CN1311523A - 薄膜形成装置,薄膜形成方法和自发光装置 - Google Patents

薄膜形成装置,薄膜形成方法和自发光装置 Download PDF

Info

Publication number
CN1311523A
CN1311523A CN01112372A CN01112372A CN1311523A CN 1311523 A CN1311523 A CN 1311523A CN 01112372 A CN01112372 A CN 01112372A CN 01112372 A CN01112372 A CN 01112372A CN 1311523 A CN1311523 A CN 1311523A
Authority
CN
China
Prior art keywords
coating liquid
mask
matrix
electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01112372A
Other languages
English (en)
Other versions
CN1221010C (zh
Inventor
广木正明
山崎舜平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1311523A publication Critical patent/CN1311523A/zh
Application granted granted Critical
Publication of CN1221010C publication Critical patent/CN1221010C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供了一种当将用来形成EL层的涂敷液涂敷时,用于选择性地将涂敷液涂敷在所需涂敷位置的装置。当涂敷涂敷液时,在涂敷液室和基质间提供一掩模,并且将一电压施加到所述掩模上,这样涂敷液能选择性电涂敷在所需涂敷位置上。

Description

薄膜形成装置,薄膜形成方法和自发光装置
本发明涉及一种自发光装置,其中在绝缘体上形成一个具有阳极、阴极结构和夹在其中并产生EL(电致发光)的发光有机物质(在下文中称之为有机EL物质)的EL元件;涉及包含所述自发光装置作为显示部分(显示或显示监视器)的电子仪器;涉及所述有机EL物质的薄膜形成方法;以及涉及薄膜形成装置。注:所述自发光装置也称OLED(有机发光二极管)。
近年来,已经开发了使用EL元件的自发光装置(EL显示装置)作为使用自发光有机物质的EL现象的自发光元件。因为EL显示装置是自发光类型,就不再需要用于液晶显示装置的背景光了,而且,因为可见角宽,所以认为有希望作为电子仪器的显示部分。
EL显示装置有两种,即,无源型(简单矩阵型)和有源型(有源矩阵型)并且两者已经很大程度的发展了。特别地,目前将注意力放在了有源矩阵型EL显示装置上。因为将变成EL层的有机EL物质认作EL元件的中心,尽管研究了低分子量有机EL物质和高分子量(聚合物)有机EL物质,注意力仍被放在聚合物有机EL物质,其比低分子量有机EL物质更容易处理并且具有高热阻。
作为聚合物有机EL物质的薄膜生长方法,认为由Seiko Epson公司提出的喷墨法是很有前途的。关于这个技术,参考日本专利申请特开平10-12377,特开平10-153967,特开平11-54270,等等。
但是,在喷墨法中,因为聚合物有机EL物质是被喷出,因此能发生所谓的飞行偏移问题,除非所涂表面和用于喷墨的头的喷嘴之间距离合适,否则小滴就被涂敷在除必要部分之外的部分上。在日本专利申请特开平11-54270中详细公开了飞行偏移,并且明确地公开了偏离待喷涂的目标位置50μm或更多。
鉴于上述问题得到了本发明,并且一个目的是提供形成薄膜的方法,就是通过选择性地涂布由聚合物制成的有机EL物质于每一线或区域,而不是通过旋涂法。此外,本发明提供了一个薄膜形成装置。本发明的另一个目的是提供一种使用这种装置的自发光装置及其制备方法。本发明还有另一个目的是提供包含这样自发光装置作为显示部分的电子仪器。
关于用于达到上述目的的涂敷液,通过选择对有机EL物质有高溶解性的溶剂来制备溶液。注:在本发明说明书中,用于EL层的涂敷液被称作所述涂敷液,其中EL层中有机EL物质溶解在溶剂中。
在本发明中,将涂敷液装在涂敷液室中,并且通过电场提取时,在其到达基质之前,通过施加在掩模上的电压产生的电场控制其飞行方向,并且能控制涂敷位置。
图1A至1C示出了本发明的有机EL物质的涂敷方法(实施方案1);
图2A至2B示出了本发明的有机EL物质的涂敷方法(实施方案3);
图3A至3C示出了本发明的有机EL物质的涂敷方法(实施方案10);
图4示出了本发明的有机EL物质的涂敷方法(实施方案2);
图5A和5B示出了本发明的有机EL物质的涂敷方法;
图6示出了象素部分的剖面结构;
图7A和7B示出了象素部分的上部结构和其构成;
图8A至8E示出了EL显示装置的制造步骤;
图9A至9D示出了EL显示装置的制造步骤;
图10A至10C示出了EL显示装置的制造步骤;
图11示出了抽样电路的基本结构;
图12示出了EL显示装置的外观;
图13示出了EL显示装置的电路块结构;
图14A和14B示出了有源矩阵型EL显示装置的剖面结构;
图15A至15C示出了EL显示装置的象素部分的剖面结构;
图16示出了象素部分的上部结构;
图17A和17B示出了本发明的有机EL物质的涂敷方法;
图18A和18B示出了本发明的有机EL物质的涂敷方法;
图19A和19B示出了用于涂敷有机EL物质的掩模图案;
图20A和20B示出了有机EL物质的涂敷图案;
图21示出了无源型EL显示装置的剖面结构;
图22A至22F示出了电子仪器的具体实施例;和
图23A和23B示出了电子仪器的具体实施例。
(实施方式1)
首先,用于实现本发明的实施方式1将参照图1A到1C来描述。
图1A图示了一种状态,其中通过实施本发明来由π-共轭聚合物制成的有机EL物质形成薄膜。在图1A中,参数110指基质;111指涂敷液室。涂敷液室111含有涂敷液。
当形成红色EL层时,涂敷液室111含有混合物(下文称之为红EL层涂敷液),所述混合物为发出红光的有机EL物质和溶剂,当形成绿色EL层时,涂敷液室111含有混合物(下文中称之为绿EL层涂敷液),所述混合物为发出绿光的有机EL物质和溶剂,当形成蓝色EL层时,涂敷液室111含有混合物(下文中称之为蓝EL层涂敷液),所述混合物为发出蓝光的有机EL物质和溶剂。
典型的溶剂有乙醇、二甲苯、氯苯、二氯苯、甲氧基苯、氯仿、二氯甲烷、ā-丁基内酯、丁基溶纤剂、环己烷、NMP(N-甲基-2-吡咯烷酮)、环己酮、二噁烷或THF(四氢呋喃)。
关于有机EL物质,有一种直接将聚合物溶于溶剂中并涂敷它的方法,和一种形成溶解在溶剂中的单体的薄膜然后加热并且将之聚合成聚合物的方法,在本发明中两者都可以使用。此处,将描述聚合物的有机EL物质溶于溶剂中并且被涂敷的例子。
在本发明的情况下,通过超声振动器112来雾化在涂敷液室111中的涂敷液并且将其排出。在被排出的涂敷液经过由导体制成的掩模113的缝隙后,其被涂敷在基质110上的象素电极上。
当涂敷液经过掩模113时,它的飞行方向由掩模控制,如图1B中117部分的放大图所示。如图1C所示,掩模113是条纹形或网形并且阻挡部分118由导体制成,如铂(Pt)、金(Au)、铜、铁、铝、钽、钛或钨。涂敷液受施加在阻挡部分118上的电压控制,通过阻挡部分118的缝隙并涂敷在基质上。
注:施加于掩模113的阻挡部分118上的电压产生一个电势,使雾化涂敷液和掩模113的阻挡部分118之间相互排斥。因此,涂敷液能通过掩模113的阻挡部分118之间的缝隙。
当在图1C中示出的掩模113从箭头m的方向看去时,获得了图1B中的条形掩模113。
在阻挡部分118之间的缝隙可以产生形成在基质上的象素电极的象素间距。
首先,在与片平面垂直的方向移动涂敷液室111的同时,涂敷了用于红EL层的涂敷液,在象素上形成条形红EL层。
接下来,通过一个象素阵列在箭头k的方向上移动掩模之后,从涂敷液室111涂敷用于绿EL层的涂敷液。也是在这时,以与片平面垂直的方向移动涂敷液室111的同时进行涂敷,以便形成绿EL层。进一步,通过一个象素阵列在箭头k的方向上移动掩模,并且以与片平面垂直的方向移动涂敷液室111的同时进行涂敷,从而形成蓝EL层。
那就是说,当在箭头k的方向上移动掩模的同时发出红、绿和蓝光的象素阵列被涂有三次,分别对应于各种颜色,以便形成三色条形EL层(严格地说,EL层的前体)。此处形成的每个EL层的理想厚度是10nm到1μm。此处注意:尽管描述了以与片平面垂直的方向移动涂敷液室111同时的涂敷方法,仍可使用以与片平面垂直的方向移动基质110同时涂敷的方法。此外,可以同时形成三色EL层。
此处的象素阵列指被堤(bank)(没有示出)分开的象素阵列,并且象在象素阵列的源布线上的堤防一样形成堤使得填充象素之间的缝隙。那就是说,在沿着源布线序列安排大量象素的列指象素阵列。但是,此处尽管解释了堤在源布线上形成的事实,其仍可由栅布线上提供。在这种情况下,沿着栅布线序列安排大量象素的列称作象素阵列。
因此,能把在象素电极上的象素部分(没有示出)认作所有大量象素阵列,其由在大量源布线或栅布线上提供的条形堤分开。当象素部分被如此认为时,可以说由形成发出红光的条形EL层的象素阵列、形成发出绿光的条形EL层的象素阵列以及形成发出蓝光的条形EL层的象素阵列构成象素电极上的象素部分。
因为在大量源布线或栅布线上提供了条形堤,也可以基本认为所述象素部分为由大量源布线或栅布线分开的所有大量条形堤。
同时,在图1中的参数114指提取电极,其用导电的区域或来提取雾化的涂敷液到下一个电极上。参数115指加速电极,其施加于涂敷液一个电场用来加速被提取的涂敷液的飞行速度。另外,参数116指控制电极,其为施加一个电压以控制电场的电极,以便能将涂敷液涂敷在基质110上的所需位置。电极数目不必总是3个。
(实施方式2)
下一步,将参照图2A和2B描述实现本发明的实施方式2。
为了比实施方式1进一步提高可控制性,在掩模和基质之间提供了电场控制的另一种方法。图2A是图示出一个使用大量掩模进行电场控制的实例。
在图2A中,参数1010指基质;1011指涂敷液室。涂敷液室1011含有涂敷液。此处,将描述其中将有机EL物质作为聚合物溶于溶剂中并进行涂敷的实例。
通过超声振动器1012将涂敷液室1011的涂敷液雾化并将其排出。电极1020与涂敷液室1011相连,并且当其排出时预先在涂敷液上施加一电势。接下来,排出的涂敷液经过由导体材料制成的第一个掩模1013的缝隙,并且在通过第二个掩模1019a的缝隙后,涂敷液被涂敷在位于基质1010上的象素电极上。
当涂敷液经过第一个掩模1013时,其飞行方向由第一个掩模控制,由1017部分的放大图-图2B示出。构成第一个掩模1013以使第一个阻挡部分1018是由导体制成的许多导线,导体如铂(Pt)、金(Au)、铜、铁、铝、钽、钛或钨,并且安排成彼此平行(线形)或网形结构(网形)。当经过了第一个掩模1013的涂敷液经过第二个阻挡部分1019b时,控制飞行方向,由1017部分的放大图-图2B示出。因此,涂敷液由施加于第一个阻挡部分1018的第一个电压(通过第一个电源1020来设置)和施加于第二个阻挡部分1019b的第二个电压(通过第二个电源1021来设置)控制,分别经过第一个阻挡部分1018间的缝隙和第二个阻挡部分1019b间的缝隙,并且被涂敷在基质上。第二个掩模1019a具有的第二个阻挡部分1019b是各自由导体制成的导线,导体如铂(Pt)、金(Au)、铜、铁、铝、钽、钛或钨,具有由导线制成的网状结构,具有由导体制成的盘状结构,或具有大多数导线相互平行地排列的结构。
尽管图2示出的样例其剖面形状为环状,但是其形状不局限于此,可以是矩形、椭圆形或多边形。
注:在第一个掩模1013和第二个掩模1019a之间的距离,第二个掩模1019a和基质之间的距离,第一个阻挡部分1018相互间的距离,第二个阻挡部分1019b相互间的距离等等,可以适宜地由操作者调整。例如,适当地,第一个阻挡部分1018相互间的距离或第二个阻挡部分1019b相互间的距离由在基质之上形成的象素电极的象素间距构成。
为了准确地将第一个掩模1013和第二个掩模1019a排成直线,可以用如下方式形成第一个掩模1013和第二个掩模1019a:将两个导体盘堆起,并且同时通过放电操作将裂缝形或环形的洞切开。
尽管图2B示出了样例,其主要通过第二个阻挡部分1019b控制涂敷液向基质的飞行方向,但是发明不局限于此,在涂敷液经过第二个阻挡部分后,向着基质的飞行方向可以通过第一个阻挡部分控制,通过改变第二个阻挡部分提供的位置控制。此外,尽管这里描述的是使用两个掩模的例子,但是可以通过向两个或两个以上的掩模施加电压来控制涂敷液的飞行方向。此外,可以通过对在同一平面上两个或更多掩模施加电压来控制涂敷液的飞行方向。
注:向第一个掩模1013的第一个阻挡部分1018施加电压(由第一个电源1020设置)以产生使雾化了的涂敷液和第一个掩模1013的第一个阻挡部分1018相互排斥的电势。此外,向第二个掩模1019a的第二个阻挡部分1019b施加电压(由第二个电源1021设置)以产生使雾化了的涂敷液和第二个阻挡部分1019b相互排斥的电势。因此,涂敷液能通过第一个掩模1013的第一个阻挡部分1018相互间的缝隙和第二个掩模1019a的第二个阻挡部分1019b相互间的缝隙。
通过制造如图2A的结构和适当地调节施加于第一个阻挡部分1018的第一电压和施加于第二个阻挡部分1019b的第二电压在几十伏到10kV,可以非常准确地控制涂敷位置。
(实施方式3)
接下来,将参照图3A到3B来描述实现本发明的实施方式3。
图3A图示了一样例,其中通过使用部分地施加不同电压的掩模来控制涂敷位置。涂敷位置可以由如下方式控制:将第一电压(由第一个电源1220控制)施加于掩模的阻挡部分1218a,并且将第二电压(由第二个电源1221控制)施加于掩模的阻挡部分1218b,从而控制涂敷液的飞行方向。
应注意的是,当涂敷液通过掩模1213时,如1217部分的放大图-图3B所示,飞行方向由阻挡部分1218a和1218b控制。伴随地,图3B所示的例子为第二电压低于第一电压的情形。
当图3C所示的掩模1213从箭头m的方向看时,获得图3B的条形掩模1213。
实施方式3可以和实施方式2联合使用。
进一步,在上述实施方式1到3中,可以施加电场,以便预先向基质上形成的象素电极(阳极)施加一电压,并且进一步地控制已经穿过掩模的涂敷液,从而选择性地涂敷在所需位置上。
此外,在上述实施方式1到3中,通过对涂敷液充电、以带电粒子提取涂敷液、并通过电场控制各自的带电粒子,来进一步提高涂敷位置的可控制性。
接下来,下面将描述本发明的优选实施方案。
(实施方案1)
在这个实施方案中,将描述通过电场控制涂敷液室中雾化的涂敷液并在基质上形成薄膜的方法。注意:在这个实施方案中的涂敷方法使用图1A到1C。
在图1A中,参数110指基质;并且111指涂敷液室。涂敷液室111含有涂敷液。
当形成红色EL层时,涂敷液室111含有混合物(下文中称之为红EL层涂敷液),所述混合物是发出红光的有机EL物质和溶剂,当形成绿色EL层时,涂敷液室111含有混合物(下文中称之为绿EL层涂敷液),所述混合物是发出绿光的有机EL物质和溶剂,当形成蓝色EL层时,涂敷液室111含有混合物(下文中称之为蓝EL层涂敷液),所述混合物是发出蓝光的有机EL物质和溶剂。
注意,在这个实施方案中,作为有机EL物质,将氰基聚亚苯基亚乙烯基用于红EL层,将聚亚苯基亚乙烯基用于发出绿光的EL层,并将聚烷基亚苯基用于发出蓝光的EL层。将乙醇用作溶剂。
在这个实施方案中,首先将用于红EL层的涂敷液装入涂敷液室中,并且红EL层形成在基质上之后,使用含有用于绿EL的涂敷液的涂敷液室在基质上形成绿EL层。最后,使用含有用于蓝EL层的涂敷液的涂敷液室在基质上形成蓝EL层。
如上所述,通过涂敷三次可以形成红、绿和蓝的EL层。此外,三色EL层可以同时形成。
每一色的涂敷液通过超声振动器112来在涂敷液室中雾化并通过得自提取电极114的电场来提取。由提取电极114提取的涂敷液通过得自加速电极115的电场来加速,并且然后其由得自控制电极116的电场控制,到达掩模113。
因为一电压施加在掩模113上,因此在掩模113的附近产生了电场。通过掩模113产生的电场控制已经到达掩模113的涂敷液,并且然后涂敷液经过掩模113被涂敷在基质110上。
当以与片平面垂直的方向移动涂敷液室111的同时涂敷用于红EL层的涂敷液时,条形红EL层形成在象素上。此处,由一个象素阵列以箭头k的方向移动掩模,并从涂敷液室111类似地涂敷用于绿EL层的涂敷液,同时以与片平面垂直的方向移动涂敷液室111。因此,绿EL层形成在红EL层的边上。进一步,由一个象素阵列以箭头k的方向移动掩模,并且从涂敷液室111涂敷用于蓝EL层的涂敷液。蓝EL层形成在绿EL层的边上。那就是说,如上所述,当移动掩模时,发出红、绿和蓝的象素阵列对于各个颜色涂敷三次,所以形成了三色条形EL层(严格地说,是EL层的前体)。注意:此处形成的各EL层的厚度为100nm到1μm是理想的。而且,可以同时形成三色EL层。
注:此处的象素阵列指被堤(没有示出)分开的象素的阵列,并且堤形成在源布线上。那就是说,在沿着源布线序列排列大量象素的阵列被称之为象素阵列。但是,此处尽管解释了堤在源布线上形成的事实,其仍可在栅布线上提供。在这种情况下,沿着栅布线序列安排大量象素的阵列也称作象素阵列。
因此,能把象素部分(没有示出)认作大量象素阵列,其被在大量源布线或栅布线上提供的条形堤分开。当象素部分被如此认为时,可以说由象素阵列构成象素部分,在这些象素阵列中形成了发出红光的条形EL层,形成了发出绿光的条形EL层和形成了发出蓝光的条形EL层。
而且,因为在大量源布线或栅布线上提供了条形堤,也可以基本上将这些象素部分认为由大量源布线或栅布线上提供的条形堤分开的大量象素阵列。
同时,在图1A中的参数114指提取电极,其施加电场以将雾化涂敷液提取到下一个电极上。参数115指加速电极,其向涂敷液施加用来加速被提取涂敷液的飞行速度的电场。另外,参数116指控制电极,其为控制电场的电极,将涂敷液涂敷在基质110上的所需位置。电极数目不必总是3个,但如果至少提供一个电极是足够的。
另外,在这个实施方案中,可以施加电场,使得预先向在基质110上形成的象素电极(阳极)施加一电压,并且进一步控制已经经过了掩模的涂敷液以选择性地涂敷在所需的位置上。
(实施方案2)
下一步,将给出一个例子,其中因为墨滴的优良可控制性和油墨选择的高自由度而用于喷墨打印机上的压电系统(也称作Seiko Epson公司的MJ系统)用于本发明。
所述压电系统包括MLP(多层压电)型和MLChip(多层陶瓷超整合压电片)型。
然后,在这个实施方案中,MLChip的涂敷装置在图4中示出。MLChip是个致动装置,其中由陶瓷制成的振动盘401、传递盘402和涂敷液室盘403构成涂敷液室404,并在与每个涂敷液室对应的振动盘401上形成压电元件405。
将三个不锈钢盘(SUS盘)堆在MLChip上,并且如图4形成供应孔406、贮藏室407和喷嘴408,如此形成了涂敷装置。
由MLChip制成的涂敷装置的操作原理是压电效应,以及当一电压施加到上电极409和下电极410时因压电元件402振动引起振动盘401和压电元件402的偏振作用。那就是说,通过偏转向涂敷液室404加压,将涂敷液室中所含的涂敷液推出,从而实现涂敷。
从图4所示的涂敷装置中排出的涂敷液按实施方案1中解释的方法经过控制的电场,这样能选择性地实现涂敷到基质上理想的地方。而且,这个实施方案的结构可以自由地与实施方式1到3的结构联合使用。(实施方案3)
在实施方案1中,尽管已经给出了例子,其中通过一个电场控制装置控制涂敷位置,但这个实施方案给出了个例子,其中在掩模和基质间提供另一个电场控制装置,以便比实施方案1的图2A中示出的结构进一步提高涂敷位置的可控制性,该例子图示出了使用大量掩模的例子。
在图2A中,参数1010指基质;1011指涂敷液室。涂敷液室1011含有涂敷液。此处,示出了作为聚合物的有机EL物质溶于溶剂中并且被涂敷的例子。
在涂敷液室1011中的涂敷液通过超声振动器1012来雾化并且被排出。在被排出的涂敷液经过由导体制成的第一个掩模1013的缝隙,并经过第二个掩模1019a的缝隙后,其被涂敷在基质1010上的象素电极上。
当涂敷液经过第一个掩模1013时,如图2B中1017部分的放大图所示,它的飞行方向由第一个掩模控制。第一个掩模1013构成为:第一个阻挡部分1018的部分是由导体制成的大量导线,导体如铂(Pt)、金(Au)、铜、铁、铝、钽、钛或钨,导线相互平行排列(条形),或是网状结构(网形)。而且,如图2B中1017部分的放大视图所示,当已经经过了第一个掩模1013的涂敷液经过第二个阻挡部分1019b时,控制其飞行方向。因此,通过施加于第一个阻挡部分1018的第一电压(通过第一个电源1020来设置)和施加于第二个阻挡部分1019b的第二电压(通过第一个电源1021来设置)控制涂敷液,涂敷液经过第一个阻挡部分1018间的缝隙和第二个阻挡部分1019b间的缝隙,并且被涂敷在基质上。第二个掩模1019a具有的第二个阻挡部分1019b,是如下导体制成的导线:铂(Pt)、金(Au)、铜、铁、铝、钽、钛或钨,并具有由导线制成的网状结构,具有由导体制成的盘状结构,或许多导线相互平行排列的结构。
注意:在第一个掩模1013和第二个掩模1019a之间的距离,第二个掩模1019a和基质之间的距离,第一个阻挡部分1018彼此间的距离,第二个阻挡部分1019b彼此间的距离等等,可以由操作者适宜地设定。例如,第一个阻挡部分1018彼此间的距离或第二个阻挡部分1019b彼此间的距离可以由基质之上形成的象素电极的象素间距构成。
注意:将电压(由第一个电源1020设置)施加在第一个掩模1013的第一个阻挡部分1018,从而产生使得雾化了的涂敷液和第一个掩模1013的第一个阻挡部分1018相互排斥的电势。同样,将电压(由第二个电源1021设置)施加在第二个掩模1019a的第二个阻挡部分1019b上,从而产生使得雾化了的涂敷液和第二个阻挡部分1019b相互排斥的电势。因此,涂敷液能通过第一个掩模1013的第一个阻挡部分1018之间的缝隙和第二个阻挡部分1019b之间的缝隙。
通过制造如图2A中的结构和适当地调节施加在第一个阻挡部分1018的电压以及施加在第二个阻挡部分1019b的电压,涂敷位置能以高准确度来控制。
另外,在这个实施方案中,可以施加电场,使得预先将一电压施加到在基质1010上形成的象素电极(阳极)上,并且进一步控制已经经过了掩模的涂敷液,从而选择性地涂敷在所需位置上。
此外,这个实施方案的结构能自由地与实施方案1或实施方案2的结构联合使用。(实施方案4)
实施方案1使用下述类型的涂敷方法:通过涂敷液室中的超声振动器雾化的涂敷液由外部电极提取出。但是,因为雾化了的涂敷液在涂敷时粒径大,因此具有涂敷位置的可控制性差的缺陷。
然后,在这个实施方案中,涂敷液被充电并且以带电颗粒提取,并且各个带电的颗粒由电场控制,所以能提高涂敷位置的可控制性。
在这个实施方案中的涂敷方法的例子示于图5A和5B中。图5A是剖面图,图5B是透视图。
涂敷液室1801中含有用于EL层的涂敷液。注意:在这个实施方案中,作为有机EL物质,将氰基聚亚苯基亚乙烯基用于红EL层,将聚亚苯基亚乙烯基用于发出绿光的EL层,并且将聚烷基亚苯基用于发出蓝光的EL层。将乙醇或N-甲基吡咯烷酮用作溶剂。
涂敷液室1801上装有导电喷嘴1807,并且通过施加在喷嘴1807上的电压,在涂敷液中的有机EL物质被充电形成带电颗粒。与此同时,当将一电压施加到提取电极1804上时,涂敷液被从喷嘴1807以带电颗粒提取。
注意:为了使涂敷液易于以带电颗粒提取,通过使用高电导率的溶剂形成涂敷液是合适的。作为具有高电导率的溶剂,使用具有1×10-6到1×10-12Ω-1cm-1的比电导率的溶剂是合适的。
而且,通过加速电极1805以提取方向(从喷嘴1807到基质1800的方向)加速由提取电极1804提取的涂敷液,由控制电极1806控制涂敷液的流动,并且当涂敷液到达掩模1803时,由加在掩模1803上的电压进一步加速,并且最终能涂敷在基质1800上的象素部分上。
在这个实施方案中,在由提取电极1804从喷嘴1807提取涂敷液后,尽管涂敷液通过加速电极1805和控制电极1806被适当地涂敷在基质之上的象素上,但电极数目不必总是3个,如果提供至少一个电极是足够的。
此外,这个实施方案的结构可以自由地与实施方案1到3的任意结构联合使用。(实施方案5)
图6是本发明EL显示装置的象素部分的剖面图,图7A是其顶视图,图7B是示出了其电路结构的视图。实际上,将象素布置成矩阵形式以形成象素部分(图形显示部分)。伴随地,沿图7A的A-A’的剖面图与图6相对应。这样,由于公共的指代数字用于图6和图7A和7B,参数对于两个视图都适合。尽管图7的顶视图示出了两个象素,但是二者具有相同的结构。
在图6中,参数11指基质;12为变成下层的绝缘薄膜(下文称之为下面薄膜)。就基质11而言,可以用玻璃、玻璃陶瓷、石英、硅、陶瓷、金属或塑料制成基质。尽管下面薄膜12是有效的,特别是在使用了包含活动离子的基质或导电基质的情况下,但是在石英基质上不必提供下面薄膜。就下面薄膜12而言,可以使用含有硅的绝缘薄膜。在本说明书中,“含有硅的绝缘薄膜”指以预定比含有硅、氧或氮的绝缘薄膜,如二氧化硅薄膜、氮化硅薄膜或氮氧化硅薄膜(由SiOxNy表示)。
为了驱散TFT的热量,通过使下面薄膜12具有热辐射效果是有效的,同时防止TFT老化或EL元件老化。可以用任何已知的物质提供热辐射效果。
此处,两个TFT形成在象素上。参数201指由n-沟道TFF形成的开关TFT;202指电流控制TFT,其由p-沟道TFT形成。
但是,在本发明中,开关TET不必限于n-沟道TFT并且电流控制TFT不必限制于p-沟道TFT,但是可以这样改变,即p-沟道TFT制成开关TFT并且n-沟道TFT制成电流控制TFT,或二者都用n-沟道TFT或p-沟道TFT。
开关TFT 201包括源区13,漏区14,LDD区15a到15d,含有高浓度杂质区16和沟道形成区17a和17b的有效层(activelayer),栅绝缘薄膜18,栅电极19a和19b,第一夹层绝缘薄膜20,源布线21和漏布线22。
而且,如图7A和7B所示,栅电极19a和19b具有双栅结构,其中它们与由另一材料(具有低于栅电极19a和19b的电阻材料的)形成的栅布线211电相连。当然,不但可以采纳双栅结构,而且可以采纳单栅或所谓的多栅结构(包括具有至少两个串联的沟道形成区的有效层的结构)如三栅结构。多栅结构对降低关态电流值是非常有效的,并且在本发明中,将象素的开关元件201制成多栅结构以实现具有低关态电流值的开关元件。
由含有晶体结构的半导体薄膜形成有效层。那就是说,可以使用单晶半导体薄膜,也可以使用多晶半导体薄膜或微晶半导体薄膜。可以由含硅绝缘薄膜形成棚绝缘薄膜18。任何导电薄膜可以用于栅电极、源布线或漏布线。
此外,在开关TFT 201中,提供LDD区15a到15d,不与通过棚绝缘薄膜18的栅电极19a和19b重叠。这种结构对降低关态电流值是非常有效的。
应注意的是,由于要降低关态电流值,更优选在沟道形成区和LDD区间提供偏移区域(区域由与沟道形成区组成相同的半导体层制成并且不加栅电压)。在多栅结构至少具有两个栅电极的情况下,在沟道形成区之间提供的高浓度杂质区域在降低关态电流值方面是有效的。
接下来,电流控制TFT202包括含源区31、漏区32和沟道形成区34的有效层,栅绝缘薄膜18,栅电极35,第一夹层绝缘薄膜20,源布线36和漏布线37。尽管栅电极35具有单栅结构,但是可以使用多栅结构。
如图7所示,开关TFT的漏区连接在电流控制TFT202的栅上。尤其是,电流控制TFT 202的栅电极35通过排放布线22(也可以称连接布线)电连接在开关TFT201的漏区14上。将源布线36连接到电源线212上。
电流控制TFT202是用于控制注入EL元件203的电流量的元件,并且考虑到EL元件的老化不优选大量电流流动。这样,优选设计一个足够长的沟道长度(L)以使额外的电流不流过电流控制TFT 202。合理的设计是使电流为0.5到2μA/象素(优选1到1.5μA)。
在开关TFT201中形成的LDD区的长度(宽度)制成0.5到3.5μm,典型的是2.0到2.5μm。
而且,如图16所示,在指定为3504的区域通过绝缘薄膜将包括电流控制TFT 3503的栅电极35的布线与电流控制TFT3503的电源线211相重叠。与此同时,在由3504指定的区域中形成保持电容(电容器)。至于电容3504,由半导体薄膜3520、与栅绝缘薄膜相同层的绝缘薄膜(没有示出),和电源线211形成的电容,也可以被用作保持电容。
这种保持电容3504起容纳施加到电流控制TFT3503的栅电极35上的电压的电容器的作用。
从增加能流过的电流量的观点来看,增加电流控制TFT202的有效层(特别是沟道形成区)的厚度(优选50到100nm,更优选60到80nm)也是有效的。相反,在开关TFT201的情况下,从降低关态电流值的观点来看,降低有效层(特别是沟道形成区)的厚度(优选20到50nm,更优选25到40nm)也是有效的。
接下来,参数38指第一个钝化薄膜,并且适宜将薄膜厚度制成10nm到10μm(优选200到500nm)。作为其材料,可以使用含有硅的绝缘薄膜(特别是优选氮氧硅化物薄膜或氮化硅薄膜)。
将第二个夹层绝缘薄膜39(也称平化薄膜)形成在第一个钝化薄膜38上以盖住各自的TFT,所以弄平由TFT形成的间隙(step)。作为第二个夹层绝缘薄膜39,优选有机树脂薄膜,和优选使用聚酰亚胺、聚酰胺、丙烯酸树脂,BCB(苯并环丁烯)等等。当然,如果能弄的足够平的话,可以使用无机薄膜。
通过第二个夹层绝缘薄膜39弄平该间隙非常重要,该间隙由TFT产生。因为后来形成的EL层非常薄,由于间隙的存在,发出差的荧光,所以在象素电极形成前进行平整,使得尽可能地将EL层形成在最平的表面上。
参数40指由透明导电薄膜制成的象素电极(相对于EL元件的阳极),并且在接触孔(开口)在第二个夹层绝缘薄膜39和第一个钝化薄膜38里形成之后,形成象素电极以在形成的开口部分连接到电流控制TFT202的排放布线37。
在这个实施方案中,将氧化铟和氧化锡的组合物制成的导电薄膜用作象素电极。而且,可以加入少量的镓。进一步地,也可以使用氧化铟和氧化锌的组合物或氧化锌和氧化镓的组合物。注意:在象素电极在接触孔上形成后制成的凹口在本说明书中称为电极孔。
在象素电极形成后,形成树脂物质制成的堤41a和41b。通过弄平具有1到2μm厚的丙烯酸树脂薄膜或聚酰亚胺薄膜形成堤41a和41b。堤41a和41b象线一样各自形成在象素和象素之间。在这个实施方案中,尽管其沿源布线21形成,但是可以沿栅布线35形成。
接下来,在这个实施方案中,用如图1中解释的薄膜形成方法形成EL层42。尽管此处仅出了一个象素,相对于R(红)、G(绿)和B(蓝)各自颜色的EL层如实施方案1中解释的方法形成。
首先,通过超声振动器112将包含在涂敷液室中的涂敷液雾化并排出,在经过施加电压的掩模后,排出的涂敷液被涂敷在基质110上的象素部分上。
当涂敷液经过掩模113时,由掩模附近的电场控制飞行方向。加在掩模113上的电压在几十伏到10kV间是适合的,优选10V到1kV。
在这个实施方案中,首先,排出在涂敷液室中的用于红EL层的涂敷液,并且在垂直方向移动基质110,使发出红光的象素阵列形成在象素上。接下来,在水平方向上移动掩模后,排出在涂敷液室中的用于绿EL层的涂敷液,并且当基质110在垂直方向上移动时进行涂敷,从而形成了发出绿光的缘素阵列。进一步地,在水平方向上移动掩模,排出在涂敷液室中的用于蓝EL层的涂敷液,并且基质110在垂直方向上移动,从而形成了发出蓝光的象素阵列。
注意:当更换某种涂敷液时可以一起更换含有涂敷液的涂敷液室111,或涂敷液室不更换而仅交换涂敷液。
而且,尽管可以分别提供此处说明的涂敷液室111和掩模113,但是其可以以整体的形式制成一个装置。
如上所述,当移动掩模时对于各自的颜色通过涂敷象素阵列发出红、绿和蓝光三次,形成了三色条形EL层(严格地说,是EL层的前体)。而且,可以同时形成三色EL层。
作为用于EL层的有机EL物质,使用了聚合物材料。作为典型的聚合物材料,有聚对亚苯基乙烯基(PPV)、聚乙烯基咔唑(PVK)、聚芴等。
尽管有各种类型的PPV有机EL物质,例如,列出了下列分子式(“H.Shenk,H.Becker.O.Gelsen.E.E.Kluge,W.Kreuder和H.Spreitzer“用于发光二极管的聚合物”,Euro Display、Proceedings 1999,33-37页”)。化学结构式1                        化学结构式2
而且,也可以使用在日本专利特开平10-92576中公开的聚苯基乙烯基的分子式。分子式如下:
化学结构式3                       化学结构式4
Figure A0111237200182
而且,作为PVK有机EL物质,分子式如下:化学结构式5
Figure A0111237200183
当聚合物(高分子)有机EL物质在聚合物状态下时其能溶于溶剂中并且被涂敷,或者当其为单体时能溶于溶剂并且在涂敷后聚合。在单体状态涂敷时,首先形成聚合物前体然后在真空下加热以聚合,这样就形成了聚合物。
作为特定的EL层,将氰基聚亚苯基亚乙烯基用于发出红光的EL层,将聚亚苯基亚乙烯基用于发出绿光的EL层,将聚亚苯基亚乙烯基或聚烷基亚苯基用于发出蓝光的EL层。合适的厚度是30到150nm(优选40到100nm)。
但是,上述例子仅是用于本发明EL层的有机EL物质的例子,并且所用物质不必局限于此。在这个实施方案中,用如图1A到1C所示的系统来涂敷有机EL物质和溶剂的混合物,并将溶剂挥发除去,以便形成EL层。因此,只要组合使得当溶剂挥发时温度不超过EL层的玻璃化温度,可以使用任何有机EL物质。
此外,可以使用蒸发法由低分子EL物质如三(8-quinolinonato)铝配合物(Alq)或双(苯并喹啉醇根合)(benzoquinolinolato)铍配合物(BeBq)形成EL层,或可以与高分子有机EL物质一起使用低分子物质形成。
作为典型的溶剂,有乙醇、二甲苯、氯苯、二氯苯、甲氧基苯、氯仿、二氯甲烷、ā-丁基内酯、丁基溶纤剂、环己烷、NMP(N-甲基-2-吡咯烷酮)、环己酮、二噁烷或THE(四氢呋喃)。
进一步地,当形成EL层42时,因为湿度或氧气的存在而容易破坏EL层,因此处理环境为一低湿度和低氧气的环境是较理想的,并且在惰性气体如氮气或氩气下进行处理也是理想的。进一步地,因为可以控制涂敷液的蒸发速度,因此还适宜在有制备涂敷液所用的溶剂的环境下进行处理。注意:为了实现此目的,较理想地作为如图1A到1C中所示的EL层的薄膜的形成是在充满惰性气体的干净舱中进行的。
用如上所述的方法形成EL层42后,接下来形成由光屏蔽导电薄膜制成的阴极43,保护性电极44,和第二个钝化薄膜45。在这个实施方案中,将由MgAg制成的导电薄膜用作阴极43,并且将铝制成的导电薄膜用作保护性电极44。进一步地,用作第二个纯化薄膜45的氮化硅薄膜具有的厚度为10nm到10μm(优选200到500nm)。
注意:因为上述的EL层耐热性差,在尽可能低的温度下(优选的温度范围是从室温到120℃)形成阴极43和第二个钝化薄膜45是可取的。因此,可取的薄膜形成方法有等离子体CVD方法,真空蒸发方法或溶液涂敷方法(旋涂法)。
完全适合这种情形的物质被称为活性矩阵基质,并且提供一与该活性矩阵基质相对的相反基质(没有示出)。在这个实施方案中,将玻璃用作相对基质。注意:作为相对基质,可以使用由塑料或陶瓷制成的基质。
而且,活性矩阵基质和相对基质通过密封剂(没有示出)相互粘住,并且形成密封的空间(没有示出)。在这个实施方案中,用氩气填充密封空间。当然,也可以在密封空间中放一些如氧化钡的干燥剂或抗氧化剂。
进一步地,这个实施方案的结构可以和实施方案1到4中的任何一个自由组合。(实施方案6)
将参照图8A到10C描述上述各个实施方案中陈述的象素部分和在其周围提供驱动电路部分的TFT的制造方法。但是,为了简化说明,关于驱动电路,示出了CMOS电路作为基本电路。
首先,如图8A所示,将厚度为300nm的下面薄膜301形成在玻璃基质300上。在这个实施方案中,作为下面薄膜301,使用厚度为100nm的氮氧化硅薄膜和厚度为200nm的氮氧化硅薄膜的层压物。与此同时,与玻璃基质300接触的薄膜中氮的浓度为10到25wt%是合适的。当然,没有下面薄膜时元件可以形成在石英基质上。
接下来,用已知的薄膜形成方法将厚度为50nm的非晶形硅薄膜(没有示出)形成在下面薄膜301上。注意:不必将薄膜局限于非晶形硅薄膜,但是可以使用含有非晶形结构的半导体薄膜(包括微晶型半导体薄膜)。另外,可以使用含有非晶型结构的复合半导体薄膜如非晶型硅锗薄膜。另外,薄膜厚度可以是20到100nm。
然后,用已知的技术将非晶型硅薄膜结晶,如此形成了晶型硅薄膜302(也称多晶硅薄膜或多硅薄膜)。作为已知的结晶方法,有用电热炉的热结晶方法,使用激光的激光退火结晶方法,或用红外线的灯退火结晶方法。在这个实施方案中,使用了用XeCl气的准分子激光进行结晶。
注意:在这个实施方案中,尽管使用了脉冲振动型准分子激光形成线形,但可以使用矩形光,或者可以使用连续波氩激光或连续波准分子激光。
在这个实施方案中,尽管将晶型硅薄膜用于TFT的有效层,但是也可以使用非晶型硅薄膜。而且,通过非晶型硅薄膜也可以形成开关TFT的有效层,这需要降低关态电流,并且通过晶型硅薄膜形成电流控制TFT的有效层。因为非晶型硅薄膜的载流子迁移率低,导致电流很难流动或关态电流不易流动。那就是说,可以利用非晶型硅薄膜电流不易流过和晶型硅薄膜电流容易流过的两者的优点。
接下来,如图8B所示,将由氧化硅薄膜制成的厚度为130nm的保护性薄膜303形成在结晶硅薄膜302上。可选的厚度范围是100到200nm(优选130到170nm)。只要绝缘薄膜含硅,也可以使用其它的薄膜。当加入杂质并且能微妙控制浓度时,保护性薄膜303用于阻止晶型硅薄膜直接暴露于等离子体。
然后,保护掩模304a和304b形成于其上,并且用于赋予n型的杂质元素(在下文中称之为n型杂质元素)通过保护性薄膜303加入。注意:n型杂质元素,典型地该元素属于族15的元素,并且典型地可以使用磷或砷。注意:这个实施方案使用等离子体(离子)掺杂方法,其中磷化氢(PH3)是已激发的没有质量分离的等离子体,并且加入的磷浓度是1×1018原子/cm3。当然,可以使用其中进行质量分离的离子注入方法。
调节剂量以使在此步骤中形成的n-型杂质区305中n-型杂质元素的浓度为2×1016到5×1019原子/cm3(典型地5×1017到5×1018原子/cm3)。
接下来,如图8C所示,移走保护性薄膜303和保护掩模304a和304b,并且激活属于族15的附加元素。尽管可以使用已知技术作为激活方法,但是,在这个实施方案中,通过准分子激光的辐射来实现激活。当然,脉冲振动型和连续波型都可以使用,并且不必限于准分子激光。但是,因为目的是加入的杂质元素的激活,优选的辐射能量水平是晶型硅薄膜不熔融。注意:当提供了保护性薄膜303时可以照射激光。
注意:当激光将杂质元素激活时,可以同时使用热处理来激活。在通过热处理来实现激活的情况下,考虑到基质的热阻而在约450到550℃下进行热处理是合适的。
这个步骤中确定了n型杂质区305的末端部分,即在n型杂质区305和存在于其周围的并加入非n型杂质元素的区域之间的边缘部分(连接部分)。这就意味着当后来TFT完成之后时,LDD区和沟道形成区能形成优良的连接部分。
接下来,如图8D所示,移走晶状硅薄膜的不必须部分,并且形成岛状半导体薄膜306-309(文中称之为有效层)。
接下来,如图8E所示,形成覆盖有效层306-309的棚绝缘薄膜310。作为栅绝缘薄膜310,使用厚度为10-200nm,优选50-150nm且含有硅的绝缘薄膜是适宜的。这可以为单层结构或层压结构。在这个实施方案中,使用厚度为110nm的氮氧化硅薄膜。
接下来,形成厚度为200到400nm的导电薄膜,并且成型以形成栅电极311到315。可以将每个栅电极311到315的末端作成锥形。注意:在这个实施方案中,栅电极和电连接在该栅电极上并用于引导的布线(下文中称之为栅布线)由不同物质形成。特别地,将具有比栅电极电阻低的材料用于栅布线。此结构适合使用能为栅电极很好工作的材料,并适合使用具有较低的布线电阻但对栅布线不能很好工作的材料。当然,可以用同一种物质制造栅电极和栅布线。
尽管单层导电薄膜可以形成栅电极,但是随着需要的增加更可取的是制造层压薄膜如两层薄膜或三层薄膜。任何已知的导电薄膜都可以用作栅电极的材料。但是,如上所述优选能实现很好工作的材料,特别地,可成型至线宽2μm或更小。
典型地,能使用选自钽(Ta)、钛(Ti)、钼(Mo)、钨(W)、铬(Cr)、和硅(Si)的元素制成的薄膜、由这些元素制成的氮化物薄膜(典型地,氮化钽薄膜、氮化钨薄膜、氮化钛薄膜)、由这些元素组合制成的合金薄膜(典型地,Mo-W合金、Mo-Ta合金)或由这些元素制成的硅化物薄膜(典型地,硅化钨薄膜、硅化钛薄膜)。当然,单层和层压层都可以使用。
在这个实施方案中,使用厚度为50nm的氮化钽(TaN)制成的薄膜和厚度为350nm的钽(Ta)薄膜。可以通过溅射方法形成。而且,当加入如氙或氖的惰性气体时,可以防止应力引起的脱皮。
同时,形成栅电极312,从而通过棚绝缘薄膜310与n型杂质区305部分重叠。此重叠部分随后变成与栅电极重叠的LDD区。注意:尽管将栅电极313和314看成两部分,它们实际上相互电连接。
接下来,如图9A所示,以自动对准方式通过使用栅电极311到315加入n型杂质元素(在这个实施方案中,为磷)。进行调节以使用这种方式形成的杂质区域316到323中加入了磷的浓度为n型杂质区域305中的1/2到1/10(典型地,1/3到1/4)的磷。特别地,优选浓度为1×1016到5×1018原子/cm3(典型地3×1017到3×1018原子/cm3)。
接下来,如图9B所示,形成保护掩模324a到324d以覆盖住栅电极等,并且将n型杂质元素(在这个实施方案中,为磷)加入以形成含高浓度的磷的杂质区325到329。同样,此处使用了用磷化氢(PH3)的离子掺杂方法,并且进行调节以使区域的磷的浓度变成1×1020到1×1021原子/cm3(典型地2×1020到5×1021原子/cm3)。
通过这步,尽管形成了n沟道TFT的源区或漏区,但是在开关TFT中,使在图9A的步骤中形成的部分n型杂质区319到321保留下来。剩余区域与图6中的开关TFT201的LDD区15a到15d相对应。
接下来,如图9C所示,移走保护掩模324a到324d,并且重新形成保护掩模332。然后,加入p型杂质元素(在这个实施方案中,是硼)以形成含有高浓度硼的杂质区域333到336。此处,通过使用乙硼烷(B2H6)的离子掺杂方法加入硼至浓度为3×1020到3×1021原子/cm3(典型地5×1020到1×1021原子/cm3)。
尽管已经向杂质区333到336加入浓度为1×1020到1×1021原子/cm3的磷,但是此处添加的硼的浓度至少比之高三倍。这样,预先形成的n型杂质区完全转化成了p型,并且起p型杂质区的作用。
接下来,移走保护掩模332,并且将以各自浓度加入的n型和p型杂质元素激活。作为激活的方法,可以使用电热炉退火法,激光退火法,或灯退火法。在这个实施方案中,例如用电热炉在氮环境中于550℃下热处理4小时。
同时,在该环境中最大限度的去除氧气是重要的。这是因为,如果即使是少量的氧气存在的话,暴露的栅电极的表面就会被氧化,所以电阻就增加了并且之后难以现实欧姆接触。因此,在激活步骤中在处理环境下的氧气浓度为1ppm或更低是合适的,优选0.1ppm或更低。
接下来,如图9D所示,完成激活步骤后,形成厚度为300nm的栅布线337。作为棚布线337的材料,使用含有铝(Al)或铜(Cu)排为主要成份(占组合物的50%到100%)的金属是适合的。作为排列方法,如图7A所示,进行成型使得栅布线211与开关TFT的栅电极19a到19b(图8E中的313和314)电连接。
因为能将通过具有这样结构的栅布线的布线电阻制得非常小,所以可以形成具有大区域的图形显示区域(象素部分)。那就是说,这个实施方案的象素结构在实现具有对角线的尺寸为10英寸或更大(进一步说,30英寸或更大)的屏幕的EL显示装置是非常有效的。
接下来,如图10A所示,形成第一个夹层绝缘薄膜338。作为第一个夹层绝缘薄膜338,含有硅的绝缘薄膜适于用作单层,或使用至少两种含有硅的绝缘薄膜结合的层压薄膜。而且,合适的薄膜厚度是400nm到1.5μm。此实施方案采用以下结构:厚度为800nm的二氧化硅薄膜层压在厚度为200nm的氮氧化硅薄膜上。
进一步地,在含有3到100%氢的环境里,在300到450℃下进行热处理1-12小时,进行氢化处理。此步骤是通过热激活的氢使半导体薄膜的未配对键氢封端的步骤。作为其它氢化的方法,可以进行等离子体氢化(使用等离子体中产生的氢)。
注意:可以在第一个夹层绝缘薄膜338的形成期间实施氢化处理。那就是说,形成厚度为200nm的氮氧化硅薄膜后,如上所述进行氢化处理。之后,可以形成厚度为800nm的剩余二氧化硅薄膜。
接下来,在第一个夹层绝缘薄膜338和栅绝缘薄膜310中形成接触孔,并且形成源布线339到342和排放布线343到345。在这个实施方案中,该电极为三层结构的层压薄膜,其中用溅射方法连续形成厚度为100nm的Ti薄膜,厚度为300nm的含Ti铝薄膜,和厚度为150nm的Ti薄膜。当然,可以使用其它导电薄膜。
接下来,形成厚度为50到500nm的第一个钝化薄膜346(典型地200到300nm)。在这个实施方案中,作为第一个钝化薄膜346,使用厚度为300nm的氮氧化硅薄膜。这个可以由氮化硅薄膜来替代。
注意:在形成氮氧化硅薄膜之前,用含有氢如H2或NH3的气体进行等离子体处理是有效的。将通过该预处理激活的氢供给第一个夹层绝缘薄膜338,并且进行热处理,所以改良了第一个钝化薄膜346的薄膜质量。同时,因为加入第一个夹层绝缘薄膜338的氢被分散到较低层一边,所以可以有效地氢化有效层。
接下来,如图10B所示,形成了由有机树脂制成的第二个夹层绝缘薄膜347。作为有机树脂,能使用聚酰亚胺、聚酰胺、丙烯酸树脂、BCB(苯并环丁烯)等。特别地,第二个夹层绝缘薄膜347有平整的用途,因此优选平整度优良的丙烯酸树脂。在这个实施方案中,将丙烯酸树脂薄膜的厚度形成至由TFT形成的分段部分能充分弄平。有效地,制成的厚度是1-5μm(更优选2-4μm)。
接下来,在第二个夹层绝缘薄膜347和第一个钝化薄膜346中形成接触孔,并且形成与漏布线345电连接的象素电极348。在这个实施方案中,形成厚度为110nm的氧化铟-锡(ITO)薄膜,并且成型形成象素电极。而且,2到20%的氧化锌(ZnO)与氧化铟混合的混合物,或由氧化锌和氧化镓组成的混合物可用作透明电极。这个象素电极变成了EL元件的阳极。
接下来,如图10C所示,形成由树脂物质制成的堤349。可以通过成型厚度为1到2μm的丙烯酸树脂薄膜或聚酰亚胺薄膜来制成堤349。如图6所示,将堤349形成在象素和象素之间的条纹形状上。在这个实施方案中,尽管它是沿源布线341形成的,但也可以沿着栅布线337形成。
接下来,通过如图1中说明的薄膜形成方法来形成EL层350。注意:尽管此处只示出了一个象素,如图1中所解释的,但是形成了相对于R(红)、G(绿)和B(蓝)各自的颜色的EL层。
首先,通过超声振动器112来雾化在涂敷液室中含的涂敷液并且排出它,并在通过施加有电压的掩模之后,将排出的涂敷液涂敷在基质110上的象素部分上。
当涂敷液经过掩模113时,通过掩模附近的电场来控制飞行方向。
在本发明中,首先,从涂敷液室中释放出红EL层涂敷液,并且在垂直方向移动基质,所以发出红光的象素阵列形成在象素上。接下来,在水平方向上移动掩模后,在垂直方向上移动基质的同时从涂敷液室中涂敷绿EL层涂敷液,所以形成了发出绿光的象素阵列。进一步地,在水平方向上移动掩模,在垂直方向上移动基质的同时从涂敷液室中涂敷蓝EL层涂敷液,所以形成了发出蓝光的象素阵列。
如上所述,当移动掩模的同时通过涂敷发出用于各自颜色的红、绿和蓝光的象素阵列三次,形成三色条形EL层(严格地说,是EL层的前体)。此外,可以同时形成三色EL层。
特别地,变成EL层350的有机EL材料溶于如氯仿、二氯甲烷、二甲苯、乙醇、四氢呋喃或N-甲基吡咯烷酮的溶剂中,之后,进行热处理以挥发溶剂。这样,形成了由有机EL物质制成的涂敷薄膜(EL层)。
注意:尽管在这个实施方案中仅示出了一个象素,但是同时形成了发出相同颜色光的EL层。
注意:将氰基聚亚苯基亚乙烯基用于发出红光的EL层,将聚亚苯基亚乙烯基用于发出绿光的EL层,并且将聚烷基亚苯基用于发出蓝光的EL层。形成的每一层的厚度为50nm。使用1,2-二氯甲烷作为溶剂,并用80到150℃的热板进行1到5分钟的热处理以蒸发溶剂。
使用已知的物质作为EL层350。考虑到驱动电压,已知物质优选使用有机物。注意:在这个实施方案中,尽管所述EL层350为仅由EL层制成的单层结构,随着需要的增加,可以提供电子注入层、电子传输层、孔传输层、孔穴注入层、电子阻挡层或孔穴阻挡层。而且,尽管这个实施方案示出了MgAg电极作为EL元件的阴极351的例子,但是可以使用其它已知的物质。
在形成EL层350之后,用真空蒸发方法形成阴极(MgAg电极)。注意:EL层的厚度制成80到200nm(典型地100到120nm),以及阴极351的厚度制成180到300nm(典型地200到250nm)是合适的。
进一步,在阴极351上提供保护性电极352。可以使用铝作为其主要成分的导电薄膜作为保护性电极352。可以通过使用掩模的真空蒸发方法形成保护性电极352。
最后,由氮化硅薄膜制成的第二个钝化薄膜353形成的厚度为300nm。实际上,尽管保护性电极352的功能是防止EL层受潮等,但是可以通过形成第二个钝化薄膜353来进一步提高EL层的可靠性。
在这个实施方案的情况下,如图10C所示,n-沟道TFT205的有效层包括源区355、漏区356、LDD区357和沟道形成区358,以及LDD区域357,并通过栅绝缘薄膜310与栅电极312重叠。
仅在漏区的旁边形成LDD区的原因是考虑到不降低操作速度。而且,在这个n-沟道TFT 205中,不必考虑关态电流,但是达到操作速度是重要的。因此,使LDD区357与栅电极完全重叠并将元件的电阻降到最低是可取的。那就是说,优选消除所谓的偏移量。
这样,就完成了具有如图10C所示结构的有效矩阵基质。注意:在堤349形成之后,通过使用多室系统(或内联系统)的薄膜形成装置而没有对空气的开口,连续进行步骤直至钝化薄膜353的形成是有效的。
注意:不仅在象素部分中,而且在驱动电路部分中放置最优构成的TFT,因此这个实施方案的有效矩阵基质具有非常高的可靠性并且也能提高操作特性。
首先,具有降低热载流子注入以便尽可能不降低操作速度的结构的TFT用作构成驱动电路部分的CMOS电路的n-沟道TFT 205。注意:此处驱动电路包括移位寄存器、缓冲器、电平移动器、抽样电路(样品和持保电路)等。在数字驱动的情况下,也可以包括如D/A转换器的信号转换电路。
在驱动电路中,抽样电路相比于其它电路是相当特别的,并且大量的电流以两个方向通过沟道形成区。那就是说,交换了源区和漏区的功用。进一步地,将关态电流值降到最低是必要的,并且在这个方法中,放置具有在开关TFT和电流控制TFT之间的中间水平的功能的TFT是理想的。
因此,作为形成抽样电路的n-沟道TFT,安装具有如图11所示结构的TFT是可取的。如图11中所示的,部分LDD区901a和901b通过栅绝缘薄膜902与栅电极903重叠。这个效果是阻止当电流流动时热载流子注入的发生,并且在抽样电路的情况下,在沟道形成区域904的两边提供它们是有差异的。
实际上,当该装置完全制成图10C时,优选使用如玻璃、石英或具有高度气密性的塑料的覆盖元件来包装(密封)以使其不暴露于外面空气。在那时,将如氧化钡的水分吸收剂或抗氧化剂放在覆盖元件之内是适宜的。
通过如包装的处理提高气密性之后,附加连接口(柔性印制线路:FPC)(通过外部信号终端连接形成在绝缘体上的元件或电路延伸的终端)以便完成产品。在本说明书中,将就可以这样船载(shipped)的此状态的装置称作EL显示装置(或EL模块)。
此处,将参照图12的透视图来描述此实施方案的有效矩阵型EL显示装置的结构。此实施方案的有效矩阵型EL显示装置包括象素部分602、栅侧驱动电路603和源侧驱动电路604,其形成在玻璃基质601上。在象素部分中的开关TFT605是n-沟道TFT并且被放置在连接在栅侧驱动电路603上的栅布线606和连接在源侧驱动电路604上的源布线607之间的交叉点。将开关TFT605的漏区连接在电流控制TFT 608的栅上。
进一步,将电流控制TFT 608的源侧连接在电源线609上。在如这个实施方案的结构中,接地电位(地电位)由电源供给线609给出。而且,将EL元件610连接在电流控制TFT608的漏区上。在此EL元件610的阳极上施加预定电压(3到12V,优选3到5V)。
用于向驱动电路部分传送信号的连接布线612、613和614和连接电源线609的连接布线614由FPC611提供,其变成外部输入/输出端。
在图12中示出的EL显示装置的电路结构的例子如图13所示。这个实施方案的EL显示装置包括源侧驱动电路801、栅侧驱动电路(A)807、栅侧驱动电路(B)811和象素部分806。在本发明的说明书中,驱动电路部分是一个包括源侧驱动电路和栅侧驱动电路的一般术语。
源侧驱动电路801包括移位寄存器802、水平移位器803、缓冲器804和抽样电路(样品和持保电路)805。栅侧驱动电路(A)807包括移位寄存器808、水平移位器809和缓冲器810。栅侧驱动电路(B)也具有相似的结构。
此处,移位寄存器802、808的驱动电压是5到16V(典型地10V),并且由图10C中205指示的结构适合n-沟道TFT,其用于构成所述电路的CMOS电路。
与移位寄存器相似,包含图10C的n-沟道TFT 205的CMOS电路适合于水平移位器803、809和缓冲器804、810。注意:在提高每一个电路可靠性方面,将棚布线制成多层结构如双层栅结构或三层栅结构是有效的。
在抽样电路805中,将源区和漏区倒置,并且降低关态电流值是必要的,所以包含图11的n-沟道TFT208的CMOS电路是合适的。
在象素部分806中,安排了具有如图6中示出结构的象素。
依照示出在图8A到10C中的制造步骤,通过制造TFT能容易地实现上述结构。而且,在这个实施方案中,尽管只示出了象素部分和驱动电路部分的结构,依照这个实施方案的制造步骤,在同一绝缘体上形成不同于驱动电路的逻辑电路是可能的,如信号分度电路、D/A转换电路、运算放大器电路或γ-校正电路,并且进一步地,认为能形成记忆部分、微处理器等等。
进一步地,参照图14A和14B描述包含覆盖元件的此实施方案的EL模块。如果必要的话,引用图12和13的参数。
图14A是示出了一个状态的顶视图,其在图12示出的状态中提供了密封结构。由虚线指示的参数602指象素部分;603指栅侧驱动电路;604指源侧驱动电路。本发明的密封结构如下:将覆盖元件1101和密封元件(没有示出)提供到图12的状态。
此处,图14B是图14A沿A-A’的剖面图。在图14A和14B中,用相同的字符指代相同的部分。
如图14B中所示,象素部分602和栅侧驱动电路部分603形成在基质601上,并且象素部分602形成许多象素,每一个包含电流控制TFT 202和与之电连接的象素电极346。通过使用CMOS电路构成栅侧驱动电路603,其中附加地结合n-沟道TFT 205和p-沟道TFT206。
象素电极348起EL元件阳极的作用。堤349形成在象素电极348的两个末端,并且EL层350和阴极351形成在堤349的内部。保护性电极352和第二个钝化薄膜353形成于其上。当然,在实施本发明的实施方式的说明中,可以将EL元件的结构反转并且所述象素电极可以是阴极。
在这个实施方案,保护性电极352还起对所有象素公用的布线的作用,并且通过连接布线612电连接在FPC611上。进一步地,用第二个钝化薄膜353覆盖包含在象素部分602的全部元件和栅侧驱动电路603。尽管第二个钝化薄膜353可以省略,但是优选提供以将各个元件与外部隔开。
覆盖元件1001通过密封元件1004粘接。可以提供树脂薄膜制成的垫片以保护覆盖元件1004和发光元件之间的间隔。密封元件1004的内部1103是密封空间并且用如氮气或氩气的惰性气体填充。在密封空间1103中提供象氧化钡的水分吸收剂也是有效的。
进一步地,在这个空间1103中提供填料也是可能的。能使用PVC(聚氯乙烯)、环氧附脂、硅树脂、PVB(聚乙烯醇缩丁醛)或EVA(乙烯-醋酸乙烯酯)作为填料。
在这个实施方案中,能使用玻璃、塑料或陶瓷制成的材料作为覆盖元件1101。
作为密封元件1104,尽管优选使用光固化树脂,但是如果EL层热阻允许的话可以使用热固化树脂。而且,优选密封元件1104是水分和氧渗透最小的物质。在密封元件1104中可以加入干燥剂。
通过用上述的系统密封EL元件,使EL元件完全与外界隔开,并且可以阻止通过氧化而促进EL层老化的物质如水分或氧从外部侵入。因此,可以制造高可靠性的EL显示装置。注意:在这个实施方案中,尽管样例中三种发出红、绿和蓝光的条形EL层各自在垂直方向上形成,但是它们可以在水平方向形成。
这个实施方案的结构能自由地与实施方案1到5的任何结构组合。
(实施方案7)
接下来,将参照图15A到15C的剖面图来描述当对图6中说明的电极孔进行改进时的制造方法。
注意:在图15A到15C中的数字与图6中的数字相对应,并且参照实施方案5中的步骤形成构成加图15A中示出的EL元件的象素电极(阳极)40。
接下来,电极孔1900用丙烯酸树脂填充,并且如图15B中示出的提供保护性部分1901。
此处,通过旋涂法形成丙烯酸树脂薄膜并且在使用保护掩模曝光后,进行蚀刻,所以形成了如图15B所示的保护性部分1901。
关于保护性部分1901,从象素电极涨起的部分(在图15B中由Da指示的部分)的厚度从截面看为0.1到1μm是合适的,优选0.1到0.5μm,更优选0.1到0.3μm。在保护性部分1901形成后,形成如图15C所示的EL层42,并且进一步地形成阴极43。可以使用与实施方案5相似的方法作为EL层42和阴极43的制造方法。
作为保护性部分1901,优选有机树脂,并且使用如聚酰亚胺、聚酰胺、丙烯酸树脂或BCB(苯并环丁烯)的材料是合适的。当使用这样的有机树脂时,其粘度制成10-3Pas·s到10-1Pas·s是合适的。
通过用上述的方式制成如图15C中所示的结构,可以解决象素电极40和阴极43之间短路的问题,其发生在当EL层42在电极孔的间距部分被剪切时。图16是在图15A到15C中示出的象素部分的顶视图。注意:在图16中的参数与图15A到15C中示出的参数是一致的,并且当在顶视图中看时,在这个实施方案中示出的保护性部分1901与图16的1901指示的位置相对应。
而且,本实施方案的结构能自由地与实施方案1到6的任何结构组合。
(实施方案8)
当从图14A的方向看本发明的有效矩阵型EL显示装置时,象素阵列可以在垂直方向形成条形或可以形成三角排列。
此处,图17A示出的状态其红、绿和蓝的三色象素形成条形。注意:象素的颜色不必总是三色,但可以是一种或两种颜色。而且,颜色不局限于红、绿和蓝,可以使用其它颜色如黄、橙或灰色。
在基质701中的位置关系,含有涂敷液的涂敷液室705和控制涂敷液的掩模706a在图17A中示出。
首先,涂敷液室705中含有用于红EL层的涂敷液,并且从涂敷液室705中排出雾化了的涂敷液。同时,因为加在掩模706a上的电压,当发出的雾化涂敷液到达掩模706a时,其由电场控制,经过掩模706a,并到达理想的象素部分704。因此,象素部分704理想位置的涂敷控制是可能的。加在掩模706a上的电压从几十伏到10kV是足够的。
注意:在涂敷的时候,当涂敷液室705在垂直的方向(箭头k的方向)上移动或移动基质701的同时,可以实现涂敷。
对于红EL层的涂敷液的涂敷如图17A所示。因为电压加在掩模706a上,涂敷液能选择性地涂敷在象素部分704的理想部分。
尽管图17A示出的状态只是涂敷用于红EL层的涂敷液,但在将用于红EL层的涂敷液涂敷后,掩模706a按由箭头1指示的水平方向中一条线上移动,并且将用于绿EL层的涂敷液涂敷。其后,掩模706a进一步按由箭头1指示的水平方向中的一条线移动,将用于蓝层的涂敷液涂敷,所以条形的红、绿和蓝EL层形成在象素部分704中。
接下来,当红、绿和蓝的象素部分形成三角排列,图17B示出基质701,含有涂敷液的涂敷液室705和控制涂敷液的掩模706b的位置关系。
注意,同样当象素部分形成三角排列时,与之相似的是象素部分704形成条形,在将用于红EL层的涂敷液涂敷后,移动掩模706b,并且将用于绿层的涂敷液涂敷之后,进一步移动掩模706b,并涂敷用于蓝层的涂敷液。这样,可以在象素部分704中形成发出红、绿和蓝光的EL层的三角形排列。
图18A和18B显示的例子中,进一步提供第二个掩模707a于基质和第一个掩模706a之间。因为除了提供第二个掩模以外此结构与图17A和17B的那个相同,所以使用相同的标号。
首先,在如图18A中示出了基质701、含有涂敷液的涂敷液室705、控制涂敷液的第一个掩模706a和第二个掩模707a的位置关系。
首先,涂敷液室705中含有用于红EL层的涂敷液,并且从涂敷液室705中排出雾化了的涂敷液。同时,因为将一电压加在第一个掩模706a上,当排出的雾化涂敷液到达第一个掩模706a时,其由电场控制并且经过第一个掩模706a,并且进一步地,经过第二个掩模707a并到达理想的象素部分704。因为与第一个掩模相似,一电压加在第二个掩模707a上,当排出的雾化涂敷液到达第二个掩模707a时,由电场对其进行控制。因此,象素部分704理想位置的涂敷控制是可能的。加在第一个掩模706a和第二个掩模707a上的电压从几十伏到10kV是适合的。
接下来,在如图18B中示出了红、绿和蓝象素部分形成三角形排列时基质701、含有涂敷液的涂敷液室705、控制涂敷液的第一个掩模706b和第二个掩模707b的位置关系。
作为用于在象素部分704中形成条形EL层的掩模,使用在图19A中示出的条形掩模706a是合适的,并且作为用于形成三角形排列象素的掩模,使用在图19B中示出的三角形排列掩模706b。
而且,在使用在图18A和18B中示出的第一个掩模和第二个掩模的情况下,在使用条形掩模作为第一个掩模的情况下,将条形掩模或导线也用于第二个掩模是合适的。在使用三角形排列掩模作为第一个掩模的情况下,将三角形排列掩模或导线也用于第一个掩模是合适的。但是,在将导线用作第二个掩模的情况下,它们不与第一个掩模的开口部分重叠是合适的。
当通过使用这些掩模在象素部分704上形成用于红EL层、绿EL层和蓝EL层的涂敷液时,可以在象素部分704中形成如图20A所示的条形象素,或如图20B示出的在象素部分704中形成三角形排列象素。
在图20A中,参数704a指发出红光的EL层;704b指发出绿光的EL层;704c指发出蓝光的EL层。注意:堤(没有示出)形成于条形中,通过绝缘薄膜位于源布线上并在垂直方向沿着源布线。
此处的EL层指由发出光的有机EL层制成的层,如EL层,电荷注入层或电荷传送层。尽管可以是EL层的单层,但例如,在将空穴注入层和EL层层压的情况下,层压薄膜叫EL层。
同时,在线形中相同颜色的相邻象素的相互距离(D)制成不少于EL层厚度(t)的5倍(优选不少于10倍)。这是因为当D<5t时在象素之间能发生串道的问题。如果距离(D)太长,就不可能获得高清晰度的影像。这样,优选制成5t<D<50t(优选10t<D<35t)。
而且,堤可以在水平方向上形成条形,并且可以水平地形成发出红光的EL层,发出绿光的EL层和发出蓝光的EL层。同时,将堤沿栅布线通过绝缘薄膜形成在栅布线上。
也是在这种情况下,在线形中相同颜色的相邻象素的相互距离(D)制成EL层厚度(t)的5倍以上(优选10倍以上),更优选5t<D<50t(优选10t<D<35t)。
在这个实施方案中,通过电控制用于形成EL层的涂敷液,可以控制涂敷位置。
同样地,此实施方案的结构能自由地与实施方案1到7中任何结构自由组合。
(实施方案9)
在实施方案9说明了在无源型(单矩阵型)EL显示装置中使用本发明的一个例子。在说明中使用了图21。在图21中,参数1301指塑料制成的基质,并且1306指透明导电薄膜制成的阳极。在实施方案9中,作为透明导电薄膜,通过蒸发方法形成氧化铟和氧化锌混合物。注意:尽管在图21中没有示出,许多阳极在确定空间的垂直方向上排列成条形。
进一步地,形成堤1303以填充安排成条形的阳极1302之间的空间。沿阳极1302在确定的空间的垂直方向上形成堤1303。
随后,用图1中示出的薄膜沉积方法形成聚合物基有机EL物质制成的EL层1304a到1304c。注意:参数1304a是发出红色的EL层,1304b是发出绿色的EL层和1304c是发出蓝色的光发出层。使用的有机EL物质可以与实施方案1中使用的相似。沿凹槽形成EL层,凹槽由堤1302形成,并且因此在确定的空间的垂直方向上被排列成条形。
注意,在实施方案9中,通过使用掩模来控制在阳极上涂敷涂敷液的位置,并且可以通过加在阳极上的电压来控制。
接下来,尽管图21没有示出,但是大量阴极和大量保护性电极纵向与所定义的空间平行,并且被安排成条形与阳极1302正交。注意:阴极1305是MgAg,并且在实施方案9中的保护性电极1306是铝合金薄膜,并且都通过蒸发方法形成。进一步地,尽管没有在图中示出,将布线延伸到一部分,其后FPC附于其中以向未示出的保护性电极1306施加预定电压。
进一步地,在形成保护性电极1306(在图中未示出)后,在此处形成氮化硅薄膜作为钝化薄膜。
这样因此EL元件形成在基质1301上。注意:在实施方案9中下面电极是透明的阳极,并且因此通过EL层1304a到1304c发出的光被发射到下表面(基质1301)上。但是,能颠倒EL元件结构并将下面电极制成光屏蔽阴极。在那种情况下,将由EL层1304a到1304c发出的光辐射到上表面(该面与基质1301相对)。
接下来,将陶瓷基质制成覆盖元件1307。因为覆盖元件可以用实施方案9的结构光屏蔽,因此使用陶瓷基质,当然也可以将由塑料或玻璃制成的基质用于如上所述颠倒EL元件结构的情况,其中优选覆盖元件应透明。
这样制备覆盖元件1307之后,加入填料1308,其为作为干燥剂添加的氧化钡(在图中没有示出)。然后使用由紫外硬化树脂制成的密封元件1309附着框架材料1310。在实施方案9中使用不锈钢作为框架物质1310。最后,通过各向异性导电薄膜1311附着FPC1312,并完成了无源型EL显示装置。
注意:可以通过将其与实施方案1到8中的任一结构自由组合实现实施方案9的结构。
(实施方案10)
在这个实施方案中,将参照图3A来描述一个实例,其中通过使用部分地施加不同电压的掩模来控制涂敷位置。
在图3A中,参数1210指基质;并且1211指涂敷液室。涂敷液室1211中含有涂敷液。此处,示出了一个实例,其中将有机EL聚合物溶于溶剂中并且进行涂敷。
在这个实施方案中,通过超声振动器1212来雾化在涂敷液室1211中的涂敷液并且排出它。将电极1222连接在涂敷液室1211上,并且当将其排出时预先在涂敷液上施加一定电势。被排出的涂敷液经过由导体材料制成的掩模1213的缝隙后,其被涂敷在基质1210上的象素电极上。
当涂敷液经过掩模1213时,如部分1217的放大视图的图3B所示,由掩模控制其飞行方向。如图3C所示,掩模1213具有阻挡部分1218,其是安排成条形的导线并且由导体制成,如铂(Pt)、金(Au)、铜、铁、铝、钽、钛或钨。当从箭头m的方向看图3C中所示的掩模1213时,获得了图3B的条形掩模1213。
如图3C所示,在掩模的阻挡部分1218a上加第一个电压(由第一个电源1220控制),并且在掩模的阻挡部分1218b上加第二个电压(由第二个电源1221控制),这样控制了涂敷液的飞行方向,并且控制了涂敷位置。此处,使得第二个电压值与第一个电压不同。
伴随着向掩模1213的阻挡部分1218a和12181b施加电压以产生这样的电势:使雾化了的涂敷液和掩模1213的阻挡部分1218a和1218b相互斥。因此,涂敷液能经过掩模1213的阻挡部分1218a和1218b之间的缝隙。
阻挡部分1218a和1218b的缝隙可以制成与形成在基质上的象素电极的象素间距一致。
注意:在图3A中示出的参数1214指提取电极,其施加电场以提取雾化了的涂敷液到下一个电极上。参数1215指加速电极,其向涂敷液施加一加速提取出的涂敷液的飞行速度的电场。进一步地,参数1216指控制电极,其为施加一电压来控制电场的电极,这样涂敷液可以涂敷到基质1210的理想位置。电极数目不必总是3个。
制成图3所示的结构,并通过适当地调节施加于阻挡部分1218a的电压和施加于阻挡部分1218b的电压,能以高准确度控制涂敷位置。
进一步地,在这个实施方案中,可以施加一电场,以便将一电压预先施加到在基质1210上形成的象素电极(阳极)上,并且进一步地控制已经经过掩模的涂敷液,从而选择性地涂敷在理想位置。
而且,这个实施方案的结构能自由地与实施方案1到9中的任何结构组合。(实施方案11)
当实施本发明以制造有效矩阵EL显示装置时,用硅基质(硅圆片)作为基质是有效的。在使用硅基质作为基质的情况下,可以使用用在常规IC、LSI等的MOSFET的制造技术来制造待在象素部分中形成的开关元件和电流控制元件,或待在驱动电路部分中形成的驱动元件。
在IC和LSI中MOSFET能形成具有极小差异的电路。特别地,对具有通过电流值实现逐级显示的模拟驱动器的有效矩阵EL显示装置是有效的。
值得注意的是,硅基质不能传送,并且因此需要构建该结构,以使来自EL层的光辐照到与基质相对的面。实施方案11的EL显示驱动装置的结构与图14中的相似。但是,区别在于将MOSFET用于形成象素部分602和驱动电路部分603代替TFT。
注意:可以通过将其与实施方案1到10中任意结构自由组合实现本实施方案的结构。(实施方案12)
与液晶显示装置相比,通过实施本发明形成的EL显示装置在明亮位置具有优良的可见性,这是因为它是自发射型装置,此外它的可见范围宽。因此,它可用于各种电子装置的显示部分。例如,将本发明的EL显示装置用作具有对角线等于30英寸或更大(典型地等于40英寸或更大)的EL显示器的显示部分(在其外壳中装入了EL显示装置的显示器)来通过大屏幕增加电视传播是合适的。
注意:所有显示(呈现)信息的显示器如个人计算机显示器、电视传播接受显示器或广告宣传显示器包括在该EL显示器内。进一步地,能将本发明的EL显示装置用于其它各种电子装置的显示部分。
下列给出了这样的电子装置的例子:摄影机、数字照相机、护眼罩型显示器(安在头上的显示器)、汽车导航系统、声音复现装置(如汽车声音系统、音响组合系统)、个人笔记本计算机、游戏装置、便携信息终端(如移动计算机、移动电话、移动游戏装置或电子书籍)、和提供有记录介质的图像重现装置(具体地,能实现记录介质的重放和提供能显示那些图像的显示器的装置如数字视盘(DVD))。特别地,因为常常从对角线方向观察便携信息终端,所以可视区域的宽度是非常重要的。这样,优选使用EL显示装置。这些电子装置的例子在图22到23中示出。
图22A是一个EL显示器,含有外壳2001,支架2002和显示部分2003。也能将本发明用于显示部分2003。因为EL显示器是不需要背景光的自发型装置,能将其显示部分做的比液晶显示装置薄。
图22B是摄像机,含有主体2101,显示部分2102,声音输入部分2103,操作开关2104、电池2105和图像接收部分2106。能将本发明的EL显示装置用在显示部分2102中。
图22C是头固定型EL显示器部分(右侧),包含主体2201,信号线2202,头固定带2203,显示部分2204,光学系统2205和EL显示装置2206。能将本发明的EL显示装置用在显示装置2102中。
图22D是带有记录媒介的影像重放装置(特别地,DVD重放装置),含有主体2301,记录媒介(如DVD)2302,操作开关2303,显示部分(a)2304和显示部分(b)2305。显示部分(a)主要用于显示图像信息,并且影像部分(b)主要用于显示字符信息,并且能将本发明的EL显示装置用在影像部分(a)和影像部分(b)中。应说明的是家用游戏装置包括在带有记录媒介的图像重放装置中。
图22E是移动计算机,包含主体2401,摄影部分2402,图像接收部分2403,操作开关2303,和显示部分2405。能将本发明的EL显示装置用在显示部分2405中。
图22F是个人计算机,包含主体2501,壳体2502,显示部分2503和键盘2504。能将本发明的EL显示装置用在显示部分2503中。
注意:在将来如果EL物质的发射亮度更高的话,通过镜头等能放大包括输出影像在内的光的投影。然后在前景型或后景型投影仪中使用本发明的EL显示装置将成为可能。
上面的电子装置更常用于显示通过如因特网或CATV(有线电视)的电子传输电路提供的信息,并且特别地,用于显示动画信息的机会正在增加。EL物质的反应速度特别高,并且因此EL显示装置用于进行动画播放的机会增加了。但是,象素间的轮廓变得模糊,由此整个动画也变得模糊了。因此,因为其具有澄清象素间的轮廓的能力,所以将本发明的EL显示装置用于电子装置的显示部分是特别有效的。
EL显示装置的发射部分消耗能量,因此优选显示信息以使发射部分尽可能地小。因此,当在主要显示字符信息的显示部分中使用EL显示装置时,如便携信息终端,特别地,移动电话和声音再现装置,优选由设置无发射部分作为背景驱动并且形成发射部分中的字符信息。
图23A是移动电话,包含主体2601,声音输出部分2602,声音输入部分2603,显示部分2604,操作开关2605和天线2606。能将本发明的EL显示装置用于显示部分2604中。注意:通过在显示部分2604中显示黑背景下的白字符,可以降低移动电话的能量消耗。
图23B是声音再现装置,特别是汽车声音系统,含有主体2701,显示部分2702以及操作开关2703和2704。能将本发明的EL显示装置用在显示部分2702中。而且,在实施方案12中示出了用于汽车的声音再现装置,但是其也可用于移动型和家用型声音再现装置。注意:通过在显示部分2607中显示在黑背景下的白字符,可以降低功率消耗。这在移动型声音再现装置中是特别有效的。
因此本发明的应用范围特别广泛,并且可以将本发明应用于所有领域的电子装置中。而且,可以将在实施方案1到11中示出的任何EL显示装置的结构用于实施方案12的电子装置中。
(实施方案13)
在本发明中,也可以使用将从三态激子中得到的磷光用作光发射的EL物质(也称作三态化合物)。采用能使用磷光作为荧光的EL物质的自发光装置能显著地提高外部光发射量的效率。因此,可以降低EL元件的电功率消耗、延长其使用寿命和减轻其重量。
在将EL物质用于本发明的情况下,将其溶解在有机溶剂中并使用。作为典型的溶剂,有乙醇、二甲苯、氯苯、二氯苯、茴香醚、氯仿、二氯甲烷、ā-丁基内酯、丁基溶纤剂、环己烷、NMP(N-甲基-2-吡咯烷酮)、环己酮、二噁烷或THF(四氢呋喃)。
此处,报道了使用三态激子并提高了外部光发射量的效率。(T.Tsutsui,C.Adachi,S.Saito,有序分子系统中的光化学过程,K.Honda编辑,(Elsevier Sci出版社,东京,1991)第437页)
在上述论文中报告的EL物质(香豆素色素)的分子式如下:(化学结构式6)(M.A.Baldo,D.F.O'Brien,Y.You,A Shoustikov,S.Sibley,M.E.Thompson,S.R.Forrest,自然395(1988)第151页)
在上述论文中报告的EL物质(Pt配合物)的分子式如下:(化学结构式7)
Figure A0111237200371
(M.A.Baldo,S.Lamansky,P.E.Burrrows,M E.Thompson,S.R.Forrest,应用物理通讯(Appl.Phys.Lett.),75(1999)第4页)(T.Tsutsui,M.-J.Yang,M.Yahiro,K.Nakamura,T.Watanabe,T.Tsuji,Y.Fukuda,T.Wakimoto,S.Mayaguchi,日本应用物理(Jpn.Appl.Phys.),38(12B)(1999)L1502.)
在上述论文中报告的EL物质(Ir配合物)的分子式如下:
(化学结构式8)
Figure A0111237200372
如上所述,如果可以使用来自三态激子的磷光发射,理论上可以实现在使用来自单激子的荧光发射情况下外部光发射量的效率的3到4倍。
应说明的是:这个实施方案的结构能自由地与实施方案1到12的任何结构组合。
通过实施本发明,可以确定地形成有机EL物质的薄膜,而没有在喷墨系统中的如飞行偏移的问题。那就是说,由于能将聚合有机EL物质精确地形成薄膜而不发生位置移动的问题,因此可以提高使用聚合有机EL物质的EL显示装置的产量,并降低了成本。而且,在涂敷之前立刻控制涂敷液的涂敷位置,能使用普通的涂敷方法以及用于广泛领域。

Claims (21)

1.一种薄膜形成方法,其使用包括含涂敷液的涂敷液室,装有电极的基质,涂敷液室和基质间的掩模的装置,所述方法包括步骤:
在涂敷液室中形成雾化涂敷液;
从涂敷液室中向基质排出雾化了的涂敷液;
使涂敷液经过相对于电极的掩模的开口部分;
使涂敷液到达基质的电极上;和
在电极上形成薄膜。
2.如权利要求1的薄膜形成方法,其中将一电压施加到所述掩模上。
3.如权利要求1的薄膜形成方法,其中当雾化了的涂敷液从涂敷液室排向基质时所述涂敷液被充电。
4.如权利要求1的薄膜形成方法,其中所述掩模的开口部分为阻挡部分的缝隙。
5.如权利要求1的薄膜形成方法,其中所述电极为象素电极。
6.如权利要求1的薄膜形成方法,其中所述涂敷液包括有机物质和溶剂。
7.如权利要求1的薄膜形成方法,其中所述涂敷液包括EL物质和溶剂。
8.如权利要求1的薄膜形成方法,其中所述薄膜的厚度是10nm到1μm。
9.一种通过如权利要求1的薄膜形成方法制造的自发光装置。
10.一种薄膜形成装置,包括:
含有涂敷液的涂敷液室;
雾化和排出此涂敷液的装置;
装有电极的基质;
涂敷液室和基质之间的掩模;和
向掩模上施加电压的装置。
11.如权利要求10所述的薄膜形成装置,其还包括用于产生电场以引导雾化了的涂敷液朝向涂敷液室和掩模间的基质的装置。
12.如权利要求11所述的薄膜形成装置,其中所述电场控制雾化了的涂敷液的飞行方向或涂敷位置。
13.如权利要求11所述的薄膜形成装置,其中所述用于产生电场的装置包括提取电极、加速电极和控制电极之一。
14.如权利要求10所述的薄膜形成装置,其中所述用于在掩模上施加电压的装置控制雾化了的涂敷液的飞行方向或涂敷位置。
15.如权利要求10所述的薄膜形成装置,其还包括用于对雾化了的涂敷液充电的装置。
16.如权利要求10所述的薄膜形成装置,其还包括基质和掩模间的另一个掩模,加在该另一个掩模上的电压与加在所述掩模上的电压不同。
17.如权利要求10所述的薄膜形成装置,其中将第一个电压和第二个电压施加在所述掩模上。
18.一种薄膜形成方法,其使用包括装有涂敷液的涂敷液室,装有电极的基质,和涂敷液室和基质间的掩模的装置,所述方法包括步骤:
在涂敷液室中形成雾化涂敷液;
从涂敷液室朝基质排出雾化了的涂敷液;
使涂敷液经过与电极对应的掩模的开口部分;
使涂敷液到达基质上的电极;和
在电极上形成薄膜,
其中将一电压施加在所述掩模上。
19.一种薄膜形成方法,其使用包括装有涂敷液的涂敷液室,装有电极的基质,和涂敷液室和基质间的掩模的装置,所述方法包括步骤:
在涂敷液室中形成雾化涂敷液;
从涂敷液室朝基质排出雾化了的涂敷液;
使涂敷液经过与所述电极对应的掩模的开口部分;
使涂敷液到达基质上的电极;和
在电极上形成薄膜,
其中当雾化了的涂敷液从涂敷液室排向基质时所述雾化了的涂敷液被充电。
20.一种薄膜形成装置,包括:
含有涂敷液的涂敷液室;
用于雾化和排出所述涂敷液的装置;
装有电极的基质;
涂敷液室和基质之间的掩模;将一电压施加到掩模上的装置;和用于产生电场以引导雾化了的涂敷液朝向涂敷液室和掩模间的基质的装置。
21.一种薄膜形成装置,包括:含有涂敷液的涂敷液室;雾化并排出此涂敷液的装置;装有电极的基质;涂敷液室和基质之间的掩模;将一电压施加到掩模上的装置;和用于对雾化了的涂敷液充电的装置。
CNB011123729A 2000-02-28 2001-02-28 薄膜形成装置和薄膜形成方法 Expired - Fee Related CN1221010C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP50685/2000 2000-02-28
JP2000050685 2000-02-28
JP2000087702 2000-03-27
JP87702/2000 2000-03-27

Publications (2)

Publication Number Publication Date
CN1311523A true CN1311523A (zh) 2001-09-05
CN1221010C CN1221010C (zh) 2005-09-28

Family

ID=26586180

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011123729A Expired - Fee Related CN1221010C (zh) 2000-02-28 2001-02-28 薄膜形成装置和薄膜形成方法

Country Status (5)

Country Link
US (1) US6696105B2 (zh)
EP (1) EP1128449B1 (zh)
KR (1) KR100823582B1 (zh)
CN (1) CN1221010C (zh)
TW (1) TW495809B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214547A (zh) * 2010-04-06 2011-10-12 南亚科技股份有限公司 防止雾化的半导体装置及工艺

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW468283B (en) * 1999-10-12 2001-12-11 Semiconductor Energy Lab EL display device and a method of manufacturing the same
TW471011B (en) 1999-10-13 2002-01-01 Semiconductor Energy Lab Thin film forming apparatus
TW495808B (en) * 2000-02-04 2002-07-21 Semiconductor Energy Lab Thin film formation apparatus and method of manufacturing self-light-emitting device using thin film formation apparatus
TW495812B (en) * 2000-03-06 2002-07-21 Semiconductor Energy Lab Thin film forming device, method of forming a thin film, and self-light-emitting device
JP2002175878A (ja) * 2000-09-28 2002-06-21 Sanyo Electric Co Ltd 層の形成方法及びカラー発光装置の製造方法
JP4789341B2 (ja) * 2001-03-30 2011-10-12 三洋電機株式会社 半導体装置及び半導体装置製造用マスク
JP3969698B2 (ja) * 2001-05-21 2007-09-05 株式会社半導体エネルギー研究所 発光装置の作製方法
US7199515B2 (en) * 2001-06-01 2007-04-03 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and light emitting device using the element
US20020197393A1 (en) * 2001-06-08 2002-12-26 Hideaki Kuwabara Process of manufacturing luminescent device
JP4336869B2 (ja) * 2001-11-27 2009-09-30 日本電気株式会社 真空成膜装置、真空成膜方法および電池用電極の製造方法
US6949883B2 (en) * 2001-12-06 2005-09-27 Seiko Epson Corporation Electro-optical device and an electronic apparatus
US6835954B2 (en) 2001-12-29 2004-12-28 Lg.Philips Lcd Co., Ltd. Active matrix organic electroluminescent display device
KR100484591B1 (ko) * 2001-12-29 2005-04-20 엘지.필립스 엘시디 주식회사 능동행렬 유기전기발광소자 및 그의 제조 방법
JP4407790B2 (ja) * 2002-04-23 2010-02-03 セイコーエプソン株式会社 電子装置及びその駆動方法並びに電子回路の駆動方法
US6858464B2 (en) 2002-06-19 2005-02-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing light emitting device
TWI276366B (en) 2002-07-09 2007-03-11 Semiconductor Energy Lab Production apparatus and method of producing a light-emitting device by using the same apparatus
EP1388903B1 (en) 2002-08-09 2016-03-16 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
JP4144462B2 (ja) * 2002-08-30 2008-09-03 セイコーエプソン株式会社 電気光学装置及び電子機器
JP2004145300A (ja) * 2002-10-03 2004-05-20 Seiko Epson Corp 電子回路、電子回路の駆動方法、電子装置、電気光学装置、電気光学装置の駆動方法及び電子機器
DE10251463A1 (de) * 2002-11-05 2004-05-19 BSH Bosch und Siemens Hausgeräte GmbH Elektrisch angetriebene Pumpe
CN100544533C (zh) * 2002-11-11 2009-09-23 株式会社半导体能源研究所 发光装置的制造方法
JP4251080B2 (ja) * 2003-04-15 2009-04-08 セイコーエプソン株式会社 膜形成方法、電子装置の製造方法、膜形成装置及び電子装置、電子機器
US20050104072A1 (en) 2003-08-14 2005-05-19 Slater David B.Jr. Localized annealing of metal-silicon carbide ohmic contacts and devices so formed
CN101853809B (zh) * 2003-11-14 2013-01-02 株式会社半导体能源研究所 半导体元件及其制造方法和液晶显示器及其制造方法
US8053171B2 (en) * 2004-01-16 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Substrate having film pattern and manufacturing method of the same, manufacturing method of semiconductor device, liquid crystal television, and EL television
KR100646297B1 (ko) * 2004-03-05 2006-11-23 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 표시 장치의 제조 방법
US7265063B2 (en) * 2004-10-22 2007-09-04 Hewlett-Packard Development Company, L.P. Method of forming a component having dielectric sub-layers
US20060139040A1 (en) * 2004-12-23 2006-06-29 Nystrom Michael J Non-contact electrical probe utilizing charged fluid droplets
US8691667B1 (en) * 2004-12-30 2014-04-08 E. I. Du Pont De Nemours And Company Method and apparatus for depositing a pattern on a substrate
KR20080022111A (ko) * 2005-05-18 2008-03-10 프라이즈 메탈즈, 인크. 기판 상에 동전기적 침착 및 패터닝 공정을 위한 마스크 및방법
US8254865B2 (en) 2006-04-07 2012-08-28 Belair Networks System and method for frequency offsetting of information communicated in MIMO-based wireless networks
US20090117859A1 (en) * 2006-04-07 2009-05-07 Belair Networks Inc. System and method for frequency offsetting of information communicated in mimo based wireless networks
US7881690B2 (en) * 2006-04-07 2011-02-01 Belair Networks Inc. System and method for zero intermediate frequency filtering of information communicated in wireless networks
CN101541548A (zh) * 2007-02-06 2009-09-23 株式会社东芝 图案形成装置和图案形成方法
US7851343B2 (en) * 2007-06-14 2010-12-14 Cree, Inc. Methods of forming ohmic layers through ablation capping layers
US7649205B2 (en) * 2008-05-30 2010-01-19 Palo Alto Research Center Incorporated Self-aligned thin-film transistor and method of forming same
KR101398237B1 (ko) 2009-07-02 2014-05-23 퓨엔스 가부시끼가이샤 유기 el 소자, 유기 el 소자의 제조방법, 및 유기 el 표시장치
DE102010029317A1 (de) * 2010-05-26 2011-12-01 Universität Zu Köln Strukturierte Beschichtung
KR101800285B1 (ko) * 2010-10-04 2017-12-21 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR101884199B1 (ko) * 2011-06-29 2018-08-02 삼성디스플레이 주식회사 발광 구조물, 발광 구조물을 포함하는 표시 장치 및 표시 장치의 제조 방법
US9589852B2 (en) * 2013-07-22 2017-03-07 Cree, Inc. Electrostatic phosphor coating systems and methods for light emitting structures and packaged light emitting diodes including phosphor coating
US10204535B2 (en) * 2015-04-06 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
KR102479926B1 (ko) * 2015-09-03 2022-12-20 삼성전자주식회사 박막 형성 장치, 이를 이용한 유기 발광 소자 및 이의 제조 방법
CN109287117A (zh) * 2017-05-23 2019-01-29 株式会社奥普特尼克斯精密 成膜方法以及成膜装置
US20190096967A1 (en) * 2017-09-25 2019-03-28 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Organic electroluminescent display apparatus
US20240224729A1 (en) * 2022-12-30 2024-07-04 Lg Display Co., Ltd. Display device

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL239226A (zh) 1958-05-16
US3147142A (en) * 1961-01-25 1964-09-01 Frank S Rudo Precision coating devices
US3596275A (en) 1964-03-25 1971-07-27 Richard G Sweet Fluid droplet recorder
FR1495825A (fr) 1965-10-08 1967-09-22 Dispositif d'enregistrement de signaux électriques
US3946398A (en) 1970-06-29 1976-03-23 Silonics, Inc. Method and apparatus for recording with writing fluids and drop projection means therefor
SE349676B (zh) 1971-01-11 1972-10-02 N Stemme
DE2908863A1 (de) * 1978-03-13 1979-09-27 Unilever Nv Aufspruehen einer fluessigkeit zur herstellung einer darstellung
US4620196A (en) 1985-01-31 1986-10-28 Carl H. Hertz Method and apparatus for high resolution ink jet printing
GB8909011D0 (en) 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
JP2608806B2 (ja) 1990-11-29 1997-05-14 シルバー精工株式会社 インクジェットプリンタにおけるレジストレーション調整装置
US5264376A (en) 1991-06-24 1993-11-23 Texas Instruments Incorporated Method of making a thin film solar cell
US5344676A (en) * 1992-10-23 1994-09-06 The Board Of Trustees Of The University Of Illinois Method and apparatus for producing nanodrops and nanoparticles and thin film deposits therefrom
KR960015081A (ko) * 1993-07-15 1996-05-22 마쯔모또 에이이찌 화학증폭형 레지스트 조성물
US5952037A (en) * 1995-03-13 1999-09-14 Pioneer Electronic Corporation Organic electroluminescent display panel and method for manufacturing the same
US5695658A (en) * 1996-03-07 1997-12-09 Micron Display Technology, Inc. Non-photolithographic etch mask for submicron features
JP3036436B2 (ja) 1996-06-19 2000-04-24 セイコーエプソン株式会社 アクティブマトリックス型有機el表示体の製造方法
JP3899566B2 (ja) 1996-11-25 2007-03-28 セイコーエプソン株式会社 有機el表示装置の製造方法
JP3941169B2 (ja) 1997-07-16 2007-07-04 セイコーエプソン株式会社 有機el素子の製造方法
US6843937B1 (en) 1997-07-16 2005-01-18 Seiko Epson Corporation Composition for an organic EL element and method of manufacturing the organic EL element
JP3911775B2 (ja) 1997-07-30 2007-05-09 セイコーエプソン株式会社 有機el素子の製造方法
JPH1154272A (ja) 1997-07-31 1999-02-26 Seiko Epson Corp 発光ディスプレイの製造方法
US6214631B1 (en) 1998-10-30 2001-04-10 The Trustees Of Princeton University Method for patterning light emitting devices incorporating a movable mask
US6300021B1 (en) 1999-06-14 2001-10-09 Thomson Licensing S.A. Bias shield and method of developing a latent charge image
TW495812B (en) 2000-03-06 2002-07-21 Semiconductor Energy Lab Thin film forming device, method of forming a thin film, and self-light-emitting device
US6348359B1 (en) 2000-09-22 2002-02-19 Eastman Kodak Company Cathode contact structures in organic electroluminescent devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214547A (zh) * 2010-04-06 2011-10-12 南亚科技股份有限公司 防止雾化的半导体装置及工艺

Also Published As

Publication number Publication date
US6696105B2 (en) 2004-02-24
CN1221010C (zh) 2005-09-28
EP1128449A2 (en) 2001-08-29
US20010017409A1 (en) 2001-08-30
EP1128449B1 (en) 2012-01-25
EP1128449A3 (en) 2005-09-14
TW495809B (en) 2002-07-21
KR20010085646A (ko) 2001-09-07
KR100823582B1 (ko) 2008-04-21

Similar Documents

Publication Publication Date Title
CN1221010C (zh) 薄膜形成装置和薄膜形成方法
CN1265470C (zh) 电致发光显示器件及其制造方法
CN1223017C (zh) 自发光设备及其制造方法
CN1227714C (zh) 薄膜形成器件,形成薄膜的方法和自发光器件
CN1185909C (zh) 有源驱动的有机el发光装置及其制造方法
CN1263163C (zh) 电光装置和电子设备
CN1201275C (zh) 制作电光器件的方法
CN100350634C (zh) 发光装置以及制造发光装置的方法
CN1197165C (zh) 电光器件的制造方法
CN1263164C (zh) 电致发光显示器件、驱动方法和电子设备
CN1278295C (zh) 有机发光显示器
CN1294619C (zh) 半导体器件及其制造方法
CN1179395C (zh) 电光器件及其制作方法
CN1245763C (zh) 自发光器件及采用自发光器件的电气设备
CN1703121A (zh) 显示装置和电子装置
CN1722921A (zh) 电子器件
CN1767159A (zh) 显示装置的生产方法
CN1631058A (zh) 有机el显示装置及其制造方法
CN1319892A (zh) 光电器件
CN1303084A (zh) 电子装置
CN1925112A (zh) 半导体器件的制造方法
CN1898712A (zh) 显示装置的制造方法
CN1893145A (zh) 发光器件的制造方法
CN101039550A (zh) 金属布线形成方法及有源矩阵基板的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050928

Termination date: 20180228

CF01 Termination of patent right due to non-payment of annual fee