CN1356765A - 开关磁阻驱动系统中的电流斩波 - Google Patents

开关磁阻驱动系统中的电流斩波 Download PDF

Info

Publication number
CN1356765A
CN1356765A CN01139413A CN01139413A CN1356765A CN 1356765 A CN1356765 A CN 1356765A CN 01139413 A CN01139413 A CN 01139413A CN 01139413 A CN01139413 A CN 01139413A CN 1356765 A CN1356765 A CN 1356765A
Authority
CN
China
Prior art keywords
phase
current
controller
signal
chopping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01139413A
Other languages
English (en)
Other versions
CN1254002C (zh
Inventor
迈克尔·詹姆斯·特纳
查尔斯·理查德·埃略特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec SR Drives Ltd
Original Assignee
Nidec SR Drives Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec SR Drives Ltd filed Critical Nidec SR Drives Ltd
Publication of CN1356765A publication Critical patent/CN1356765A/zh
Application granted granted Critical
Publication of CN1254002C publication Critical patent/CN1254002C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • H02P1/44Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/092Converters specially adapted for controlling reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一开关磁阻驱动器由一功率电源供电且有一DC链接电容器。该机器的相位由电流斩波控制器控制,在相传导重叠期间,该控制器控制第二相中斩波的启动,以便最小化从电容器抽取的电流,从而使电容器的额定值减小。

Description

开关磁阻驱动系统中的电流斩波
技术领域
本发明涉及开关磁阻驱动系统。特别是,它涉及控制器能将DC链接电容中的波纹电流最小化这样的系统。
背景技术
开关磁阻系统的特性和操作方法在本领域中众所周知,并在,例如,文章“开关磁阻马达和驱动器的特性,设计和应用”有所描述,该文章由Stephenson和Blake撰写,发表在PCIM′93,Mrnberg,21-24June 1993上,在此引入作为参考。图1以简图的形式示出一典型的多相开关磁阻驱动器,在这里开关磁阻马达12驱动负载19。输入直流动力电源11例如可以是电池或整流滤波AC电源干线。由供电电源11提供的直流电压在电子控制单元14的控制下由功率变换器13在马达12的相绕组(线圈)16上转换。为了驱动器的正确操作,转换必须和马达的旋转角精确同步。一转子位置检测器15可典型地用于提供相应于转子的角位置的信号。它的输出也可用作产生一速度反馈信号。
已经知道许多不同的功率转换器布局设计,在上面提到的Stephenson的文章中讨论了其中几个。图2中示出一用于多相系统一单相的一最普通的配置,其中,该机器的位相绕组16和两个开关器件21和22串联跨接在母线26和27之间。母线26和27一起被描述为转换器的“DC链接(DC link)”。当开关21和22打开时,能量恢复二极管23和24连到绕组上,使得绕组电流流回到“DC链接”。电容器25,被称为是“DC链接电容”跨接DC链接至电源或抑制DC链接电流(即所谓的“波纹电流”)的任一交流成分,该成分不能从电源中抽取或返回电源。在应用上,电容25可包含几个串联或并联的电容,当用并联时,一些元件可分布在整个转换器中。该电容的成本和/或尺寸在安装中是重要的,对驱动成本和/或被驱动器占据的空间是敏感的,例如,在航空或汽车应用中。
开关磁阻驱动器基本上是一变速系统,以在机器的相绕组中具有的电压和电流为特性,其完全不同于在传统正弦激发类型的机器,业已周知开关磁阻系统有两个基本的工作模式:斩波模式和单脉冲模式,两者在上面提到的Stephenson的文章中都有描述。图3说明单脉冲控制,这种控制通常用于一典型驱动器速度范围的中高速。图3(a)示出一典型地由控制器加到相绕组的电压波形。在一预置的转子角度处,通过接通功率转换器13中的开关加上电压,以给定的角θc一导电角施加恒定的电压。如图3(b)所示出的,电流从零升高,典型地到一峰值,并慢慢地下降。当跨过θc,开关打开,能量恢复二极管给绕组加一负电压,在机器中产生通量,因此,产生电流,衰减到零。然后,到循环重复出现前,典型地有一零电流期。很清楚该相期间从电源汲取能量,其后将少量的能量返回电源。图3(c)示出由动力转换器供给相绕组的电流和在能量返回期间流回到转换器的电流。业已知道,代之同时打开两个开关,先后打开这两个开关有很多好处,使电流沿由闭合开关、相绕组、和二极管之一形成的回路环流。这被称为“空转”(freewheeling),使用它有多种原因,包括限制峰电流和减少噪声。
然而,在零速和低速情况下,单脉冲模式不适用,由于会遭受高的峰电流,用斩波模式有效地用于控制相绕组电流,该斩波模式有两种基本的变形,当电流达到一预置的值时,斩波模式的最简单的方法是同时打开和相绕组相关联的两个开关,即图2中的开关21和22,这导致能量从机器返回到DC链接。有时这被称为是“硬斩波”,供选择的另一方法是只打开一个开关并使“空转”出现。这被认为是“空转斩波”或“软斩波”。在这一控制模式中,除在导电期的终了,当打开两个开关以最后消除电流时,没有能量从相绕组返回到DC链接。
借助任一斩波方案,有一可利用的确定电流高低的方案选择。在本领域中都知道许多这样的方案,一常用的方案包括一能在高低电流间斩波的磁滞控制器。图4(a)示出用于硬斩波的一典型的示意图。在一选择的接通角θon(该角常常是这样一个位置,在该位置相位有最小的电感,但,该角可以是其它位置),给相绕组加上电压,使相电流上升直达高磁滞电流Iu。在该点两个开关都打开,而后电流下降直到它达低电流Il,然后开关再次闭合,重复该斩波循环。图5(a)示出对于使用空转的磁滞控制器模式相应的相电流波形,斩波频率的降低立即看清。
应当注意,如果机器正在发电(generating)而不是驱动(motoring),相电流在空转期间可上升。通过在空转(一个开关打开)和能量返回(两个开关打开)之间改变供电电路状态,仍可使用软斩波。以后描述的技术同样地应用于发电与驱动工作模式。
图4(b)和图5(b)分别示出图4(a)和图5(a)中由于相电流而引起在DC链接中流动的供电电流的变化。在每一情形中,DC链接电容提供这些波形的一部分交流成分。(注意这些图是理想化的,因为电容必须有零平均电流,并且,在实用中,在存在供电电阻,电容阻抗和感抗时电流的行为更为复杂)。在硬斩波情形中的电容电流既有较高的频率也有较高的均方根(rms)值,在空转情形中,该电流的频率和均方根值两者都减小。相对于电容的额定值这方面的益处在,例如,在US4933621(MacMinn)中讨论,这里引入作为参考。
虽然在电流控制背景下描述了硬斩波和软斩波模式,但应当注意,它们也能和电压控制系统一同使用,在电压控制系统中,可有效地控制加到相绕组的平均电压。例如,一脉冲宽度调制(PWM)方案可应用于开关21和22,在该领域中这是众所周知的。
到目前为止讨论忽略了当考虑两个或多个相的贡献时出现的问题。当两个或多个相共同工作时,和各个相相联系的电流相加以给出总的DC链接电流。
两个或多个相共同作用的情形可出现在许多不同的系统中。虽然在两相系统中,通常只去交替操作这些相,US 5747962公开了在机器的一部分电循环上同时操作两个相的方法,在此引入作为参考,该专利一同转让给现受让人。在三相机器中,有可能通过单独激发相A,然后相B,然后相C来操作。然而,为改善机器的转矩输出,利用这样的事实,即每一相周期的转矩产生部分发生交迭,所以,通常使用A,AB,B,BC,C,CA,A…激发模式。类似地,对四相机器,通常总有两相在要求的方向产生转矩,这样,相可成对激励:AB,BC,CD,DA,AB…相应的规则可应用于更高的相数目,在这些当中,有可能对至少电周期的一部分使用三个或更多个相。
当两个或多个相同时使用时,对电容产生的影响依赖于所采取的斩波控制方案。理想地,在切断时由一个相返回的能量应引导到新来的第二相,但是,发现用通常的磁滞控制器达到预期的目的是不可能的。例如,图4(a)和图5(a)表明,斩波波形的频率和占空度在整个导电角都不是恒定的,而是依据相绕组的电感随转子的位置变化而变化。显然,用该类型的控制器在两电流间无论存在哪一种相差异都不可能取消电容电流。
磁滞控制器是现有的许多“频率无序”控制器的一例。这些控制器以斩波频率为代价试图保持一个参数(这里是相电流)不变。另一不同类型的斩波控制器是固定频率控制器,其中,斩波频率以例如平均相电流为代价理论上保持恒定。一典型的固定频率控制器有一固定(或至少被控制的)的频率时钟,该时钟在功率转换器中触发开关的闭合。当相电流达到目标值时,一个或两个开关打开,使电流下降直到开关再次关闭以响应时钟信号。控制来自同一时钟的第二个相是相对简单的,但是,一起开关这两相对电容器产生差不多加倍电流漂移幅度的直接的影响(依赖于占空度)。
图6(a)中部分地示出了,由峰电流和固定频率控制器控制的相绕组的一典型斩波电流波形,通过将相绕组以通常的方式接到直流总线上,初始接通该相绕组。当电流达到一预置峰值时,控制器将线圈转换到空转或能量恢复模式,依赖于使用的功率转换器的能力。(在图6(a)中空转用于说明),电流由所加电压(如果有),相绕组的电感变化率,线圈上的电压降(iR)和二极管和开关上的电压降所确定的速率下降。假设为驱动操作,在空转间隔中的电流将下降,这已示出,然后,电流控制器通过闭合开关触发相绕组重接到DC链接上,强迫电流再升高到峰值,于是循环重复。将能看到,现在开关频率是恒定的,虽然电流离开峰值的漂移在从激发块的一端到另一端可能变化。开关频率周期在图6(a)中标记为T,占空度被定义为接通时间对周期的持续时间的比率。
图6(b)示出对一个相绕组的供电电流,图6(c)示出第二相的供电电流。如果两相的接通点同时,供电电流将相加以给出等于2*Ipk的峰值电流,在斩波频率的相应的电容波纹电流将升高。
众所周知,尤其对两相总是一起被激发的四相系统,使用单一时钟信号,具有一标记:空间比(space ratio),从时钟信号的上升边起动一个相的接通,从下降边启动另一个相。这以固定方式交织两相电流,导致电容波纹电流的某种减小。然而,随着一相相对于其它相占空度的变化,电容电流增加,因此不是完全成功的。相电流的交错是固定的,并且不能应付这样的变动。这需要增加电容的额定值,这样导致增加成本和/或尺寸。另外,电容中能量的损失可以代表在一些系统中全部能量损失的一大部分,尤其是低电压,高电流系统,致使驱动效率的明显减小。
因而,需要解决这样的问题,即对用任意数目的相和任意的激发模式的系统,使电容的波纹电流最小,在这些模式中两个相或多个相可同时激发。
本发明限定在随附的独立权利要求中,在从属权利要求中列举出一些优选的特征。
在一具体的形式中,本发明包括动态地调整一开关磁阻机器的到来的相绕组的开关转换,以便将电容电流最小化,这可以通过动态地选择相对于已斩波的相的到来相的斩波时钟的相角完成。本发明可以多种方式执行,这些方式一般地分属于开环和闭环执行两个类。
产生于两相同时激发的斩波波形,通过将一相移置于控制这两相的斩波时钟信号间,可用于将电流波纹最小化。
相移的设置可以预置或它可以是动态地开环或闭环。如果在开环或闭环控制下它是可变的,相移值可基于机器的一参数。例如,一需求量和速度可用于开环控制,对闭环控制,代表该电流波纹的一个信号本身可用于得到一相移值,该值将最小化该电容的电流波纹。
本发明可以多种途径实现,它的几个实施方案将通过关于附图的例子描述,其中:
图1示出一已知开关磁阻系统的概略图;
图2示出一相绕组和功率转换器的连接;
图3示出已知的单脉冲工作模式的电压,相电流和电容电流的波形;
图4示出已知的硬斩波工作模式的相电流和供电电流波形;
图5示出已知的空转斩波工作模式的相电流和供电电流波形;
图6示出和固定频率电流控制器联系在一起的相电流和供电电流波形;
图7示出根据本发明的一个方面,和一固定频率电流控制器联系在一起的相电流和供电电流波形;
图8示出可以执行本发明的一实施方案的一电路图;
图9示出可以执行本发明的一实施方案的另一电路图;
图10示出可以执行本发明的一实施方案的更进一步的电路图;
图11示出提供电容电流反馈的一电路图;
图12示出提供电容电流反馈的又一可供选择的电路图。
本发明图示的第一组实施方案使用开环技术用于减小电容电流波纹。图7示出和图6的相同的波形,但其中,相对于第一相选择第二相绕组的电流相位。相的差别由时间Δt确定,已示出。通过考察图7(b)和图7(c),将看到相对于第一相的第二相电流波形的位置变动(即延迟Δt)用作改变两相电流的结合方式。将会看清,当Δt为零或为斩波波形周期T时,两相电流的相加将产生最大波纹电流,这样,在Δt的某中间值,有一最大电容波纹电流值。因而,由此得出结论:系统可“调谐”成使电容额定值最小化。
注意如果改变斩波时钟频率(例如,以伪随机方式以降低声噪音),那么,时间间隔Δt也必须以适当的方式改变。作为选择,可将延迟定义为一固定的相角,该相角能自动地转化为Δt的正确值。
例如,在使用激发顺序A,AB,B,BC…的一三相系统(ABC)中,该调谐在于在对已斩波相的前一次触发之前或之后一个预定的时间Δt上触发到来的相。在这一情形中,可在相A后Δt触发相B以将电容电流波纹最小化。在适当的转子角度,相A的激发会停止而相B的触发将单独进行。在一另外的转子角度,引进相C,使用相对于斩波时钟的零相移(给出一相对于相B为-Δt的有效相移)。一旦相B的激发已经完成而相C已单独被激发,相A以相对于相C的为Δt的一相角再次引进,相C的引进相对于它的先前的关于斩波时钟的位置也是Δt。
图8示出根据本发明一实施方案的一控制器。在线41上示出代表斩波时钟的信号,这一信号通过块42,块42加一延迟Δt。开关46被控制系统锁定以选择要馈送到触发器44的SET输入口的一适当信号,来自比较器43的信号馈送到复位输入口(RESET),比较电路确定电流的需要量比相绕组中的实际电流是高还是低。连同常规角转换信息一起,使用线45上的触发器的输出为功率转换器中的一相绕组去触发一个或多个开关。能够理解,示于图8中的电路会被复制用于驱动系统其它相。
能够理解,这一安排的一特殊情况是Δt=T/2(这里T是斩波时钟周期),即相延迟是180°。在这一情形中,可使用有单一标记:空间比的时钟信号,并且每一到来的相由上升沿或下降沿的下一个驱动。这产生电流的交错(interleaving),这一点现在将描述。如果斩波序列起始于由时钟上升沿控制的相A,到来的相B必须由下降沿控制。当转子转到相C被激发的位置时,它必须由上升沿控制以正确地和相B交错,下面当需要相A时,它必须由下降沿控制(而相A早先是由上升沿控制)。
另一开环方法使用一Δt变值,这样对各种负载点,速度,转矩,电流等,可将电容电流波纹最小化。这些Δt值或者由设计和模拟确定,使用一机器模型,该模型足够准确,以可靠地计算电容电流,或在驱动的起始测试期间通过实验测量。这些值被特征化为,例如,速度和/或负载和/或转子角度的函数,并以存储接通角和关闭角同样的方式储存在一查阅表中。对一相绕组在斩波周期的开始或在适于控制系统的其它时间,可从表中读出适当的值。这一实施方案尤其适用于数字控制系统。执行这一技术的一电路示于图9中,在图9中,表48维持Δt的适当值,并由需要的电流和/或转子角度和/或速度索引标记。除这一点,图9中的电路和图8中的电路相同,相同的标记数字用于类似的部分。送到查阅表48中的速度信号可以在该领域中已知的各种方式得到,诸如从上述转子位置传感器的输出。
一进一步的开环方法是,在相绕组中每次斩波开始时计算Δt的适当的值。这可通过诸如图10中示出的电路得到。在这一具体图示中,计算方块49有电流需求量和/或速度需求值和/或转子角度的输入值,并给出输出量Δt。这一实施方案对模拟控制电路和基于微处理器的系统两者都适合。图10的电路,除用计算方框49取代查阅表48,和图9的电路相同。其他相同的标记数字用于相似的部分。
图10示出含有速度,转子位置和电流需要量的计算方框49。可以使用其它的参数或变量。例如,已知,电容器中的电流波纹的大小是运行的相中的电流大小和电流占空度,以及它们之间相角的函数。因此,有可能使用电流大小的输入和计算或测量的占空度求得Δt的值,该值将使电容波纹电流最小化。这样,本发明的另一实施方案能使用输入到方框49的相电流大小和占空度以产生Δt适当的值。
上面描述的开环实施方案产生电容电流波纹的有用的减少。在本发明的一实施方案中可以采用在一导通周期期间交错波形的变化,它使用闭环控制以动态地选择Δt的最优值,这样进一步将电容电流的波纹最小化。根据若干已知的求最小值函数之一,可进行该最小化。这是上面描述的开环系统的改进,因为,不管这两相的占空度间的差异有多大,求最小值函数对波纹电流的最小值将找到该相角。这有进一步的优点。不要求根据事先的特征化或数据存储,引入一控制回路,该回路含有固定的零电容电流波纹要求量,实际电容电流波纹的信号指示和合适的过滤器,使得只有电容电流斩波频率成分影响控制器(例如,由于来自SR机器中的电源供给和/或基本的相对相转换的整流波纹,在电容电流中也有低频成分)。现在将描述提供必要反馈的各种方式。
图11示出一含有与DC链接电容25串联的电流测量支路50系统。跨接在支路上的电压通过带通滤波器52馈送以产生电容波纹电流的信号指示。在直流电容器中的波纹电流的特点基本上是含有在基础斩波频率和最初几个谐波中集中它的大部分能量的矩形波。带通宽度是在寻找一定的频率范围和去除噪音之间的折中值,在该频率范围在DC链接电容中出现波纹能量,噪音是由于太宽的带通造成的。
通过将频带限制在波纹电流的一适当的谐波数,同样地不通过过分的噪音也可取得最大效果。
带通滤波器52的输出供给一控制调节器54。这一调节器可取几种形式,这对熟悉控制系统的人将是清楚的。在它的最简单的形式中,它可以是经仔细选择的固定增益的比例控制器。一较好的解决办法是使用一最小化的控制器,它将主动寻找当Δt值变化时波纹的最小值。一般来说,对电流和占空度的所有的值达到零波纹是不可能的,但最小化控制器将寻找给出最小稳定误差的条件。
调节器54的输出传递到一限制方框56。重要的是Δt决不大于时钟周期T的周期,对Δt施以摆动的限制以在控制回路保持稳定性也是重要的。这两个限制可通过限制方框56执行。代之图10的计算方框49,限制方框56的输出是方框42′的输入。
图12示出一跨接在DC链接上的电阻分压器,它通过使用关系i=Cdv/dt推算电容电流。在这一情形中,带通滤波器类似地布置以通过在上面的斩波频率和几个谐波成分。再者,使用调节器54和限制器56为图10中的变量延迟42′产生一控制信号。
可以使用其它测量电容波纹电流的装置,例如,霍尔效应电流探测器或交流电流互感器。如果知道电容25的电阻抗,有可能通过测量跨接电容器的电压波纹并使用关系式
I=Vripple/2πfrippleC去估计波纹电流,这里fripple是波纹频率,C是法拉第电容量。提供反馈信号的另一方法是利用该事实:功率转换器将典型地在现场具有换能器,以测量各个相绕组的电流。如果已知开关状态(在功率转换器中也能得到),有可能计算出相绕组中的电流是否贡献给从电容器中发出的电流(接通)或进入电容器的电流(断开)。这可有效地用于再造电容波形的突出部分和给电流波纹减小控制器提供一信号。这一方法的特别的优点是供电电路中需要更少的元件,并且出现的波形来自相对高质的电流换能器,并且其中应该有很少的噪音,尤其是出自整流器和基本的相转换的任意的低频成分。这一实行方案可能最适于基于微处理或基于ASIC的有快速数字计算能力的系统。
虽然已参照驱动操作模式描述了上面的实施方案,本发明同样适于发电操作模式,并引起电容电流波纹的同样的减小。
技术人员将意识到,在不背离本发明的情况下,变更公开的配置是可能的。从而,通过实例作出几个实施方案的以上的描述,不是为限制性目的。技术人员将会清楚,可以对这些配置作出微小的更改,对上面描述的操作没有大的改变。想把本发明仅由权利要求的精神和范围所限制。

Claims (19)

1.一多相转换磁阻机器的控制器,包括:根据要求的输入产生第一和第二斩波信号的装置,该第一和第二信号用于依次激发该机器的第一和第二相,以及当两相同时激发时,相对于用于第一相的斩波信号相移用于第二相的第二斩波信号的装置。
2.根据权利要求1的控制器,包括时钟装置、延迟装置和选择装置,斩波信号来自时钟信号输出并可在时钟信号输出和来自延迟装置的延迟的时钟信号输出之间转换,配置选择装置以在时钟信号输出和延迟的时钟信号输出之间进行选择,用于相移一个相的斩波信号。
3.根据权利要求2的控制器,包括:一查寻装置,该装置存储机器的一个或多个监控参数变化的延迟值,可操作以根据来自查寻装置的输出而改变相移的相移装置,该输出对应于基于监控参数的延迟值,由此设定一斩波信号相对于其它斩波信号的相移。
4.根据权利要求2的控制器,包括:基于机器的一个或多个参数设立延迟值的计算装置,该计算装置可操作以给延迟装置输出延迟值,以设定延迟的电流斩波信号的相移。
5.根据权利要求3或4的控制器,其中机器的监控参数选自一个组,该组包括要求电流,相电流幅度,相电流占空度,转子角度和机器速度。
6.根据权利要求4的控制器,其中该或其中一个监控参数是机器的DC链接中的电流波纹。
7.根据权利要求6的控制器,包括一配置以产生控制输出的调节器,用于计算来自控制参数的电流波纹,相移装置根据调节器的输出而变化,用于对一相设定斩波信号的相移,以减小DC链接中的电流波纹。
8.根据权利要求7的控制器,包括一为调节器产生电流波纹信号的带通滤波器,该信号来自DC链接中的电流波纹。
9.根据权利要求7或8的控制器,其中调节器产生一比例控制输出。
10.根据权利要求7,8,9中任一个的控制器,进一步包括一限制器,用于对第二电流斩波信号的相移的预置的最大值限制控制输出。
11.一转换磁阻驱动系统,包括:在权利要求1到10中任一权利要求中要求的控制器。
12.在多相转换磁阻驱动器的DC链接中减小电流波纹的方法,包括:根据要求的输入,产生依次激发电机第一和第二相的第一和第二斩波信号;和当两相同时激发时,相对于第一相的斩波信号相移第二相的第二斩波信号。
13.根据权利要求12的方法,其中,当两相同时激发时,通过在至少第一和第二斩波信号间选择,对一相实行相移。
14.根据权利要求12或13的方法,包括存储和驱动器的至少一监控参数相联系的延迟值;和根据存储的延迟值设置第二斩波信号的相移。
15.根据权利要求12或13的方法,包括计算来自驱动器的至少一监控参数的相移值;和根据计算值设置第二斩波信号的相移。
16.根据权利要求14或15的方法,其中驱动器的监控参数是要求的电流,相电流的幅度,相电流占空度,转子角度和机器速度。
17.根据权利要求14或15的方法,其中监控参数是驱动器中的DC链接中的电流波纹。
18.根据权利要求17的方法,包括自监控参数产生一控制输出,用于计算电流波纹;并且根据控制输出改变第二斩波信号的相移,去设置第二电流斩波信号的相移以减小DC链接中的电流波纹。
19.根据权利要求17或18的方法,其中指示电流波纹的信号被带通滤波。
CNB011394137A 2000-11-24 2001-11-23 在开关磁阻驱动系统中控制电流斩波的装置和方法 Expired - Fee Related CN1254002C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0028733.4 2000-11-24
GBGB0028733.4A GB0028733D0 (en) 2000-11-24 2000-11-24 Current chopping in switched reluctance drive systems

Publications (2)

Publication Number Publication Date
CN1356765A true CN1356765A (zh) 2002-07-03
CN1254002C CN1254002C (zh) 2006-04-26

Family

ID=9903843

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011394137A Expired - Fee Related CN1254002C (zh) 2000-11-24 2001-11-23 在开关磁阻驱动系统中控制电流斩波的装置和方法

Country Status (9)

Country Link
US (1) US6639378B2 (zh)
EP (1) EP1209806B1 (zh)
JP (1) JP3821694B2 (zh)
KR (1) KR100793213B1 (zh)
CN (1) CN1254002C (zh)
BR (1) BR0105445A (zh)
DE (1) DE60114750T2 (zh)
GB (1) GB0028733D0 (zh)
MX (1) MXPA01012010A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326315C (zh) * 2005-10-11 2007-07-11 中国矿业大学 开关磁阻伺服电动机输出转矩消脉动控制方法
CN102473976A (zh) * 2009-07-08 2012-05-23 丰田自动车株式会社 二次电池的升温装置以及包含该升温装置的车辆
CN103999351A (zh) * 2011-12-09 2014-08-20 卡特彼勒公司 用于开关磁阻电机的切换策略
CN106685281A (zh) * 2014-12-19 2017-05-17 张波 一种开关磁阻电机控制方法
CN107370440A (zh) * 2017-07-05 2017-11-21 安徽浙科智创新能源科技有限公司 一种母线电流脉动抑制的开关磁阻电机控制方法
CN107565854A (zh) * 2017-09-01 2018-01-09 苏州亮明工具有限公司 电动工具无刷直流电机冲击启动方法及系统
CN108768243A (zh) * 2018-05-23 2018-11-06 中山瑞信智能控制系统有限公司 一种开关磁阻电机角度补偿的控制方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003071672A1 (ja) * 2002-02-25 2005-06-16 ダイキン工業株式会社 電動機制御方法およびその装置
US20030234626A1 (en) * 2002-06-21 2003-12-25 Gabriel Gallegos-Lopez Method and regulator based on peak current control for electric machines
AU2003236721A1 (en) * 2002-06-26 2004-01-19 Ebm-Papst St. Georgen Gmbh And Co. Kg Polyphase brushless dc motor
EP1678818A1 (en) * 2003-09-30 2006-07-12 Emerson Electric Co. Position detection for a switched reluctance machine
GB0702975D0 (en) * 2007-02-15 2007-03-28 Switched Reluctance Drives Ltd Control of an electrical machine
GB0715472D0 (en) * 2007-08-09 2007-09-19 Rolls Royce Plc An electrical machine
GB0804866D0 (en) 2008-03-17 2008-04-16 Rolls Royce Plc Electrical machine arrangement
US8917041B2 (en) * 2010-07-12 2014-12-23 Panasonic Corporation Phase-shift detection device, motor drive device, brushless motor, and phase-shift detection method
US8975855B2 (en) 2012-07-23 2015-03-10 Caterpillar Inc. Compensating hysteresis bands to hold specified switching frequency
US8941346B2 (en) 2012-10-31 2015-01-27 Caterpillar Inc. Switching frequency modulation utilizing rotor position
KR101993656B1 (ko) * 2012-11-16 2019-06-26 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 화상 형성 장치 및 그 제어 방법, 모터 상태 검출 장치
JP6679482B2 (ja) 2013-11-13 2020-04-15 ブルックス オートメーション インコーポレイテッド ブラシレス電気機械の制御方法および装置
US9948155B2 (en) 2013-11-13 2018-04-17 Brooks Automation, Inc. Sealed robot drive
TWI695447B (zh) 2013-11-13 2020-06-01 布魯克斯自動機械公司 運送設備
US10348172B2 (en) 2013-11-13 2019-07-09 Brooks Automation, Inc. Sealed switched reluctance motor
US9337685B2 (en) * 2013-12-23 2016-05-10 General Electric Company Optimized filter for battery energy storage on alternate energy systems
US10386507B2 (en) * 2014-08-28 2019-08-20 Purdue Research Foundation Compositions and methods for detecting radiation
JP6117389B1 (ja) * 2016-01-27 2017-04-19 株式会社東海理化電機製作所 モータ駆動装置
FR3076124B1 (fr) * 2017-12-22 2019-11-22 Valeo Equipements Electriques Moteur Systeme electrique comportant un onduleur statorique et un dispositif electrique auxiliaire, destines a etre connectes a une source de tension
US11128248B2 (en) 2018-02-21 2021-09-21 The Universitv of Akron DC input current ripple reduction in SRM drive for high volumetric power density applications
CN108712132B (zh) * 2018-05-26 2022-02-22 太原理工大学 减小开关磁阻电机电流斩波控制方式下电流波动控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366531A (en) * 1980-09-17 1982-12-28 General Motors Corporation Phase control for a multiple phase SCR chopper
US4459535A (en) * 1982-07-29 1984-07-10 Eaton Corporation H-Switch start-up control and frequency converter for variable speed AC motor
JP2767827B2 (ja) * 1988-09-22 1998-06-18 ブラザー工業株式会社 可変リラクタンスモータの回転制御装置
US4933621A (en) 1989-05-12 1990-06-12 General Electric Company Current chopping strategy for switched reluctance machines
JP3268573B2 (ja) * 1994-04-25 2002-03-25 アイシン精機株式会社 スイッチドレラクタンスモ−タの制御装置
JP3381107B2 (ja) * 1994-12-16 2003-02-24 アイシン精機株式会社 チョッピング通電制御装置
GB9505655D0 (en) 1995-03-21 1995-05-10 Switched Reluctance Drives Ltd Torque improvements in reluctance motors
FR2744301B1 (fr) * 1996-01-30 1998-03-06 Thomson Csf Onduleur d'alimentation d'un moteur electrique de traction d'un vehicule
KR100259375B1 (ko) * 1997-11-10 2000-06-15 윤종용 센서리스 스위치드 릴럭턴스 모터 구동장치 및 그 구동방법
GB9726397D0 (en) * 1997-12-12 1998-02-11 Switched Reluctance Drives Ltd Communication controller
JP2001286186A (ja) * 2000-03-30 2001-10-12 Aisin Seiki Co Ltd チョッピング通電装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326315C (zh) * 2005-10-11 2007-07-11 中国矿业大学 开关磁阻伺服电动机输出转矩消脉动控制方法
CN102473976A (zh) * 2009-07-08 2012-05-23 丰田自动车株式会社 二次电池的升温装置以及包含该升温装置的车辆
CN102473976B (zh) * 2009-07-08 2015-02-11 丰田自动车株式会社 二次电池的升温装置以及包含该升温装置的车辆
CN103999351A (zh) * 2011-12-09 2014-08-20 卡特彼勒公司 用于开关磁阻电机的切换策略
CN106685281A (zh) * 2014-12-19 2017-05-17 张波 一种开关磁阻电机控制方法
CN106685281B (zh) * 2014-12-19 2018-10-30 胜利油田顺天节能技术有限公司 一种开关磁阻电机控制方法
CN107370440A (zh) * 2017-07-05 2017-11-21 安徽浙科智创新能源科技有限公司 一种母线电流脉动抑制的开关磁阻电机控制方法
CN107565854A (zh) * 2017-09-01 2018-01-09 苏州亮明工具有限公司 电动工具无刷直流电机冲击启动方法及系统
CN107565854B (zh) * 2017-09-01 2024-01-30 苏州亮明工具有限公司 电动工具无刷直流电机冲击启动方法及系统
CN108768243A (zh) * 2018-05-23 2018-11-06 中山瑞信智能控制系统有限公司 一种开关磁阻电机角度补偿的控制方法
CN108768243B (zh) * 2018-05-23 2022-01-07 中山瑞信智能控制系统有限公司 一种开关磁阻电机角度补偿的控制方法

Also Published As

Publication number Publication date
DE60114750D1 (de) 2005-12-15
KR100793213B1 (ko) 2008-01-10
GB0028733D0 (en) 2001-01-10
JP2002199784A (ja) 2002-07-12
JP3821694B2 (ja) 2006-09-13
DE60114750T2 (de) 2006-08-10
EP1209806B1 (en) 2005-11-09
BR0105445A (pt) 2002-07-09
US6639378B2 (en) 2003-10-28
US20020063547A1 (en) 2002-05-30
CN1254002C (zh) 2006-04-26
KR20020040627A (ko) 2002-05-30
EP1209806A2 (en) 2002-05-29
MXPA01012010A (es) 2003-08-20
EP1209806A3 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
CN1254002C (zh) 在开关磁阻驱动系统中控制电流斩波的装置和方法
US11863096B2 (en) Boosted converter for pulsed electric machine control
Lu et al. A new low-cost hybrid switched reluctance motor for adjustable-speed pump applications
CN100536291C (zh) 可变磁阻电机及将其作为发电机运行的方法
KR101311378B1 (ko) 가변 발전전압 컨버터-기반의 스위치드 릴럭턴스 발전기 구동 시스템
US7049786B1 (en) Unipolar drive topology for permanent magnet brushless DC motors and switched reluctance motors
EP1959560A2 (en) Control of an electrical machine
CN100454748C (zh) 开关磁阻电机的励磁
US20030020436A1 (en) Switched reluctance generator and a method of controlling such a generator
Pathare et al. Power quality improvement of BLDC motor drive using Cuk PFC converter
CN1088284C (zh) 整流控制器
KR102561505B1 (ko) 펄스형 전기 기계 제어를 위한 승압 변환기
US20230283210A1 (en) Direct drive system for brushless dc (bldc) motor
Gopalarathnam et al. A high power factor converter topology for switched reluctance motor drives
Baszynski Torque ripple reduction in BLDC motor based on a PWM technique for open-end winding
Hamdy et al. High-speed performance improvements of a two-phase switched reluctance machine utilizing rotor-conducting screens
Jang The converter topology with half bridge inverter for switched reluctance motor drives
Abhiseka et al. Implementation of Magnetizing-Freewheeling Control Strategy to Increase SRM Regenerative Braking Performance in a Low-Speed Operation
US20240136968A1 (en) Boosted converter for pulsed electric machine control
Badhoutiya et al. Switched Reluctance Motor with C-Dump Converter
Lee et al. A variable voltage converter topology for permanent-magnet brushless DC motor drives using buck-boost front-end power stage
Ramesh et al. Comparison between interleaved boost converter based 6-switch and 4-switch VSI fed PMBLDC motor drive
Jang Novel SRM drive systems using variable DC-Link voltage
Fuengwarodsakul et al. Current gradient based sensorless control for switched reluctance drives with torque boosting technique

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: NIDEC SR DRIVES LTD.

Free format text: FORMER NAME: SWITCHED RELUCTANCE DRIVES LIMITED

CP01 Change in the name or title of a patent holder

Address after: British North Yorkshire

Patentee after: Nidec SR Drives Ltd.

Address before: British North Yorkshire

Patentee before: Switched Reluctance Drives Limited

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060426

Termination date: 20151123