CN1303623C - 纳米复合磁体及制备该磁体的方法 - Google Patents

纳米复合磁体及制备该磁体的方法 Download PDF

Info

Publication number
CN1303623C
CN1303623C CNB038009528A CN03800952A CN1303623C CN 1303623 C CN1303623 C CN 1303623C CN B038009528 A CNB038009528 A CN B038009528A CN 03800952 A CN03800952 A CN 03800952A CN 1303623 C CN1303623 C CN 1303623C
Authority
CN
China
Prior art keywords
magnet
melt
alloy
nanocomposite magnet
nanocomposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038009528A
Other languages
English (en)
Other versions
CN1550020A (zh
Inventor
三次敏夫
金清裕和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Neomax Trading Co Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Publication of CN1550020A publication Critical patent/CN1550020A/zh
Application granted granted Critical
Publication of CN1303623C publication Critical patent/CN1303623C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15325Amorphous metallic alloys, e.g. glassy metals containing rare earths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Continuous Casting (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种纳米复合磁体,它具有由通式(Fe1-mTm)100-x-y-z-w-n(B1-pCp)xRyTizVwMn所表示的组成,其中,T为Co和/或Ni;R为稀土元素;M为至少一种选自由Al、Si、Cr、Mn、Cu、Zn、Ga、Nb、Zr、Mo、Ag、Ta和W组成的组中的元素;摩尔分数x、y、z、w、n、m和p优选分别满足不等式:10at%<x≤15at%;4at%≤y<7at%;0.5at%≤z≤8at%;0.01at%≤w≤6at%;0at%<n≤10at%;0≤m≤0.5和0.01≤p≤0.5。纳米复合磁体包括具有R2Fe14B型晶体结构的硬磁相和软磁相。纳米复合磁体的矫顽力和最大能积这二者中的至少之一比不含V的磁体至少高1%。

Description

纳米复合磁体及制备该磁体的方法
技术领域
本发明通常涉及一种适用于各种类型发动机和制动器的纳米磁体以及制备该磁体的方法。本发明尤其涉及这样一种纳米复合磁体,它包括具有作为硬磁相的R2Fe14B型晶体结构的化合物以及α-Fe和其它软磁相。
背景技术
近年来,越来越需要进一步提高消费用电器、办公自动化用具以及各种其它类型电子设备的性能并进一步降低其尺寸和重量。鉴于这些目的,当用于这些应用的永磁体作为磁路来工作时,要求其性能重量比最大化。例如,目前迫切需要剩磁Br为0.5T或更高的永磁体。硬铁氧体磁体的广泛应用是由于该类型的磁体相对廉价。但是,硬铁氧体磁体不能获得0.5T或更高的高剩磁Br
通过粉末冶金工艺制备的Sm-Co基磁体是目前已知能获得至少约0.5T高剩磁Br的常规永磁体。其它高剩磁磁体的例子包括粉末冶金工艺制备的Nd-Fe-B基烧结磁体和熔体淬火工艺制备的Nd-Fe-B基快速凝固磁体。例如,日本专利公开特许公报No.59-46008公开了一种Nd-Fe-B基烧结磁体,日本专利公开特许公报No.60-9852公开了一种Nd-Fe-B基快速凝固磁体。
但是,因为Sm和Co均是昂贵的原料,从而造成Sm-Co基磁体也很昂贵。
另一方面,关于Nd-Fe-B基磁体,其主要由相对廉价的Fe(通常其含量占总重量的约60wt%至约70wt%)所组成,比Sm-Co基磁体要便宜的多。但是,制备Nd-Fe-B基磁体仍然很贵。其部分原因是需要大型设备和许多生产及工艺步骤来分离、提纯或通过还原反应来获得Nd,Nd通常占磁体的约10at%至约15at%。而且,通常粉末冶金工艺本身也需要相对多的生产和工艺步骤。
与通过粉末冶金工艺形成的Nd-Fe-B基烧结磁体相比,利用熔融淬火工艺制备的Nd-Fe-B基快速凝固磁体成本更低。这是因为可以通过相对简单的熔化、熔融淬火和热处理工艺步骤来制备Nd-Fe-B基快速凝固磁体。但是,为了利用熔融淬火工艺获得大块永磁体,应该通过利用树脂粘结剂混合由快速凝固合金获得的磁体粉末来形成粘结磁体。因此,磁体粉末通常最多约占浇铸粘结磁体80%的体积。另外,通过熔融淬火工艺形成的快速凝固合金的磁性是各向同性的。
因此,熔融淬火工艺所制备的Nd-Fe-B基快速凝固磁体的剩磁Br低于粉末冶金工艺所制备的磁各向异性Nd-Fe-B基烧结磁体。
日本专利公开特许公报No.1-7502公开了一种有效提高Nd-Fe-B基快速凝固磁体磁性能的技术,即向原料合金中混合添加至少一种选自由Zr、Nb、Mo、Hf、Ta和W组成的组中的元素以及至少一种选自由Ti、V和Cr组成的组中的元素。当这些元素添加到原料合金时,提高了磁体的矫顽力HCJ和抗腐蚀性。但是,唯一已知提高剩磁Br的有效方法是提高粘结磁体的密度。另外,当Nd-Fe-B基快速凝固磁体包括约6at%或更多的一种稀土元素时,以往的技术经常使用熔体离心铸造工艺、即通过喷嘴向冷却辊喷射原料合金熔体,从而以增加的速率快速冷却和凝固原料合金。
R.Coehoorn等在J.de Phys,C8,1988,pp.669-670中提出了一种用于Nd-Fe-B基快速凝固磁体的另外一种磁体原料。Coehoorn原料的成分包括相对低摩尔分数的稀土元素(即,约为Nd3.8Fe77.2B19,其中下标所示为原子百分比)和作为主相的Fe3B。通过对由熔融淬火工艺制备的非晶合金进行加热和结晶来获得此永磁体原料。结晶的原料也具有亚稳定结构,其中软磁相Fe3B和硬磁相Nd2Fe14B共存,并且尺寸非常小(即,几个纳米数量级)的晶粒细微而均匀分布作为这两种结晶相的复合体。因此,由这种原料制成的磁体称为“纳米复合磁体”。据报道该纳米复合磁体具有约1T或更高的剩磁Br。但是其矫顽力HCJ相对较低,也就在约160kA/m至约240kA/m范围内。因此,仅当磁体的工作点约1或更高时,该永磁体原料才可适用。
有人建议将各种金属元素添加到纳米复合磁体的原料合金中来提高其磁性能。例如,参见日本专利公开特许公报No.3-261104、日本专利出版物No.2727505和日本专利出版物No.2727506。但是,所建议的这些技术均不能可靠到总能获得足够高的“性能成本比”。特别是通过这些技术制备的纳米复合磁体均不能实现可实际用于各种器具的高矫顽力。因而,这些磁体均不具有市场所需的磁性能。
另外,W.C.Chan等报导了一种获得晶粒尺寸为几十纳米数量级的R2Fe14B和α-Fe相的技术。根据Chan的技术,向原料合金中添加非晶形成物La。接着,对原料合金进行熔体离心铸造而获得主要由非晶相组成的快速凝固合金。然后对合金进行加热并晶化,以使得R2Fe14B和α-Fe相同时成核和生长。参见W.C.Chan等的“TheEffects of Refractory Metals on the Magnetic Properties of α-Fe/Nd2Fe14B-type Nanocomposites”(IEEE Trans.Magn.No.5,INTERMAG.99,Kyongiu,Korea,pp.3265-3267,1999)。本文还教导添加极少量(比如2at%)的难熔金属元素比如Ti来提高磁体性能,优选稀土元素Nd的摩尔分数由约9.5at%提高到11.0at%以降低R2Fe14B和α-Fe相的晶粒尺寸。添加难熔金属降低了硼化物比如R2Fe23B3和Fe3B的成核,并使得磁体基本上由R2Fe14B和α-Fe相组成。根据Chan的技术,利用熔体离心铸造工艺来制备用于纳米复合磁体的快速凝固合金,在此工艺中,通过一喷嘴向高速旋转的一冷却辊表面喷射熔融合金。熔体离心铸造工艺可适用于有效地制备非晶快速凝固合金,因为这种类型的工艺能保证极高的冷却速度。
为了克服这些问题,本发明申请人发明了一种改进的纳米复合磁体,它所包括的化合物具有体积分数提高的R2Fe14B晶体结构,日本专利公开特许公报No.2002-175908公开了此磁体。具体地说,向含小于10at%稀土元素和超过10at%硼的原料合金添加Ti来获得这种纳米复合磁体,使得在熔融合金快速冷却和凝固时α-Fe相不过度生长。
日本专利出版物No.2002-285301和日本专利No.3297676公开了许多可以添加到纳米复合磁体的元素。这些元素的例子包括Al、Si、V、Cr、Mn、Ga、Zr、Mb、Mo、Ag、Hf、Ta、W、Pt、Au和Pb。
在日本专利公开特许公报No.2002-175908公开的纳米复合磁体中,添加剂Ti得到了一种新结构,在该结构中,细小的软磁相分散在硬磁相的晶界。但是,如果限定稀土元素的摩尔分数比这种磁体的还要低,则不能获得磁性能良好的纳米复合磁体,除非硼的摩尔分数降至低于约10at%。
但是,对于含小于10at%稀土元素和小于10at%硼的原料合金而言,其熔体粘度增加的过大,并且所获得的快速凝固合金几乎没有理想的细微结构。一般通过熔体淬火工艺来快速冷却熔融合金,例如,此工艺可以是相对高速度旋转冷却辊的熔体离心铸造工艺、或者是相对低速度旋转冷却辊的带铸(strip casting)工艺。其中,带铸工艺被认为是一种能有效地实现规模生产的熔体离心铸造工艺,这是由于带铸工艺能产生相对低的冷却速度并能制备出相对厚的薄带快速凝固合金。
但是,为了通过能产生相对低冷却速度的熔体淬火工艺、比如带铸工艺来规模化生产稀土元素摩尔分数降到约7at%或更少的纳米复合磁体时,需要原料合金包含超过约10at%的硼。然而,如果不向含约4at%至7at%稀土元素和约10at%至15at%硼的原料合金中添加Ti和Nb或钛时,则所获纳米复合磁体的矫顽力HCJ将达不到约400kA/m,而这是实际应用于比如发动机中的磁体所需要的最低水平,并且退磁曲线的方形度也不够理想。
发明公开内容
为了解决上述问题,本发明优选实施方式提供了一种纳米复合磁体,该磁体包括相对少的稀土元素和相对多的硼,但仍然显示出良好的磁性能。
本发明优选实施方式的纳米复合磁体优选具有通式(Fe1-mTm)100-x-y-z-w-n(B1-pCp)xRyTizVwMn所表示的组成,其中,T为至少一种选自由Co和Ni组成的组中的元素;R为一种稀土元素;并且M为至少一种选自由Al、Si、Cr、Mn、Cu、Zn、Ga、Nb、Zr、Mo、Ag、Ta和W组成的组中的元素。摩尔分数x、y、z、w、n、m和p优选分别满足不等式:10at%<x≤15at%;4at%≤y<7at%;0.5at%≤z≤8at%;0.01at%≤w≤6at%;0at%<n≤10at%;0≤m≤0.5和0.01≤p≤0.5。优选纳米复合磁体包括具有R2Fe14B型晶体结构的硬磁相和软磁相。优选纳米复合磁体的矫顽力和最大能积这二者中至少之一比不含V的磁体至少高1%。
在本发明一优选实施方式中,纳米复合磁体优选包括至少40vol%的硬磁相,且该硬磁相具有因添加Ti和V而产生的R2Fe14B型晶体结构。
在另一优选实施方式中,优选具有R2Fe14B型晶体结构的硬磁相的平均粒度约10nm至约200nm,而优选软磁相的平均粒度约1nm至约100nm。
在另一优选实施方式中,软磁相优选包括α-Fe和铁磁性铁基硼化物。
根据本发明另一优选实施方式制备纳米复合磁体用快速凝固合金的方法,该方法优选包括制备其组成可表示为通式(Fe1-mTm)100-x-y-z-w-n(B1-pCp)xRyTizVwMn的原料合金熔体的步骤,其中,T为至少一种选自由Co和Ni组成的组中的元素;R为一种稀土元素;并且M为至少一种选自由Al、Si、Cr、Mn、Cu、Zn、Ga、Nb、Zr、Mo、Ag、Ta和W组成的组中的元素。摩尔分数x、y、z、w、n、m和p优选分别满足不等式:10at%<x≤15at%;4at%≤y<7at%;0.5at%≤z≤8at%;0.01at%≤w≤6at%;0at%<n≤10at%;0≤m≤0.5和0.01≤p≤0.5。此方法优选还包括快速冷却和凝固熔体以获得快速凝固合金的步骤。
在本发明一优选实施方式中,快速冷却的步骤优选包括通过带铸工艺快速冷却和凝固熔体的步骤。
根据本发明另一优选实施方式制备纳米复合磁粉的方法,该方法优选包括制备其组成可表示为通式(Fe1-mTm)100-x-y-z-w-n(B1-pCp)xRyTizVwMn的快速凝固合金的步骤,其中,T为至少一种选自由Co和Ni组成的组中的元素;R为一种稀土元素;并且M为至少一种选自由Al、Si、Cr、Mn、Cu、Zn、Ga、Nb、Zr、Mo、Ag、Ta和W组成的组中的元素。摩尔分数x、y、z、w、n、m和p优选分别满足不等式:10at%<x≤15at%;4at%≤y<7at%;0.5at%≤z≤8at%;0.01at%≤w≤6at%;0at%<n≤10at%;0≤m≤0.5和0.01≤p≤0.5。此方法优选还包括步骤:对快速凝固合金进行热处理,以获得包括具有R2Fe14B型晶体结构的硬磁相和软磁相的纳米复合磁体合金;并且粉碎纳米复合磁体合金。
根据本发明另一优选实施方式制备纳米复合磁体的方法,该方法优选包括制备其组成可表示为通式(Fe1-mTm)100-x-y-z-w-n(B1-pCp)xRyTizVwMn的纳米复合磁体粉末,其中,T为至少一种选自由Co和Ni组成的组中的元素;R为一种稀土元素;并且M为至少一种选自由Al、Si、Cr、Mn、Cu、Zn、Ga、Nb、Zr、Mo、Ag、Ta和W组成的组中的元素。摩尔分数x、y、z、w、n、m和p优选分别满足不等式:10at%<x≤15at%;4at%≤y<7at%;0.5at%≤z≤8at%;0.01at%≤w≤6at%;0at%<n≤10at%;0≤m≤0.5和0.01≤p≤0.5。优选纳米复合磁体粉末包括:具有R2Fe14B型晶体结构的硬磁相;以及软磁相。优选纳米复合磁体粉末的矫顽力和最大能积这二者中至少之一比不含V的磁体粉末至少高1%。此方法优选还包括压制纳米磁体粉末以获得纳米复合磁体的步骤。通过参考附图对本发明优选实施方式进行如下详述,使得本发明的其它特点、元素、工艺、步骤、特征和优点变得更加明显。
附图简述
图1为应用于本发明优选实施方式中的带坯连铸机的典型结构截面示意图。
图2为本发明优选实施方式的特定实施例以及对比实施例的粉末XRD分析结果图谱。
实施本发明的最好方式
本发明人发现,当向含约4at%至7at%稀土元素和约10at%至15at%硼与碳的合金中混合添加Ti和V时,可以获得退磁曲线具有良好方形度的纳米复合磁体,由此本发明人得到了本发明的基本观点。日本专利出版物No.2002-285301和日本专利No.3297676公开了许多添加元素,但根本未提及通过混合添加Ti和V所获得的意想不到的效果。分布在硬磁相的晶界。
添加剂Ti获得了这些良好效果。但是,本发明人发现,如果降低稀土元素的摩尔分数来进一步提高日本专利公开特许公报No.2002-175908公开的纳米复合磁体的磁性能时,则磁性能严重恶化。为了提高纳米复合磁体(其中,具有R2Fe14B型晶体结构的硬磁相和软磁相比如α-Fe以及铁基硼化物共存于相同的金属结构中,并通过交互作用磁耦合在一起)的磁性能,一般认为降低稀土元素的摩尔分数从而提高α-Fe相的体积分数是有效的。这是因为α-Fe相的饱和磁高于具有R2Fe14B型晶体结构的硬磁相。
但是,本发明人发现,如果将含Ti组分中的稀土元素的摩尔分数降低到约7at%或更少,则磁体矫顽力HCJ不能达到400kA/m或更高的水平,退磁曲线的方形度差,不能获得良好的磁性能,除非增加添加剂Ti的量。不过,当仅通过增加添加剂Ti量来解决此问题时,将大量地沉积非磁性的Ti-B化合物,并且严重恶化磁性能。
从而,本发明人研究了向组分中添加由Ti和其它金属元素组成的各种金属元素的组合,此组分中稀土元素的摩尔分数降到约7at%或更少,并且含摩尔分数增加的硼。结果是,当混合添加Ti和V时,利用带铸工艺可成功地制备包括体积分数增加的高磁性铁基硼化物和α-Fe的纳米复合磁体。
本发明优选实施方式的纳米复合磁体优选具有通式(Fe1-mTm)100-x-y-z-w-n(B1-pCp)xRyTizVwMn所表示的组成,其中,T为至少一种选自由Co和Ni组成的组中的元素;R为一种稀土元素;并且M为至少一种选自由Al、Si、Cr、Mn、Cu、Zn、Ga、Nb、Zr、Mo、Ag、Ta和W组成的组中的元素。摩尔分数x、y、z、w、n、m和p优选分别满足不等式:10at%<x≤15at%;4at%≤y<7at%;0.5at%≤z≤8at%;0.01at%≤w≤6at%;0at%<n≤10at%;0≤m≤0.5和0.01≤p≤0.5。优选纳米复合磁体包括具有R2Fe14B型晶体结构的硬磁相和软磁相。根据本发明各种优选实施方式,通过向原料合金组合添加Ti和V,纳米复合磁体的矫顽力和/或最大能积与不含V的磁体相比可至少提高1%。另外,由于添加Ti和V,纳米磁体可包括至少40vol%具有R2Fe14B型晶体结构的硬磁相。在所获得的结构中,优选具有R2Fe14B型晶体结构的硬磁相的平均粒度约10nm至约200nm,而优选软磁相的平均粒度约1nm至约100nm。
在本发明一优选实施方式中,优选利用熔体淬火工艺比如带铸工艺在负压气氛中快速冷却包含不可或缺元素Fe、B、C、R(至少是包括Y在内的稀土元素之一)Ti和V的铁基合金熔体,从而制备包括微晶R2Fe14B型化合物相的快速凝固合金。如果必要,随后可对快速凝固合金进行热处理以晶化残留在快速凝固合金中的非晶部分。
带铸工艺是一种制备快速凝固合金薄带的技术,它通过使合金熔体与冷却辊表面接触来快速冷却和凝固熔体。根据本发明的优选实施方式,利用比常规带铸工艺旋转更快的冷却辊来快速冷却和凝固熔体。与通过喷嘴向冷却辊表面喷射熔体合金的离心铸造工艺相比,带铸工艺产生的冷却速度更低。但是,由于带铸工艺提供了相对宽和厚的快速凝固合金薄带,因此它可保证较高的规模化生产率。也可选择通过喷嘴向冷却辊表面喷射熔体的常规离心铸造工艺来生产本发明优选实施方式的纳米复合磁体。
根据本发明优选实施方式,添加具有延缓α-Fe成核和生长作用的Ti,添加低摩尔分数的稀土元素以及添加V,从而获得的纳米复合磁体结构包括适量高磁性的α-Fe和铁基硼化物。由于所添加的Ti和V的作用,即使以降低的速度冷却熔体时,R2Fe14B型化合物相和α-Fe相也不会过度生长。因而,可以获得高性能的纳米复合磁体,磁体中R2Fe14B型化合物相的平均粒度约10nm至约200nm,平均粒度约1nm至约100nm的软磁相(例如,α-Fe相)甚至在热处理之后也细小地分布。
基本上由R2Fe14B型化合物相和α-Fe相组成的常规纳米复合磁体显示了较高的磁性能,这是因为常规磁体包括约5vol%至约50vol%高饱和磁化的α-Fe。但是,常规纳米复合磁体含硼的百分比低于本发明任何各种优选实施方式的纳米复合磁体。因此,如果利用冷却速度低的带铸工艺来制备常规纳米复合磁体,则晶粒生长过度,磁体性能明显恶化。相反,由于本发明任何各种优选实施方式纳米复合磁体的原料合金包括摩尔分数超过10at%的硼,利用带铸工艺可规模化制备具有良好性能的纳米复合磁体。
根据本发明优选实施方式,添加低摩尔分数的稀土元素并且联合添加Ti和V,使得具有R2Fe14B型晶体结构的硬磁相的体积分数尽可能高,并且使得高磁性能的软磁相将不过度生长但具有相对高的体积分数。结果是使得退磁曲线具有改进的方形度。另外,由于添加剂Ti和V能由快速凝固合金中的富B非磁性非晶相产生硼化物相(例如,铁磁性铁基硼化物),并且降低了残留在受热和晶化合金中的非磁性非晶相的体积百分比,所以提高了磁性能。
在本发明优选实施方式中,适宜地控制各种工艺条件包括合金组分、合金冷却速度和热处理温度,从而形成了饱和磁化相当于或高于R2Fe14B型化合物相的铁基硼化物和α-Fe。所形成的软磁相的例子包括α-Fe(饱和磁场约2.1T)和Fe23B6(饱和磁场约1.6T)。此时,R2Fe14B型化合物相的饱和磁场约1.6T,其中R是Nd。
此处所使用的术语“非晶相”不仅是指原子排列杂乱无序的相,而且也指包括用于结晶的晶胚、相当小的结晶区(尺寸为几个纳米或更小)和/或原子束的相。更具体的说,术语“非晶相”是指晶体结构不能通过X-射线衍射分析或TEM观测来确定的相。换而言之,晶体结构能通过X-射线衍射分析或TEM观测来清楚辨别的任何相在这里被称为“结晶相”。
本发明人通过实验发现并确认,仅当联合添加Ti和V时,磁性能并不降低,此情况与联合添加Ti和Cr或Ti和Zr时相反。而且,退磁曲线显示了特别好的方形度。基于这些结果,本发明人认为添加剂Ti和V在最少地形成低磁场硼化物方面起到了关键作用。
应该指出,当联合添加Ti和Nb时,磁性能不降低但矫顽力明显下降。
从而仅当联合添加Ti和V时,可以获得性能良好的包含约4at%至7at%稀土元素和约10at%至15at%硼的纳米复合磁体。
在本发明各种优选实施方式中,原料合金不仅包括足够量的硼,而且也包括作为不可或缺元素之一的碳。从而,此原料合金熔体的动力粘度约5×10-6m2/s或更小,可以很光滑地流动以足够地提高了熔体和冷却辊之间的接触程度。结果是,熔体可更加有效地在冷却辊上冷却。因此,即使冷却辊低速旋转,也能获得良好的纳米复合磁体。
因此,在本发明优选实施方式中,可采用带铸工艺,其中,熔体通过斜槽(即导向部件)流入冷却辊,而没有通过喷嘴来控制熔体流速。从而,这种发明工艺比需要利用喷嘴控制流速的常规离心铸造工艺生产率更高而且更划算。为了在甚至通过带铸工艺可获得的冷却速度范围内使得R-Fe-B基稀土合金熔体非晶化,通常需要添加约10at%或更多的B(硼)。但是,如果添加的B太多,则含B浓度高的非磁性非晶相将残留在被处理合金的微结构中,甚至在快速凝固合金被加热和晶化之后亦如此。也就是说,不能获得均匀的微晶结构。结果导致铁磁相的体积百分比降低并且磁性能下降。但是,如与本发明优选实施方式一样添加Ti和V,则可观察到上述现象。因此,形成了具有高饱和磁化的铁基硼化物并有效提高了磁性能。
                        优选组分
如果B和C的总摩尔分数x约10at%或更少,则很难在约102℃/s至约105℃/s的低冷却速度下制备出R2Fe14B型结晶相和非晶相共存的理想快速凝固合金。而且,即使在此后对合金进行热处理,所达到的矫顽力也不够高。另外,当摩尔分数x约为10at%或更少时,不再形成具有高饱和磁化的铁基硼化物。因此,x应大于10at%。另一方面,如果B和C的总摩尔分数x超过约15at%,则提高了残留在受热和晶化合金中的非晶相的体积分数。另外,饱和磁化高于任何其它组成相的α-Fe相的百分比下降,结果会导致剩磁Br也降低。考虑到这些方面,优选B和C的总摩尔分数x大于约10at%并且等于或小于约15at%,更优选大于约11at%并且等于或小于约14at%。
优选C与B和C的(原子比)约0.01至约0.5。为了获得由添加剂C所预期的效果,C的比例p应至少等于约0.01。理由如下:如果p远小于约0.01,则即使添加了C也几乎无法获得预期的效果。另一方面,如果p远大于约0.5,则具有过大粒径的α-Fe相的体积分数提高,以致于引起所获得的磁性能恶化。比例p的下限优选约0.02,而其上限优选约0.25。更优选比例p约0.05-约0.15。
R为至少一种选自稀土元素(包括Y)的元素。优选R基本上不含La或Ce。这是因为如果含La或Ce,则R2Fe14B相中的R(通常为Nd)会被La或Ce取代,从而降低了矫顽力和退磁曲线的方形度。但是,如果含有极少量(即,约0.5at%或更少)不可避免的La或Ce杂质,则对磁性能的影响不会很严重。因此,此处术语“基本上不含La(Ce)”或“基本上排除La(Ce)”的说法是指La(Ce)的含量约0.5at%或更少。
更具体地说,R优选包括必要元素Pr或Nd,可用Dy和/或Tb替代其一部分。如果R的摩尔分数y小于约4at%,则具有获得高矫顽力所需的R2Fe14B型晶体结构的化合物相不能充分结晶,并且不能获得理想的高矫顽力HCJ。另一方面,如果R的摩尔分数y等于或大于约7at%,则非晶形成能力将下降,所形成的软磁相(比如α-Fe和Fe-B相)的体积分数也将降低。结果将导致磁性能降低。鉴于此,稀土元素R的摩尔分数y优选等于或大于约4at%但小于约7at%,更优选等于或大于约5at%但小于约6at%。
在快速冷却和凝固熔体合金时,添加剂Ti有助于使硬磁相比软磁相更早地成核和生长。另外,添加剂Ti提高了矫顽力HCJ、剩磁Br和最大能积(BH)max,并且改善了退磁曲线的方形度。
如果Ti的摩尔分数z小于约0.5at%,则尽管添加了Ti也不能完全实现上述效果。但是,如果Ti的摩尔分数z超过约8at%,则提高了残留在受热和结晶后的合金中非晶相的体积百分比,通常会降低剩磁Br。出于这些考虑,Ti的摩尔分数z优选约0.5at%至约8at%。更优选z的下限范围约1.0at%,而其上限约6at%。甚至更优选z的上限范围约5at%。
另外,B和C的总摩尔分数x越高,则例如含过量百分比硼的非晶相形成的可能性越大。为此优选提高Ti的摩尔分数z。Ti对B有很强的亲合力,并聚集在硬磁相的晶界。但是,如果Ti摩尔分数z与B摩尔分数x的比值太高,则Ti不再位于晶界而是被混入R2Fe14B化合物,从而可能降低磁性。然而,如果z/x比值太低,则将产生大量非磁性的富硼非晶相。本发明人通过实验确认,优选控制摩尔分数x和z满足不等式0.05≤z/x≤0.4,更优选满足不等式0.1≤z/x≤0.35,甚而更优选满足不等式0.13≤z/x≤0.3。
其它添加剂V能有益地降低Ti量而获得良好的磁性能。结果是,Ti-B化合物的形成被最小化,提高了磁性能,并且降低了熔体粘度。因而,可更容易地利用带铸工艺快速冷却和凝固原料合金。
如果V的摩尔分数w小于约0.01at%,则无法实现通过添加V的预期效果。但是,如果摩尔分数w超过约6at%,则V-Fe-B基化合物将成核,从而可能恶化磁体性能。出于这些考虑,摩尔分数w优选约0.01at%至约6at%,更优选约0.1at%至约4at%,甚而更优选约0.5at%至约2at%。
为了实现各种理想的优点和效果,可添加金属元素M。M为至少一种选自由Al、Si、Cr、Mn、Cu、Zn、Ga、Nb、Zr、Mo、Ag、Ta和W组成的组中的元素。本发明人通过实验确认,甚至当添加任何这些金属元素M时,通过添加剂Ti和V获得的效果不会明显弱化,除非金属元素M的摩尔分数超过约10at%。
除了元素B、C、R、Ti、V和M之外,原料合金的余量可仅为Fe。也可选择至少一种选自由Co和Ni组成的组中的过渡金属元素T来部分替代Fe,因为在此情况下也能获得理想的硬磁性能。但是,如果替代物T与Fe的原子数比m超过约0.5,则不能获得约0.7T或更高的剩磁Br。因而,优选原子数比m约0至约0.5。另外,通过Co取代部分Fe,改善了退磁曲线的方形度,并且提高了R2Fe14B相的居里温度,从而提高了合金的耐热性。优选组成Co与Fe的原子数比m约0.005至约0.4。
下面将参考附图详细描述本发明特定的优选实施方式。
下面将描述本发明第一个具体的优选实施方式。
在此优选实施方式中,优选使用图1所示的带坯连铸机来制备快速凝固合金。优选在惰性气氛中进行合金制备工艺,以防止包括易氧化的稀土元素R和Fe的原料合金被氧化。惰性气体可以是稀有气体比如氦或氩,或者是氮气或任何其它合适的气体。稀有气体氦或氩优于氮气,因为氮气与稀土元素R的反应相对容易。
图1所示的带坯连铸机位于一腔室内(未示出),在此腔室内能产生负压惰性气体。如图1所示,带坯连铸机优选包括熔化坩埚11、冷却辊13和斜槽(即导向部件)14。首先,在熔化坩埚11中熔化原料合金。接着,从熔化坩埚11倒出熔体12,然后经斜槽35引导至冷却辊13上,以使之快速冷却和凝固。
熔化坩埚11优选设置成以基本恒定的加料速度将熔化原料合金所获得的熔体12加至斜槽14。例如,通过将熔化坩埚11倾斜至需要的角度可任意控制此加料速度。
冷却辊13的外表面优选由导热性相对好的材料(例如,铜)制成。优选辊13的直径约30cm至约100cm,并且其宽度约15cm至约100cm。通过发动机(未示出)使辊13以预定的速度旋转。通过控制此旋转速度,可任意调节冷却辊13的表面速度。例如,通过选择冷却辊13的适宜旋转速度,可将由此带坯连铸机获得的冷却速度控制在约103℃/s至约105℃/s范围内。
引导熔体12的斜槽14表面优选与水平面形成斜角β。斜槽14远端与冷却辊13表面之间的距离优选约几毫米。另外,斜槽14的设置使得斜槽14远端和冷却辊13中心的连线与垂直平面形成α角(其中,0≤α≤90度)。α角优选满足10度≤α≤55度。
另一方面,斜槽14的斜角β优选满足1度≤β≤80度,更优选满足5度≤β≤60度。
倒在斜槽14之后,熔体12将由斜槽14的远端流在冷却辊13表面上,从而在其上形成熔体池。通过减缓熔体12的流速、以达到暂时储备以预定流速从熔化坩埚11连续加入的流动熔体12的程度,从而使斜槽14可调整熔体12的流动。利用可选择性地挡回倒在斜槽14上的熔体12表面流的障碍板,可进一步提高此调节效果。通过使用此斜槽14,可使得熔体12在冷却辊13的纵向上以基本恒定的宽度得以浇铸。此处所用的冷却辊13的“纵向”等同于冷却辊13的轴向(即,由纸伸出来的方向)。另外,还可使倾出的熔体12扩散至基本均匀的厚度。通过调节斜槽14的熔体导流面斜角α,可微控熔体进料速度。由于其自身的重量,熔体12沿着斜槽14的斜导流面向下流。因此,熔体12具有与水平(即,X轴)方向基本平行的运动动量。也就是说,斜槽14的斜角β越大,熔体12的流速越高,其运动动量越大。
另外,斜槽14也能调节将到达冷却辊13的熔体12温度。斜槽14上的熔体12温度优选比其液相温度高约100℃或更高。这是因为,如果熔体12的温度太低,则例如会影响所获快速凝固合金性能的TiB2初晶可能会局部成核并残留在快速凝固合金中。而且,如果熔体12的温度太低,则熔体12的速度增加并很可能飞溅。例如,通过调节由熔化坩埚11向斜槽14倒在的熔体12的温度、或者调节斜槽14的热容量,可以控制斜槽14上的熔体12的温度。如果必要的话,可专门提供一斜槽加热器(未示出)来达到此目的。
此优选实施方式的斜槽14优选包括许多沟道,它们在冷却辊13轴方向上以固定间距(regular interval)相互分开,并且其远端朝向冷却辊13的外缘周。每个这些沟道的宽度(相当于每个熔体流的宽度)优选约0.5cm至约10.0cm,更优选约0.7cm至约4.0cm。在本优选实施方式中,每个熔体流在其对应沟道中的宽度约1cm。应该指出,当熔体流由其对应沟道流得更远时,每个熔体流趋向于增加其横向宽度。当在斜槽14上提供许多沟道形成如本优选实施方式一样的多路熔体流时,每对相邻的熔体流不应相互接触。
熔体12倒在斜槽14上之后,熔体12被分成许多熔体流,使得每个熔体流的宽度与对应沟道在冷却辊13水平方向的宽度基本上一致。接着,每个这些熔体流与冷却辊13接触。随后,当辊13旋转时,已经以预定宽度倒在冷却辊13上的每个熔体流12向上沿着辊13的外缘表面运动。就这样,熔体流12在沿着冷却辊13运动的同时被快速冷却。应该指出,为了防止熔体的泄漏,斜槽14远端与冷却辊13之间的距离优选约3mm或更小,更优选约0.4mm至约0.7mm。
每个相邻的一对沟道的间距优选约1cm至约10cm。由此可使熔体12以相互独立的位置与冷却辊13的外缘接触。接下来,可有效地冷却由对应沟道流入的每个熔体流。因此,即使熔体12以增加的速度流入斜槽14,也能获得理想的冷却速度。
应该指出,斜槽14不必具有上述结构。可选择的是,斜槽14仅有一个沟道或每个熔体流以增加的宽度流入。另一个选择是,也可在斜槽14的远端(或底端)提供管式开口,使得熔体12通过管式开口流在冷却辊13的表面上。也可根据要求对斜槽14进行其它修改。
在熔体12快速凝固在旋转冷却辊13的外缘之后,快速凝固合金以薄带凝固合金15形式离开冷却辊13。在本优选实施方式中,由对应沟道流出的每个熔体流凝固成预定宽度的带。然后,粉碎凝固合金15并利用收集器(未示出)进行收集。
如上所述,带铸工艺没有使用任何喷嘴,这不同于熔体离心铸造工艺。也就是说,带铸工艺并不会遇到与熔体离心铸造工艺相关的所有各种问题。具体地说,在带铸工艺中,熔体的进料速度并不受喷嘴直径的限制,并且也可避免因熔体在喷嘴处意外凝固所造成的喷嘴阻塞问题,这是因为带铸工艺根本不需要喷嘴。因此,带铸工艺对规模化生产很有效。而且,不需要喷嘴加热装置或熔化头压力控制机构。因此,可显著地降低原始设备成本和设备运行成本。
另外,在熔体离心铸造工艺中,尽管制造喷嘴一般需要较高的加工成本,但喷嘴不能循环使用,因此一旦使用后就应该废掉。相反,带铸工艺允许重复使用斜槽,从而设备运行成本更低。
而且,与熔体离心铸造工艺相比,带铸工艺中的冷却辊可以更低的速度旋转,熔体可以更高的速度流出。因此,所获得的薄带快速凝固合金增厚。
通过适当确定斜槽14的形状和结构、比如熔体沟道的宽度和数量,可使得所获得的薄带快速凝固合金具有优选范围内的平均厚度和平均宽度。薄带快速凝固合金的宽度优选约15mm至约80mm。另外,薄带合金不可太薄或太厚。如果薄带合金太薄,则其振实密度太低而不能像所希望的那样收集它。但是,如果薄带合金太厚,则合金在熔体/辊接触面和在自由面(即熔体面)以明显不同的冷却速度被冷却。也就是说,在自由面周围的合金部分冷却速度不足。鉴于这些原因,优选薄带合金的厚度约50μm至约250μm,更优选约60μm至约200μm,甚而更优选约70μm至约90μm。另外,考虑到粘结磁体的填充密度,优选薄带合金的厚度超过80μm。如果这样的话,优选快速冷却气氛为约10kPa至约101.2kPa的负压气氛。
也可任意选择任何其它的熔体淬火工艺,比如熔体离心铸造工艺或雾化工艺,而非上述带铸工艺来制备本发明任何各种优选实施方式的纳米复合磁体。
                        热处理
在此优选实施方式中,优选在氩气氛中进行热处理。优选以5℃/s至约20℃/s的升温速率加热合金,在约550℃至约850℃下保温约30秒至约20分钟,随后冷却至室温。此热处理导致残留在非晶相内的亚稳相成核和/或晶体生长,从而形成纳米复合微晶结构。
如果热处理温度低于约550℃,则甚至在热处理之后仍然残留大量的非晶相,并且获得的矫顽力达不到快冷工艺条件所决定的理想水平。另一方面,如果热处理温度超过约850℃,则各组成相的颗粒生长增加很多,从而降低剩磁Br和恶化退磁曲线的方形度。因而,热处理温度优选约550℃至约850℃,更优选约570℃至约820℃。
为了防止合金的氧化,优选在惰性气氛(例如,Ar气或N2气)或其气体流中进行热处理。也可在约0.1kPa或更小的真空下进行热处理。
在本发明优选实施方式中,即使在所获得的磁体中存在着晶粒尺寸比硬磁相小的软磁相比如α-Fe、Fe3B和Fe23B6,依然能获得良好的磁性能,这是因为软磁相和硬磁相可通过交互作用相互磁耦合在一起。
热处理之后,优选R2Fe14B型化合物相的平均晶粒度至多约300nm,这是单个磁畴的尺寸。优选R2Fe14B型化合物相的平均晶粒度约10nm至约200nm,更优选约10nm至约150nm。另一方面,如果铁磁性的铁基硼化物和α-Fe相的平均晶粒度大于约100nm,则各自组分相之间的交互作用减弱,从而恶化了退磁曲线的方形度并且降低(BH)max。通常这些相不以很小的晶体(尺寸直径小于约1nm)沉淀,而是形成尺寸直径为几个nm的晶体。由于这些原因,优选软磁相比如硼化物和α-Fe相的平均晶粒度约1nm至约100nm,更优选约5nm至约50nm,甚至更优选约5nm至约30nm。另外,为了使所获得的磁体为具有良好性能的交换弹簧磁体,优选R2Fe14B型化合物相的平均粒度大于软磁相。
应该指出,在经过热处理之前,可对快速凝固合金的薄带进行粗略的切割或粉碎。热处理之后,对所获得的磁性合金进行粉碎而获得磁体粉末。然后,通过对此粉末进行已知的处理步骤,可由此粉末制成各种类型的粘结磁体。在制备粘结磁体时,将铁基稀土合金的磁体粉末与环氧或尼龙树脂粘结剂混合,随后把混合物压制成所需要的形状。此时,任何其它类型的磁体粉末(例如,Sm-Fe-N基磁体粉末或硬铁氧体磁体粉末)可与纳米复合磁体粉末混合。
本发明优选实施方式所获得的粘结磁体来用来制造发动机、制动器以及其它各种转动机器。
如果使用本发明优选实施方式的磁体粉末来制备铸模粘结磁体时,优选将粉末粉碎为平均粒度约200μm或更小,更优选约30μm至约150μm。另一方面,如果使用本发明的磁体粉末来制备压制粘结磁体时,优选将粉末粉碎为平均粒度约300μm或更小,更优选约30μm至约250μm,甚至更优选约50μm至约200μm并且具有双峰尺寸分布。
                        实施例
实施例1
关于下表1所示的Nos.1-8中的每个样品,分别称重纯度约99.5%或更高的B、C、Fe、Co、Ti、V和Nd,使得样品总重量约600g,然后将此混合物放入氧化铝坩埚中。随后通过在压力约70kPa的Ar气氛中进行感应加热来熔化这些合金原料,从而制备合金熔体。在熔体温度达到约1500℃后,将熔体浇铸在水冷铜模中制备平板合金。随后,称取总重量约15g的合金并放入石英坩埚中,该坩埚的底部有一直径约0.8mm的小孔。然后,利用在压力约1.33kPa至约47.92kPa的Ar气氛中进行感应加热的方法来熔化此合金,从而制备合金熔体。在熔体温度达到约1350℃后,利用Ar气对熔体表面施压,从而将熔体通过小孔喷在冷却辊的外缘,该冷却辊位于小孔以下0.7mm,并置于室温Ar气氛中。旋转冷却辊使其表面速度约10m/s。熔融合金因与此冷却辊接触而被快速冷却和凝固。由此获得了宽度约2mm至约3mm、厚度约20μm至约50μm的快速凝固合金的连续薄带(带)。
                                        表1
  No.                       合金组分(at%)   热处理温度(℃)
  Nd   Fe   T   B   C   Ti   V   M
  实施例   1234   5.85.85.85.8   余量余量余量余量   ---Co4   12121212   1111   4444   11.521.5   ----   720700700700
  对比实施例   5678   5.85.85.85.8   余量余量余量余量   ----   12121212   0111   4444   0000   0Nb1Zr1Cr1   720740720740
在表1中,样品Nos.1-4表示本发明优选实施方式的特定实施例,而样品Nos.5-8表示对比实施例。
将此薄带快速凝固合金在约600℃至800℃的Ar气氛中加热约6分钟至约8分钟,然后冷却到室温。其后,利用振动样品磁力仪(VSM)测定此薄带快速凝固合金的磁性能。结果见表2。
                          表2
  样品No.                凝固合金的磁性能
  Br(T)   HCJ(kA/m)   (BH)max(kJ/m3)
  实施例   1   0.93   404   93
  2   0.92   450   106
  3   0.92   468   96
  4   0.92   466   109
  对比实施例   5   0.90   442   92
  6   0.92   368   81
  7   0.83   446   77
  8   0.80   461   71
由表2的结果可以看出,在本发明优选实施方式的每个特定实施例中,提高了磁性能,改善了退磁曲线的方形度,并且最大能积(BH)max高于任何对比实施例。特别是,除了样品No.1添加了V而No.5未添加之外,样品No.1和No.5的制备条件基本一致。因此,相互对比这两个样品的结果可看出,样品No.1的剩磁Br和最大能积(BH)max比样品No.5至少约高1%。
图2所示是在约700℃热处理约6分钟后样品A、B和C的粉末XRD结果。样品A、B和C的组成分别是Nd5.8Fe75.7B12C1Ti4V1.5、Nd9Fe73B12.6C1.4Ti4和Nd4.5Fe73B18.5Co2Cr2
具体地说,样品A表示本发明优选实施方式的特定实施例。由图2所示的结果可看出,样品A显示出比其它两个样品任何之一更明显代表α-Fe相的峰强。样品A是α-Fe/R2Fe14B基纳米复合磁体,其包括主要组成相R2Fe14B相(即,硬磁相)和α-Fe相(即,软磁相)。另外,样品A还包括另一软磁相Fe23B3相。
另一方面,样品B是铁基硼化物比如Fe3B位于硬磁相Nd2Fe14B相晶界的纳米复合磁体。样品C是包括体积分数相对大的Fe3B的Fe3B/R2Fe14B基纳米复合磁体。
工业适用性
根据本发明各种优选实施方式,向利用常规方法基本不可能制备具有足够好磁性能纳米复合磁体的原料合金中组合添加Ti和V,从而使得可能规模化生产具有实用性磁性能的纳米复合磁体。
在本发明各种优选实施方式中,尽管原料合金包括相对多的硼,添加剂V可有效地防止形成有害的Ti-B。因此,此原料合金熔体的粘度不会过度提高,从而有助于利用带铸工艺规模化生产α-Fe/R2Fe14B基纳米复合磁体。
应该认识到,前面的描述仅为本发明的示证。本领域的技术人员可不背离本发明而设计出各种替换和修正。因此,本发明意欲包括落入所附权利要求范围内的所有这些替换、修正和变化。

Claims (6)

1.一种纳米复合磁体,它具有由通式(Fe1-mTm)100-x-y-z-w-n(B1-pCp)xRyTizVwMn所表示的组成,其中,T为至少一种选自由Co和Ni组成的组中的元素;R为稀土元素;并且M为至少一种选自由Al、Si、Cr、Mn、Cu、Zn、Ga、Nb、Zr、Mo、Ag、Ta和W组成的组中的元素,摩尔分数x、y、z、w、n、m和p分别满足不等式:
10at%<x≤15at%;
4at%≤y<7at%;
0.5at%≤z≤8at%;
0.01at%≤w≤6at%;
0at%<n≤10at%;
0≤m≤0.5;和
0.01≤p≤0.5,
其中纳米复合磁体包括:具有R2Fe14B型晶体结构的平均粒度为10nm至200nm的硬磁相;和包括α-Fe和铁磁性铁基硼化物的平均粒度为1nm至100nm的软磁相,并且
其中纳米复合磁体的矫顽力和最大能积这二者中的至少之一比除了不含V以外其他组分与所述纳米磁体一样的磁体至少高1%。
2.权利要求1的纳米复合磁体,其中所述纳米复合磁体包括至少40vol%的具有R2Fe14B型晶体结构的硬磁相。
3.一种制备纳米复合磁体用快速凝固合金的方法,该方法包括步骤:
制备具有由通式(Fe1-mTm)100-x-y-z-w-n(B1-pCp)xRyTizVwMn所表示的组成的原料合金熔体,其中,T为至少一种选自由Co和Ni组成的组中的元素;R为稀土元素;并且M为至少一种选自由Al、Si、Cr、Mn、Cu、Zn、Ga、Nb、Zr、Mo、Ag、Ta和W组成的组中的元素,摩尔分数x、y、z、w、n、m和p分别满足不等式:
10at%<x≤15at%;
4at%≤y<7at%;
0.5at%≤z≤8at%;
0.01at%≤w≤6at%;
0at%<n≤10at%;
0≤m≤0.5;和
0.01≤p≤0.5,和
利用熔体淬火工艺在负压气氛中快速冷却和凝固熔体以获得快速凝固合金。
4.权利要求3的方法,其中所述熔体淬火工艺是带铸工艺。
5.一种制备纳米复合磁体粉末的方法,该方法包括步骤:
制备具有由通式(Fe1-mTm)100-x-y-z-w-n(B1-pCp)xRyTizVwMn所表示的组成的快速凝固合金,其中,T为至少一种选自由Co和Ni组成的组中的元素;R为稀土元素;并且M为至少一种选自由Al、Si、Cr、Mn、Cu、Zn、Ga、Nb、Zr、Mo、Ag、Ta和W组成的组中的元素,摩尔分数x、y、z、w、n、m和p分别满足不等式:
10at%<x≤15at%;
4at%≤y<7at%;
0.5at%≤z≤8at%;
0.01at%≤w≤6at%;
0at%<n≤10at%;
0≤m≤0.5;和
0.01≤p≤0.5;
在550℃至850℃的温度下,对所述快速凝固合金进行热处理,以获得包括具有R2Fe14B型晶体结构的硬磁相和软磁相的纳米复合磁体合金,其中硬磁相的平均粒度为10nm至200nm,软磁相包括α-Fe和铁磁性铁基硼化物且平均粒度为1nm至100nm;并且
粉碎纳米复合磁体合金。
6.一种制备纳米复合磁体的方法,该方法包括步骤:
由权利要求5所述的方法制备纳米复合磁体粉末,
其中所述纳米复合磁体粉末的矫顽力和最大能积这二者中的至少之一比除了不含V以外其他组分与所述纳米磁体一样的磁体粉末至少高1%;并且
压制所述纳米复合磁体粉末获得纳米复合磁体。
CNB038009528A 2002-10-17 2003-10-08 纳米复合磁体及制备该磁体的方法 Expired - Fee Related CN1303623C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002302769 2002-10-17
JP302769/2002 2002-10-17

Publications (2)

Publication Number Publication Date
CN1550020A CN1550020A (zh) 2004-11-24
CN1303623C true CN1303623C (zh) 2007-03-07

Family

ID=32105053

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038009528A Expired - Fee Related CN1303623C (zh) 2002-10-17 2003-10-08 纳米复合磁体及制备该磁体的方法

Country Status (12)

Country Link
US (1) US20050040923A1 (zh)
EP (1) EP1552537B1 (zh)
KR (1) KR101045696B1 (zh)
CN (1) CN1303623C (zh)
AT (1) ATE371937T1 (zh)
AU (1) AU2003272093A1 (zh)
DE (1) DE60316007T2 (zh)
HU (1) HU228834B1 (zh)
MY (1) MY136992A (zh)
RU (1) RU2311698C2 (zh)
TW (1) TWI308349B (zh)
WO (1) WO2004036602A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562681B1 (ko) * 2000-05-24 2006-03-23 가부시키가이샤 네오맥스 복수의 강자성상을 포함하는 영구자석 및 그 제조방법
US7004228B2 (en) * 2000-10-06 2006-02-28 Santoku Corporation Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet
US7217328B2 (en) * 2000-11-13 2007-05-15 Neomax Co., Ltd. Compound for rare-earth bonded magnet and bonded magnet using the compound
WO2002093591A2 (en) * 2001-05-15 2002-11-21 Sumitomo Special Metals Co., Ltd. Iron-based rare earth alloy nanocomposite magnet and method for producing the same
JP4055709B2 (ja) * 2001-07-31 2008-03-05 日立金属株式会社 アトマイズ法によるナノコンポジット磁石の製造方法
WO2003044812A1 (en) * 2001-11-22 2003-05-30 Sumitomo Special Metals Co., Ltd. Nanocomposite magnet
WO2006004998A2 (en) * 2004-06-30 2006-01-12 University Of Dayton Anisotropic nanocomposite rare earth permanent magnets and method of making
US20090129966A1 (en) * 2005-03-24 2009-05-21 Hitachi Metals, Ltd. Iron-based rare-earth-containing nanocomposite magnet and process for producing the same
JP4766045B2 (ja) * 2005-03-24 2011-09-07 日立金属株式会社 鉄基希土類系ナノコンポジット磁石およびその製造方法
TWI339847B (en) * 2005-06-10 2011-04-01 Delta Electronics Inc Inductor and magnetic body thereof
CN101853723B (zh) * 2009-03-31 2012-11-21 比亚迪股份有限公司 一种复合磁性材料及其制备方法
TWI426187B (zh) * 2009-04-29 2014-02-11 Chenming Mold Ind Corp Production method of concave cam and concave cam
EA013720B1 (ru) * 2009-10-23 2010-06-30 Общество с ограниченной ответственностью "Перспективные магнитные технологии и консультации" Электромагнитный клапан и автоматизированная система на основе этого клапана
US8491728B2 (en) * 2010-03-31 2013-07-23 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
WO2013103132A1 (ja) * 2012-01-04 2013-07-11 トヨタ自動車株式会社 希土類ナノコンポジット磁石
DE102014223991B4 (de) * 2014-11-25 2022-06-23 Robert Bosch Gmbh Magnetisches Material, Verfahren zu dessen Herstellung und Elektromotor oder Starter oder Generator mit dem magnetischen Material
JP7143635B2 (ja) * 2018-05-30 2022-09-29 トヨタ自動車株式会社 軟磁性材料及びその製造方法
US11993834B2 (en) 2019-08-21 2024-05-28 Ut-Battelle, Llc Indirect additive manufacturing process for fabricating bonded soft magnets

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1257289A (zh) * 1998-12-07 2000-06-21 住友特殊金属株式会社 纳米复合磁铁用合金原料、其粉末及制法以及含该粉末及磁铁的制法
CN1353427A (zh) * 2000-11-13 2002-06-12 住友特殊金属株式会社 纳米复合磁铁及其制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1316375C (en) * 1982-08-21 1993-04-20 Masato Sagawa Magnetic materials and permanent magnets
US4851058A (en) * 1982-09-03 1989-07-25 General Motors Corporation High energy product rare earth-iron magnet alloys
EP0242187B1 (en) * 1986-04-15 1992-06-03 TDK Corporation Permanent magnet and method of producing same
EP0867897B1 (en) * 1997-03-25 2003-11-26 Alps Electric Co., Ltd. Fe based hard magnetic alloy having super-cooled liquid region
US7004228B2 (en) * 2000-10-06 2006-02-28 Santoku Corporation Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet
US6695929B2 (en) * 2001-02-07 2004-02-24 Sumitomo Special Co., Ltd. Method of making material alloy for iron-based rare earth magnet
JP4023138B2 (ja) * 2001-02-07 2007-12-19 日立金属株式会社 鉄基希土類合金粉末および鉄基希土類合金粉末を含むコンパウンドならびにそれを用いた永久磁石
JP3801456B2 (ja) 2001-03-27 2006-07-26 株式会社Neomax 鉄基希土類系永久磁石合金およびその製造方法
WO2002093591A2 (en) * 2001-05-15 2002-11-21 Sumitomo Special Metals Co., Ltd. Iron-based rare earth alloy nanocomposite magnet and method for producing the same
JP3983999B2 (ja) * 2001-05-17 2007-09-26 日産自動車株式会社 異方性交換スプリング磁石の製造方法とこれを備えてなるモータ
WO2003044812A1 (en) * 2001-11-22 2003-05-30 Sumitomo Special Metals Co., Ltd. Nanocomposite magnet
JP3602120B2 (ja) * 2002-08-08 2004-12-15 株式会社Neomax ナノコンポジット磁石用急冷合金の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1257289A (zh) * 1998-12-07 2000-06-21 住友特殊金属株式会社 纳米复合磁铁用合金原料、其粉末及制法以及含该粉末及磁铁的制法
CN1353427A (zh) * 2000-11-13 2002-06-12 住友特殊金属株式会社 纳米复合磁铁及其制造方法

Also Published As

Publication number Publication date
WO2004036602A1 (en) 2004-04-29
CN1550020A (zh) 2004-11-24
KR20050065445A (ko) 2005-06-29
ATE371937T1 (de) 2007-09-15
EP1552537A1 (en) 2005-07-13
HU228834B1 (hu) 2013-06-28
KR101045696B1 (ko) 2011-06-30
US20050040923A1 (en) 2005-02-24
RU2004109582A (ru) 2005-05-10
AU2003272093A1 (en) 2004-05-04
MY136992A (en) 2008-12-31
RU2311698C2 (ru) 2007-11-27
TWI308349B (en) 2009-04-01
DE60316007T2 (de) 2007-12-13
TW200419597A (en) 2004-10-01
EP1552537B1 (en) 2007-08-29
DE60316007D1 (de) 2007-10-11
HUP0600024A2 (en) 2006-04-28

Similar Documents

Publication Publication Date Title
CN1303623C (zh) 纳米复合磁体及制备该磁体的方法
CN1228791C (zh) 纳米复合磁体
CN1220989C (zh) 制造铁基稀土磁体用合金材料的方法
CN1212626C (zh) 铁基稀土合金纳米复合磁体及其制造方法
KR100562681B1 (ko) 복수의 강자성상을 포함하는 영구자석 및 그 제조방법
EP1826782B1 (en) Iron base rare earth nano-composite magnet and method for production thereof
JP4591633B2 (ja) ナノコンポジットバルク磁石およびその製造方法
EP0801402B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
US20090072938A1 (en) R-t-b system alloy and method of preparing r-t-b system alloy, fine powder for r-t-b system rare earth permanent magnet, and r-t-b system rare earth permanent magnet
WO2004072311A2 (en) Highly quenchable fe-based rare earth materials for ferrite replacement
JP2013197414A (ja) 焼結体とその製造方法
JP6939337B2 (ja) R−t−b系焼結磁石の製造方法
CN115244206A (zh) 铁基稀土类硼系各向同性磁铁合金
JP3773484B2 (ja) ナノコンポジット磁石
JP2003158005A (ja) ナノコンポジット磁石およびその製造方法
JP3625821B2 (ja) ナノコンポジット磁石およびその製造方法
JP3625821B6 (ja) ナノコンポジット磁石およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070307

Termination date: 20191008

CF01 Termination of patent right due to non-payment of annual fee