 荷電粒子線照射装置、荷電粒子線回転照射装置、および荷電粒子線照射方法 |
JP3751440B2 (ja) * | 1998-04-30 | 2006-03-01 | 三菱電機株式会社 | 粒子線治療装置 |
DE19907771A1 (de) * | 1999-02-19 | 2000-08-31 | Schwerionenforsch Gmbh | Verfahren zur Überprüfung der Bestrahlungssteuereinheit eines Ionenstrahl-Therapiesystems |
-
2000
- 2000-03-07 DE DE10010523A patent/DE10010523C2/de not_active Expired - Lifetime
-
2001
- 2001-03-07 EP EP01917076A patent/EP1261394B1/de not_active Expired - Lifetime
- 2001-03-07 CN CNB018061338A patent/CN1310687C/zh not_active Expired - Fee Related
- 2001-03-07 WO PCT/EP2001/002575 patent/WO2001066187A1/de active IP Right Grant
- 2001-03-07 JP JP2001564836A patent/JP4549604B2/ja not_active Expired - Fee Related
- 2001-03-07 BR BR0108976-5A patent/BR0108976A/pt not_active IP Right Cessation
- 2001-03-07 DE DE50107362T patent/DE50107362D1/de not_active Expired - Lifetime
- 2001-03-07 US US10/204,577 patent/US6730921B2/en not_active Expired - Lifetime
- 2001-03-07 AT AT01917076T patent/ATE303843T1/de not_active IP Right Cessation
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102687230A (zh) * | 2009-11-02 | 2012-09-19 | 普罗丘尔治疗中心有限公司 | 紧凑型等中心机架 |
CN102725029A (zh) * | 2009-11-26 | 2012-10-10 | Gsi亥姆霍兹重离子研究中心有限责任公司 | 用于在辐照期间控制剂量施用的方法和装置 |
CN102725029B (zh) * | 2009-11-26 | 2015-05-06 | Gsi亥姆霍兹重离子研究中心有限责任公司 | 用于在辐照期间控制剂量施用的方法和装置 |
CN102543245A (zh) * | 2010-11-11 | 2012-07-04 | 住友重机械工业株式会社 | 带电粒子束照射装置、照射方法及传输管路的装卸方法 |
CN102543245B (zh) * | 2010-11-11 | 2014-08-06 | 住友重机械工业株式会社 | 带电粒子束照射装置、照射方法及传输管路的装卸方法 |
CN111249631A (zh) * | 2013-02-27 | 2020-06-09 | 住友重机械工业株式会社 | 中子捕捉疗法系统 |
CN107635348A (zh) * | 2017-09-25 | 2018-01-26 | 合肥中科离子医学技术装备有限公司 | 一种超导质子装置能量选择系统及其实现方法 |
Also Published As
Publication number | Publication date |
---|---|
DE50107362D1 (de) | 2005-10-13 |
JP2003528659A (ja) | 2003-09-30 |
CN1310687C (zh) | 2007-04-18 |
US6730921B2 (en) | 2004-05-04 |
ATE303843T1 (de) | 2005-09-15 |
DE10010523C2 (de) | 2002-08-14 |
BR0108976A (pt) | 2003-06-03 |
JP4549604B2 (ja) | 2010-09-22 |
DE10010523A1 (de) | 2001-09-20 |
EP1261394A1 (de) | 2002-12-04 |
EP1261394B1 (de) | 2005-09-07 |
US20030141460A1 (en) | 2003-07-31 |
WO2001066187A1 (de) | 2001-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1310687C (zh) | 用于照射肿瘤组织的离子束照射装置 | |
JP4616843B2 (ja) | 多重室照射治療システム | |
KR101773534B1 (ko) | 입자 치료기용 소형 갠트리 | |
EP3089787B1 (en) | System for stereotactic intensity-modulated arc therapy | |
US7564945B2 (en) | System including computed tomography device for image guided treatment | |
US20210387022A1 (en) | Proton therapy beam alignment apparatus and method of use thereof | |
US20170281977A1 (en) | Hadron radiation installation and verification method | |
EP3251600B1 (en) | Radiographic imaging apparatus and particle beam therapy system | |
US5675625A (en) | Apparatus for positioning and marking a patient at a diagnostic apparatus | |
US11918830B2 (en) | Proton therapy tuning apparatus and method of use thereof | |
US12070626B2 (en) | Proton therapy gantry | |
US11925818B2 (en) | Flash proton therapy apparatus and method of use thereof | |
US20090154645A1 (en) | Teletherapy treatment center | |
US11918831B2 (en) | Hybrid bragg/flash proton therapy apparatus and method of use thereof | |
EP2954931A1 (en) | Particle beam rotational irradiation device and particle beam therapy device | |
CN108379748A (zh) | 放射治疗头及放射治疗装置 | |
TWI589327B (zh) | 粒子線照射室及粒子線治療裝置 | |
US20100138997A1 (en) | Patient transport unit and method for transporting a patient | |
CN1160134C (zh) | X(γ)射线调强治疗装置 | |
CN113491844B (zh) | 一种全球面放射治疗系统 | |
US20240066325A1 (en) | Proton therapy tuning apparatus and method of use thereof | |
JPH07255867A (ja) | 3次元粒子線照射装置 | |
CN209662466U (zh) | 一种加速器调整装置 | |
CN108014428A (zh) | 一种磁共振图像引导的放射治疗系统 | |
CN1870940A (zh) | 通过电离辐射用于治疗的仪器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070418 Termination date: 20170307 |
|
CF01 | Termination of patent right due to non-payment of annual fee |