CN1187519C - 用低甲烷浓度的储气向燃气轮机供给燃料的方法 - Google Patents

用低甲烷浓度的储气向燃气轮机供给燃料的方法 Download PDF

Info

Publication number
CN1187519C
CN1187519C CNB00817055XA CN00817055A CN1187519C CN 1187519 C CN1187519 C CN 1187519C CN B00817055X A CNB00817055X A CN B00817055XA CN 00817055 A CN00817055 A CN 00817055A CN 1187519 C CN1187519 C CN 1187519C
Authority
CN
China
Prior art keywords
gas
hydrogen
percent
methane
rock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB00817055XA
Other languages
English (en)
Other versions
CN1425104A (zh
Inventor
F·F·米切克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of CN1425104A publication Critical patent/CN1425104A/zh
Application granted granted Critical
Publication of CN1187519C publication Critical patent/CN1187519C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Industrial Gases (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明涉及一种通过具有相对较低甲烷浓度的天然气储气向燃气轮机供给燃料的方法。本发明能够利用该天然气储气向燃气轮机供给燃料,以便发电。本发明的方法包括:提供甲烷体积浓度不超过大约百分之40的天然气,并使天然气中的甲烷与氢气混合,以便提供由氢气增强的甲烷/氢气混合气,该混合气的氢气足以在燃烧时提供火焰稳定性。然后,需要时,该氢气增强的甲烷/氢气混合气进行脱水,以便除去足够量的水,从而提供火焰稳定的氢气增强的脱水甲烷/氢气混合气。该氢气增强的脱水甲烷/氢气混合气再用于向燃气轮机发电机供给燃料。

Description

用低甲烷浓度的储气向 燃气轮机供给燃料的方法
技术领域
本发明涉及低甲烷浓度天然气的燃烧过程,在没有本发明的情况下,该天然气用于通过燃气轮机进行经济发电的热值较低。更具体地说,本发明涉及甲烷相对于气体总体积的体积浓度不超过大约百分之40的混合气的燃烧过程。该混合气包括氢气,以便提高该混合气的可燃性。
背景技术
目前,大部分甲烷储气具有相对较低的甲烷气体浓度。多数这些储气中甲烷气体的体积浓度低于百分之40。目前,是通过从天然气中除去杂质,从而形成甲烷体积浓度通常从大约百分之95+至大约百分之99+的管道质量的天然气。例如如欧洲专利申请公开No.0351094A1和美国专利No.4132065所述,这种高甲烷含量的天然气可以再通过添加氢气而进一步处理,以便向燃气轮机供给燃料。从经济上考虑,将甲烷体积浓度不超过百分之40的天然气转变成管道质量的天然气,向燃气轮机供给燃料以便发电是不实际的,因为该转变过程的成本非常高。而且,甲烷体积浓度不超过百分之40的天然气不能作为燃气轮机的可靠燃料源来发电,因为在没有特殊的催化剂和没有特殊的氧与其他可燃物补偿的情况下,这么低的甲烷浓度不能提供用于燃料燃烧的稳定火焰。
发明内容
本发明涉及一种低甲烷浓度天然气储气向燃气轮机供给燃料的方法。本发明能够利用这样的储气来向燃气轮机供给燃料用以发电。如上所述,目前,这些储气只能用于在除去杂质之后生成合适的燃气轮机燃料。还如前所述,现在的方法成本非常高,根据当前的天然气价格,这在经济上没有吸引力。本发明的方法能够根据环保需要除去杂质,并使惰性气体例如二氧化碳留在燃料中,以便使流过燃气轮机的质量流最大,并使用氢气或将恰好足够的甲烷转变成氢气,以便生成氢气和甲烷气体的气体燃料混合物,该气体燃料混合物不仅可作为一种可接受的燃气轮机的燃料,而且该混合物能有效提供火焰稳定性(例如提供至少为110BTU/标准立方英尺气体(298kcal/sm)热量的气体),且产生的能量比甲烷含量在大约百分之95+至大约百分之99+体积的的标准天然气更高。本发明的方法包括提供甲烷体积浓度不超过大约百分之40的天然气,并使天然气中的甲烷与氢气混合,提供由氢气增强的甲烷/氢气混合气(这也可以称为氢气增强的天然气),该混合气的氢气足以在燃烧时提供火焰稳定性。然后,若需要的话,将该氢气增强的甲烷/氢气混合气进行脱水,以便除去足够量的水,从而提供具有火焰稳定性的氢气增强脱水甲烷/氢气混合气。在一个重要方式中,该氢气增强的甲烷/氢气混合气有至少大约百分之6体积的氢气。然后再将具有火焰稳定性的氢气增强脱水甲烷/氢气混合气用于向发电燃气轮机供给燃料。与使用甲烷含量在大约百分之95至大约百分之99+体积的标准天然气的燃气轮机相比,本发明的方法能使燃气轮机电力输出有效增加至少大约百分之10。在大多数情况下,输出能够增加至少大约百分之20,并能达到百分之30,而后一界限值是由于受燃气轮机的机械设计限制。
在一个重要方式中,天然气中的一部分甲烷通过催化转变或重构成氢气,然后再形成氢气增强的甲烷/氢气混合气。实现该转变的反应式包括:
在另一重要方式中,在转变反应之前,利用物理溶剂从天然气中除去硫化氢和其它酸性成分例如COS、RSH和RSSR,从而生成脱硫天然气,物理溶剂有选择地除去硫化氢和其他酸性气体,但是很少除去二氧化碳和其他惰性气体例如氦气、氩气和氮气。在此方式中,物理溶剂从以下组中选择,该组包括甲醇、聚乙二醇二甲醚混合物(分子量为大约280)、碳酸丙二酯(b.p.240℃)、N-甲基-2-吡咯烷酮(b.p.202℃)、低聚乙二醇甲基异丙基醚的混合物(b.p.320℃)、膦酸三正丁酯(在30mmHg时b.p.180℃)和氰基乙酸甲酯(b.p.202℃)。该脱硫天然气与足量水混合,以便能从甲烷足量产生氢气,从而获得火焰稳定性或是BTU/Scf值至少为大约110(298kcal/sm)。在该方式中,重要的是在将一部分甲烷变换成氢气步骤之前要除去硫化氢和其他酸性气体,因为该重构过程是一个催化反应,硫化氢气体和其他酸性气体可能会使催化剂中毒。对酸性条件敏感且可在本发明该方式中使用的催化剂包括United Catalyst有限公司的C11系列催化剂、Haldor Topsoe公司的R67和BASF公司的G1-25(所有的商标都属于各商标所有者)。用于脱硫天然气的高温“变换催化剂”通常为铁、铬和铜,用于脱硫天然气的低温“变换催化剂”通常由铜、锌和铝制成。
在另一重要方式中,重构反应在酸性条件下利用催化剂进行,该催化剂例如United Catalyst有限公司的C25系列催化剂、BASF公司的K8-11催化剂和Haldor Topsoe公司的SSK催化剂。通常,这些催化剂是铬钼催化剂。在本发明的这一方式中,将酸性天然气与水混合,水的量应足以形成能够形成或重构成氢气含量足以使富含氢气的甲烷/氢气混合气具有火焰稳定性的甲烷气体/水混合物,该甲烷/氢气混合气含有不超过百分之40体积的甲烷。
在另一方式中,天然气储气可以含有低至百分之35、百分之25或者甚至低于百分之20体积的甲烷,且仍然能比管道质量甲烷提供更多的能量。在本发明的实际操作中,应将足量的甲烷转变成氢气,以生成氢气体积含量为至少百分之6,优选是从大约百分之6至大约百分之10的甲烷/氢气混合气。这将生成具有火焰稳定性的氢气增强甲烷/氢气混合气,该氢气增强甲烷/氢气混合气能非常有效地向燃气轮机供给燃料,以便发电。
具体地说,本申请提供下列发明:
1.一种用来自天然气储气中的甲烷向燃气轮机供给燃料的方法,该方法包括:
将天然气和氢气混合,以便提供氢气增强的甲烷混合气,氢气增强的甲烷混合气包括至少百分之6的氢气;以及
用氢气增强甲烷混合气向燃气轮机供给燃料;
特征在于来自天然气储气的天然气含有不超过百分之40体积的甲烷。
2.按上款1所述的向燃气轮机供给燃料的方法,其特征在于天然气含有小于百分之35体积的甲烷,而氢气增强的甲烷混合气含有百分之6至百分之10体积的氢气。
3.按上款1所述的向燃气轮机供给燃料的方法,其特征在于天然气含有小于百分之20体积的甲烷,而氢气增强的甲烷混合气含有百分之6至百分之10重量的氢气。
4.按上款1所述的向燃气轮机供给燃料的方法,其特征在于还包括:
从天然气中除去至少一种酸性组分,以提供脱硫天然气;
将天然气与氢气的混合,包括:
将脱硫天然气和水混合,以提供含水的脱硫天然气;
将含水的脱硫天然气中的一部分甲烷催化转变成氢气,以便提供含水的氢气增强天然气;和
将含水的氢气增强天然气脱水,以便提供具有火焰稳定性的脱水的氢气增强天然气;以及
向燃气轮机供给燃料,包括用脱水的氢气增强天然气向燃气轮机供给燃料。
5.按上款4所述的向燃气轮机供给燃料的方法,其特征在于从天然气中除去酸性组分,包括从天然气中除去硫化氢。
6.按上款5所述的向燃气轮机供给燃料的方法,其特征在于还包括通过物理溶剂从该天然气中除去硫化氢,同时使惰性气体的移出量减至最小。
7.按上款6所述的向燃气轮机供给燃料的方法,其特征在于物理溶剂从以下组中选择,该组包括:甲醇、聚乙二醇二甲醚混合物、碳酸丙二酯、N-甲基-2-吡咯烷酮、低聚乙二醇甲基异丙基醚混合物、膦酸三正丁酯、氰基乙酸甲酯以及它们的混合物。
8.按上款4至7任一项所述的向燃气轮机供给燃料的方法,其特征在于脱水的富氢天然气包括至少百分之6体积的氢气。
9.按上款4至7任一项所述的向燃气轮机供给燃料的方法,其特征在于含水的脱硫天然气中的甲烷利用从以下组中选择的变换催化剂来进行催化转化,该组包括:铁/铬/铜,铜/锌/铝以及它们的混合物。
10.按上款4所述的向燃气轮机供给燃料的方法,其特征在于该天然气含有不超过百分之35体积的甲烷,而脱水的氢气增强天然气包括百分之6至百分之10体积的氢气。
11.按上款4所述的向燃气轮机供给燃料的方法,其特征在于天然气含有不超过百分之20体积的甲烷,而脱水的氢气增强天然气包括百分之6至百分之10体积的氢气。
12.按上款1所述的向燃气轮机供给燃料的方法,其特征在于还包括:
将酸性天然气和水混合,以便提供含水的酸性天然气;
将天然气与氢气混合,进一步的特征在于:
将含水的酸性天然气中的一部分甲烷催化转变成氢气,以便提供含水的氢气增强天然气;
将含水的氢气增强天然气进行脱水,以便提供具有火焰稳定性的脱水的氢气增强天然气,所述具有火焰稳定性的脱水的氢气增强天然气是不大于百分之40体积的甲烷气体;以及
向燃气轮机供给燃料,进一步的特征在于用脱水的氢气增强天然气向燃气轮机供给燃料。
13.按上款12所述的向燃气轮机供给燃料的方法,其特征在于含水的氢气增强天然气包括至少百分之6体积的氢气。
14.按上款12所述的向燃气轮机供给燃料的方法,其特征在于含水的酸性天然气中的甲烷用铬/钼催化剂进行催化转变。
15.按上款12所述的方法,其特征在于天然气含有不超过百分之35体积的甲烷气体,而脱水的氢气增强天然气包括百分之6至百分之10体积的氢气。
16.按上款12所述的方法,其特征在于天然气含有不超过百分之20体积的甲烷,而脱水的氢气增强天然气包括百分之6至百分之10体积的氢气。
17.按上款4所述的方法,其特征在于还包括将惰性气体与脱水的氢气增强天然气一起注入燃气轮机的步骤。
18.按上款12所述的方法,其特征在于还包括将惰性气体与该脱水的氢气增强天然气一起注入燃气轮机的步骤。
附图说明
图1是表示本发明方法的平面图。
具体实施方式
参考图1,甲烷的体积浓度不超过大约百分之40的天然气从油井中出来,并利用物理溶剂处理,以便在不除去惰性气体的情况下除去硫化氢气体或其他酸性气体成分,从而提供甲烷体积含量不超过百分之40的脱硫天然气,该物理溶剂例如为甲醇、聚乙二醇二甲醚混合物、碳酸丙二酯、N-甲基-2-吡咯烷酮、低聚乙二醇甲基异丙基醚的混合物、膦酸三正丁酯和氰基乙酸甲酯。然后,该脱硫天然气通过管道1传送给氧化锌保护床2,以避免硫化氢气体溢出。该脱硫天然气从该氧化锌保护床2送出,并在管道3中与水混合,从而提供甲烷气体/水混合物。该气体/水混合物在管道3中在大约70°F(21℃)和大约355psig下传送至进料排出物换热器4,在该进料排出物换热器4处,脱硫天然气/水混合物的温度升高至大约800°F(427℃)。必须将足量的水与天然气混合,以便能足够转变成氢气,从而使该氢气增强的脱硫甲烷/氢气混合气在传送给燃气轮机发电时具有火焰稳定性。当脱硫天然气与水混合并在进料排出物换热器中加热后,加热的脱硫天然气/水混合物通过管道5在大约345psig(24.3kg/scm)和大约800°F(427℃)下传送给余热蒸汽发生器盘管(HRSG盘管),以便使脱硫天然气/水混合物的温度进一步升高,并在管道3中提供温度为大约950°F(510℃)的高热脱硫气体/水混合物。然后,该高热脱硫气体/水混合物在大约340psig(23.9kg/scm)下通过管道7传送给重构反应室8,以便将该脱硫气体/水中的一部分甲烷转变成氢气增强的甲烷/氢气/水混合物。脱硫气体/水混合物中的甲烷在至少约700°F(371℃),优选从约900°F(482℃)至约950°F(510℃)和约340psig(23.9kg/scm)下进行催化反应,使甲烷和水反应生成氢气。更高温度有利于该转变,但是更高压力对该转变有不利影响。压力不应当超过1500psig(105.5kg/scm)。在将足量甲烷转变成氢气,使脱水(下文中将介绍)后的气体中含有至少约百分之6体积的氢气之后,该氢气增强的甲烷/氢气/水混合物通过管道9在大约855°F(457℃)和335psig(23.6kg/scm)条件下传送回进料排出物换热器,以便将热量转移给进入该进料排出物换热器的水和甲烷气体。在该氢气增强的甲烷/氢气/水混合物的温度降低后,它通过管道10传送到脱水分离罐(KO罐)12,以减少氢气增强甲烷/氢气混合气中的含水量。在KO罐中降温到露点,使水能够冷凝并与气体分离。足量的水被除去,使其具有火焰稳定性,且提供热量至少约110BTU/标准立方英尺气体(298kcal/sm)的气体。通常,大约百分之97至大约百分之99重量的水从该气体中除去。将氢气增强甲烷/氢气/水混合物脱水而生成的水利用冷凝水泵并通过管道14从KO罐12中排出,并在大约100°F(38℃)和500psig(35.2kg/scm)下通过管道18送回进料排出物换热器4。现在,脱水的含有至少百分之6体积的氢气或含足以提供火焰稳定性氢气的氢气增强甲烷/氢气混合气从KO鼓通过管道20在大约100°F(38℃)和大约325psig(22.8kg/scm)下供给燃气轮发电机。这样,这些气体的热量至少为约110BTU/标准立方英尺气体((298kcal/sm),并能为燃气轮发电机提供稳定的火焰。
同样的方法也可以用于所采用的催化剂对天然气中酸性气体不敏感或不受该酸性气体毒化的酸性天然气的应用过程中。不过,为了使该方法适应环保要求,可以至少部分除去至少某些酸性气体,例如H2S。
在未图示的另一实施例中,通过注入惰性气体以增加通过燃气轮发电机的质量流量,可以提高由脱水的氢气增强甲烷/氢气混合气所产生的能量。在此方式中,作为燃料供给的全部气体还必须有火焰稳定性,并有至少大约110BTU/Scf(298kcal/sm)的热量。通常,是在氢气增强甲烷混合气在燃气轮机中燃烧之后,而且是在高热气体进入燃气轮机的扩管之前将惰性气体注入。根据在甲烷混合气中的氢气的量,燃气轮机的输出可以升高大约0.5%至大约9%。能量的增加量大约等于流过燃气轮机膨胀机的质量流量百分比增量。
本发明可通过下面的实例说明。
实施例I
                                燃气轮机性能
现场条件     单位     无增能气体     有增能气体
环境温度     °F/℃     60/15.5     60/15.5
环境压力     psia/kgsma     11.57/8.135     11.57/8.135
环境相对湿度     %     60     60
进口压力降     In H2O/cm H2O     3.0/29.4     3.0/29.4
性能
发电机总输出     kW/kcalsec     156,100/37,309     157,100/37,548
耗热量(LHV)     Btu/h×10-8/kcalsec×10-8     1,477.1/0.10     1,486.9/0.10
耗热率(LHV)     Btu/kWh/kcalsec     9,461/0.66     9,462/0.66
燃料1条件
组分     %Vol
二氧化碳     62.5     62.5
氢气     10.0     10.0
氮气     5.4     5.4
甲烷     20.3     20.3
其它     1.8     1.8
LHV     Btu/Lb/kcal/kg     2,424.0/1639     2,424.0/1639
    Btu/Scf/kcal/sm     212.5/575.9     212.5/575.9
燃料气体流量     lb/s/kg/s     169.3/76.8     170.4/77.3
压力     psia/kg/scm     325/22.9     325/22.9
温度     °F/℃     80/26.7     80/26.7
增能气体注入条件
组分     %Vol
二氧化碳     100.0     100.0
流量     lb/s/kg/s     0.0/0.0     4.0/1.8
压力     psia/kgscm     285/20.0     285/20.0
温度     °F/℃     300/149     300/149
排气条件     单位     无增能气体     有增能气体
排气流量     lb/s/kg/s     925.3/419.7     930.4/422.0
排气温度     °F/℃     1,093.1/589.5     1,095.1/590.6
排气组分     %Vol
二氧化碳     13.79     14.12
氩气     1.07     1.07
氮气     65.78     65.53
氧气     9.83     9.74
    9.53     9.55
排气压降     In H2O/cm H2O     15.0/38.1     15.0/38.1
NOx(热)     Ppmvd@15%O2     <10     <10

Claims (18)

1.一种用来自天然气储气中的甲烷向燃气轮机供给燃料的方法,该方法包括:
将天然气和氢气混合,以便提供氢气增强的甲烷混合气,氢气增强的甲烷混合气包括至少百分之6的氢气;以及
用氢气增强甲烷混合气向燃气轮机供给燃料;
特征在于来自天然气储气的天然气含有不超过百分之40体积的甲烷。
2.按权利要求1所述的向燃气轮机供给燃料的方法,其特征在于天然气含有小于百分之35体积的甲烷,而氢气增强的甲烷混合气含有百分之6至百分之10体积的氢气。
3.按权利要求1所述的向燃气轮机供给燃料的方法,其特征在于天然气含有小于百分之20体积的甲烷,而氢气增强的甲烷混合气含有百分之6至百分之10重量的氢气。
4.按权利要求1所述的向燃气轮机供给燃料的方法,其特征在于还包括:
从天然气中除去至少一种酸性组分,以提供脱硫天然气;
将天然气与氢气的混合,包括:
将脱硫天然气和水混合,以提供含水的脱硫天然气;
将含水的脱硫天然气中的一部分甲烷催化转变成氢气,以便提供含水的氢气增强天然气;和
将含水的氢气增强天然气脱水,以便提供具有火焰稳定性的脱水的氢气增强天然气;以及
向燃气轮机供给燃料,包括用脱水的氢气增强天然气向燃气轮机供给燃料。
5.按权利要求4所述的向燃气轮机供给燃料的方法,其特征在于从天然气中除去酸性组分,包括从天然气中除去硫化氢。
6.按权利要求5所述的向燃气轮机供给燃料的方法,其特征在于还包括通过物理溶剂从该天然气中除去硫化氢,同时使惰性气体的移出量减至最小。
7.按权利要求6所述的向燃气轮机供给燃料的方法,其特征在于物理溶剂从以下组中选择,该组包括:甲醇、聚乙二醇二甲醚混合物、碳酸丙二酯、N-甲基-2-吡咯烷酮、低聚乙二醇甲基异丙基醚混合物、膦酸三正丁酯、氰基乙酸甲酯以及它们的混合物。
8.按权利要求4至7任一项所述的向燃气轮机供给燃料的方法,其特征在于脱水的富氢天然气包括至少百分之6体积的氢气。
9.按权利要求4至7任一项所述的向燃气轮机供给燃料的方法,其特征在于含水的脱硫天然气中的甲烷利用从以下组中选择的变换催化剂来进行催化转化,该组包括:铁/铬/铜,铜/锌/铝以及它们的混合物。
10.按权利要求4所述的向燃气轮机供给燃料的方法,其特征在于该天然气含有不超过百分之35体积的甲烷,而脱水的氢气增强天然气包括百分之6至百分之10体积的氢气。
11.按权利要求4所述的向燃气轮机供给燃料的方法,其特征在于天然气含有不超过百分之20体积的甲烷,而脱水的氢气增强天然气包括百分之6至百分之10体积的氢气。
12.按权利要求1所述的向燃气轮机供给燃料的方法,其特征在于还包括:
将酸性天然气和水混合,以便提供含水的酸性天然气;
将天然气与氢气混合,进一步的特征在于:
将含水的酸性天然气中的一部分甲烷催化转变成氢气,以便提供含水的氢气增强天然气;
将含水的氢气增强天然气进行脱水,以便提供具有火焰稳定性的脱水的氢气增强天然气,所述具有火焰稳定性的脱水的氢气增强天然气是不大于百分之40体积的甲烷气体;以及
向燃气轮机供给燃料,进一步的特征在于用脱水的氢气增强天然气向燃气轮机供给燃料。
13.按权利要求12所述的向燃气轮机供给燃料的方法,其特征在于含水的氢气增强天然气包括至少百分之6体积的氢气。
14.按权利要求12所述的向燃气轮机供给燃料的方法,其特征在于含水的酸性天然气中的甲烷用铬/钼催化剂进行催化转变。
15.按权利要求12所述的方法,其特征在于天然气含有不超过百分之35体积的甲烷气体,而脱水的氢气增强天然气包括百分之6至百分之10体积的氢气。
16.按权利要求12所述的方法,其特征在于天然气含有不超过百分之20体积的甲烷,而脱水的氢气增强天然气包括百分之6至百分之10体积的氢气。
17.按权利要求4所述的方法,其特征在于还包括将惰性气体与脱水的氢气增强天然气一起注入燃气轮机的步骤。
18.按权利要求12所述的方法,其特征在于还包括将惰性气体与该脱水的氢气增强天然气一起注入燃气轮机的步骤。
CNB00817055XA 1999-12-13 2000-12-13 用低甲烷浓度的储气向燃气轮机供给燃料的方法 Expired - Fee Related CN1187519C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/460,148 US6585784B1 (en) 1999-12-13 1999-12-13 Method for utilizing gas reserves with low methane concentrations for fueling gas turbines
US09/460,148 1999-12-13

Publications (2)

Publication Number Publication Date
CN1425104A CN1425104A (zh) 2003-06-18
CN1187519C true CN1187519C (zh) 2005-02-02

Family

ID=23827560

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB00817055XA Expired - Fee Related CN1187519C (zh) 1999-12-13 2000-12-13 用低甲烷浓度的储气向燃气轮机供给燃料的方法

Country Status (10)

Country Link
US (3) US6585784B1 (zh)
EP (1) EP1238188B1 (zh)
CN (1) CN1187519C (zh)
AT (1) ATE289004T1 (zh)
AU (1) AU776117C (zh)
DE (1) DE60018103T2 (zh)
EA (1) EA004897B1 (zh)
HK (1) HK1055142A1 (zh)
MY (2) MY150401A (zh)
WO (1) WO2001042636A1 (zh)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6298652B1 (en) * 1999-12-13 2001-10-09 Exxon Mobil Chemical Patents Inc. Method for utilizing gas reserves with low methane concentrations and high inert gas concentrations for fueling gas turbines
AU2002951703A0 (en) 2002-09-27 2002-10-17 Commonwealth Scientific And Industrial Research Organisation A method and system for a combustion of methane
AU2003264182B2 (en) * 2002-09-27 2009-05-14 Commonwealth Scientific And Industrial Research Organisation A system for catalytic combustion
US6874323B2 (en) * 2003-03-03 2005-04-05 Power System Mfg., Llc Low emissions hydrogen blended pilot
US7631691B2 (en) * 2003-06-24 2009-12-15 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US20080087420A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Optimized well spacing for in situ shale oil development
EP1669572A1 (en) * 2004-12-08 2006-06-14 Vrije Universiteit Brussel Process and installation for producing electric power
US7644993B2 (en) * 2006-04-21 2010-01-12 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US20080016768A1 (en) 2006-07-18 2008-01-24 Togna Keith A Chemically-modified mixed fuels, methods of production and used thereof
US8151884B2 (en) 2006-10-13 2012-04-10 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
CA2666296A1 (en) * 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Heating an organic-rich rock formation in situ to produce products with improved properties
BRPI0719868A2 (pt) * 2006-10-13 2014-06-10 Exxonmobil Upstream Res Co Métodos para abaixar a temperatura de uma formação subsuperficial, e para formar uma parede congelada em uma formação subsuperficial
CA2663823C (en) 2006-10-13 2014-09-30 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
BRPI0808367A2 (pt) * 2007-03-22 2014-07-08 Exxonmobil Upstream Res Co Métodos para aquecer uma formação de subsuperfície usando aquecimento por resistência elétrica e para produzir fluidos de hidrocarboneto.
BRPI0808508A2 (pt) 2007-03-22 2014-08-19 Exxonmobil Upstream Res Co Métodos para aquecer uma formação de subsuperfície e uma formação rochosa rica em compostos orgânicos, e, método para produzir um fluido de hidrocarboneto
WO2008143749A1 (en) * 2007-05-15 2008-11-27 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
BRPI0810752A2 (pt) * 2007-05-15 2014-10-21 Exxonmobil Upstream Res Co Métodos para o aquecimento in situ de uma formação rochosa rica em composto orgânico, para o aquecimento in situ de uma formação alvejada de xisto oleoso e para produzir um fluido de hidrocarboneto, poço aquecedor para o aquecimento in situ de uma formação rochosa rica em composto orgânico alvejada, e, campo para produzir um fluido de hidrocarboneto a partir de uma formação rica em composto orgânico alvejada.
US8146664B2 (en) * 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US20080290719A1 (en) 2007-05-25 2008-11-27 Kaminsky Robert D Process for producing Hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US8082995B2 (en) * 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
EP2098683A1 (en) 2008-03-04 2009-09-09 ExxonMobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US7819932B2 (en) * 2008-04-10 2010-10-26 Carbon Blue-Energy, LLC Method and system for generating hydrogen-enriched fuel gas for emissions reduction and carbon dioxide for sequestration
BRPI0911530A2 (pt) 2008-05-23 2016-07-05 Exxonmobil Upstream Res Co métodos para produzir fluidos de hidrocarbonetos de uma formação de rocha rica em orgânicos, e para utilizar gás produzido de um processo de conversão in situ em uma área de desenvolvimento de hidrocarboneto
US20100101793A1 (en) * 2008-10-29 2010-04-29 Symington William A Electrically Conductive Methods For Heating A Subsurface Formation To Convert Organic Matter Into Hydrocarbon Fluids
AU2010216407B2 (en) * 2009-02-23 2014-11-20 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
CA2757483C (en) 2009-05-05 2015-03-17 Exxonmobil Upstream Research Company Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US8863839B2 (en) * 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
AU2011296522B2 (en) 2010-08-30 2016-06-23 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
CN103069104A (zh) 2010-08-30 2013-04-24 埃克森美孚上游研究公司 原位热解的井筒机械完整性
CN102311825A (zh) * 2011-08-16 2012-01-11 山西高碳能源低碳化利用研究设计院有限公司 生产氢混天然气的方法
CA2845012A1 (en) 2011-11-04 2013-05-10 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
WO2013165711A1 (en) 2012-05-04 2013-11-07 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US9377202B2 (en) 2013-03-15 2016-06-28 General Electric Company System and method for fuel blending and control in gas turbines
US9382850B2 (en) 2013-03-21 2016-07-05 General Electric Company System and method for controlled fuel blending in gas turbines
CA2923681A1 (en) 2013-10-22 2015-04-30 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
CN107000416B (zh) 2014-11-21 2019-10-11 埃克森美孚化学专利公司 聚烯烃膜
CA3090944A1 (en) 2017-02-08 2018-08-16 Upstream Data Inc. Blockchain mine at oil or gas facility
US10696906B2 (en) 2017-09-29 2020-06-30 Marathon Petroleum Company Lp Tower bottoms coke catching device
CN112438006B (zh) 2018-08-01 2021-07-06 克鲁索能源系统公司 天然气发电和耗电系统和方法
US20200063531A1 (en) * 2018-08-21 2020-02-27 John Tuma Systems and methods for a closed loop power system
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
AU2020276342A1 (en) 2019-05-15 2021-12-16 Upstream Data Inc. Portable blockchain mining system and methods of use
US11607654B2 (en) 2019-12-30 2023-03-21 Marathon Petroleum Company Lp Methods and systems for in-line mixing of hydrocarbon liquids
US11384301B2 (en) 2020-02-19 2022-07-12 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US20220268694A1 (en) 2021-02-25 2022-08-25 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11655940B2 (en) 2021-03-16 2023-05-23 Marathon Petroleum Company Lp Systems and methods for transporting fuel and carbon dioxide in a dual fluid vessel
US11578638B2 (en) 2021-03-16 2023-02-14 Marathon Petroleum Company Lp Scalable greenhouse gas capture systems and methods
US11578836B2 (en) 2021-03-16 2023-02-14 Marathon Petroleum Company Lp Scalable greenhouse gas capture systems and methods
US11447877B1 (en) 2021-08-26 2022-09-20 Marathon Petroleum Company Lp Assemblies and methods for monitoring cathodic protection of structures
US11692141B2 (en) 2021-10-10 2023-07-04 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
US11802257B2 (en) 2022-01-31 2023-10-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point
US11686070B1 (en) 2022-05-04 2023-06-27 Marathon Petroleum Company Lp Systems, methods, and controllers to enhance heavy equipment warning

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6511884A (zh) 1965-09-13 1967-03-14
US3653183A (en) * 1970-02-12 1972-04-04 Northern Petro Chem Co Methyl ethers of polyalkoxylated polyols for removing acidic gases from gases
US3868817A (en) * 1973-12-27 1975-03-04 Texaco Inc Gas turbine process utilizing purified fuel gas
US4171258A (en) * 1975-12-03 1979-10-16 Exxon Research & Engineering Co. Catalyst and process for hydroconversion of hydrocarbons using steam
US4098339A (en) * 1976-06-21 1978-07-04 Mobil Oil Corporation Utilization of low BTU natural gas
US4091086A (en) * 1976-12-20 1978-05-23 Engelhard Minerals & Chemicals Corporation Process for production of hydrogen
US4132065A (en) 1977-03-28 1979-01-02 Texaco Inc. Production of H2 and co-containing gas stream and power
US4299086A (en) 1978-12-07 1981-11-10 Gulf Research & Development Company Utilization of energy obtained by substoichiometric combustion of low heating value gases
DE2909335A1 (de) 1979-03-09 1980-09-18 Linde Ag Verfahren und vorrichtung zur zerlegung von erdgas
US4383837A (en) * 1979-12-28 1983-05-17 Atlantic Richfield Company Efficient methane production with metal hydrides
GB2085314B (en) 1980-10-07 1984-09-12 Ici Plc Hydrocarbon cracking process and catalyst
US4423155A (en) * 1981-02-20 1983-12-27 Mobil Oil Corporation Dimethyl ether synthesis catalyst
US4366668A (en) 1981-02-25 1983-01-04 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4363361A (en) 1981-03-19 1982-12-14 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4623371A (en) 1984-08-03 1986-11-18 El Paso Hydrocarbons Company Utilizing the Mehra process for processing and BTU upgrading of nitrogen-rich natural gas streams
US4421535A (en) 1982-05-03 1983-12-20 El Paso Hydrocarbons Company Process for recovery of natural gas liquids from a sweetened natural gas stream
US4483943A (en) * 1983-04-07 1984-11-20 Uop Inc. Gas conversion catalysts
US4496371A (en) 1983-09-21 1985-01-29 Uop Inc. Process for removal of hydrogen sulfide and carbon dioxide from gas streams
GB2148929A (en) * 1983-10-05 1985-06-05 Shell Int Research Process for conditioning natural gas for pipeline transport
DE3415224A1 (de) 1984-04-21 1985-10-24 Kraftwerk Union AG, 4330 Mülheim Gasturbinen- und dampfkraftwerk mit einer integrierten kohlevergasungsanlage
US4595396A (en) * 1984-05-14 1986-06-17 Phillips Petroleum Company Composition comprising 1,3,5-trioxane
US5048284A (en) * 1986-05-27 1991-09-17 Imperial Chemical Industries Plc Method of operating gas turbines with reformed fuel
US4833878A (en) 1987-04-09 1989-05-30 Solar Turbines Incorporated Wide range gaseous fuel combustion system for gas turbine engines
US4761948A (en) 1987-04-09 1988-08-09 Solar Turbines Incorporated Wide range gaseous fuel combustion system for gas turbine engines
DE68914051T2 (de) 1988-04-05 1994-07-21 Ici Plc Gasturbine.
US4861745A (en) * 1988-08-03 1989-08-29 United Catalyst Inc. High temperature shift catalyst and process for its manufacture
US5139002A (en) * 1990-10-30 1992-08-18 Hydrogen Consultants, Inc. Special purpose blends of hydrogen and natural gas
US5725616A (en) 1991-12-12 1998-03-10 Kvaerner Engineering A.S. Method for combustion of hydrocarbons
AU3429093A (en) * 1991-12-31 1993-07-28 Robert D. Harvey Process for producing electric energy using sour natural gas
DE4316474A1 (de) * 1993-05-17 1994-11-24 Abb Management Ag Vormischbrenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage
US5741440A (en) 1994-02-28 1998-04-21 Eastman Chemical Company Production of hydrogen and carbon monoxide
US6293979B1 (en) * 1994-12-19 2001-09-25 Council Of Scientific & Industrial Research Process for the catalytic conversion of methane or natural gas to syngas or a mixture of carbon monoxide and hydrogen
DK171830B1 (da) 1995-01-20 1997-06-23 Topsoe Haldor As Fremgangsmåde til generering af elektrisk energi
US5516967A (en) 1995-01-30 1996-05-14 Chemisar Laboratories Inc. Direct conversion of methane to hythane
US5927063A (en) * 1997-08-19 1999-07-27 Exxon Chemical Patents Inc. High efficiency reformed methanol gas turbine power plants
EP0981016B1 (de) * 1998-08-19 2004-01-07 ALSTOM (Switzerland) Ltd Brenner zum Betrieb einer Brennkammer

Also Published As

Publication number Publication date
EA200200631A1 (ru) 2002-12-26
MY125232A (en) 2006-07-31
HK1055142A1 (en) 2003-12-24
MY150401A (en) 2014-01-15
US20030188536A1 (en) 2003-10-09
AU776117C (en) 2005-02-24
AU776117B2 (en) 2004-08-26
DE60018103T2 (de) 2006-03-16
US6585784B1 (en) 2003-07-01
EA004897B1 (ru) 2004-08-26
AU2093501A (en) 2001-06-18
US7998227B2 (en) 2011-08-16
US6858049B2 (en) 2005-02-22
DE60018103D1 (de) 2005-03-17
EP1238188B1 (en) 2005-02-09
US20050193764A1 (en) 2005-09-08
WO2001042636A1 (en) 2001-06-14
EP1238188A1 (en) 2002-09-11
ATE289004T1 (de) 2005-02-15
CN1425104A (zh) 2003-06-18

Similar Documents

Publication Publication Date Title
CN1187519C (zh) 用低甲烷浓度的储气向燃气轮机供给燃料的方法
CN1239818C (zh) 用低甲烷浓度和高惰性气体浓度的储气向燃气轮机供给燃料的方法
US7062915B2 (en) High-efficiency otto cycle engine with power generating expander
US6978772B1 (en) EGR cooling and condensate regulation system for natural gas fired co-generation unit
US20230018213A1 (en) Emission-free devices and method for performing mechanical work and for generating electrical and thermal energy
Kawabata et al. Proposal of ultra-high-efficiency zero-emission power generation systems
KR101440191B1 (ko) 고효율 연료전지 하이브리드 시스템
KR101291115B1 (ko) 연료전지 발전 시스템 및 이를 포함하는 선박
Ammar et al. Overview of the green hydrogen applications in marine power plants onboard ships
Pant et al. Fundamentals and use of hydrogen as a fuel
AU2022204009B2 (en) Hybrid power plant with CO2 capture
US20090044534A1 (en) Scheme of power enhancement for combined cycle plants through steam injection
GB2422841A (en) Fuel mousse/emulsion
CN220405580U (zh) 一种合成甲烷的智能环保设备
CN117747887A (zh) 一种耦合燃料电池和燃气涡轮机的氢/氨燃料能源系统
CN114991945A (zh) 一种基于内燃兰金循环的氨气燃料发动机高效燃烧和近零排放系统及其应用
CN117365735A (zh) 甲醇制备聚甲氧基二甲醚与氢气或柴油掺混的可变燃烧模式的双燃料内燃机及其控制方法
CN108441270A (zh) 一种调和乙醇汽油的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050202

Termination date: 20161213

CF01 Termination of patent right due to non-payment of annual fee