CN1328152C - 通过分配固体和液体燃料组分生成氢气的方法和体系 - Google Patents

通过分配固体和液体燃料组分生成氢气的方法和体系 Download PDF

Info

Publication number
CN1328152C
CN1328152C CNB038126575A CN03812657A CN1328152C CN 1328152 C CN1328152 C CN 1328152C CN B038126575 A CNB038126575 A CN B038126575A CN 03812657 A CN03812657 A CN 03812657A CN 1328152 C CN1328152 C CN 1328152C
Authority
CN
China
Prior art keywords
hydrogen
liquid
fuel component
solid
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038126575A
Other languages
English (en)
Other versions
CN1659099A (zh
Inventor
P·J·佩蒂尔洛
S·C·佩蒂尔洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Millennium Cell Inc
Original Assignee
Millennium Cell Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Millennium Cell Inc filed Critical Millennium Cell Inc
Publication of CN1659099A publication Critical patent/CN1659099A/zh
Application granted granted Critical
Publication of CN1328152C publication Critical patent/CN1328152C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J16/00Chemical processes in general for reacting liquids with non- particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • B01J7/02Apparatus for generating gases by wet methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/0035Periodical feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/0045Feeding of the particles in the reactor; Evacuation of the particles out of the reactor by means of a rotary device in the flow channel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

通过使用由固体燃料组分如金属氢硼化物和液体燃料组分如水制备的燃料溶液来生成氢气。这两个组分都响应于控制信号来分配。固体燃料组分可以呈不同的形式,包括但不限于颗粒、球粒和粉末。也公开了各种响应于控制信号来操作的装置,它们用于分配预定量的固体和液体组分。有利的是,该溶液可以根据需要制备,以便避免对储存的需要并避免处理大量高碱性的燃料和废弃的燃料溶液。

Description

通过分配固体和液体燃料组分生成氢气的方法和体系
发明领域
本发明广泛地涉及氢气的生成,更具体地讲,涉及由通过分配固体和液体燃料组分形成的“燃料”来生成氢气。
发明背景
许多复合金属氢化物,包括硼氢化钠(NaBH4)的水解反应已经通用于生成氢气。主要的化学反应可以表示为:
MBH4+2H2O----催化剂----4H2+MBO2    (1)
其中,MBH4和MBO2分别表示金属硼氢化物和金属偏硼酸盐。硼氢化钠的水解在室温下通常很慢,而加热或加入催化剂,例如酸,各种各样的过渡金属如钌、钴、镍、或铁,或相应的金属硼化物时,可以加速水解反应,其中催化剂处在溶液中或沉积在惰性载体上或者作为固体存在。另外,复合金属氢化物分解成氢气和金属偏硼酸盐的速度依赖于pH值,pH值较高时会阻碍水解。因此,复合金属氢化物如硼氢化钠、稳定剂如氢氧化钠(NaOH)和水的溶液用作燃料,即,可消耗的要素,由此来生成氢气。为了加快氢气的生成,燃料要经过催化剂。该方法的排出物是氢气和废弃的燃料溶液。当复合金属氢化物是硼氢化钠时,废弃的燃料是偏硼酸钠浆液。为了满足工业应用的需要,大部分氢气生成体系还储存燃料,这种储存会导致若干缺点。缺点之一缘于存在稳定剂。稳定剂的作用是提高燃料溶液的pH值,从而在溶液与催化剂接触之前防止水解。因为稳定剂不参与任何化学反应,所以燃料和废弃的燃料溶液都具有很高的pH值。一般来说,燃料和废弃燃料溶液的pH值都在13-14之间。这么高的pH值就要求燃料和废弃燃料溶液的运输都要满足政府的规章,这将会增加生成氢气的成本。这些高pH值溶液的存在还阻碍该方法商业化和公众对它的接受。由于存在这些高pH值的溶液,所以产生了附加成本,这是因为它们会与各种各样的金属反应。为了避免这些反应,在氢气生成体系中必须使用非活性物质,如不锈钢或非活性塑料。
虽然呈各种各样形式,包括粉末、球粒和颗粒的固体复合金属氢化物被制成用于药物场合,但是还没有人提供它们在用于受控与计量生成氢气的工业体系中的用途。
根据以上描述,如果氢气生成体系可以设计得能满足工业应用的需要并能克服与使用预混燃料溶液有关的问题,那么它将是非常合乎需要的。
发明概述
根据本发明,使用通过分配固体和液体燃料组分而制备的燃料溶液来生成氢气。有利的是,该溶液可以根据需要制备,以便避免对储存的需要并避免处理大量高碱性的燃料和废弃燃料的溶液。但是,本发明并不局限于根据需要来生成氢气。
在公开的实施方案中,固体燃料组分是金属硼氢化物,它们以干燥的形式保存并在需要时与液体混合。在公开的实施方案中,所述液体包括水。固体燃料组分可以呈不同的形式,包括但不限于颗粒、球粒和粉末。也公开了各种应预定条件的要求操作的装置,它们用于分配预定量的固体和液体燃料组分。用于固体燃料组分的一种这样的分配机构是转动圆筒,它响应指示需要生成更多氢气的控制信号来分配预定量的呈颗粒状或其他形式的固体燃料组分。另一种是“枪式夹”机构,用于分配呈具有预定尺寸的球粒状固体燃料组分。用于液体燃料组分的分配机构也可以呈各种形式,包括由控制信号或者浮子机构的移动所驱动的阀。
在本发明的优选实施方案中,预定量的固体和液体燃料组分在室内混合,以形成具有均匀金属硼氢化物浓度的燃料溶液。在这一实施方案中,还优选使燃料溶液经过催化剂来加速氢气的生成。
具体地说,本发明涉及以下方面:
1.一种用于生成氢气的体系,其包括:
一个第一室;
与所述第一室连通的氢气出口;
配置在所述第一室和所述氢气出口之间的催化剂室,所述催化剂室包括加速所述固体和液体燃料组分的混合物生成氢气的催化剂;
第一和第二分配器,分别用于将预定量的固体燃料组分和液体燃料组分提供到所述第一室中,所述固体燃料组分和所述液体燃料组分的混合物能够通过化学反应生成氢气,每一个分配器都是响应于预定条件来工作的;和
与所述第一室连通、用于将所述液体和固体燃料组分的混合物泵送到所述催化剂室的泵。
2.第1项的体系,其中所述固体燃料是复合金属氢化物,所述液体燃料组分包括水。
3.第2项的体系,其中所述复合金属氢化物选自LiBH4,KBH4,NH4BH4,(CH3)4NBH4,NaAlH4,KAlH4,NaGaH4,LiGaH4,KGaH4,和其混合物。
4.第1项的体系,还包括串行连接到所述催化剂室上的分离器,所述催化剂室连接到所述室上,而所述分离器则连接到所述氢气出口上,所述分离器将所述氢气与所述固体和液体燃料组分的所述化学反应的其他副产物分离开来。
5.第1项的体系,其中所述第一室还包括用于加速所述固体和液体燃料组分混合的机构。
6.第1项的体系,还包括向所述第一室提供稳定剂的第三分配器,该稳定剂用于提高所述固体燃料组分和所述液体燃料组分混合物的pH值,所述第三分配器的操作方式与所述第一和第二分配器的操作相协调。
7.第1项的体系,其中液体燃料组分和固体燃料组分中至少有一种包括用来提高所述固体燃料组分和所述液体燃料组分混合物pH值的稳定剂。
8.第1项的体系,其中所述预定的条件是指生成氢气需要的条件指示。
9.第1项的体系,其中所述预定的条件是所述室中所述液体和所述固体燃料组分混合物的预定液位。
10.第1项的体系,其中所述第一分配器包括转动的圆筒,该圆筒具有一个槽,该槽在第一位置接受来自于一个来源的所述固体燃料组分并将该燃料组分在第二位置提供给所述第一室中。
11.第1项的体系,其中所述第一分配器包括用于连续地把所述固体燃料组分的球粒一个接着一个提供到预定位置的机构,并且还包括用于将所述预定位置中的每一球粒转移到所述第一室中的驱动机构。
12.第11项的体系,其中所述机构利用弹簧件来连续地将所述球粒供应到所述预定的位置上。
13.一种通过固体复合金属氢化物和包括水的液体之间的化学反应生成氢气的发生器,所述发生器包括:
复合金属氢化物分配机构;
液体分配机构;
一个第一室,用于接受分配机构响应于预定条件所分别分配的第一预定量的固体复合金属氢化物和第二预定量的包括水的液体,接收的这些燃料组分在所述室中形成混合物;
配置在所述室和所述氢气出口之间的催化剂室,所述催化剂室含有用于接收所述混合物的催化剂,且所述催化剂的类型能加速由所述固体复合金属氢化物与液体组分的混合物生成氢气;
与所述催化剂室连通的氢气出口;和
与所述第一室连通、用于将所述液体和固体燃料组分的混合物泵送到所述催化剂室的泵。
14.第13项的氢气发生器,还包括用于促进固体复合金属氢化物溶解到所述液体中的混合机构,和配置在所述催化剂室和所述氢气出口之间的分离器,用于将所述氢气与所述固体复合金属氢化物与所述液体之间的所述化学反应的其他副产物分离开来。
15.第13项的氢气发生器,还包括用于分配稳定剂的分配器,该稳定剂用来提高所述固体复合金属氢化物和所述液体的混合物的pH值。
16.第13项的氢气发生器,其中液体还包括用来提高所述固体复合金属氢化物和所述液体混合物的pH值的化学稳定剂。
17.第13项的氢气发生器,其中分配机构分配固体形式的复合金属氢化物和稳定剂的组合,所述稳定剂用来提高所述固体复合金属氢化物和所述液体混合物的pH值。
18.一种用第1项的体系或第13项的氢气发生器由至少一种固体复合金属氢化物生成氢气的方法,该方法包括以下步骤:
响应于预定条件,将第一预定量的固体复合金属氢化物从第一来源分配到室中;
响应于所述预定条件和形成混合物的固体复合金属氢化物和液体的分配量,将第二预定量的液体分配到所述室中;和
使所述固体复合金属氢化物和所述液体的混合物与促进氢气生成的催化剂接触。
19.第18项的方法,还包括在所述室中混合所述固体复合金属氢化物和所述液体的步骤。
附图简述
从以下结合附图的说明书描述中,本发明进一步的目的、特征和优点将变得显而易见,其中附图示出了本发明的例证性实施方案,其中:
图1示出根据本发明的原理使用固体和液体燃料组分生成氢气的例证性体系;
图2a-d示出用于图1体系的固体燃料组分分配器;
图3示出用于图1体系的另一种固体燃料组分分配器;
图4示出用于图1体系的混合室的实施方案;
图5示出用于根据本发明的原理生成氢气的方法。
详细说明
图1举例说明了根据本发明原理的氢气生成体系100。体系100包括储罐101,固体燃料组分分配器102,液体燃料组分分配器104,液体燃料组分液体供给源105,燃料泵106,催化剂室107,分离器108,出料罐111,和热交换器109。热交换器109的排出物为消耗氢气的装置,如氢燃料电池或燃氢发动机或涡轮提供氢气。或者,生成的氢气可以与一个或多个储存容器联在一起。
在储罐101中储存有至少一种固态形式的复合金属氢化物。该物质用作用于在体系100中生成氢气的燃料的固体组分。生成的氢气呈气体形式。复合金属氢化物的通式为:MBH4。M是选自周期表第1族(主族1A族)的碱金属,其实例包括锂,钠,或钾。有时候,M也可以是铵基或有机基团。B是选自周期表第13族(主族IIIA族)的元素,其实例包括硼,铝,和镓。H是氢。例证性的复合金属氢化物是硼氢化钠(NaBH4)。可以根据本发明原理使用的其它实例包括,但是不局限于LiBH4,KBH4,NH4BH4,(CH3)4NBH4,NaAlH4,KAlH4,NaGaH4,LiGaH4,KGaH4,和其组合。只要不与水接触,固态形式的复合金属氢化物就具有延长的保存期限,并且可以呈各种形式,包括但不限于颗粒、粉末和球粒状。
对于某些场合来说,使用硼氢化钠作为生成氢气的燃料组分是特别合乎需要的。现已发现,使用硼氢化钠生成的氢气一般来说纯度高,没有含碳杂质,而且湿度大。通过任何化学氢化物的水解生成的氢气将具有类似的特性。但是,在由硼氢化钠生成的气流中没有检测出一氧化碳。这是很值得注意的,因为大部分燃料电池,特别是PEM和碱性燃料电池,需要高质量的氢气,一氧化碳将会使催化剂中毒并最终腐蚀燃料电池。用生成氢气的其他方法,如烃的燃料重整,得到的氢气流包含有一氧化碳,需要进一步的加工来除去它。在氢气流中也存在二氧化碳。
在接收到第一控制信号时,固体燃料组分分配器102将预定量的固体燃料组分从储罐101中提供到室103中。分配器102示例性地由不与固体燃料组分发生化学反应的材料制成,这种材料包括但不限于塑料,PVC聚合物,和缩醛或尼龙材料。一旦受到驱动,分配器102就可以受控地,要不就是设计成能提供预定的移动,以将预定量的固体燃料组分提供到室103中。固体燃料组分分配器的操作控制可以由各种各样的设备提供,如转数计数器,微型开关,和光轴编码器。固体燃料组分分配器本身也可以具有各种各样的结构。一种在下文中更详细讨论的设备使用转动圆筒。另一种使用枪夹型分配器。用于固体燃料组分分配器的其他非限制性实例是市售的隔膜阀,空气或螺杆进料器,和等同的粉末分配阀。
类似地,液体燃料组分分配器104在接收到第一控制信号时,将预定量的液体燃料组分从供给源105提供到室103中。在公开的实施方案中,液体燃料组分是水。也可以使用其他的液体燃料组分,如与水一起使用的抗冻溶剂。示例性的分配器104是佐治亚州亚特兰大的McMaster-Carr Supply Company提供的303型不锈钢电磁阀。当制备的燃料溶液包括稳定剂,如氢氧化钠时,不锈钢是合乎需要的阀材料。如果不分配稳定剂,则可以使用黄铜或塑料作为阀材料。
在接收到第一控制信号时,通过激发阀中的螺线管,阀被打开。分配器104示例性地由计时器控制。计时器提供充分的持续时间来激发阀中的螺线管,以便阀可以将预定体积的液体卸料到室103中。非限制性实例如流量计,浮控开关,或传感器,也可以用来控制液体燃料组分分配器。
用于分配器102和104的示例性的计时器是新泽西Parsippany的Artisan Controls Corporation生产的型号4970的可编程间隔计时器,但并不局限于此。每一种计时器都被编程成具有相应的预定持续时间,这样,当接收到第一控制信号时,相应的分配器应在预定的持续时间内分配相应的预定量。计时器被设定成同时开始分配固体和液体燃料组分。在任一个计时器中都可以加入延迟机制,这样,可首先分配固体燃料组分,然后分配液体燃料组分,或者反之亦然。最好是阻止液体组分或其他水分进入储罐101中,因为这会激活固体燃料组分的水解,虽然在室温下很慢,但这会缩短该燃料组分的“寿命”。
液体供给源105,示证性的是连接到与公用供水或私用井的水连接的水管线上。也可以使用加满的水箱。为了使温度低于水的冰点,可以将有机溶剂如乙二醇加入到混合罐中来降低水的冰点。或者,可以加热液体供给源105中的水。
对于一些场合来说,体系100可以改性成引入第三分配器来向室103中提供固体或液体形式的氢氧化钠。在图1中,这种改进用虚线表示。如同所示,分配器150将预定量取的固体或液体形式的稳定剂,如氢氧化钠,从储罐150输送到室103中。或者,液态稳定剂可以与液体燃料组分结合通过分配器104分配。在此情况下,相对于通过分配器102提供的固体燃料组分的量来说,分配器104将把适当量的具有确定浓度的氢氧化钠水溶液提供给室103。在又一个设备中,稳定剂可以配制成固体燃料组分的一部分。在此情况下,它们将同时通过分配器102供应到室103中。加入的稳定剂的量时常是将pH值提高到在混合物暴露于催化剂之前可完全阻碍氢气生成的程度所必需的量。pH值为13时可得到这样的结果。但是,在某些情况下,可能希望将混合物的pH值提高到低于13的程度,这时不是抑制而仅仅是使氢气的生成慢下来。在此情况下,使用稳定剂可能不需要使用催化剂。
室103优选将固体与液体燃料组分混合,形成均匀的燃料溶液,即,具有均匀的浓度。室103示例性的是装有液位开关120。液位开关120示例性地被室103中的液面传感器如漂浮(未示出)激活。当混合溶液的液位降低到设定点时,液位开关120转换其位置以便与第一控制信号耦合,并由此激活固体燃料组分分配器102和液体燃料组分分配器104。液位开关120可以具有另一个设定点,当室103中的溶液液位达到预定的水平时,关闭分配器104。或者,分配器104可以通过室103中仅仅控制这一分配器的浮阀装置(未示出)的移动来控制。
燃料泵106把混合的燃料溶液泵向催化剂室107。燃料泵106示例性的是汽缸泵,如纽约州Mineola的Allen air Corp.提供的汽缸泵,其具有小的1/2英寸的单端黄铜汽缸和1英寸冲程。泵106示范性的是通过马达操作,如由麻萨诸塞州Fall River的Maxon Precision Motors提供的命名为部件号110153的马达。
催化剂室107包括生成氢气的催化剂,用于激活混合溶液的水解反应以生成氢气。生成的热也可能蒸发一些水;因此,生成的氢气具有一定的湿度。下文中将对催化剂107进行更详细的描述。
生成的氢气(氢气和水蒸汽)和废弃的溶液流到分离器108中。氢气和水蒸汽从位于分离器108顶部的排气口排出分离器108。相反,废弃燃料溶液则因重力原因沉积在分离器108的底部。废弃溶液可以从放泄阀116排出,用于收集并循环回液体燃料溶液或固体燃料组分中。
分离器108装有压力开关121和液位开关122。压力开关121的实例是由康涅狄格布里斯托尔的Whitman Controls Corporation提供的型号为P117G的产品。当分离器108中生成氢气的压力超过预定的设定点时,开关121切换到一个位置上。在很多情况下,该压力设定点在12和15磅/平方英寸(p.s.i.)之间。当然,根据应用场合的不同,可以使用其他设定点。压力开关121的操作控制燃料泵106。当压力超过预定的设定点时,压力开关121将泵106关闭,同时关掉从室103流到催化剂室107的混合燃料溶液。泵106和分离器108两者都装有止回阀(未示出),以便混合的燃料溶液、氢气、和水蒸汽不发生回流。举例来说,止回阀由黄铜或塑料或适合暴露于混合的燃料、氢气和水蒸汽或水汽的其他材料组成。
氢气和水蒸汽通过热交换器109,以调节氢气的相对湿度。交换器109的排出物可以连接到在其操作中消耗氢气的装置,如燃料电池110上。燃料电池可以具有几乎无限的尺寸和形状。这是优选的设备,因为通过体系100生成氢气是建立在“根据需要”的基础上的。也就是说,生成氢气的数量由氢气消耗装置的要求决定。但是,热交换器109的排出物也可以与储存氢气的贮罐联在一起。无论如何,室103中的混合溶液不必立即使用,因为复合金属氢化物的水解反应在室温下(25℃)通常是很慢的。在初期试验中已经观察到,当使用NaOH时,在与催化剂室107联在一起之前,混合溶液可以保留在混合室103中两天而观察不到发生任何问题。
液位开关122控制放泄阀116。液位开关122由液位传感器,如分离器108中的漂浮物(未示出)激活。当分离器108中废弃溶液的液位超过预定的设定点时,液位开关122转换并对其做出响应,使得放泄阀116打开将废弃燃料溶液排到出料罐111中。
压力和液位开关可以用传感器替换,该传感器将它们相应的读数发送到控制器中。然后,控制器可以控制系统100中的各种装置,即,分配器,泵,阀,等等。这一设备的优点是激活任何具体装置的仪表读数可以很容易地通过本领域技术人员公知的用户友好的接口调节。
即将与分配量的液体燃料组分混合的固体燃料组分的最大重量百分比应该不大于固体燃料组分在所述量液体燃料组分中的最大溶解度。例如,NaBH4,LiBH4,和KBH4的最大溶解度分别是35%,7%,和19%。因此,对于NaBH4来说,最大重量百分比应该低于35%。下表示例性地示出三种具有不同预定浓度(重量%)的NaBH4混合溶液和相关的NaBH4的预定重量和水的体积:
 NaBH4混合溶液的浓度,重量%     NaBH4的重量     水的体积,毫升
 10     100     900
 20     200     800
 30     300     900
如果体系100的布置使得混合溶液通过重力输送到催化剂室107中的话,则燃料泵106可以替换为阀。当分离器108中的压力超过预定的设定点时,阀关闭。同样,如果湿度对于特定的应用场合来说不必考虑的话,则热交换器109可以省略。
如果固体和液体燃料组分的混合物的pH值低于13的话,体系100不必包括催化剂室,但是时常优选将这样一个室引入到体系100中以加速氢气的生成。这种室的类型和室内催化剂的各种类型以及布置是公知的。催化剂室107的例证性实施方案参见2000年1月7日提交的美国专利申请09/979,360,发明名称是“生成氢气的体系”,其在此引入作为参考。优选,催化剂室107也包括用于催化剂的容器体系。这里使用的容器体系包括任何用于把氢气生成催化剂从反应混合溶液中分离出来的物理、化学、电、和/或磁设备。
体系100的不同部分可以通过黄铜管连接。不需要使用不锈钢或非活性塑料,因为混合燃料溶液和废弃燃料溶液不具有高的pH值。其他的材料,如几乎任意的塑料,如PVC、黄铜、铜等也可以使用。
图2a-d示出用于体系100的固体燃料组分分配器的实施方案200。虽然这一分配器将固体燃料组分供应给室103,但它可以用于其他的场合。即将通过图2a-d中所示的分配器分配的固体燃料组分可以具有各种各样的形式,包括精细粉末,颗粒,胶囊,片剂,和球粒,尽管优选颗粒形状。如图2a所示,分配器包括容器210和圆筒220。容器210在顶部具有用于连接到储罐101上的开口215,和在底部用于连接到室103上的开口216。
图2b-d分别示出圆筒220的前视图,顶视图,和侧视图。圆筒220包括中央配置的槽226。当圆筒220转动使得槽226叠覆开口215时,固体燃料组分通过重力由储罐101充满槽226。其他的装填方法,如泵等也可以用来充满该槽。在任何情况下,在装填该槽之后和当圆筒220在外壳210内旋转使得槽226叠覆开口216时,槽226中的固体燃料组分被提供到室103中。槽226的横截面示例性地为环形,其横截面积由槽的底部向顶部逐步增加。这便于固体燃料组分的装载和分配。槽的锥形示例性的是8度。圆筒220的其他设计中使用的槽锥是10度。在公开的实施方案中,槽226示例性的是容纳7毫升的固体燃料组分。因此,对于圆筒220的每一次旋转,转动的圆筒200输送7毫升的燃料。圆筒220包括4个用于接受密封物(未示出)的凹槽,222-225。该密封物在圆筒220的外围和外壳210中的接收圆筒的孔之间提供密封。密封物的设置阻碍水分从室103进入到分配器和储罐101中,以便固体燃料组分不在储罐中聚结,并且不在固体燃料组分储罐中生成氢气。密封物也确保注入到槽中的物质分配到室103中。如图2c所示的,凹槽222和223配置在槽226的左和右侧。凹槽222和223上设置“O形圈”,这种O形圈示例性地由EPDM(乙烯丙烯二烯单体)制成,并且是自动润滑的。图2d中所示的纵向槽224,和与凹槽224相对但未示出的纵向槽225,提供了另外的密封。凹槽224和225平行于圆筒220的轴。凹槽224和225的一端连接凹槽222,另一端连接凹槽223。优选,凹槽224和225分离180度,并距离槽226等距。凹槽224和225中的密封物防止水分在圆筒220旋转时进入到槽226和储罐101中。圆筒220示例性地由聚醚醚酮(PEEK)塑料构成。
转动的圆筒220示例性的是由马达(未示出)驱动,如与圆筒220偶合在一起的12伏特直流永磁体齿轮马达。其他的驱动机构,如气动轮也可以用来使圆筒220转动。在任何情况下,当接收到第一控制信号时,圆筒220转动一次或多次,以便将预定量的固体燃料组分供应到室103中。如果,例如,槽226携带100克固体燃料组分,而提供所需燃料溶液浓度所必须的这种固体燃料组分的量是300克时,计时器控制圆筒220旋转三次。
图3举例说明了固体燃料组分分配器102的另一个实施方案。如图3所示,分配器机构300使用的结构具体表现为将粒状固体燃料组分输送到室103中的枪夹结构。分配器300可以设计成一次能分配一个以上的球粒。燃料分配器300包括夹310和具有转移棒341的球粒转移机构340。机构340可以是由第一控制信号启动的螺线管。在这种启动下,螺线管的棒332转移球粒,然后退回足够的量以便分配器中的下一个球粒就位。作为螺线管的替代,可以使用气缸或马达来响应控制信号以公知的方式驱动棒341。如图3所示,球粒320已经得到分配,而球粒321则是下一个即待分配的球粒。室331接收每一个分配的球粒并使其与室103偶合在一起。
夹310在该夹的底部带有弹簧315,它以众所周知的方式在每一个球粒上产生向上的力,从而使得只要球粒存在于夹310中,球粒就处于由机构330将其移动的位置上。球粒320-330在夹中彼此堆叠。把手316连接在弹簧315的末端,它允许弹簧315压缩,并便于夹310中重新装载球粒。控制固体燃料分配器300的计时器应该根据用于提供所需均匀燃料溶液的需要分配适当量的球粒。
为了促进固体和液体燃料组分的混合,室103优选装有混合机构。在图4所示的实施方案中,室103使用磁铁来混合。混合机构包括磁铁棒402,磁铁块403,和马达404。磁铁棒402,示例性的是嵌入聚四氟乙烯(PTFE)聚合物中,位于室103的内部。随着马达404的杆旋转,磁铁块403旋转。磁铁块403和马达404两者均在混合室103的外面。磁铁棒402的旋转应该持续到所有的固体燃料组分都得到溶解。此后,在具体时期内可以以预定的间隔周期性地重新起动。马达404,示例性的是Colman 100 RPM、24V的DC永磁铁嵌入式齿轮马达,其由新泽西Montville的Servo System Co.提供。
也可以使用其他混合法。以下给出两个实例。第一,可以安装循环泵以便在混合室400内部循环溶液。第二,可以安装喷气嘴以使空气鼓泡通过液体而分散该液体。通常,可以使用任一种混合方法,其包括但不限于超声处理,转筒,推进器,或振动混合器,或者混料机。
示例性的是,混合机构在接收到第一控制信号后指定的时间启动。或者,混合机构可以与固体燃料组分分配器102或液体燃料组分分配器104同时或在其之前启动。混合机构可以连续不断地运行或根据需要运行。
现在参考图5,其表明了一种使用至少一种复合金属氢化物作为燃料来生成氢气的方法。示例性的是,固体燃料组分是NaBH4,并且呈颗粒状。在步骤501时,确定NaBH4与水的混合溶液的浓度。在步骤502时,根据确定的浓度计算NaBH4和水的量。例如,如果确定的浓度是10重量%的NaBH4,那么NaBH4和水的量分别可以是NaBH4,100克,水900毫升。在步骤503,在接收到信号时,将计算量的NaBH4和水分配到室中。水和NaBH4的分配可以同时或相继开始。在步骤504时,分配的NaBH4和水优选混合以得到混合溶液。步骤505,将混合溶液输送到含有催化剂的催化剂室。催化剂激活混合溶液的水解作用生成氢气、水蒸汽、和废弃溶液。步骤506,氢气和水蒸汽与废弃溶液在分离器中分离开来。步骤507,氢气和水蒸汽在热交换器中冷却,以便使一些水蒸汽冷凝,并使排出的氢气具有希望的湿度。如果不考虑湿度,则步骤507可以省略。
在这里给出的实例能够使本领域技术人员更清楚地理解和实施本发明。这些实例不应该被认为是对本发明范围的限定,而仅仅是本发明用途的示例与代表。根据上述说明书,本发明的许多改进和备选实施方案对本领域技术人员来说将是显而易见的。例如,虽然在公开的实施方案中,分配机构是响应室103中混合物的液位来工作的,但是,它们也可以针对一个或多个标准做出响应。

Claims (19)

1.一种用于生成氢气的体系,其包括:
一个第一室;
与所述第一室连通的氢气出口;
配置在所述第一室和所述氢气出口之间的催化剂室,所述催化剂室包括加速所述固体和液体燃料组分的混合物生成氢气的催化剂;
第一和第二分配器,分别用于将预定量的固体燃料组分和液体燃料组分提供到所述第一室中,所述固体燃料组分和所述液体燃料组分的混合物能够通过化学反应生成氢气,每一个分配器都是响应于预定条件来工作的;和
与所述第一室连通、用于将所述液体和固体燃料组分的混合物泵送到所述催化剂室的泵。
2.权利要求1的体系,其中所述固体燃料是复合金属氢化物,所述液体燃料组分包括水。
3.权利要求2的体系,其中所述复合金属氢化物选自LiBH4,KBH4,NH4BH4,(CH3)4NBH4,NaAlH4,KAlH4,NaGaH4,LiGaH4,KGaH4,和其混合物。
4.权利要求1的体系,还包括串行连接到所述催化剂室上的分离器,所述催化剂室连接到所述室上,而所述分离器则连接到所述氢气出口上,所述分离器将所述氢气与所述固体和液体燃料组分的所述化学反应的其他副产物分离开来。
5.权利要求1的体系,其中所述第一室还包括用于加速所述固体和液体燃料组分混合的机构。
6.权利要求1的体系,还包括向所述第一室提供稳定剂的第三分配器,该稳定剂用于提高所述固体燃料组分和所述液体燃料组分混合物的pH值,所述第三分配器的操作方式与所述第一和第二分配器的操作相协调。
7.权利要求1的体系,其中液体燃料组分和固体燃料组分中至少有一种包括用来提高所述固体燃料组分和所述液体燃料组分混合物pH值的稳定剂。
8.权利要求1的体系,其中所述预定的条件是指生成氢气需要的条件指示。
9.权利要求1的体系,其中所述预定的条件是所述室中所述液体和所述固体燃料组分混合物的预定液位。
10.权利要求1的体系,其中所述第一分配器包括转动的圆筒,该圆筒具有一个槽,该槽在第一位置接受来自于一个来源的所述固体燃料组分并将该燃料组分在第二位置提供给所述第一室中。
11.权利要求1的体系,其中所述第一分配器包括用于连续地把所述固体燃料组分的球粒一个接着一个提供到预定位置的机构,并且还包括用于将所述预定位置中的每一球粒转移到所述第一室中的驱动机构。
12.权利要求11的体系,其中所述机构利用弹簧件来连续地将所述球粒供应到所述预定的位置上。
13.一种通过固体复合金属氢化物和包括水的液体之间的化学反应生成氢气的发生器,所述发生器包括:
复合金属氢化物分配机构;
液体分配机构;
一个第一室,用于接受分配机构响应于预定条件所分别分配的第一预定量的固体复合金属氢化物和第二预定量的包括水的液体,接收的这些燃料组分在所述室中形成混合物;
配置在所述室和所述氢气出口之间的催化剂室,所述催化剂室含有用于接收所述混合物的催化剂,且所述催化剂的类型能加速由所述固体复合金属氢化物与液体组分的混合物生成氢气;
与所述催化剂室连通的氢气出口;和
与所述第一室连通、用于将所述液体和固体燃料组分的混合物泵送到所述催化剂室的泵。
14.权利要求13的氢气发生器,还包括用于促进固体复合金属氢化物溶解到所述液体中的混合机构,和配置在所述催化剂室和所述氢气出口之间的分离器,用于将所述氢气与所述固体复合金属氢化物与所述液体之间的所述化学反应的其他副产物分离开来。
15.权利要求13的氢气发生器,还包括用于分配稳定剂的分配器,该稳定剂用来提高所述固体复合金属氢化物和所述液体的混合物的pH值。
16.权利要求13的氢气发生器,其中液体还包括用来提高所述固体复合金属氢化物和所述液体混合物的pH值的化学稳定剂。
17.权利要求13的氢气发生器,其中分配机构分配固体形式的复合金属氢化物和稳定剂的组合,所述稳定剂用来提高所述固体复合金属氢化物和所述液体混合物的pH值。
18.一种用权利要求1的体系或权利要求13的氢气发生器由至少一种固体复合金属氢化物生成氢气的方法,该方法包括以下步骤:
响应于预定条件,将第一预定量的固体复合金属氢化物从第一来源分配到室中;
响应于所述预定条件和形成混合物的固体复合金属氢化物和液体的分配量,将第二预定量的液体分配到所述室中;和
使所述固体复合金属氢化物和所述液体的混合物与促进氢气生成的催化剂接触。
19.权利要求18的方法,还包括在所述室中混合所述固体复合金属氢化物和所述液体的步骤。
CNB038126575A 2002-04-02 2003-03-27 通过分配固体和液体燃料组分生成氢气的方法和体系 Expired - Fee Related CN1328152C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/115,269 US7282073B2 (en) 2002-04-02 2002-04-02 Method and system for generating hydrogen by dispensing solid and liquid fuel components
US10/115,269 2002-04-02

Publications (2)

Publication Number Publication Date
CN1659099A CN1659099A (zh) 2005-08-24
CN1328152C true CN1328152C (zh) 2007-07-25

Family

ID=28789813

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038126575A Expired - Fee Related CN1328152C (zh) 2002-04-02 2003-03-27 通过分配固体和液体燃料组分生成氢气的方法和体系

Country Status (8)

Country Link
US (1) US7282073B2 (zh)
EP (1) EP1506132A2 (zh)
JP (1) JP2005521626A (zh)
KR (1) KR20050006141A (zh)
CN (1) CN1328152C (zh)
AU (1) AU2003230747A1 (zh)
CA (1) CA2481034A1 (zh)
WO (1) WO2003084866A2 (zh)

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003072059A (ja) * 2001-06-21 2003-03-12 Ricoh Co Ltd インクジェット記録装置及び複写機
US7316718B2 (en) * 2001-07-11 2008-01-08 Millennium Cell, Inc. Differential pressure-driven borohydride based generator
US7083657B2 (en) * 2002-08-20 2006-08-01 Millennium Cell, Inc. System for hydrogen generation
US6939529B2 (en) * 2002-10-03 2005-09-06 Millennium Cell, Inc. Self-regulating hydrogen generator
GB0224204D0 (en) * 2002-10-17 2002-11-27 Univ Loughborough Hydrogen fuel cell systems
US7648540B2 (en) * 2003-01-20 2010-01-19 Vellore Institute Of Technology System for production of hydrogen with metal hydride and a method
US7179443B2 (en) * 2003-02-26 2007-02-20 Daimlerchrysler Corporation Powder metal hydride hydrogen generator
US7556660B2 (en) 2003-06-11 2009-07-07 James Kevin Shurtleff Apparatus and system for promoting a substantially complete reaction of an anhydrous hydride reactant
US7344571B2 (en) * 2003-08-14 2008-03-18 The Gillette Company Hydrogen generator
US7128997B2 (en) * 2003-10-30 2006-10-31 Hewlett-Packard Development Company, L.P. Method and system for dispensing pelletized fuel for use with a fuel cell
US9029028B2 (en) 2003-12-29 2015-05-12 Honeywell International Inc. Hydrogen and electrical power generator
US8153285B2 (en) 2003-12-29 2012-04-10 Honeywell International Inc. Micro fuel cell
US7879472B2 (en) 2003-12-29 2011-02-01 Honeywell International Inc. Micro fuel cell
EP1714342A1 (en) * 2003-12-30 2006-10-25 Lg Electronics Inc. Fuel cell system
AU2003288778A1 (en) * 2003-12-30 2005-07-21 Lg Electronics Inc. Fuel cell system and control method thereof
US20050162122A1 (en) * 2004-01-22 2005-07-28 Dunn Glenn M. Fuel cell power and management system, and technique for controlling and/or operating same
EP1747170A2 (en) * 2004-04-14 2007-01-31 Millennium Cell Inc. Systems and methods for hydrogen generation from solid hydrides
US20060269470A1 (en) * 2004-04-14 2006-11-30 Qinglin Zhang Methods and devices for hydrogen generation from solid hydrides
IL163862A0 (en) 2004-09-01 2005-12-18 Hyogen Ltd A system for hydrogen storage and generation
EP1814653B1 (en) * 2004-11-12 2012-07-18 Trulite, Inc. Hydrogen generator cartridge
US7666386B2 (en) * 2005-02-08 2010-02-23 Lynntech Power Systems, Ltd. Solid chemical hydride dispenser for generating hydrogen gas
US20060257313A1 (en) * 2005-02-17 2006-11-16 Alan Cisar Hydrolysis of chemical hydrides utilizing hydrated compounds
JP5404035B2 (ja) * 2005-06-13 2014-01-29 ソシエテ ビック 水素発生カートリッジ用の燃料
US9156687B2 (en) * 2005-06-14 2015-10-13 Intelligent Energy Limited Water reactive hydrogen generation system and method with separation of waste products from water reactive materials
US20060292067A1 (en) * 2005-06-28 2006-12-28 Qinglin Zhang Hydrogen generation catalysts and methods for hydrogen generation
US7455829B2 (en) * 2005-07-12 2008-11-25 Honeywell International Inc. Low temperature hydrogen generator
US20070081939A1 (en) * 2005-10-06 2007-04-12 Grant Berry Solid fuel packaging system and method or hydrogen generation
US20070084115A1 (en) * 2005-10-06 2007-04-19 Grant Berry Solid fuel packaging system and method of hydrogen generation
WO2007096857A1 (en) * 2006-02-27 2007-08-30 Hyogen Ltd. A system for hydrogen storage and generation
US20070264190A1 (en) * 2006-05-09 2007-11-15 Qinglin Zhang Fixed-bed reactors and catalytic processes
TW200806392A (en) 2006-06-20 2008-02-01 Lynntech Inc Microcartridge hydrogen generator
US7648786B2 (en) * 2006-07-27 2010-01-19 Trulite, Inc System for generating electricity from a chemical hydride
US7651542B2 (en) * 2006-07-27 2010-01-26 Thulite, Inc System for generating hydrogen from a chemical hydride
DE102006041958B3 (de) * 2006-08-30 2008-01-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vorrichtung und Verfahren zur Wasserstofferzeugung aus Natriumborhydrid
US7713653B2 (en) 2006-10-06 2010-05-11 Honeywell International Inc. Power generation capacity indicator
US8822097B2 (en) 2006-11-30 2014-09-02 Honeywell International Inc. Slide valve for fuel cell power generator
US20090047185A1 (en) * 2007-03-06 2009-02-19 Fennimore Keith A Hydrogen generation systems
KR100803074B1 (ko) * 2007-03-20 2008-02-18 박정태 수소발생용 조성물 및 이를 이용한 고순도 수소발생 장치
US8586261B2 (en) * 2007-03-26 2013-11-19 Protonex Technology Corporation Techniques for packaging and utilizing solid hydrogen-producing fuel
US20080236032A1 (en) * 2007-03-26 2008-10-02 Kelly Michael T Compositions, devices and methods for hydrogen generation
US8357214B2 (en) * 2007-04-26 2013-01-22 Trulite, Inc. Apparatus, system, and method for generating a gas from solid reactant pouches
US20090025293A1 (en) * 2007-07-25 2009-01-29 John Patton Apparatus, system, and method for processing hydrogen gas
KR20100061453A (ko) 2007-07-25 2010-06-07 트루라이트 인크. 하이브리드 전력의 생성 및 사용을 관리하는 장치, 시스템 및 방법
JP5265158B2 (ja) 2007-09-05 2013-08-14 キネテイツク・リミテツド 水素発生器及び燃料スティック
EP2559657B1 (en) 2007-10-16 2014-03-12 QinetiQ Limited Hydrogen generator
KR101008427B1 (ko) * 2007-10-30 2011-01-14 삼성에스디아이 주식회사 연료전지 시스템
WO2009086541A1 (en) * 2007-12-27 2009-07-09 Enerfuel, Inc. Hydrogen production system using dosed chemical hydrbdes
US9034531B2 (en) * 2008-01-29 2015-05-19 Ardica Technologies, Inc. Controller for fuel cell operation
US8420267B2 (en) * 2008-10-31 2013-04-16 Alliant Techsystems Inc. Methods and systems for producing hydrogen and system for producing power
US8986404B2 (en) 2009-11-03 2015-03-24 Societe Bic Gas generator with starter mechanism and catalyst shield
FR2937028A1 (fr) * 2008-11-10 2010-04-16 Commissariat Energie Atomique Dispositif generateur d'hydrogene
US9276285B2 (en) 2008-12-15 2016-03-01 Honeywell International Inc. Shaped fuel source and fuel cell
US8962211B2 (en) * 2008-12-15 2015-02-24 Honeywell International Inc. Rechargeable fuel cell
US8932780B2 (en) 2008-12-15 2015-01-13 Honeywell International Inc. Fuel cell
CN102265443B (zh) * 2008-12-23 2016-04-06 智能能源有限公司 利用气凝胶催化剂的氢气发生器
US20110000864A1 (en) * 2009-07-06 2011-01-06 Moore Lela K Cookware Holder and Method
US8808410B2 (en) * 2009-07-23 2014-08-19 Intelligent Energy Limited Hydrogen generator and product conditioning method
US8741004B2 (en) * 2009-07-23 2014-06-03 Intelligent Energy Limited Cartridge for controlled production of hydrogen
CN102088095A (zh) * 2009-12-04 2011-06-08 扬光绿能股份有限公司 燃料匣、燃料电池系统及其电能管理方法
KR101110367B1 (ko) * 2009-12-22 2012-02-15 한국세라믹기술원 관형의 수소분리막모듈을 이용한 수소분리장치
CN102142567A (zh) * 2010-02-01 2011-08-03 扬光绿能股份有限公司 氢气产生装置及具有氢气产生装置的燃料电池
US8246796B2 (en) * 2010-02-12 2012-08-21 Honeywell International Inc. Fuel cell recharger
US8940458B2 (en) 2010-10-20 2015-01-27 Intelligent Energy Limited Fuel supply for a fuel cell
WO2012058687A2 (en) 2010-10-29 2012-05-03 Ardica Technologies Pump assembly for a fuel cell system
CN102694188A (zh) * 2011-03-25 2012-09-26 扬光绿能股份有限公司 氢气供电模块及救生装置
KR101067920B1 (ko) * 2011-07-29 2011-09-26 강신왕 부산물 저장 챔버를 장착한 일체형 화학수소화물 수소 발생 장치
US9169976B2 (en) 2011-11-21 2015-10-27 Ardica Technologies, Inc. Method of manufacture of a metal hydride fuel supply
US20130344407A1 (en) * 2012-06-25 2013-12-26 Eveready Battery Company, Inc. Hydrogen Generator and Method of Controlling Reaction
WO2014065923A1 (en) 2012-10-22 2014-05-01 Intelligent Energy, Inc. Hydrogen generator
GB201421299D0 (en) * 2014-12-01 2015-01-14 Cella Acquisition Ltd Hydrogen generator
NL2016379B1 (en) * 2015-11-06 2017-05-29 H2Fuel-Systems B V Method and Apparatus for Obtaining a Mixture for Producing H2, Corresponding Mixture, and Method and Apparatus for Producing H2.
JP6824509B2 (ja) * 2015-12-10 2021-02-03 国立大学法人京都大学 水素発生装置および発電装置
US9744190B2 (en) * 2016-01-15 2017-08-29 Thomas Tait Continuous gas generator
FR3059912B1 (fr) * 2016-12-08 2021-08-27 Commissariat Energie Atomique Composition aqueuse d'hydrures
JP6969827B2 (ja) * 2017-04-22 2021-11-24 ハイドロジェン テック センディリアン ベルハッド 水素ガス生成装置
US10543893B2 (en) 2017-05-26 2020-01-28 Lynntech, Inc. Undersea vehicle and method for operating a reactor
US10916785B2 (en) 2017-05-26 2021-02-09 Lynntech, Inc. Fuel cell storage system
US10807692B2 (en) 2017-05-26 2020-10-20 Lynntech, Inc. Undersea vehicle and method for operating the same
KR101864417B1 (ko) * 2018-02-13 2018-06-05 휴그린파워(주) 고체연료에 증기분해제를 이용한 수소발생 및 공급장치
DE102018004419A1 (de) * 2018-06-05 2019-12-05 Fresenius Medical Care Deutschland Gmbh Dosiervorrichtung für Feststoff-Formkörper zur Herstellung einer Lösung
CN109019508A (zh) * 2018-09-13 2018-12-18 安徽合巢氢产业应用技术研究院有限公司 化学制氢的供氢装置及以化学制氢为氢源的纳米溶氢水机
FR3096675B1 (fr) * 2019-05-28 2022-12-30 Naval Group Preparation d'une solution de borohydrune ou d'aluminohydrure a partir de borohydrune ou d'aluminohydrure solide a bord d'un engin sous-marin
FR3116005B1 (fr) 2020-11-12 2023-04-28 Commissariat Energie Atomique Procédé de formation d’une solution aqueuse d’hydrure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817157A (en) * 1996-01-02 1998-10-06 Checketts; Jed H. Hydrogen generation system and pelletized fuel
EP1170249A1 (en) * 2000-07-03 2002-01-09 Toyota Jidosha Kabushiki Kaisha Fuel gas generation system and generation method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2534533A (en) 1945-11-05 1950-12-19 Hermann I Schlesinger Methods of preparing alkali metal borohydrides
US2711306A (en) * 1953-11-23 1955-06-21 Levi Leone Magnetic stirrer
US3210157A (en) 1962-01-29 1965-10-05 Metal Hydrides Inc Method for generating hydrogen
US3458288A (en) * 1965-12-28 1969-07-29 Union Carbide Corp Hydrogen generator
US4002726A (en) 1975-07-16 1977-01-11 The United States Of America As Represented By The United States Energy Research And Development Administration Method of recycling lithium borate to lithium borohydride through methyl borate
US3993732A (en) 1975-07-16 1976-11-23 The United States Of America As Represented By The United States Energy Research And Development Administration Method of recycling lithium borate to lithium borohydride through diborane
US4676805A (en) * 1983-05-31 1987-06-30 Texaco Inc. Process for operating a gas generator
FR2587081B1 (fr) 1985-09-11 1988-04-15 Bp Chimie Sa Dispositif doseur de type rotatif permettant de delivrer des substances granulaires
IE871241L (en) * 1987-07-13 1988-11-13 Patrick Nurrough O Brien Coal container and dispenser
GB2264112B (en) 1992-01-27 1995-03-22 British Aerospace Hydrogen generating composition and method of production therof
US5372617A (en) 1993-05-28 1994-12-13 The Charles Stark Draper Laboratory, Inc. Hydrogen generation by hydrolysis of hydrides for undersea vehicle fuel cell energy systems
US5804329A (en) 1995-12-28 1998-09-08 National Patent Development Corporation Electroconversion cell
US5728464A (en) * 1996-01-02 1998-03-17 Checketts; Jed H. Hydrogen generation pelletized fuel
GB9700168D0 (en) 1997-01-07 1997-02-26 British Nuclear Fuels Plc Hydrogen gas generation
JP2001019401A (ja) 1999-07-05 2001-01-23 Seijiro Suda 水素発生剤及びそれを用いる水素発生方法
US6534033B1 (en) 2000-01-07 2003-03-18 Millennium Cell, Inc. System for hydrogen generation
US20010022960A1 (en) 2000-01-12 2001-09-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Hydrogen generating method and hydrogen generating apparatus
AU2001250055A1 (en) 2000-03-30 2001-10-15 Manhattan Scientifics, Inc. Portable chemical hydrogen hydride system
CA2308514A1 (en) 2000-05-12 2001-11-12 Mcgill University Method of hydrogen generation for fuel cell applications and a hydrogen-generating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817157A (en) * 1996-01-02 1998-10-06 Checketts; Jed H. Hydrogen generation system and pelletized fuel
EP1170249A1 (en) * 2000-07-03 2002-01-09 Toyota Jidosha Kabushiki Kaisha Fuel gas generation system and generation method thereof

Also Published As

Publication number Publication date
EP1506132A2 (en) 2005-02-16
KR20050006141A (ko) 2005-01-15
US20040047801A1 (en) 2004-03-11
WO2003084866A3 (en) 2004-02-19
US7282073B2 (en) 2007-10-16
CN1659099A (zh) 2005-08-24
CA2481034A1 (en) 2003-10-16
AU2003230747A8 (en) 2003-10-20
JP2005521626A (ja) 2005-07-21
AU2003230747A1 (en) 2003-10-20
WO2003084866A2 (en) 2003-10-16

Similar Documents

Publication Publication Date Title
CN1328152C (zh) 通过分配固体和液体燃料组分生成氢气的方法和体系
CN1313358C (zh) 用于处理从氢发生器排出的燃料溶液的方法和装置
CN100393608C (zh) 氢气发生系统
US9156687B2 (en) Water reactive hydrogen generation system and method with separation of waste products from water reactive materials
CN1980856A (zh) 由固体氢化物产生氢气的系统和方法
US20040052723A1 (en) Method of generating hydrogen from borohydrides and water
US20060263283A1 (en) System and method for blending and compressing gases
CA2550473A1 (en) Fuel blends for hydrogen generators
CN1009639B (zh) 煤浆系统
US20070081939A1 (en) Solid fuel packaging system and method or hydrogen generation
CN101112969A (zh) 可控胶囊式硼氢化钠氢发生剂
CN107703868A (zh) 分体式高容量全自动控制的可调控制氢系统
GR3001075T3 (en) Feeding device for stockfeed
KR20090043964A (ko) 연료전지 시스템
CN205815691U (zh) 一种连续化三相混合反应装置
CN101759173B (zh) 一种工业利用水热反应连续生产LiFePO4的装置
KR20050006032A (ko) 바이오디젤 제조용 원료 자동혼합 공급장치
CN207608405U (zh) 可有效防止锅炉结垢堵塞的滴加装置
JP2020001957A (ja) 水素生成装置およびその運転方法
KR200360982Y1 (ko) 바이오디젤 제조용 원료 자동혼합 공급장치
CN219670175U (zh) 一种污水处理精确加药装置
CN220803034U (zh) 一种阻垢杀菌剂生产用添加设备
CN220531592U (zh) 自转化淀粉制备装置及造纸设备
CN107686747B (zh) 一种可提高燃气燃烧率的燃料气化工艺系统
CN1019172B (zh) 勿需电气元件的轻便自动的水碳酸化器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee