CN1304742C - 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法 - Google Patents
用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法 Download PDFInfo
- Publication number
- CN1304742C CN1304742C CNB2004100978631A CN200410097863A CN1304742C CN 1304742 C CN1304742 C CN 1304742C CN B2004100978631 A CNB2004100978631 A CN B2004100978631A CN 200410097863 A CN200410097863 A CN 200410097863A CN 1304742 C CN1304742 C CN 1304742C
- Authority
- CN
- China
- Prior art keywords
- gas
- methane
- percent
- mole fraction
- rock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/08—Production of synthetic natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/22—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0266—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/70—Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Industrial Gases (AREA)
- Pipeline Systems (AREA)
- Control Of Eletrric Generators (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
本发明涉及一种用甲烷体积浓度为百分之40至百分之80的天然气储气中的甲烷气体向燃气轮机供给燃料的方法,该方法包括:由天然气储气提供第一天然气气流;将第一天然气气流中的惰性气体与甲烷气体分离,提供分离的甲烷气体和分离的惰性气体;将分离的惰性气体与甲烷体积浓度为百分之40至百分之80的第二天然气气流混合,混合后,第二天然气气流中的惰性气体量将使得燃气轮机的输出比以管道质量天然气作为燃料的燃气轮机增加至少百分之5。
Description
技术领域
本发明涉及低甲烷浓度和高惰性气体浓度天然气的燃烧过程。更具体地说,本发明涉及通过提高惰性气体的相对浓度来利用所含甲烷的体积浓度为约从百分之40到百分之80的天然气储气并将所生产的甲烷用语生产管道质量天然气的方法。一方面可掺混氢气,以便提供惰性气体和氢气增强型甲烷气体混合物,该气体混合物中甲烷气体体积浓度不超过气体总体积的约百分之40。该气体混合物用于向燃气轮机供给燃料。
背景技术
目前,大部分甲烷储气具有相对较低的甲烷气体浓度。多数这些储气中甲烷气体的体积浓度约从百分之40到百分之80。目前,是通过从天然气中除去杂质,从而形成甲烷体积浓度通常从约百分之95+至约百分之99+的管道质量天然气。从经济上考虑,将甲烷体积浓度约从百分之40到百分之80的天然气转变成管道质量的天然气,向燃气轮机供给燃料来发电是不实际的,因为该转变过程的成本非常高。而且,甲烷体积浓度约从百分之40到百分之80的天然气不能作为燃气轮机的可靠燃料源来产生高输出功率的电力,尤其是在该范围的低端值处,因为在没有特殊设备、催化剂和没有特殊的氧与其他可燃物补偿的情况下,这么低的甲烷浓度不能提供用于燃料燃烧的稳定火焰。并且,甲烷体积浓度为百分之40至80的气流还有由于燃气轮机中的较高火焰温度而产生高NOx排出的问题。
与通过制成管道质量天然气向燃气轮机供给燃料的方法相比,用甲烷体积浓度为百分之40至80且含有大量惰性气体的天然气储气并将该气流或该气流的一部分进行提纯,来向燃气轮机供给燃料的方法使成本大大降低,在经济上更为有利。
发明内容
本发明涉及一种用甲烷体积浓度约为百分之40至80的低甲烷浓度和高惰性气体浓度的天然气储气向燃气轮机供给燃料的方法。本发明能够利用这些比通过制成管道质量天然气向燃气轮机供给燃料的方法所需成本显著降低的储气来向燃气轮机供给燃料用以发电。如上所述,目前,这些储气只能用于在除去杂质之后生成合适的燃气轮机燃料。还如前所述,现在的方法成本非常高,根据当前的天然气价格,这在经济上没有吸引力。本发明的方法能够根据环保需要除去来自天然气储气的气体中的杂质,并按能使燃气轮机产生的电力输出增加约5至20%的量将惰性气体留在燃料中。本发明方法的一个方式是试图将惰性气体留在燃料中,使流过燃气轮机的质量流量最大并提高电力输出,不需要花费生产管道质量甲烷气体和向燃料中掺混额外的惰性气体以增加流过燃气轮机的质量流量及降低火焰温度来减小NOx的排出的成本。
具体而言,本发明提供了一种用甲烷体积浓度为百分之40至百分之80的天然气储气中的甲烷气体向燃气轮机供给燃料的方法,该方法包括:由天然气储气提供第一天然气气流;将第一天然气气流中的惰性气体与甲烷气体分离,提供分离的甲烷气体和分离的惰性气体;将分离的惰性气体与甲烷体积浓度为百分之40至百分之80的第二天然气气流混合,混合后,第二天然气气流中的惰性气体量将使得燃气轮机的输出比以管道质量天然气作为燃料的燃气轮机增加至少百分之5。
在本发明的一个方式中,采用天然气气流和用于生产管道质量天然气的方法。在此方式中,提纯处理过程中将所含甲烷体积浓度从约百分之40至百分之80的天然气储气中的惰性气体与甲烷气体分离。可以仅对一定量的甲烷进行分离,以便提供惰性气体增强的甲烷气体混合物,与以管道质量的天然气向燃气轮机供给燃料的方法相比,能够有效使燃气轮机的能量输出增加约5至约20%。然后,将经分离过程产生的提纯甲烷气流送去进一步提纯,生产管道质量天然气。或者,可以使惰性气体与甲烷气体整体分离,然后将与甲烷分离的该惰性气体与没有除去惰性气体的天然气气流混合(或其它含百分之40至百分之80体积浓度甲烷的气流),混合量为应使燃气轮机的输出比利用管道质量的天然气向燃气轮机供给燃料的方法增加约5至约20%。
在本发明的一个方式中,氮气是主要的惰性气体,可用膜将惰性氮气与天然气和其中的甲烷进行初级分离。市场上可购得的、适于该分离过程的膜有Air Liquide公司(Houston Texas)的Medal。此分离过程可以只按如上所述能使燃气轮机输出增加的量进行,或者将与天然气分离的氮气与天然气储气混合,以便提供惰性气体增强的天然气,使燃气轮机的输出比利用管道质量的天然气向燃气轮机供给燃料的方法增加约5至约20%。
当二氧化碳的体积浓度在约百分之45以内时,可以用膜来分离二氧化碳。在另一方式中,当二氧化碳是主要的惰性气体,其体积浓度超过约百分之45时,二氧化碳在低温下与甲烷体积浓度为约百分之40至约百分之80的天然气储气分离。在本发明的一个方式中,当天然气的压力较高,例如大于约2500psig时,该高压进料气体闪蒸到低压,例如约500psig。膨胀时的Joule Thomson效应有效提供了一定量的冷却,以便进行低温分离。当天然气储气的压力较低,如低于约1100psig时,可以通过天然气储气的外部制冷为二氧化碳与天然气储气及其中的甲烷进行分离提供有效冷却而达到分离的目的。
在一个非常重要的方式中,将惰性气体与天然气储气及其中的甲烷分离,从而提供甲烷体积浓度为约百分之40的甲烷气体。从天然气储气中分离的甲烷可以送去进行进一步处理,以便制成管道质量的天然气。从天然气气流中分离出来的惰性气体再送回到从油井中出来的天然气气流中,按能有效提供甲烷体积浓度为小于约百分之40的甲烷/惰性气体混合物的量进行混合,以便提供惰性气体增强的甲烷气体混合物。将惰性气体增强的甲烷气体混合物与氢气混合,或者在一个重要方式中,将恰好足够的甲烷转变成氢气,以便生成氢气/惰性气体/甲烷气体的燃抖气混合物,该气体燃料混合物不仅可作为一种可接受的燃气轮机的燃料,而且该混合物能有效提供火焰稳定性(例如提供至少为110 BTU/标准立方英尺气体热量的气体),且产生的能量比甲烷含量在约百分之95+至约百分之99+体积的的标准天然气更高。若需要的话,将氢气/惰性气体/甲烷气体混合气进行脱水,以便除去足够量的水,从而提供具有火焰稳定性的氢气/惰性气体/甲烷气体混合气。在一个重要方式中,该混合气含有至少约百分之6体积的氢气。然后再将具有火焰稳定性的氢气增强型脱水氢气/惰性气体/甲烷气体混合气用于向燃气轮发电机供给燃料。按此方式,本发明的方法比使用甲烷含量在约百分之95至约百分之99+体积的标准天然气的燃气轮机的方法能使燃气轮机电力输出有效增加至少约百分之10。在大多数情况下,输出能够增加至少约百分之20并能达到百分之30,而后一界限值是由于受燃气轮机的机械设计限制。
在本发明的一个方式中,天然气中的一部分甲烷通过催化转变或重构成氢气,然后再形成氢气增强型氢气/惰性气体/甲烷混合气。实现该转变的反应式包括:
在另一重要方式中,尤其是其中甲烷转变成氢气时,在转变反应之前,利用物理溶剂从天然气中除去硫化氢和其它酸性成分例如COS、RSH和RSSR,从而生成脱硫天然气,物理溶剂有选择地除去硫化氢和其他酸性气体,但是很少除去二氧化碳和其他惰性气体例如氦气、氩气和氮气。在此方式中,物理溶剂从以下组中选择,该组包括甲醇、聚乙二醇二甲醚混合物(分子量为约280)、碳酸丙二酯(b.p.240℃)、N-甲基-2-吡咯烷酮(b.p.202℃)、低聚乙二醇甲基异丙基醚的混合物(b.p.320℃)、膦酸三正丁酯(在30mm Hg时b.p.180℃)和氰基乙酸甲酯(b.p.202℃)。该脱硫天然气与足量水混合,以便能从甲烷足量产生氢气,从而获得火焰稳定性或是BTU/Scf值至少为约110。在该方式中,重要的是在将一部分甲烷变换成氢气步骤之前要除去硫化氢和其他酸性气体,因为该重构过程是一个催化反应,硫化氢气体和其他酸性气体可能会使催化剂中毒。对酸性条件敏感且可在本发明该方式中使用的催化剂包括United Catalyst有限公司的C11系列催化剂、Haldor Topsoe公司的R67和BASF公司的G1-25。用于脱硫天然气的高温“重构催化剂”通常为铁、铬和铜,用于脱硫天然气的低温“重构催化剂”通常由铜、锌和铝制成。
在另一重要方式中,重构反应在酸性条件下利用催化剂进行,该催化剂例如United Catalyst有限公司的C25系列催化剂、BASF公司的K8-11催化剂和Haldor Topsoe公司的SSK催化剂。通常,这些催化剂是铬钼催化剂。在本发明的这一方式中,将酸性天然气与水混合,水的量应足以形成能够形成或重构成氢气含量足以使富含氢气的氢气/惰性气体/甲烷混合气具有火焰稳定性的甲烷气体/水混合物,该氢气/惰性气体/甲烷混合气含有不超过百分之40体积的甲烷。
在惰性气体与天然气储气混合之后,该惰性气体增强的甲烷气体混合物可以含有低至百分之35、百分之25或者甚至低于百分之20体积的甲烷,且仍然比以用氢气提供火焰稳定性的管道质量甲烷作为燃气轮机燃料提供更多的能量。在本发明的实际操作中,应将足量的甲烷转变成氢气,以生成氢气体积含量为至少百分之6,优选是从约百分之6至约百分之10的氢气增强型氢气/惰性气体/甲烷混合气。这将生成具有火焰稳定性的氢气增强型氢气/惰性气体/甲烷混合气,该氢气增强型氢气/惰性气体/甲烷混合气能非常有效地向燃气轮机供给燃料,以便发电。
附图的简要说明
图1是例示说明本发明方法的一个流程图,在该方法中,一些甲烷转变成氢气,从而形成氢气/惰性气体/甲烷气体混合物,以便向燃气轮机供给燃料。
图2是例示说明本发明方法的一个流程图,在该方法中,高压进料天然气闪蒸成低压,将同在该高压进料天然气中的甲烷气体与二氧化碳气体分离。
图3是例示说明本发明方法的一个流程图,在该方法中,低压进料天然气利用外部制冷设备冷冻,将同在该低压进料天然气中的甲烷气体与二氧化碳气体分离。
具体实施方式
将甲烷体积浓度从约百分之40至约百分之80和较高浓度惰性气体如氮气、二氧化碳、氦气和氩气的天然气储气传送给分离单元,以便使天然气储气中的惰性气体与甲烷气体分离。这样形成相对较纯的甲烷气流和惰性气体/甲烷气流。若储气氮气含量较高时,可用膜来使氮气与甲烷气体分离,该膜例如Medal膜。当惰性气体是二氧化碳时,可以利用如图2和3所示的低温分离过程使惰性气体与甲烷气体分离。当甲烷气体与惰性气体分离后,分离出来的相对较纯甲烷气体可以传送给如熟知的生产管道质量天然气所用的进一步提纯装置。若惰性气体与甲烷气体分离后,惰性气体/甲烷气流并没有足够的惰性气体用来增大所述燃气轮机的能量输出,那么还可以在惰性气体/甲烷气流中加入惰性气体,以使能量输出比以管道质量天然气作为燃料的燃气轮机增加从约5至约20%。或者,未将惰性气体成分分离的部分天然气气流再与从储气气流中分离出的惰性气体,按所提供的惰性气体增强天然气能使燃气轮机的输出比以管道质量的天然气作为燃料的燃气轮机的增加约5至约20%的量进一步混合。
在一个重要方式中,可以将足量的惰性气体与惰性气体/甲烷气流混合或与天然气储气混合,从而使气体混合物中甲烷含量降低到小于百分之40的体积浓度。参考图1可以看到,在此方式中,将甲烷体积浓度不多于百分之40的惰性气体增强甲烷气体混合物利用物理溶剂处理,在不除去惰性气体的情况下除去硫化氢气体或其他酸性气体成分,从而提供甲烷体积浓度不超过百分之40的脱硫天然气,该物理溶剂例如为甲醇、聚乙二醇二甲醚混合物、碳酸丙二酯、N-甲基-2-吡咯烷酮、低聚乙二醇甲基异丙基醚的混合物、膦酸三正丁酯和氰基乙酸甲酯。物理溶剂处理步骤可以在天然气进料中的惰性气体与甲烷气体分离步骤之前或之后进行。然后,将脱硫天然气通过管道1传送给氧化锌保护床2,以避免硫化氢气体溢出。脱硫天然气从氧化锌保护床2送出,并在管道3中与水混合,从而提供甲烷气体/水混合物。该气体/水混合物在管道3中在约70℉和约355psig下传送至进料排出物换热器4,在该进料排出物换热器4处,脱硫天然气/水混合物的温度升高至约800℉。必须将足量的水与天然气混合,以便能足够转变成氢气,从而使该氢气增强的脱硫氢气/惰性气体/甲烷混合气在传送给燃气轮机发电时具有火焰稳定性。当脱硫天然气与水混合并在进料排出物换热器中加热后,加热的脱硫天然气/水混合物通过管道5在约345psig和约800℉下传送给余热蒸汽发生器盘管(HRSG盘管),以便使脱硫天然气/水混合物的温度进一步升高,并在管道3中提供温度为约950℉的高热脱硫气体/水混合物。然后,该高热脱硫气体/水混合物在约340psig下通过管道7传送给重构反应室8,以便将该脱硫气体/水中的一部分甲烷转变成氢气增强的甲烷/氢气/水混合物。脱硫气体/水混合物中的甲烷在至少约700℉,优选从约900℉至约950℉和约340psig下进行催化反应,使甲烷和水反应生成氢气。更高温度有利于该转变,但是更高压力对该转变有不利影响。压力不应当超过1500psig。在将足量甲烷转变成氢气,使脱水(下文中将介绍)后的气体中含有至少约百分之6体积的氢气之后,该氢气增强的甲烷/氢气/水混合物通过管道9在约855℉和335psig条件下传送回进料排出物换热器,以便将热量转移给进入该进料排出物换热器的水和甲烷气体。在该氢气增强的甲烷/氢气/水混合物的温度降低后,它通过管道10传送到脱水分离罐(KO罐)12,以减少氢气增强型氢气/惰性气体/甲烷混合气中的含水量。在KO罐中降温到露点,使水能够冷凝并与气体分离。足量的水被除去,使其具有火焰稳定性,且提供热量至少约110BTU/标准立方英尺气体的气体。通常,约百分之97至约百分之99重量的水从该气体中除去。将氢气增强甲烷/氢气/水混合物脱水而生成的水利用冷凝水泵并通过管道14从KO罐12中排出,并在约100℉和500psig下通过管道18送回进料排出物换热器4。现在,脱水的含有至少百分之6体积的氢气或含足以提供火焰稳定性氢气的氢气增强型氢气/惰性气体/甲烷混合气从KO罐通过管道20在约100℉和约psig下供给燃气轮发电机。这些气体的热量至少为约110BTU/标准立方英尺气体,并能为燃气轮发电机提供稳定的火焰。
同样的方法也可以用于所采用的催化剂对天然气中酸性气体不敏感或不受该酸性气体毒化的酸性天然气的应用过程中。不过,为了使该方法适应环保要求,可以至少部分除去至少某些酸性气体,例如H2S。
本发明可通过下面的实例说明。
实施例I
燃气轮机性能 | |||
现场条件 | Units | No Aug | Power Aug |
环境温度 | ℉ | 60 | 60 |
环境压力 | Psia | 11.57 | 11.57 |
环境相对温度 | % | 60 | 60 |
进口压降 | In H2O | 3.0 | 3.0 |
性能 | |||
总发动机输出 | KW | 156,100 | 157,100 |
热消耗(LHV) | Btu/h×10-8 | 1,477.1 | 1,486.9 |
热速率(LHV) | Btu/k Wh | 9,461 | 9,462 |
Misc. | 1.8 | 1.8 | |
LHV | Btu/Lb | 2,424.0 | 2,424.0 |
Btu/Scf | 212.5 | 212.5 | |
燃气流速 | Ib/s | 169.3 | 170.4 |
压力 | Psia | 325 | 325 |
温度 | ℉ | 80 | 80 |
Power Aug Inj Conditions | |||
组成 | %Vol | ||
二氧化碳 | 100.0 | 100.0 | |
流速 | Ib/s | 0.0 | 4.0 |
压力 | Psia | 285 | 285 |
温度 | ℉ | 300 | 300 |
排出气条件 | Units | No Aug | Power Aug |
排出气流量 | Ib/s | 925.3 | 930.4 |
排出气温度 | ℉ | 1,093.1 | 1,095.1 |
排出气组成 | %Vol | ||
二氧化碳 | 13.79 | 14.12 | |
氢气 | 1.07 | 1.07 | |
氮气 | 65.78 | 65.53 | |
氧气 | 9.83 | 9.74 | |
水 | 9.53 | 9.55 | |
排气压降 | In H2O | 15.0 | 15.0 |
NOx(热) | ppmvd@15%O2 | <10 | <10 |
下面是有关图2方法的数据,例示说明本发明的方法,其中高压进料天然气闪蒸成低压,以便使同在该高压供给的天然气中的甲烷气体与二氧化碳气体分离。
下面是有关图3方法的数据,例示说明本发明的方法,其中低压进料天然气利用外部制冷设备冷冻,以便使同在该低压供给的天然气中的甲烷气体与二氧化碳气体分离。
回流2570 FWHP 1378 Mscfd
组分 | 热含量.BTU/SCF | HHVBTU/SCF | 过热回收 | 产物回收 | |||||||
进料 | 出售/燃料 | 燃料 | 损耗 | 进料 | 出售 | 燃料 | 损耗 | ||||
瞬时 Mscfd平均 Mscfd瞬时 GBTU/D平均 GBTU/DHC损失(%)GBTU/D | 25001925.0 | 1378.01061.1 | 36.928.4 | 1122.0863.9 | 734.1565.2 | 656.9505.8 | 17.6113.62.38% | 66.851.59.02% | 11.39% | ||
N2CO2H2SC1C2C3iC4nC4iC5nC5C6+H2O | 0.0041080.7129090.0056590.2683710.0051060.0015990.0003990.0003980.0001980.0004920.0007560.000005 | 0.0074120.5235220.0034710.4589540.0051900.0009800.0001640.0001310.0000420.0000870.0000000.000047 | 0.0074120.5235220.0034710.4589540.0051900.0009800.0001640.0001310.0000420.0000870.0000000.000047 | 0.0000500.9455070.0083460.0343040.0050030.0023590.0006880.0007260.000390.00098900 | 00027194111240 | 00046492100000 | 00046492100000 | 0003596222400 | 0.00.00.01010.01769.62516.13251.93262.34000.94008.95502.50.0 | 99%40%34%94%56%34%23%18%12%10%0% | 1%60%66%6%44%66%77%82%88%90%100% |
总计 | 1.000000 | 1.000000 | 1.000000 | 0.998362 | 294 | 477 | 477 | 60 |
利用率=77%
功率,MW | 总计 | GT1 | GT2 | Elec | LM6000 |
制冷R404a/CO | 0.00 | 0.00 | 44,500HP@90F33,184kW@90F6,644热耗,BTU/hP7,096GBTU/D@总功率 | ||
SG1 | 58.85 | 58.85 | |||
SG2 | 0.00 | 0.00 | |||
CO2注入泵 | 23.50 | 23.50 | |||
Condy新鲜气体 | 0.00 | 0.00 | |||
功率MW | 82.35 | 0.00 | 58.85 | 23.50 | |
No.of LM6000s | 2 | 0 | 1 | 1 | |
燃料GBTU/D | 17.61 | - | 12.58 | 5.03 |
总马力 10,431 HP
HC出售 624 Mscfd HC
177 HP/Mscfd
2500psi 1200M,45%C1.HSC | |||||
情况(主体) | |||||
气流 | |||||
名称 | 1001 | 1002 | 1003 | 2001 | 2002 |
蒸汽分数 | 0.0000 | 1.0000 | 1.0000 | 0.9736 | 0.0000 |
温度(F) | 712.9 | 300.0* | 300.0* | 257.3 | 80.00* |
压力(psia) | 5746.* | 5746.* | 5746.* | 2570.* | 2550. |
摩尔流量(MMSCFD) | 142.0* | 2168.* | 2310. | 2310. | 2310. |
质量流量(lb/hr) | 2.809e+05 | 8.681e+06 | 8.982e+06 | 8.962e+06 | 8.962e+06 |
液体体积流量(桶/天) | 1.927e+04 | 8.751e+05 | 8.944e+05 | 8.944e+05 | 8.944e+05 |
热流量(kW) | -4.965e+05 | -9.053e+06 | -9.550e+06 | -9.550e+06 | -9.842e+06 |
组分摩尔分数(氮) | 0.00008 | 0.0041* | 0.0038 | 0.0038 | 0.0038 |
组分摩尔分数(CO2) | 0.00008 | 0.7121* | 0.6683 | 0.6683 | 0.6683 |
组分摩尔分数(H2S) | 0.0000* | 0.0053* | 0.0050 | 0.0050 | 0.0050 |
组分摩尔分数(甲烷) | 0.00008 | 0.2678* | 0.2513 | 0.2513 | 0.2513 |
组分摩尔分数(乙烷) | 0.0000* | 0.0051* | 0.0048 | 0.0048 | 0.0048 |
组分摩尔分数(丙烷) | 0.0000* | 0.0016* | 0.0015 | 0.0015 | 0.0015 |
组分摩尔分数(H2O) | 1.0000* | 0.0007* | 0.0622 | 0.0622 | 0.0622 |
名称 | 3000 | 4001 | 4050 | 4100 | 4101 |
蒸汽分数 | 1.0000 | 1.0000 | 0.3125 | 1.0000 | 1.0000 |
温度(F) | 80.85 | 80.00 | 9.808 | 11.65 | 30.27 |
压力(psia) | 900.7 | 2550. | 900.0* | 900.0 | 890.00 |
摩尔流量(MMSCFD) | 1199. | 0.0000 | 1800. | 1199. | 1199. |
质量流量(lb/hr) | 4.080e+06 | 0.0000 | 7.210e+06 | 4.060e+06 | 4.080e+06 |
液体体积流量(桶/天) | 4.822e+05 | 0.0000 | 7.271e+05 | 4.822e+05 | 4.822e+05 |
热流量(kW) | -4.039e+08 | 0.0000 | -7.759e+06 | -4.080e+06 | -4.066e+08 |
组分摩尔分数(氮) | 0.0074 | 0.0041 | 0.0041 | 0.0074 | 0.0074 |
组分摩尔分数(CO2) | 0.5249 | 0.7083 | 0.7123 | 0.5249 | 0.5249 |
组分摩尔分数(H2S) | 0.0035 | 0.0053 | 0.0053 | 0.0035 | 0.0035 |
组分摩尔分数(甲烷) | 0.4576 | 0.2668 | 0.2683 | 0.4576 | 0.4576 |
组分摩尔分数(乙烷) | 0.0052 | 0.0051 | 0.0051 | 0.0052 | 0.0052 |
组分摩尔分数(丙烷) | 0.0010 | 0.0016 | 0.0016 | 0.0010 | 0.0010 |
组分摩尔分数(H2O) | 0.0000 | 0.0056 | 0.0000 | 0.0000 | 0.0000 |
名称 | 4110 | 4111 | 4210 | 4215 | 5001 |
蒸汽分数 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 |
温度(F) | 219.6 | 120.0* | 65.00 | 127.9 | 80.00 |
压力(psia) | 3000.* | 2980. | 900.0 | 3800.* | 2550. |
摩尔流量(MMSCFD) | 1199. | 1199. | 965.0 | 965.0 | 2176. |
质量流量(lb/hr) | 4.080e+06 | 4.080e+06 | 4.585e+06 | 4.585e+06 | 8.689e+06 |
液体体积流量(桶/天) | 4.822e+05 | 4.822e+05 | 3.917e+05 | 3.917e+05 | 6.755e+05 |
热流量(kW) | -4.015e+06 | -4.077e+06 | -5.165e+06 | -5.145e+08 | -9.310e+06 |
组分摩尔分数(氮) | 0.0074 | 0.0074 | 0.0000 | 0.0000 | 0.0041 |
组分摩尔分数(CO2) | 0.5249 | 0.5249 | 0.9451 | 0.9451 | 0.7083 |
组分摩尔分数(H2S) | 0.0035 | 0.0035 | 0.0075 | 0.0075 | 0.0053 |
组分摩尔分数(甲烷) | 0.4576 | 0.4576 | 0.0332 | 0.0332 | 0.2668 |
组分摩尔分数(乙烷) | 0.0052 | 0.0052 | 0.0050 | 0.0050 | 0.0051 |
组分摩尔分数(丙烷) | 0.0010 | 0.0010 | 0.0024 | 0.0024 | 0.0016 |
组分摩尔分数(H2O) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0058 |
2500psi 1200M,45%C1.HSC | |||||
情况(主体) | |||||
气流 | |||||
名称 | 5002 | 5003 | 5004 | 5005 | 5006 |
蒸汽分数 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3721 |
温度(F) | 97.50 | 69.00* | 53.00 | 53.00 | 14.30 |
压力(psia) | 2500.* | 2490. | 2480. | 2480. | 900.0* |
摩尔流量(MMSCFD) | 2164. | 2164. | 1800. | 363.5 | 363.5 |
质量流量(lb/hr) | 8.665e+06 | 8.665e+06 | 7.210e+06 | 1.456e+06 | 1.456e+06 |
液体体体积流量(桶/天) | 8.739e+05 | 8.739e+05 | 7.271e+05 | 1.468e+05 | 1.468e+05 |
热流量(kW) | -9.231e+06 | -9.281e+06 | -7.745e+06 | -1.564e+06 | -1.564e+06 |
组分摩尔分数(氮气) | 0.0041 | 0.0041 | 0.0041 | 0.0041 | 0.0041 |
组分摩尔分数(CO2) | 0.7123 | 0.7123 | 0.7123 | 0.7123 | 0.7123 |
组分摩尔分数(H2S) | 0.0053 | 0.0053 | 0.0053 | 0.0053 | 0.0053 |
组分摩尔分数(甲烷) | 0.2683 | 0.2683 | 0.2683 | 0.2683 | 0.2683 |
组分摩尔分数(乙烷) | 0.0051 | 0.0051 | 0.0051 | 0.0051 | 0.0051 |
组分摩尔分数(丙烷) | 0.0016 | 0.0016 | 0.0016 | 0.0016 | 0.0016 |
组分摩尔分数(H2O) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
名称 | 5090 | 6001 | 9901 | 9902 | kW(输出) |
蒸汽分数 | - | 0.0000 | 0.0000 | 0.0000 | - |
温度(F) | - | 80.00 | 53.00* | 43.00* | - |
压力(psia) | 15.00* | 2550. | 2480. | 2470. | - |
摩尔流量(MMSCFD) | 12.10 | 134.1 | 2164. | 1800. | - |
质量流量(lb/hr) | 2.394e+04 | 2.726e+05 | 8.665e+06 | 7.210e+06 | - |
液体体积流量(桶/天) | 1642. | 1.888e+04 | 8.739e+05 | 7.271e+05 | - |
热流量(kW) | - | -5.325e+05 | -9.309e+06 | -7.759e+06 | 5.119e+04 |
组分摩尔分数(氮气) | 0.0000 | 0.0000 | 0.0041 | 0.0041 | - |
组分摩尔分数(CO2) | 0.0000 | 0.0190 | 0.7123 | 0.7123 | - |
组分摩尔分数(H2S) | 0.0000 | 0.0003 | 0.0053 | 0.0053 | - |
组分摩尔分数(甲烷) | 0.0000 | 0.0000 | 0.2683 | 0.2683 | - |
组分摩尔分数(乙烷) | 0.0000 | 0.0000 | 0.0051 | 0.0051 | - |
组分摩尔分数(丙烷) | 0.0000 | 0.0000 | 0.0016 | 0.0016 | - |
组分摩尔分数(H2O) | 1.0000 | 0.9807 | 0.0000 | 0.0000 | - |
名称 | kW(注入泵) | Q(排料) | Q(dummy 3B) | Q(dummy-01) | 0(再沸器A) |
蒸汽分数 | - | - | - | - | - |
温度(F) | - | - | - | - | - |
压力(psia) | - | - | - | - | - |
摩尔流量(MMSCFD) | - | - | - | - | - |
质量流量(lb/hr) | - | - | - | - | - |
液体体体积流量(桶/天) | - | - | - | - | - |
热流量(kW) | 2.034e+04 | 6.221e+04 | 2.747e+04 | - | 5.053e+04 |
组分摩尔分数(氮气) | - | - | - | - | - |
组分摩尔分数(CO2) | - | - | - | - | - |
组分摩尔分数(H2S) | - | - | - | - | - |
组分摩尔分数(甲烷) | - | - | - | - | - |
组分摩尔分数(乙烷) | - | - | - | - | - |
组分摩尔分数(丙烷) | - | - | - | - | - |
组分摩尔分数(H2O) | - | - | - | - | - |
回流850 PSIA@2070 FWHP
组分 | 热含量,BTU/SCF | HHVBTU/SCF | 过热回收 | 产物回收 | |||||||
进料 | 出售/燃料 | 燃料 | 损耗 | 进料 | 出售 | 燃料 | 损耗 | ||||
瞬时 Mscfd平均 Mscfd瞬时 GBTU/D平均 GBTU/DHC损失(%)GBTU/D | 10811027.0 | 614.8584.1 | 17.116.3 | 466.2442.9 | 317.4301.5 | 285.9271.6 | 7.977.82.48% | 27.025.78.42% | 10.90% | ||
N2CO2H2SC1C2C3iC4nC4iC5nC5C6+H2O | 0.0041080.7129090.0056590.2683710.0051060.0015990.0003990.0003980.0001980.0004920.0007560.000005 | 0.0072070.5352640.0035580.4472000.0052670.0010100.0001680.0001340.0000430.0000870.0000000.000062 | 0.0072070.5352640.0035580.4472000.0052670.0010100.0001680.0001340.0000430.0000870.0000000.000062 | 0.0000210.9471780.0084300.0325410.0048940.0023760.0007040.0007460.0004020.00102600 | 00027194111240 | 00045293100000 | 00045293100000 | 0003396222400 | 0.00.00.01010.01769.62516.13251.93262.34000.94008.95502.50.0 | 100%43%36%95%59%36%24%19%12%10%0% | 0%57%64%5%41%64%76%81%88%90%100% |
总计 | 1.000000 | 1.000000 | 1.000000 | 0.998317 | 294 | 465 | 465 | 58 |
利用率=95%
功率,MW | 总计 | GT1 | GT2 | Elec | LM6000 |
制冷R404a/CO | 0.00 | 0.00 | 44,500HP@90F33,184kW@90F6,644热耗,BTU/hp7,096 GBTU/D@总功率 | ||
SG1 | 27.56 | 27.56 | |||
SG2 | 0.00 | 0.00 | |||
CO2注入泵 | 9.69 | 9.69 | |||
Condy新鲜气体 | 0.00 | 0.00 | |||
总计MW | 37.25 | 0.00 | 27.56 | 9.69 | |
No.of LM6000s | 2 | 0 | 1 | 1 | |
燃料GBTU/D | 7.97 | - | 5.89 | 2.07 |
总马力 49,952 HP
HC出售 271 Mscfd HC
184 HP/Mscfd
Dehy&Reflux塔2070FWHP.hsc | |||||
主体:气流 | |||||
气流 | |||||
名称 | 1001 | 1002 | 1003 | 2001 | 2002 |
蒸汽分数 | 0.0000 | 1.0000 | 1.0000 | 0.9681 | 0.9408 |
温度(F) | 712.9 | 300.0* | 300.0* | 244.0 | 80.00* |
压力(psia) | 5746.* | 5746.* | 5746. | 2070.* | 2050. |
摩尔流量(MMSCFD) | 71.00* | 1084.* | 1155. | 1155. | 1155. |
质量流量(lb/hr) | 1.404e+05 | 4.340e+06 | 4.481e+06 | 4.481e+06 | 4.481e+06 |
液体体积流量(桶/天) | 9636. | 4.376e+05 | 4.472e+05 | 4.472e+05 | 4.472e+05 |
热流量(kW) | -2.483e+05 | -4.527e+06 | -4.775e+06 | -4.775e+06 | -4.911e+06 |
组分摩尔分数(氮气) | 0.0000* | 0.0041* | 0.0038 | 0.0038 | 0.0038 |
组分摩尔分数(CO2) | 0.0000* | 0.7121* | 0.6683 | 0.6683 | 0.6683 |
组分摩尔分数(H2S) | 0.0000* | 0.0053* | 0.0050 | 0.0050 | 0.0050 |
组分摩尔分数(甲烷) | 0.0000* | 0.2678* | 0.2513 | 0.2513 | 0.2513 |
组分摩尔分数(乙烷) | 0.0000* | 0.0051* | 0.0048 | 0.0048 | 0.0048 |
组分摩尔分数(丙烷) | 0.0000* | 0.0016* | 0.0015 | 0.0015 | 0.0015 |
组分摩尔分数(H2O) | 1.0000* | 0.0007* | 0.0622 | 0.0622 | 0.0622 |
名称 | 3000 | 4001 | 4050 | 4100 | 4101 |
蒸汽分数 | - | 1.0000 | 0.3738 | 1.0000 | 1.0000 |
温度(F) | - | 80.00 | 9.978 | 10.99 | 26.03 |
压力(psia) | - | 2050. | 850.0* | 850.0 | 840.00 |
摩尔流量(MMSCFD) | - | 1087. | 900.0 | 614.7 | 614.7 |
质量流量(lb/hr) | - | 4.342e+06 | 3.604e+06 | 2.112e+08 | 2.112e+06 |
液体体积流量(桶/天) | - | 4.376e+05 | 3.635e+05 | 2.472e+05 | 2.472e+05 |
热流量(kW) | - | -4.639e+06 | -3.874e+06 | -2.118e+06 | -2.113e+06 |
组分摩尔分数(氮气) | - | 0.0041 | 0.0041 | 0.0072 | 0.0072 |
组分摩尔分数(CO2) | - | 0.7092 | 0.7123 | 0.5352 | 0.5352 |
组分摩尔分数(H2S) | - | 0.0053 | 0.0053 | 0.0036 | 0.0036 |
组分摩尔分数(甲烷) | - | 0.2672 | 0.2683 | 0.4473 | 0.4473 |
组分摩尔分数(乙烷) | - | 0.0051 | 0.0051 | 0.0053 | 0.0053 |
组分摩尔分数(丙烷) | - | 0.0016 | 0.0016 | 0.0010 | 0.0010 |
组分摩尔分数(H2O) | - | 0.0043 | 0.0000 | 0.0000 | 0.0000 |
名称 | 4110 | 4210 | 4215 | 5001 | 5002 |
蒸汽分数 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
温度(F) | 225.2 | 60.01 | 118.6 | 80.00 | 82.33 |
压力(psia) | 3000.* | 850.0 | 3800.* | 2050. | 2000.* |
摩尔流量(MMSCFD) | 614.7 | 467.2 | 467.2 | 0.0000 | 1082. |
质量流量(lb/hr) | 2.112e+06 | 2.221e+06 | 2.221e+06 | 0.0000 | 4.333e+06 |
液体体积流量(桶/天) | 2.472e+05 | 1.897e+05 | 1.897e+05 | 0.0000 | 4.369e+05 |
热流量(kW) | -2.085e+06 | -2.504e+06 | -2.495e+06 | 0.0000 | -4.617e+06 |
组分摩尔分数(氮气) | 0.0072 | 0.0000 | 0.0000 | 0.0041* | 0.0041 |
组分摩尔分数(CO2) | 0.5352 | 0.9453 | 0.9453 | 0.7092* | 0.7123 |
组分摩尔分数(H2S) | 0.0036 | 0.0076 | 0.0076 | 0.0053* | 0.0053 |
组分摩尔分数(甲烷) | 0.4473 | 0.0328 | 0.0328 | 0.2672* | 0.2683 |
组分摩尔分数(乙烷) | 0.0053 | 0.0049 | 0.0049 | 0.0051* | 0.0051 |
组分摩尔分数(丙烷) | 0.0010 | 0.0024 | 0.0024 | 0.0016* | 0.0016 |
组分摩尔分数(H2O) | 0.0000 | 0.0000 | 0.0000 | 0.0043* | 0.0000 |
Dehy&Reflux塔2070FWHP.hsc | |||||
主体:气流 | |||||
气流 | |||||
名称 | 5003 | 5004 | 5005 | 5006 | 5090 |
蒸汽分数 | 1.0000 | 0.0000 | 0.0000 | 0.4201 | - |
温度(F) | 62.00*7 | 50.00 | 50.00 | 13.33 | - |
压力(psia) | 1990. | 1980. | 1980. | 850.0* | 15.00* |
摩尔流量(MMSCFD) | 1082. | 900.0* | 181.9 | 181.9 | 4.671 |
质量流量(lb/hr) | 4.333e+06 | 3.604e+06 | 7.285e+05 | 7.285e+05 | 9239. |
液体体积流量(桶/天) | 4.369e+05 | 3.635e+05 | 7.348e+04 | 7.346e+04 | 633.9 |
热流量(kW) | -4.639e+06 | -3.869e+06 | -7.819e+05 | -7.819e+05 | -2.193e+04 |
组分摩尔分数(氮气) | 0.0041 | 0.0041 | 0.0041 | 0.0041 | 0.0000 |
组分摩尔分数(CO2) | 0.7123 | 0.7123 | 0.7123 | 0.7123 | 0.0000 |
组分摩尔分数(H2S) | 0.0053 | 0.0053 | 0.0053 | 0.0053 | 0.0000 |
组分摩尔分数(甲烷) | 0.2683 | 0.2883 | 0.2683 | 0.2683 | 0.0000 |
组分摩尔分数(乙烷) | 0.0051 | 0.0051 | 0.0051 | 0.0051 | 0.0000 |
组分摩尔分数(丙烷) | 0.0016 | 0.0016 | 0.0016 | 0.0016 | 0.0000 |
组分摩尔分数(H2O) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
名称 | 6001 | 9901 | 9902 | Kw(输出) | kW(注入泵) |
蒸汽分数 | 0.0000 | 0.0000 | 0.0000 | - | - |
温度(F) | 80.00 | 50.00* | 43.00* | - | - |
压力(psia) | 2050. | 1980. | 1970. | - | - |
摩尔流量(MMSCFD) | 68.43 | 1082. | 900.0 | - | - |
质量流量(lb/hr) | 1.390e+05 | 4.333e+06 | 3.604e+06 | - | - |
液体体积流量(桶/天) | 9630 | 4.369e+05 | 3.835e+05 | - | - |
热流量(kW) | -2.718e+05 | -4.651e+06 | -3.874e+06 | 2.756e+04 | 9694. |
组分摩尔分数(氮气) | 0.0000 | 0.0041 | 0.0041 | - | - |
组分摩尔分数(CO2) | 0.0187 | 0.7123 | 0.7123 | - | - |
组分摩尔分数(H2S) | 0.0003 | 0.0053 | 0.0053 | - | - |
组分摩尔分数(甲烷) | 0.0000 | 0.2683 | 0.2683 | - | - |
组分摩尔分数(乙烷) | 0.0000 | 0.0051 | 0.0051 | - | - |
组分摩尔分数(丙烷) | 0.0000 | 0.0016 | 0.0016 | - | - |
组分摩尔分数(H2O) | 0.9810 | 0.0000 | 0.0000 | - | - |
名称 | Q(dummy 3B) | Q(再沸器A) | Q(再沸器-A) | Q(Sea 1) | Q(SW冷却器) |
蒸汽分数 | - | - | - | - | - |
温度(F) | - | - | - | - | - |
压力(psia) | - | - | - | - | - |
摩尔流量(MMSCFD) | - | - | - | - | - |
质量流量(lb/hr) | - | - | - | - | - |
液体体积流量(桶/天) | - | - | - | - | - |
热流量(kW) | 1.206e+04 | 2.142e+04 | 2.141e+04 | - | 1.360e+05 |
组分摩尔分数(氮气) | - | - | - | - | - |
组分摩尔分数(CO2) | - | - | - | - | - |
组分摩尔分数(H2S) | - | - | - | - | - |
组分摩尔分数(甲烷) | - | - | - | - | - |
组分摩尔分数(乙烷) | - | - | - | - | - |
组分摩尔分数(丙烷) | - | - | - | - | - |
组分摩尔分数(H2O) | - | - | - | - | - |
Claims (6)
1.一种用甲烷体积浓度为百分之40至百分之80的天然气储气中的甲烷气体向燃气轮机供给燃料的方法,该方法包括:
由天然气储气提供第一天然气气流;
将第一天然气气流中的惰性气体与甲烷气体分离,提供分离的甲烷气体和分离的惰性气体;
将分离的惰性气体与甲烷体积浓度为百分之40至百分之80的第二天然气气流混合,混合后,第二天然气气流中的惰性气体量将使得燃气轮机的输出比以管道质量天然气作为燃料的燃气轮机增加至少百分之5。
2.根据权利要求1所述的方法,其中惰性气体包括氮气,且用膜将第一天然气气流中的氮气与甲烷气体分离。
3.根据权利要求1所述的方法,其中惰性气体包括二氧化碳气体,并将第一天然气气流中的二氧化碳与甲烷气体进行低温分离。
4.根据权利要求3所述的方法,其中将压力大于2500psig的高压进料天然气储气进行低温分离,并将高压进料膨胀成低压,使第一天然气气流中的二氧化碳气体与甲烷气体有效分离。
5.根据权利要求3所述的方法,其中将压力低于1100psig的低压进料天然气储气进行低温分离,使低压进料通过制冷单元冷却至能够使得第一天然气气流中的二氧化碳气体与甲烷气体有效分离的温度。
6.根据权利要求1、2、3、4或5所述的方法,其中从第一天然气气流中分离出的甲烷处理成管道质量天然气。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/460,149 | 1999-12-13 | ||
US09/460,149 US6298652B1 (en) | 1999-12-13 | 1999-12-13 | Method for utilizing gas reserves with low methane concentrations and high inert gas concentrations for fueling gas turbines |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB008178178A Division CN1239818C (zh) | 1999-12-13 | 2000-12-13 | 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1651738A CN1651738A (zh) | 2005-08-10 |
CN1304742C true CN1304742C (zh) | 2007-03-14 |
Family
ID=23827563
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100978646A Expired - Fee Related CN100338344C (zh) | 1999-12-13 | 2000-12-13 | 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法 |
CNB2004100978631A Expired - Fee Related CN1304742C (zh) | 1999-12-13 | 2000-12-13 | 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法 |
CNB2004100978627A Expired - Fee Related CN1304741C (zh) | 1999-12-13 | 2000-12-13 | 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法 |
CNB008178178A Expired - Fee Related CN1239818C (zh) | 1999-12-13 | 2000-12-13 | 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100978646A Expired - Fee Related CN100338344C (zh) | 1999-12-13 | 2000-12-13 | 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100978627A Expired - Fee Related CN1304741C (zh) | 1999-12-13 | 2000-12-13 | 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法 |
CNB008178178A Expired - Fee Related CN1239818C (zh) | 1999-12-13 | 2000-12-13 | 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法 |
Country Status (10)
Country | Link |
---|---|
US (5) | US6298652B1 (zh) |
EP (1) | EP1240279B1 (zh) |
CN (4) | CN100338344C (zh) |
AT (1) | ATE310068T1 (zh) |
AU (2) | AU779291C (zh) |
DE (1) | DE60024135T2 (zh) |
EA (1) | EA006494B1 (zh) |
HK (4) | HK1053667A1 (zh) |
MY (1) | MY125079A (zh) |
WO (1) | WO2001042400A1 (zh) |
Families Citing this family (145)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6298652B1 (en) * | 1999-12-13 | 2001-10-09 | Exxon Mobil Chemical Patents Inc. | Method for utilizing gas reserves with low methane concentrations and high inert gas concentrations for fueling gas turbines |
DE10047262B4 (de) * | 2000-09-23 | 2005-12-01 | G.A.S. Energietechnologie Gmbh | Verfahren zur Nutzung methanhaltiger Gase |
AU2002951703A0 (en) * | 2002-09-27 | 2002-10-17 | Commonwealth Scientific And Industrial Research Organisation | A method and system for a combustion of methane |
AU2003264182B2 (en) * | 2002-09-27 | 2009-05-14 | Commonwealth Scientific And Industrial Research Organisation | A system for catalytic combustion |
DE10252085A1 (de) * | 2002-11-08 | 2004-05-27 | Linde Ag | Verfahren zum Erhöhen des Wirkungsgrades von Erdgas |
US6820427B2 (en) * | 2002-12-13 | 2004-11-23 | General Electric Company | Method and apparatus for operating a turbine engine |
US6874323B2 (en) * | 2003-03-03 | 2005-04-05 | Power System Mfg., Llc | Low emissions hydrogen blended pilot |
US20040226299A1 (en) * | 2003-05-12 | 2004-11-18 | Drnevich Raymond Francis | Method of reducing NOX emissions of a gas turbine |
US7631691B2 (en) * | 2003-06-24 | 2009-12-15 | Exxonmobil Upstream Research Company | Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons |
US20080087420A1 (en) * | 2006-10-13 | 2008-04-17 | Kaminsky Robert D | Optimized well spacing for in situ shale oil development |
US7429287B2 (en) * | 2004-08-31 | 2008-09-30 | Bp Corporation North America Inc. | High efficiency gas sweetening system and method |
EP1669572A1 (en) * | 2004-12-08 | 2006-06-14 | Vrije Universiteit Brussel | Process and installation for producing electric power |
WO2007122692A1 (ja) * | 2006-04-14 | 2007-11-01 | Mitsui Engineering & Shipbuilding Co., Ltd. | ガスタービン複合発電システムにおけるガスハイドレート分解方法及び装置 |
WO2007126676A2 (en) * | 2006-04-21 | 2007-11-08 | Exxonmobil Upstream Research Company | In situ co-development of oil shale with mineral recovery |
US20080016768A1 (en) * | 2006-07-18 | 2008-01-24 | Togna Keith A | Chemically-modified mixed fuels, methods of production and used thereof |
WO2008048455A2 (en) | 2006-10-13 | 2008-04-24 | Exxonmobil Upstream Research Company | Enhanced shale oil production by in situ heating using hydraulically fractured producing wells |
US8151884B2 (en) | 2006-10-13 | 2012-04-10 | Exxonmobil Upstream Research Company | Combined development of oil shale by in situ heating with a deeper hydrocarbon resource |
AU2007313393B2 (en) * | 2006-10-13 | 2013-08-15 | Exxonmobil Upstream Research Company | Improved method of developing a subsurface freeze zone using formation fractures |
WO2008048448A2 (en) * | 2006-10-13 | 2008-04-24 | Exxonmobil Upstream Research Company | Heating an organic-rich rock formation in situ to produce products with improved properties |
US20090223229A1 (en) * | 2006-12-19 | 2009-09-10 | Hua Wang | Method and System for Using Low BTU Fuel Gas in a Gas Turbine |
CA2675780C (en) * | 2007-03-22 | 2015-05-26 | Exxonmobil Upstream Research Company | Granular electrical connections for in situ formation heating |
US8622133B2 (en) * | 2007-03-22 | 2014-01-07 | Exxonmobil Upstream Research Company | Resistive heater for in situ formation heating |
BRPI0810752A2 (pt) * | 2007-05-15 | 2014-10-21 | Exxonmobil Upstream Res Co | Métodos para o aquecimento in situ de uma formação rochosa rica em composto orgânico, para o aquecimento in situ de uma formação alvejada de xisto oleoso e para produzir um fluido de hidrocarboneto, poço aquecedor para o aquecimento in situ de uma formação rochosa rica em composto orgânico alvejada, e, campo para produzir um fluido de hidrocarboneto a partir de uma formação rica em composto orgânico alvejada. |
BRPI0810761A2 (pt) * | 2007-05-15 | 2014-10-21 | Exxonmobil Upstream Res Co | Método para o aquecimento in situ de uma porção selecionada de uma formação rochosa rica em composto orgânico, e para produzir um fluído de hidrocarboneto, e, poço aquecedor. |
CA2686830C (en) | 2007-05-25 | 2015-09-08 | Exxonmobil Upstream Research Company | A process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant |
US8146664B2 (en) * | 2007-05-25 | 2012-04-03 | Exxonmobil Upstream Research Company | Utilization of low BTU gas generated during in situ heating of organic-rich rock |
US8082995B2 (en) * | 2007-12-10 | 2011-12-27 | Exxonmobil Upstream Research Company | Optimization of untreated oil shale geometry to control subsidence |
EP2098683A1 (en) | 2008-03-04 | 2009-09-09 | ExxonMobil Upstream Research Company | Optimization of untreated oil shale geometry to control subsidence |
CN101981272B (zh) | 2008-03-28 | 2014-06-11 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
CN101981162B (zh) | 2008-03-28 | 2014-07-02 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
US8375696B2 (en) * | 2008-05-05 | 2013-02-19 | General Electric Company | Independent manifold dual gas turbine fuel system |
US8438830B2 (en) * | 2008-05-05 | 2013-05-14 | General Electric Company | Primary manifold dual gas turbine fuel system |
US20090272096A1 (en) * | 2008-05-05 | 2009-11-05 | General Electric Company | Single Manifold Dual Gas Turbine Fuel System |
WO2009142803A1 (en) | 2008-05-23 | 2009-11-26 | Exxonmobil Upstream Research Company | Field management for substantially constant composition gas generation |
JP5580320B2 (ja) | 2008-10-14 | 2014-08-27 | エクソンモービル アップストリーム リサーチ カンパニー | 燃焼生成物を制御するための方法およびシステム |
CA2738873A1 (en) * | 2008-10-29 | 2010-05-06 | Exxonmobil Upstream Research Company | Electrically conductive methods for heating a subsurface formation to convert organic matter into hydrocarbon fluids |
WO2010096210A1 (en) * | 2009-02-23 | 2010-08-26 | Exxonmobil Upstream Research Company | Water treatment following shale oil production by in situ heating |
BRPI1015966A2 (pt) | 2009-05-05 | 2016-05-31 | Exxonmobil Upstream Company | "método para tratar uma formação subterrânea, e, meio de armazenamento legível por computador." |
WO2010141777A1 (en) | 2009-06-05 | 2010-12-09 | Exxonmobil Upstream Research Company | Combustor systems and methods for using same |
CN102597418A (zh) | 2009-11-12 | 2012-07-18 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
US8863839B2 (en) * | 2009-12-17 | 2014-10-21 | Exxonmobil Upstream Research Company | Enhanced convection for in situ pyrolysis of organic-rich rock formations |
CN102221630A (zh) * | 2010-04-16 | 2011-10-19 | 上海森太克汽车电子有限公司 | 自适应车速传感器及信号占空比校正方法 |
MY156099A (en) | 2010-07-02 | 2016-01-15 | Exxonmobil Upstream Res Co | Systems and methods for controlling combustion of a fuel |
JP5759543B2 (ja) | 2010-07-02 | 2015-08-05 | エクソンモービル アップストリーム リサーチ カンパニー | 排ガス再循環方式及び直接接触型冷却器による化学量論的燃焼 |
BR112012031153A2 (pt) | 2010-07-02 | 2016-11-08 | Exxonmobil Upstream Res Co | sistemas e métodos de geração de energia de triplo-ciclo de baixa emissão |
US9732675B2 (en) | 2010-07-02 | 2017-08-15 | Exxonmobil Upstream Research Company | Low emission power generation systems and methods |
JP5906555B2 (ja) | 2010-07-02 | 2016-04-20 | エクソンモービル アップストリーム リサーチ カンパニー | 排ガス再循環方式によるリッチエアの化学量論的燃焼 |
WO2012018458A1 (en) | 2010-08-06 | 2012-02-09 | Exxonmobil Upstream Research Company | System and method for exhaust gas extraction |
CA2805089C (en) | 2010-08-06 | 2018-04-03 | Exxonmobil Upstream Research Company | Systems and methods for optimizing stoichiometric combustion |
CA2806174C (en) | 2010-08-30 | 2017-01-31 | Exxonmobil Upstream Research Company | Olefin reduction for in situ pyrolysis oil generation |
US8616280B2 (en) | 2010-08-30 | 2013-12-31 | Exxonmobil Upstream Research Company | Wellbore mechanical integrity for in situ pyrolysis |
TWI563165B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Power generation system and method for generating power |
TWI564474B (zh) | 2011-03-22 | 2017-01-01 | 艾克頌美孚上游研究公司 | 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法 |
TWI593872B (zh) | 2011-03-22 | 2017-08-01 | 艾克頌美孚上游研究公司 | 整合系統及產生動力之方法 |
TWI563166B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated generation systems and methods for generating power |
US11255173B2 (en) | 2011-04-07 | 2022-02-22 | Typhon Technology Solutions, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas |
US9140110B2 (en) | 2012-10-05 | 2015-09-22 | Evolution Well Services, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas |
US11708752B2 (en) | 2011-04-07 | 2023-07-25 | Typhon Technology Solutions (U.S.), Llc | Multiple generator mobile electric powered fracturing system |
EP4400692A3 (en) | 2011-04-07 | 2024-10-16 | Typhon Technology Solutions, LLC | Electrically powered system for use in fracturing underground formations |
WO2013066772A1 (en) | 2011-11-04 | 2013-05-10 | Exxonmobil Upstream Research Company | Multiple electrical connections to optimize heating for in situ pyrolysis |
CN104428490B (zh) | 2011-12-20 | 2018-06-05 | 埃克森美孚上游研究公司 | 提高的煤层甲烷生产 |
US9353682B2 (en) | 2012-04-12 | 2016-05-31 | General Electric Company | Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation |
US9784185B2 (en) | 2012-04-26 | 2017-10-10 | General Electric Company | System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine |
US10273880B2 (en) | 2012-04-26 | 2019-04-30 | General Electric Company | System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine |
AU2013256823B2 (en) | 2012-05-04 | 2015-09-03 | Exxonmobil Upstream Research Company | Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material |
US10215412B2 (en) | 2012-11-02 | 2019-02-26 | General Electric Company | System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US9611756B2 (en) | 2012-11-02 | 2017-04-04 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9631815B2 (en) | 2012-12-28 | 2017-04-25 | General Electric Company | System and method for a turbine combustor |
US9708977B2 (en) | 2012-12-28 | 2017-07-18 | General Electric Company | System and method for reheat in gas turbine with exhaust gas recirculation |
US10161312B2 (en) | 2012-11-02 | 2018-12-25 | General Electric Company | System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system |
US9803865B2 (en) | 2012-12-28 | 2017-10-31 | General Electric Company | System and method for a turbine combustor |
US10107495B2 (en) | 2012-11-02 | 2018-10-23 | General Electric Company | Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent |
US9869279B2 (en) | 2012-11-02 | 2018-01-16 | General Electric Company | System and method for a multi-wall turbine combustor |
US9574496B2 (en) | 2012-12-28 | 2017-02-21 | General Electric Company | System and method for a turbine combustor |
US9599070B2 (en) | 2012-11-02 | 2017-03-21 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
US10208677B2 (en) | 2012-12-31 | 2019-02-19 | General Electric Company | Gas turbine load control system |
US9581081B2 (en) | 2013-01-13 | 2017-02-28 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9512759B2 (en) | 2013-02-06 | 2016-12-06 | General Electric Company | System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation |
US9938861B2 (en) | 2013-02-21 | 2018-04-10 | Exxonmobil Upstream Research Company | Fuel combusting method |
TW201502356A (zh) | 2013-02-21 | 2015-01-16 | Exxonmobil Upstream Res Co | 氣渦輪機排氣中氧之減少 |
RU2637609C2 (ru) | 2013-02-28 | 2017-12-05 | Эксонмобил Апстрим Рисерч Компани | Система и способ для камеры сгорания турбины |
TW201500635A (zh) | 2013-03-08 | 2015-01-01 | Exxonmobil Upstream Res Co | 處理廢氣以供用於提高油回收 |
US9784182B2 (en) | 2013-03-08 | 2017-10-10 | Exxonmobil Upstream Research Company | Power generation and methane recovery from methane hydrates |
US9618261B2 (en) | 2013-03-08 | 2017-04-11 | Exxonmobil Upstream Research Company | Power generation and LNG production |
US20140250945A1 (en) | 2013-03-08 | 2014-09-11 | Richard A. Huntington | Carbon Dioxide Recovery |
US9377202B2 (en) | 2013-03-15 | 2016-06-28 | General Electric Company | System and method for fuel blending and control in gas turbines |
US9382850B2 (en) | 2013-03-21 | 2016-07-05 | General Electric Company | System and method for controlled fuel blending in gas turbines |
US9617914B2 (en) | 2013-06-28 | 2017-04-11 | General Electric Company | Systems and methods for monitoring gas turbine systems having exhaust gas recirculation |
US9631542B2 (en) | 2013-06-28 | 2017-04-25 | General Electric Company | System and method for exhausting combustion gases from gas turbine engines |
TWI654368B (zh) | 2013-06-28 | 2019-03-21 | 美商艾克頌美孚上游研究公司 | 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體 |
US9835089B2 (en) | 2013-06-28 | 2017-12-05 | General Electric Company | System and method for a fuel nozzle |
US9587510B2 (en) | 2013-07-30 | 2017-03-07 | General Electric Company | System and method for a gas turbine engine sensor |
US9903588B2 (en) | 2013-07-30 | 2018-02-27 | General Electric Company | System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation |
US9951658B2 (en) | 2013-07-31 | 2018-04-24 | General Electric Company | System and method for an oxidant heating system |
AU2014340644B2 (en) | 2013-10-22 | 2017-02-02 | Exxonmobil Upstream Research Company | Systems and methods for regulating an in situ pyrolysis process |
US9394772B2 (en) | 2013-11-07 | 2016-07-19 | Exxonmobil Upstream Research Company | Systems and methods for in situ resistive heating of organic matter in a subterranean formation |
US9752458B2 (en) | 2013-12-04 | 2017-09-05 | General Electric Company | System and method for a gas turbine engine |
US10030588B2 (en) | 2013-12-04 | 2018-07-24 | General Electric Company | Gas turbine combustor diagnostic system and method |
US10227920B2 (en) | 2014-01-15 | 2019-03-12 | General Electric Company | Gas turbine oxidant separation system |
US9915200B2 (en) | 2014-01-21 | 2018-03-13 | General Electric Company | System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation |
US9863267B2 (en) | 2014-01-21 | 2018-01-09 | General Electric Company | System and method of control for a gas turbine engine |
US10079564B2 (en) | 2014-01-27 | 2018-09-18 | General Electric Company | System and method for a stoichiometric exhaust gas recirculation gas turbine system |
US10047633B2 (en) | 2014-05-16 | 2018-08-14 | General Electric Company | Bearing housing |
US10655542B2 (en) | 2014-06-30 | 2020-05-19 | General Electric Company | Method and system for startup of gas turbine system drive trains with exhaust gas recirculation |
US10060359B2 (en) | 2014-06-30 | 2018-08-28 | General Electric Company | Method and system for combustion control for gas turbine system with exhaust gas recirculation |
US9885290B2 (en) | 2014-06-30 | 2018-02-06 | General Electric Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
US9739122B2 (en) | 2014-11-21 | 2017-08-22 | Exxonmobil Upstream Research Company | Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation |
CA2970527C (en) | 2014-12-19 | 2019-08-13 | Evolution Well Services, Llc | Mobile electric power generation for hydraulic fracturing of subsurface geological formations |
US9869247B2 (en) | 2014-12-31 | 2018-01-16 | General Electric Company | Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation |
US9819292B2 (en) | 2014-12-31 | 2017-11-14 | General Electric Company | Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine |
US10788212B2 (en) | 2015-01-12 | 2020-09-29 | General Electric Company | System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation |
US10094566B2 (en) | 2015-02-04 | 2018-10-09 | General Electric Company | Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation |
US10253690B2 (en) | 2015-02-04 | 2019-04-09 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10316746B2 (en) | 2015-02-04 | 2019-06-11 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10267270B2 (en) | 2015-02-06 | 2019-04-23 | General Electric Company | Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation |
US10145269B2 (en) | 2015-03-04 | 2018-12-04 | General Electric Company | System and method for cooling discharge flow |
US10480792B2 (en) | 2015-03-06 | 2019-11-19 | General Electric Company | Fuel staging in a gas turbine engine |
CN105733718B (zh) * | 2016-04-14 | 2018-08-21 | 中石化南京工程有限公司 | 一种合成气甲烷化多联产方法及装置 |
US10214702B2 (en) | 2016-12-02 | 2019-02-26 | Mustang Sampling Llc | Biogas blending and verification systems and methods |
US10696906B2 (en) | 2017-09-29 | 2020-06-30 | Marathon Petroleum Company Lp | Tower bottoms coke catching device |
US12000720B2 (en) | 2018-09-10 | 2024-06-04 | Marathon Petroleum Company Lp | Product inventory monitoring |
US12031676B2 (en) | 2019-03-25 | 2024-07-09 | Marathon Petroleum Company Lp | Insulation securement system and associated methods |
US11975316B2 (en) | 2019-05-09 | 2024-05-07 | Marathon Petroleum Company Lp | Methods and reforming systems for re-dispersing platinum on reforming catalyst |
US11607654B2 (en) | 2019-12-30 | 2023-03-21 | Marathon Petroleum Company Lp | Methods and systems for in-line mixing of hydrocarbon liquids |
US11124714B2 (en) | 2020-02-19 | 2021-09-21 | Marathon Petroleum Company Lp | Low sulfur fuel oil blends for stability enhancement and associated methods |
CN112630263B (zh) * | 2020-11-12 | 2023-04-07 | 南京理工大学 | 用于在对冲扩散火焰中实现掺混组分化学作用分离的方法 |
US11905468B2 (en) | 2021-02-25 | 2024-02-20 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers |
US11702600B2 (en) | 2021-02-25 | 2023-07-18 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers |
US11898109B2 (en) | 2021-02-25 | 2024-02-13 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers |
US20220268694A1 (en) | 2021-02-25 | 2022-08-25 | Marathon Petroleum Company Lp | Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers |
US11578638B2 (en) | 2021-03-16 | 2023-02-14 | Marathon Petroleum Company Lp | Scalable greenhouse gas capture systems and methods |
US11655940B2 (en) | 2021-03-16 | 2023-05-23 | Marathon Petroleum Company Lp | Systems and methods for transporting fuel and carbon dioxide in a dual fluid vessel |
US12012883B2 (en) | 2021-03-16 | 2024-06-18 | Marathon Petroleum Company Lp | Systems and methods for backhaul transportation of liquefied gas and CO2 using liquefied gas carriers |
US11578836B2 (en) | 2021-03-16 | 2023-02-14 | Marathon Petroleum Company Lp | Scalable greenhouse gas capture systems and methods |
US11447877B1 (en) | 2021-08-26 | 2022-09-20 | Marathon Petroleum Company Lp | Assemblies and methods for monitoring cathodic protection of structures |
US12043905B2 (en) | 2021-08-26 | 2024-07-23 | Marathon Petroleum Company Lp | Electrode watering assemblies and methods for maintaining cathodic monitoring of structures |
US11692141B2 (en) | 2021-10-10 | 2023-07-04 | Marathon Petroleum Company Lp | Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive |
US11802257B2 (en) | 2022-01-31 | 2023-10-31 | Marathon Petroleum Company Lp | Systems and methods for reducing rendered fats pour point |
US11725582B1 (en) | 2022-04-28 | 2023-08-15 | Typhon Technology Solutions (U.S.), Llc | Mobile electric power generation system |
US11686070B1 (en) | 2022-05-04 | 2023-06-27 | Marathon Petroleum Company Lp | Systems, methods, and controllers to enhance heavy equipment warning |
US11955782B1 (en) | 2022-11-01 | 2024-04-09 | Typhon Technology Solutions (U.S.), Llc | System and method for fracturing of underground formations using electric grid power |
US12012082B1 (en) | 2022-12-30 | 2024-06-18 | Marathon Petroleum Company Lp | Systems and methods for a hydraulic vent interlock |
US12043361B1 (en) | 2023-02-18 | 2024-07-23 | Marathon Petroleum Company Lp | Exhaust handling systems for marine vessels and related methods |
US12006014B1 (en) | 2023-02-18 | 2024-06-11 | Marathon Petroleum Company Lp | Exhaust vent hoods for marine vessels and related methods |
US12087002B1 (en) | 2023-09-18 | 2024-09-10 | Marathon Petroleum Company Lp | Systems and methods to determine depth of soil coverage along a right-of-way |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4697413A (en) * | 1984-12-21 | 1987-10-06 | Pohl Hans C | Method of cooling partial oxidation gas containing finely divided impurities and used for combustion in a combined gas-steam turbine of a power plant |
US4733528A (en) * | 1984-03-02 | 1988-03-29 | Imperial Chemical Industries Plc | Energy recovery |
US5048284A (en) * | 1986-05-27 | 1991-09-17 | Imperial Chemical Industries Plc | Method of operating gas turbines with reformed fuel |
WO1993013307A1 (en) * | 1991-12-31 | 1993-07-08 | Harvey Robert D | Process for producing electric energy using sour natural gas |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL6511884A (zh) | 1965-09-13 | 1967-03-14 | ||
US3653183A (en) | 1970-02-12 | 1972-04-04 | Northern Petro Chem Co | Methyl ethers of polyalkoxylated polyols for removing acidic gases from gases |
US3739581A (en) * | 1972-01-19 | 1973-06-19 | E Talmor | Method and apparatus for providing jet propelled vehicles with a heat sink |
US3868817A (en) | 1973-12-27 | 1975-03-04 | Texaco Inc | Gas turbine process utilizing purified fuel gas |
US4098339A (en) * | 1976-06-21 | 1978-07-04 | Mobil Oil Corporation | Utilization of low BTU natural gas |
US4132065A (en) | 1977-03-28 | 1979-01-02 | Texaco Inc. | Production of H2 and co-containing gas stream and power |
US4299086A (en) | 1978-12-07 | 1981-11-10 | Gulf Research & Development Company | Utilization of energy obtained by substoichiometric combustion of low heating value gases |
DE2909335A1 (de) * | 1979-03-09 | 1980-09-18 | Linde Ag | Verfahren und vorrichtung zur zerlegung von erdgas |
DE2912761A1 (de) * | 1979-03-30 | 1980-10-09 | Linde Ag | Verfahren zum zerlegen eines gasgemisches |
GB2058198B (en) * | 1979-08-31 | 1983-01-19 | Unimax Switch Ltd | Key mountings |
US4383837A (en) | 1979-12-28 | 1983-05-17 | Atlantic Richfield Company | Efficient methane production with metal hydrides |
GB2085314B (en) | 1980-10-07 | 1984-09-12 | Ici Plc | Hydrocarbon cracking process and catalyst |
US4423155A (en) | 1981-02-20 | 1983-12-27 | Mobil Oil Corporation | Dimethyl ether synthesis catalyst |
US4366668A (en) * | 1981-02-25 | 1983-01-04 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases |
US4363361A (en) | 1981-03-19 | 1982-12-14 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases |
GB2109532B (en) * | 1981-11-07 | 1985-01-03 | Rolls Royce | Gas fuel injector |
US4623371A (en) | 1984-08-03 | 1986-11-18 | El Paso Hydrocarbons Company | Utilizing the Mehra process for processing and BTU upgrading of nitrogen-rich natural gas streams |
US4421535A (en) | 1982-05-03 | 1983-12-20 | El Paso Hydrocarbons Company | Process for recovery of natural gas liquids from a sweetened natural gas stream |
US4483943A (en) | 1983-04-07 | 1984-11-20 | Uop Inc. | Gas conversion catalysts |
US4496371A (en) | 1983-09-21 | 1985-01-29 | Uop Inc. | Process for removal of hydrogen sulfide and carbon dioxide from gas streams |
DE3415224A1 (de) | 1984-04-21 | 1985-10-24 | Kraftwerk Union AG, 4330 Mülheim | Gasturbinen- und dampfkraftwerk mit einer integrierten kohlevergasungsanlage |
US4595396A (en) | 1984-05-14 | 1986-06-17 | Phillips Petroleum Company | Composition comprising 1,3,5-trioxane |
DE68914051T2 (de) | 1988-04-05 | 1994-07-21 | Ici Plc | Gasturbine. |
US4861745A (en) | 1988-08-03 | 1989-08-29 | United Catalyst Inc. | High temperature shift catalyst and process for its manufacture |
US5048285A (en) * | 1990-03-26 | 1991-09-17 | Untied Technologies Corporation | Control system for gas turbine engines providing extended engine life |
GB9105095D0 (en) * | 1991-03-11 | 1991-04-24 | H & G Process Contracting | Improved clean power generation |
US5725616A (en) | 1991-12-12 | 1998-03-10 | Kvaerner Engineering A.S. | Method for combustion of hydrocarbons |
US5435836A (en) * | 1993-12-23 | 1995-07-25 | Air Products And Chemicals, Inc. | Hydrogen recovery by adsorbent membranes |
US5741440A (en) | 1994-02-28 | 1998-04-21 | Eastman Chemical Company | Production of hydrogen and carbon monoxide |
US6293979B1 (en) | 1994-12-19 | 2001-09-25 | Council Of Scientific & Industrial Research | Process for the catalytic conversion of methane or natural gas to syngas or a mixture of carbon monoxide and hydrogen |
DK171830B1 (da) * | 1995-01-20 | 1997-06-23 | Topsoe Haldor As | Fremgangsmåde til generering af elektrisk energi |
US5516967A (en) | 1995-01-30 | 1996-05-14 | Chemisar Laboratories Inc. | Direct conversion of methane to hythane |
US5740673A (en) * | 1995-11-07 | 1998-04-21 | Air Products And Chemicals, Inc. | Operation of integrated gasification combined cycle power generation systems at part load |
US5666823A (en) * | 1996-01-31 | 1997-09-16 | Air Products And Chemicals, Inc. | High pressure combustion turbine and air separation system integration |
US5861441A (en) * | 1996-02-13 | 1999-01-19 | Marathon Oil Company | Combusting a hydrocarbon gas to produce a reformed gas |
JP3533895B2 (ja) * | 1997-03-13 | 2004-05-31 | セイコーエプソン株式会社 | シリアルプリンタ及びシリアルプリンタにおけるイメージバッファアクセス方法 |
CA2317539C (en) * | 1998-01-08 | 2003-08-19 | Satish Reddy | Autorefrigeration separation of carbon dioxide |
DE59810033D1 (de) * | 1998-09-16 | 2003-12-04 | Alstom Switzerland Ltd | Verfahren zum Minimieren thermoakustischer Schwingungen in Gasturbinenbrennkammern |
US6499083B1 (en) * | 1999-09-15 | 2002-12-24 | Western Digital Ventures, Inc. | Disk-based storage system responsive to a direction-selection signal for autonomously controlling seeks in a sequence determined by the direction-selection signal and a locally-stored doubly linked list |
US6585784B1 (en) * | 1999-12-13 | 2003-07-01 | Exxonmobil Chemical Patents Inc. | Method for utilizing gas reserves with low methane concentrations for fueling gas turbines |
US6298652B1 (en) * | 1999-12-13 | 2001-10-09 | Exxon Mobil Chemical Patents Inc. | Method for utilizing gas reserves with low methane concentrations and high inert gas concentrations for fueling gas turbines |
KR100442439B1 (ko) * | 2002-10-07 | 2004-07-30 | 엘지전자 주식회사 | 제어국의 멀티링크에서 링크별 큐 할당 장치 및 방법 |
-
1999
- 1999-12-13 US US09/460,149 patent/US6298652B1/en not_active Expired - Lifetime
-
2000
- 2000-12-13 WO PCT/US2000/033705 patent/WO2001042400A1/en active IP Right Grant
- 2000-12-13 EP EP00986339A patent/EP1240279B1/en not_active Expired - Lifetime
- 2000-12-13 CN CNB2004100978646A patent/CN100338344C/zh not_active Expired - Fee Related
- 2000-12-13 DE DE60024135T patent/DE60024135T2/de not_active Expired - Lifetime
- 2000-12-13 CN CNB2004100978631A patent/CN1304742C/zh not_active Expired - Fee Related
- 2000-12-13 CN CNB2004100978627A patent/CN1304741C/zh not_active Expired - Fee Related
- 2000-12-13 CN CNB008178178A patent/CN1239818C/zh not_active Expired - Fee Related
- 2000-12-13 AU AU22595/01A patent/AU779291C/en not_active Ceased
- 2000-12-13 EA EA200200638A patent/EA006494B1/ru not_active IP Right Cessation
- 2000-12-13 MY MYPI20005848A patent/MY125079A/en unknown
- 2000-12-13 AT AT00986339T patent/ATE310068T1/de not_active IP Right Cessation
-
2001
- 2001-07-27 US US09/917,451 patent/US6523351B2/en not_active Expired - Lifetime
-
2002
- 2002-12-20 US US10/326,736 patent/US6684644B2/en not_active Expired - Lifetime
-
2003
- 2003-08-22 HK HK03106019A patent/HK1053667A1/xx not_active IP Right Cessation
- 2003-12-05 US US10/728,626 patent/US6907737B2/en not_active Expired - Fee Related
-
2005
- 2005-02-08 AU AU2005200532A patent/AU2005200532B2/en not_active Ceased
- 2005-03-30 US US11/093,883 patent/US7350359B2/en not_active Expired - Fee Related
-
2006
- 2006-02-09 HK HK06101699A patent/HK1082784A1/xx not_active IP Right Cessation
- 2006-02-09 HK HK06101698A patent/HK1082783A1/xx not_active IP Right Cessation
- 2006-02-09 HK HK06101700A patent/HK1082785A1/xx not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4733528A (en) * | 1984-03-02 | 1988-03-29 | Imperial Chemical Industries Plc | Energy recovery |
US4697413A (en) * | 1984-12-21 | 1987-10-06 | Pohl Hans C | Method of cooling partial oxidation gas containing finely divided impurities and used for combustion in a combined gas-steam turbine of a power plant |
US5048284A (en) * | 1986-05-27 | 1991-09-17 | Imperial Chemical Industries Plc | Method of operating gas turbines with reformed fuel |
WO1993013307A1 (en) * | 1991-12-31 | 1993-07-08 | Harvey Robert D | Process for producing electric energy using sour natural gas |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1304742C (zh) | 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法 | |
AU2010201571B2 (en) | A method and system for production of liquid natural gas | |
CN103917490B (zh) | 低排放动力产生系统和合并二氧化碳分离的方法 | |
CN103026031B (zh) | 低排放三循环动力产生系统和方法 | |
CN1187519C (zh) | 用低甲烷浓度的储气向燃气轮机供给燃料的方法 | |
TWI579507B (zh) | 利用廢氣再循環對富集之空氣進行化學計量燃燒之系統和方法 | |
US9784182B2 (en) | Power generation and methane recovery from methane hydrates | |
MX2013009833A (es) | Sistemas y metodos para controlar la combustion estequiometrica en sistemas de turbina de baja emision. | |
SG186156A1 (en) | Stoichiometric combustion with exhaust gas recirculation and direct contact cooler | |
MX2013009834A (es) | Sistemas de turbina de baja emision que incorporan un aparato de control de oxidante al compresor de entrada y metodos relacionados con los mismos. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1082785 Country of ref document: HK |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070314 Termination date: 20161213 |
|
CF01 | Termination of patent right due to non-payment of annual fee |